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1.1 INTRODUCTION

Learning is a many-faceted phenomenon. Learning processes include the
acquisition of new declarative knowledge, the development of motor and cog-
nitive skills through instruction or practice, the organization of new knowledge
into general, effective representations, and the discovery of new facts and
theories through observation and experimentation.  Since the inception of the
computer era, researchers have been striving to implant such capabilities in com-
puters. Solving this problem has been, and remains, a most challenging and fas-
cinating long-range goal in artificial intelligence (AI). The study and computer
modeling of learning processes in their multiple manifestations constitutes the
subject matter of machine learning.

1.2 THE OBJECTIVES OF MACHINE LEARNING

At present, the field of machine learning is organized around three primary
research foci:

¢ Task-Oriented Studies—the development and analysis of learning systems
to improve performance in a predetermined set of tasks (also known as the
“engineering approach”)
S a
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e Cognitive Simulation—the investigation and computer simulation of

human learning processes
e Theoretical Analysis—the theoretical exploration of the space of possible
learning methods and algorithms independent of application domain

Although many research efforts strive primarily towards one of these objec-
tives, progress towards one objective often leads to progress towards another.
For instance, in order to investigate the space of possible learning methods, a
reasonable starting point may be to consider the only known example of robust
learning behavior, namely humans (and perhaps other biological systems).
Similarly, psychological investigations of human learning may be helped by
theoretical analysis that may suggest various plausible learning models. The
need to acquire a particular form of knowledge in some task-oriented study may
itself spawn new theoretical analysis or pose the question: “How do humans ac-
quire this specific skill (or knowledge)?” This trichotomy of mutually challenging
and supportive objectives is a reflection of the entire field of artificial intel-
ligence, where expert systems research, cognitive simulation, and theoretical
studies provide cross-fertilization of problems and ideas.

1.2.1 Applied Learning Systems: A Practical Necessity

At present, instructing a computer or a computer-controlled robot to per-
form a task requires one to define a complete and correct algorithm for that task,
and then laboriously program the algorithm into a computer. These activities
typically involve a tedious and time-consuming effort by specially trained person-
nel.

Present-day computer systems cannot truly learn to perform a task through
examples. or by analogy to a similar, previously-solved task. Nor can they im-
prove significantly on the basis of past mistakes, or acquire new abilities by ob-
serving and imitating experts. Machine learning research strives to open the pos-
sibility of instructing computers in such new ways, and thereby promises to ease
the burden of hand-programming growing volumes of increasingly complex in-
formation into the computers of tomorrow. The rapid expansion of applications
and availability of computers today makes this possibility even more attractive
and desirable.

When approaching a task-oriented knowledge acquisition task, one must be
aware that the resultant computer systems must interact with humans, and there-
fore should closely parallel human abilities. The traditional argument that an
engineering approach need not reflect human or biological performance is not
truly applicable to machine learning. Since airplanes, a successful result of an
almost pure engineering approach, bear little resemblance to their biological
counterparts, one may argue that applied knowledge acquisition systems should
be equally divorced from any consideration of human capabilities. This argument
does not apply here because airplanes need not interact with or understand birds.
Learning machines, on the other hand, will have to interact with the people who
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make use of them, and consequently the concepts and skills they acquire—if not
necessarily their internal mechanisms—must be understandable to humans.

1.2.2 Machine Learning as a Science

The question of what are the genetically-endowed abilities in a biological
system (versus environmentally-acquired skills or knowledge) has fascinated
biologists, psychologists, philosophers and artificial intelligence researchers
alike. A clear candidate for a cognitive invariant in humans is the learning
mechanism—the innate ability to acquire facts, skills and more abstract concepts.
Therefore, understanding human learning well enough to reproduce aspects of
that learning behavior in a computer system is, in itself, a worthy scientific goal.
Moreover, the computer can render substantial assistance to cognitive psychol-
ogy, in that it may be used to test the consistency and completeness of learning
theories, and enforce a commitment to fine-structure process-level detail that
precludes meaningless, tautological or untestable theories.

The study of human learning processes is also of considerable practical sig-
nificance. Gaining insights into the principles underlying human learning abilities
is likely.to lead to more effective educational techniques. Thus, it is not surpris-
ing that research into intelligent computer-assisted instruction, which attempts to
develop computer-based tutoring systems, shares many of the goals and perspec-
tives with machine learning research. One particularly interesting development is
that computer tutoring systems are starting to incorporate abilities to infer models
of student competence from observed performance. Inferring the scope of a
student’s knowledge and skills in a particular area allows much more effective
and individualized tutoring of the student.

An equally basic scientific objective of machine learning is the exploration
of alternative learning mechanisms, including the discovery of different induction
algorithms, the scope and limitations of certain methods, the information that
must be available to the learner, the issue of coping with imperfect training data,
and the creation of general techniques applicable in many task domains. There
is no reason to believe that human learning methods are the only possible means
of acquiring knowledge and skills. In fact, common sense suggests that human
learning represents just one point in an uncharted space of possible learning
methods—a point that through the evolutionary process is particularly well suited
to cope with the general physical environment in which we exist. Most theoreti-
cal work in machine learning has centered on the creation, characterization and
analysis of general learning methods, with the major emphasis on analyzing
generality and performance rather than psychological plausibility.

Whereas theoretical analysis provides a means of exploring the space of
possible learning methods, the task-oriented approach provides a vehicle to test
and improve the performance of functional learning systems. By constructing
and testing applied learning systems, one can determine the cost-effectiveness
trade-offs -and limitations of particular approaches to learning. In this way, in-
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dividual data points in the space of possible learning systems are explored, and
the space itself becomes better understood. Many of the chapters of this book
can be viewed from this perspective.

1.2.3 Knowledge Acquisition versus Skill Refinement

There are two basic forms of learning: knowledge acquisition and skill
refinement. When we say that someone learned physics, we mean that this per-
son acquired significant concepts of physics, understood their meaning, and un-
derstood their relationship to each other and to the physical world. The essence
of learning in this case is the acquisition of new knowledge, including descrip-
tions and models of physical systems and their behaviors, incorporating a variety
of representations—from simple intuitive mental models, examples and images,
to completely tested mathematical equations and physical Jaws. A person is said
to have learned more if his knowledge explains a broader scope of situations, is
more accurate, and is better able to predict the behavior of the physical world.
This form of learning is typical in a large variety of situations and is generally
termed knowledge acquisition. Hence, knowledge acquisition is defined as learn-
ing new symbolic information coupled with the ability to apply that information
in an effective manner.

A second kind of learning is the gradual improvement of motor and cog-
nitive skills through practice, such as learning to ride a bicycle or to play the
piano.  Acquiring textbook knowledge on how to perform these activities
represents only the initial phase in developing the requisite skills. The. bulk of
the learning process consists of refining the learned skills, whether mental or
motor coordination, by repeated practice and by correcting deviations from
desired behavior. This form of learning, often called skill refinement, differs in
many ways from knowledge acquisition. Whereas the essence of knowledge ac-
quisition may be a conscious process whose result is the creation of new sym-
bolic knowledge structures and mental models, skill refinement occurs at a sub-
conscious level by virtue of repeated practice. Most human learning appears 1o
be a mixture of both activities, with intellectual endeavors favoring the former,
and motor coordination tasks favoring the latter.

This book focuses on the knowledge acquisition aspect of learning, al-
though some chapters, specifically those concerned with learning in problem-
solving and transforming declarative instructions into effective actions, touch on
aspects of both types of learning. ~Whereas knowledge acquisition clearly
belongs in the realm of artificial intelligence research, a case could be made that
skill refinement comes closer to non-symbolic processes, such as those studied in
adaptive control systems. It may indeed be the case that skill acquisition is in-
herently non-symbolic in biological systems, but an interesting symbolic model
capable of simulating gradual skill improvement through practice has been
proposed recently by Newell and Rosenbloom (Newell, 1981]. Hence, perhaps
both forms of learning can be captured in artificial intelligence models. —
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1.3 A TAXONOMY OF MACHINE LEARNING RESEARCH

This section presents a taxonomic road map to the field of machine learn-
ing with a view towards presenting useful criteria for classifying and compu.ring
most artificial intelligence-based machine learning investigations. Later sections
survey the main directions actually taken by research in machine learning over
the past twenty years, and introduce each major research approach corresponding
to subsequent chapters in this book.

One may classify machine learning systems along many different dimen-
sions. We have chosen three dimensions as particularly meaningful:

o Classification on the basis of the underlying learning strategies used. The
processes themselves are ordered by the amount of inference the learning
system performs on the available information.

e Classification on the basis of the representation of knowledge or skill ac-
quired by the learner.

o Classification in terms of the application domain of the performance sys-
tem for which knowledge is acquired.

Each point in the space defined by the above dimensions corresponds to a
particular learning strategy. employing a particular knowledge representation, ap-
plied to a particular domain. Since existing learning systems employ multiple
representations and processes. and many have been applied to more than one
domain. such learning systems are characterized by several points in the space.

The subsections below describe explored values along each of these dimen-
sions. Future research may well reveal new values and dimensions. Indeed. the
larger space of all possible learning systems is still only sparsely explored and
partially understood. Existing Jearning systems correspond to only a small por-
tion of the space because they represent only a small number of possible com-
binations of the values.

1.3.1 Classification Based on the Underlying Learning Strategy

Since we distinguish learning strategies by the amount of inference the
lcarner performs on the information provided, we first consider the two extremes:
performing no inference, and performing a substantial amount of inference. If a
computer system is programmed directly, its knowledge increases, but it per-
forms no inference whatsoever; all cognitive effort is on the part of the program-
mer. Conversely, if a system independently discovers new theories or invents
new concepts, it must perform a very substantial amount of inference: it is deriv-
ing organized knowledge from experiments and observations. An intermediate
point in the spectrum would be a student determining how 10 solve a math-
cmatics problem by analogy to worked-out examples in the textbook—a process
that requires inference, but much less than discovering a new branch of math-
cmatics without guidance from teacher or textbook.

As the amount of inference that the learner is capable of performine in-
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creases, the burden placed on the teacher or external environment decreases. It is
much more difficult to teach a person by explaining each step in a complex task
than by showing that person the way that similar tasks are usually handled. Itis
more difficult yet to program a computer to perform a complex task than to in-
struct a person to perform the task; as programming requires explicit specifica-
tion of all requisite detail, whereas a person receiving instruction can use prior
knowledge and common sense to fill in most mundane details. The taxonomy
below captures this notion of trade-offs in the amount of effort required of the

learner and of the teacher.

|. Rote learning and direct implanting of new knowledge—No inference or
other transformation of the knowledge is requircd on the part of the
learner. Variants of this knowledge acquisition method include:

e Learning by being programmed, constructed or modified by an exter-
nal entity, requiring no cffort on the part of the learner (for example,
the usual style of computer programming).

e Learning by memorization of given facts and data with no inferences
drawn from the incoming information (for example, as performed by
primitive database systems). The term “rote learning” is used
primarily in this context.

2. Learning from instruction (or, learning by being told)}—Acquiring
knowledge from a teacher or other organized source, such as a textbook,
requiring that the learner transform the knowledge from the input language
to an internally-usable representation, and that the new information be in-
tegrated with prior knowledge for effective use. Hence, the learner is re-
quired to perform some inference, but a large fraction of the burden
remains with the teacher, who must present and organize knowledge in a
way that incrementally augments the student’s existing knowledge. Learn-
ing from instruction parallels most formal education methods. Therefore,
the machine learning task is one of building a system that can accept in-
struction or advice and can store and apply this learned knowledge effec-
tively. This form of learning is discussed in Chapters 12, 13 and 14.

3. Learning by analogy—Acquiring new facts or skills by transforming and
augmenting existing knowledge that bears strong similarity to the desired
new concept or skill into a form effectively useful in the new situation.
For instance, a person who has never driven a small truck, but who drives
automobiles, may well transform his existing skill (perhaps imperfectly) to
the new task. Similarly, a learning-by-analogy system might be applied to
convert an existing computer program into one that performs a closely-
related function for which it was not originally designed. Learning by
analogy requires more inference on the part of the learner than does rote
learning or learning from instruction. A fact or skill analogous in relevant
parameters must be retrieved from memory; then the retrieved knowledge
must be transformed, applied to the new situation, and stored for future
use. This form of learning is discussed in Chapters 5 and 7.



CARBONELL, MICHALSKI AND MITCHELL 9

4. Learning from examples (a special case of inductive learning)—Given a
set of examples and counterexamples of a concept, the learner induces a
general concept description that describes all of the positive examples and
none of the counterexamples. Learning from examples is a method that has
been heavily investigated in artificial intelligence. The amount of in-
ference performed by the learner is much greater than in learning from in-
struction, as no general concepts are provided by a teacher, and is some-
what greater than in learning by analogy, as no similar concepts are
provided as “seeds” around which the new concept may be grown. Learn-
ing from examples can be subcategorized according to the source of the
examples:

e The source is a teacher who knows the concept and generates se-
quences of examples that are meant to be as helpful as possible. If
the teacher also knows (or, more typically, infers) the knowledge
state of the learner, the examples can be selected to optimize conver-
gence on the desired concept (as in Winston’s system [Winston,
1975)).

e The source is the learner itself. The learner typically knows its own

‘ knowledge state, but clearly does not know the concept to be ac-
quired. Therefore, the learner can generate instances (and have an
external entity such as the environment or a teacher classify them as
positive or negative examples) on the basis of the information it
believes necessary to discriminate among contending concept descrip-
tions. For instance, a learner trying to acquire the concept of
“ferromagnetic substance”, may generate as a possible candidate “all
metals”. Upon testing copper and other metals with a magnet, the
learner will then discover that copper is a counterexample, and there-
fore the concept of ferromagnetic substance should not be generalized
to include all metals.

e The source is the external environment. In this case the example
generation process is operationally random, as the learner must rely
on relatively uncontrolled observations. For example, an astronomer
attempting to infer precursors to supernovas must rely mainly upon
unstructured data presentation. (Although the astronomer knows the
concept of a supernova, he cannot know a priori where and when a
supernova will occur, nor can he cause one to exist.)

One can also classify learning from examples by the rype of ex-
amples available to the learner:

e Only positive examples available. Whereas positive examples provide
instances of the concept to be acquired, they do not provide infor-
mation for preventing overgeneralization of the inferred concept. In
this kind of learning situation, overgeneralization might be avoided

* by considering only the minimal generalizations necessary, or by
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relying upon a priori domain knowledge to constrain the concept to
be inferred.

e Positive and negative examples available. In this kind of situation,
positive examples force generalization whereas negative examples
prevent overgeneralization (the induced concept should never be so
general as to include any of the negative examples). This is the most
typical form of learning from examples.

Learning from examples may be one-trial or incremental. In the

former case, all examples are presented at once. In the latter case, the sys-
tem must form one or more hypotheses of the concept (or range of
concepts) consistent with the available data, and subsequently refine the
hypotheses after considering additional examples. The incremental ap-
proach more closely parallels human learning, allows the learner to use
partially learned concepts (for performance, or to guide the example
generation process), and enables a teacher to focus on the basic aspects of
a new concept before attempting to impart less central details. On the other
hand, the one-step approach is less apt to lead one down garden paths by
an injudicious choice of initial examples in formulating the kernel of the
new concept. Various aspects of learning from examples are discussed in
Chapters 3, 4, 5,6, 7, 8, 15 and 16. ‘
. Learning from observation and discovery (also called unsupervised
learning)—This is a very general form of inductive learning that includes
discovery systems, theory-formation tasks, the creation of classification
criteria to form taxonomic hierarchies, and similar tasks without benefit of
an external teacher. This form of unsupervised learning requires the
learner to perform more inference than any approach thus far discussed.
The learner is not provided with a set of instances of a particular concept,
nor is it given access to an oracle that can classify internally-generated in-
stances as positive or negative instances of any given concept. Moreover,
rather than focusing on a single concept at a time, the observations may
span several concepts that need to be acquired, thus introducing a severe
focus-of-attention problem. One may subclassify learning from observation
according to the degree of interaction with an external environment. The
extreme points in this dimension are:

e Passive observation, where the learner classifies and taxonomizes ob-
servations of multiple aspects of the environment.

e Active experimentation, where the learner perturbs the environment to
observe the results of its perturbations. Experimentation may be ran-
dom, dynamicglly focused according to general criteria of interesting-
ness, or strongly guided by theoretical constraints. As a system ac-
quires knowledge, and hypothesizes theories it may be driven to con-
firm or disconfirm its theories, and hence explore its environment ap-
plving different observation and experimentation strategies as the
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need arises. Often this form of learning involves the generation of
examples to test hypothesized or partially acquired concepts.

Learning from observation is discussed in Chapters 4, 9, 10 and 11.

The above classification of learning strategies helps one to compare various
learning systems in terms of their underlying mechanisms, in terms of the avail-
able external source of information, and in terms of the degree to which they

rely on pre-organized knowledge.
1.3.2 Classification According to the Type of Knowledge Acquired

A learning system may acquire rules of behavior, descriptions of physical
objects, problem-solving heuristics, classification taxonomies over a sample
space, and many other types of knowledge useful in the performance of a wide
variety of tasks. The list below spans types of knowledge acquired, primarily as
a function of the representation of that knowledge.

1. Parameters in algebraic expressions—Learning in this context consists of
adjusting numerical parameters or coefficients in algebraic expressions of a
fixed functional form so as to obtain desired performance. For instance,
perceptrons [Rosenblatt, 1958; Minsky & Papert, 1969] adjust weighting
coefficients for threshold logic elements when learning to recognize two-
dimensional patterns.

2. Decision trees—Some systems acquire decision trees to discriminate
among classes of objects. The nodes in a decision tree correspond to
selected object attributes, and the edges correspond to predetermined alter-
native values for these attributes. Leaves of the tree correspond to sets of
objects with an identical classification.

3. Formal grammars—In learning to recognize a particular (usually
artificial) language, formal grammars are induced from sequences of ex-
pressions in the language. These grammars are typically represented as
regular expressions, finite-state automata, context-free grammar rules, or
transformation rules.

4. Production rules—A production rule is a condition-action pair {C > A}, .
where C is a set of conditions and A is a sequence of actions. If all the
conditions in a production rule are satisfied, then the sequence of actions is
executed. Due to their simplicity and ease of interpretation, production
rules are a widely-used knowledge representation in learning systems. The
four basic operations whereby production rules may be acquired and
refined are: '

® Creation: A new rule is constructed by the system or acquired from
an external entity.

® Generalization: Conditions are dropped or made less restrictive, so
that the rule applies in a larger number of situations.
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e Specialization: Additional conditions are added to the condition set,
or existing conditions made more restrictive, so that the rule applies
to a smaller number of specific situations.

e Composition: Two or more rules that were applied in sequence are
composed into a single larger rule, thus forming a “compiled”
process and eliminating any redundant conditions or actions.

. Formal logic-based expressions and related formalisms—These general-
purpose representations have been used to formulate descriptions of in-
dividual objects (input to a learning system) and to formulate resultant con-
cept descriptions (output from a learning system). They take the form of
formal logic expressions whose components are propositions, arbitrary
predicates, finite-valued variables, statements restricting ranges of variables
(such as “a number between 1 and 9"), or embedded logical expressions.

. Graphs and Networks—In many domains graphs and networks provide a
more convenient and efficient representation than logical expressions, al-
though the expressive power of network representations is comparable to
that of formal logic expressions. Some learning techniques exploit graph-
matching and graph-transformation schemes to compare and index
knowledge efficiently.

. Frames and schemas—These provide larger units of representation than
single logical expressions or production rules. Frames and schemas can be
viewed as collections of labeled entities (“slots™), each slot playing a cer-
tain prescribed role in the representation. They have proven quite useful in
many artificial intelligence applications. For instance, a system that ac-
quires generalized plans must be able to represent and manipulate such
plans as units, although their internal structure may be arbitrarily complex.
Moreover, in experiential learning, past successes, untested alternatives,
causes of failure, and other information must be recorded and compared in
inducing and refining various rules of behavior (or entire plans). Schema
representations provide an appropriate formalism.

. Computer programs and other procedural encodings—The objective of
several learning systems is to acquire an ability to carry out a specific
process efficiently, rather than to reason about the internal structure of the
process. Most automatic programming systems fall in this general cate-
gory. In addition to computer programs, procedural encodings include
human motor skills (such as knowing how to ride a bicycle), instruction
sequences to robot manipulators, and other “compiled” human or machine
skills. Unlike logical descriptions, networks or frames, the detailed inter-
nal structure of the résultant procedural encodings need not be comprehen-
sible to humans, or to automated reasoning systems. Only the external be-
havior of acquired procedural skills become directly. available to the
reasoning system.

. Taxonomies—Learning from observation may result in global structuring
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133

tion.

of domain objects into a hierarchy or taxonomy. Clustering object descrip-
tions into newly-proposed categories, and forming hierarchical classifica-
tions require the system to formaulate relevant criteria for classification.

. Multiple representations—Some knowledge acquisition systems use

several representation schemes for the newly-acquired knowledge. Most
notably, some discovery and theory-formation systems that acquire con-
cepts, operations on those concepts, and heuristic rules for a new domain
must select appropriate combinations of representation schemes applicable
to the different forms of knowledge acquired.

Classification by Domain of Application

A useful dimension for classifying learning systems is their area of applica-
The list below specifies application areas to which various existing learn-

ing systems have been applied. Application areas are presented in alphabetical

order,

not reflecting the relative effort or significance of the resultant machine

learning system.

00 N AN B W N —

Nel

19

. Agriculture

. Chemistry

. Cognitive Modeling (simulating human learning processes)

. Computer Programming

. Education

- Expert Systems (high-performance, domain-specific Al programs)
. Game Playing (chess, checkers, poker, and so on)

. General Methods (no specific domain)

. Image Recognition

10.
I1.
12.
13.
14,
15.
16.
17.
18.

Mathematics

Medical Diagnosis

Music

Natural Language Processing
Physical Object Characterizations
Physics

Planning and Problem-solving
Robotics

Sequence Prediction

- Speech Recognition

The Bibliography provides an index to the literature organized around

several criteria including some of the more commonly explored application areas.

Now

that we have a basis for classifying and comparing learning systems, we

turn to a brief historical outline of machine learning.
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1.4 AN HISTORICAL SKETCH OF MACHINE LEARNING

Over the years, research in machine learning has been pursued with vary-
ing degrees of intensity, using different approaches and placing emphasis on dif-
ferent aspects and goals. Within the relatively short history of this discipline,
one may distinguish three major periods, each centered around a different

paradigm:
e neural modeling and decision-theoretic techniques
e symbolic concept-oriented learning
e knowledge-intensive learning systems exploring various learning tasks

The distinguishing feature of the first paradigm was the interest in building
general purpose learning systems that start with little or no initial structure or
task-oriented knowledge. The major thrust of research based on this tabula rasa
approach involved constructing a variety of neural model-based machines, with
random or partially random initial structure. These systems were generally
referred to as neural nets or self-organizing systems. Learning in such systems
consisted of incremental changes in the probabilities that neuron-like elements
(typically threshold logic units) would transmit a signal.

Due to the primitive nature of computer technology at that time, most of
the research under this paradigm was either theoretical or involved the construc-
tion of special purpose experimental hardware systems, such as perceptrons
[Rosenblatt, 1958], pandemonium [Selfridge, 1959] and adelaine [Widrow,
1962]. The groundwork for this paradigm was laid in the forties by Rashevsky
and his followers working in the area of mathematical biophysics [Rashevsky,
1948], and by McCulloch and Pitts [1943], who discovered the applicability of
symbolic logic to modeling nervous system activities. Among the large number
of research efforts in this area, one may mention many works such as [Ashby,
1960; Rosenblatt, 1958, 1962; Minsky & Papert, 1969; Block, 1961; Yovits,
1962; Widrow, 1962; Culberson, 1963; Kazmierczak, 1963]. Related research
involved the simulation of evolutionary processes, that through random mutation
and “natural” selection might create a system capable of some intelligent be-
havior (for example, [Friedberg, 1958, 1959; Holland, 1980]).

Experience in the above areas spawned the new discipline of pattern recog-
nition and led to the development of a decision-theoretic approach to machine
learning. In this approach, learning is equated with the acquisition of linear,
polynomial, or related forms of discriminant functions from a given set of train-
ing examples (for example, [Nilsson, 1965; Koford, 1966; Uhr, 1966; High-
leyman, 1967] ). One of the best known successful learning systems utilizing
such techniques (as well as some original new ideas involving non-linear
transformations) was Samuel’s checkers program [Samuel, 1959, 1963]. This
program was able to acquire through learning a master level of performance.
Somewhat different, but closely related, techniques utilized methods of statistical
decision theory for learning pattern recognition rules (for example, [Sebestyen,
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1962: Fu, 1968; Watanabe, 1960; Arkadev, 1971; Fukananga, 1972; Duda &
Hart, 1973; Kanal, 1974]).

In parallel to research on neural modeling and decision-thcoretic tech-
niques, researchers in control theory developed adaptive control systems able to
adjust automatically their parameters in order to maintain stable performance in
the presence of various disturbances (for example, [Truxal, 1955; Davies, 1970;
Mendel, 1970; Tsypkin, 1968, 1971, 1973; Fu, 1971, 1974)).

Practical results sought by the neural modeling and decision theoretic ap-
proaches met with limited success. High expectations articulated in various early
works were not realized, and research under this paradigm bcgan to decline.
Theoretical studies have revealed strong limitations of the “knowledge-free”
perceptron-type learning systems [Minsky & Papert, 1969].

A second major paradigm started to emerge in the early sixties stemming
from the work of psychologists and early Al researchers on models of human
learning [Hunt et al., 1963, 1966). The paradigm utilized logic or graph struc-
ture representations rather than numerical or statistical methods. Systems learned
symbolic descriptions representing higher level knowledge and made strong
structural assumptions about the concepts to be acquired.

‘Examples of work in this paradigm include research on human concept ac-
quisition (for example, [Hunt & Hovland, 1963; Feigenbaum, 1963; Hunt er al.,
1966; Hilgard, 1966; Simon & Lea, 1974]), and various applied pattern recog-
nition systems ( (Bongard, 1970; Uhr, 1966; Karpinski & Michalski, 1966]).

Some researchers constructed task-oriented specialized systems that would
acquire knowledge in the context of a practical problem. For instance, the
META-DENDRAL program [Buchanan, 1978] generates rules explaining mass
spectrometry data for use in the DENDRAL system [Buchanan er «l., 1971].

An influential development in this paradigm was Winston's structural
learning system [Winston, 1975]. In parallel with Winston’s work, different ap-
proaches to learning structural concepts from examples emerged, including a
family of logic-based inductive learning programs (AQVAL) [Michalski, 1972,
1973, 1978], and related work by Hayes-Roth [1974], Hayes-Roth & McDermott
[1978], Vere [1975], and Mitchell [1978]. More details on this paradigm are in-
cluded in Chapters 3, 4 and 6. (See also [Michie, 1982].)

The third paradigm represents the most recent period of research starting in
the mid-seventies. Researchers have broadened their interest beyond learning
isolated concepts from examples, and have begun investigating a wide spectrum
of learning methods, most based upon knowledge-rich systems. Specifically,
this paradigm can be characterized by several new trends, including:

I. Knowledge-Intensive Approaches: Researchers are strongly emphasizing
the use of task-oriented knowledge and the constraints it provides in guid-
ing the learning process. One lesson from the failures of earlier tabula
rasa and knowledge-poor learning systems is that to acquire new
knowledge a system must already possess a great deal of initial Fnowlsdons
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2. Exploration of alternative methods of learning: In addition to the earlier
research emphasis on learning from examples, researchers are now inves-
tigating a wider variety of learning methods such as learning from instruc-
tion (Chapters 12, 13, and 14 in this book), learning by analogy
( [Winston, 1979], and Chapter 5 of this book), and discovery of concepts
and classifications ( [Lenat, 1976] and Chapters 4, 10, and 11 of this
book).

3. Incorporating abilities to generate and select learning tasks: In contrast
to previous efforts, a number of current systems incorporate heuristics to
control their focus of attention by generating learning tasks, proposing ex-
periments to gather training data, and choosing concepts to acquire
( [Lenat, 1976] and Chapter 6 of this book).

The research presented in this book is concerned primarily with the last,
knowledge-intensive paradigm of learning.

1.5 A BRIEF READER’S GUIDE

The chapters in this book are organized according to the major thrust of
each investigation, whether that thrust is the development of a general method,
the application of various learning techniques to a particular domain, or the
theoretical analysis of existing methods. The progression of chapters roughly
corresponds to the sequence:

e Basic principles
o General-purpose systems
e Task-oriented applications

Although there is much overlap among the objectives of different chapters, the
specific content differs substantially. For instance, the four papers listed under
the general category “Learning in problem-solving and planning,” share a com-
mon top-level objective, but differ substantially in terms of the learning methods
employed, the type of knowledge acquired, and the range of applicability of the
described systems.

The reader not familiar with the ficld of machine learning is encouraged to-
read the first few chapters, omitting technical detail, in order to acquire a general
understanding. Later, these chapters and any others that are of special interest
may be studied in more detail with an appropriate perspective on the field as a
whole. Readers ‘are encouraged to use our chapter descriptions below, as well as
the abstracts in the individual chapters, to focus on areas of interest. The topics
of the individual chapters range from cognitive modcling and discussion of un-
derlying principles to applications in general problem-solving, chemistry, math-
ematics, music, education and game playing. o )

At the Carnegie-Mellon Machine Learning Workshop in July, 1980,-Her-
hert Simon was asked to deliver the kevnote address, where he chose to play the
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role of devil's advocate and ask the question “Why Should Machines Learn?”
His analysis concluded that, with the exception of cognitive modeling, some
rethinking of long-term objectives was in order. After dispelling some common
myths, Simon concluded with a clarified and more appropriate set of reasons
why one ought to pursue machine learning research. Chapter 2 is based almost
entirely on that rather controversial keynote address.

In Chapter 3, Dietterich and Michalski analyze some well-known work in
concept acquisition from a unified perspective. After developing some requisite
formalism, they examine the range of possible concept descriptions that may be
acquired via a set of basic generalization and discrimination operators applied to
logic-based representations of instances and concepts. Then, they describe the
work of Winston, Hayes-Roth, Vere, and Michalski’s earlier work as particular
combinations of learning operators applied to different restriction on the
representation language. Chapter 3, therefore, provides a general framework for
comparison of different concept-acquisition systems.

In Chapter 4, Michalski describes a general theory and methodology for
inductive learning of structural descriptions from examples. The theory unifies
and clarifies various types of inductive learning, and demonstrates that such
lecarning can be viewed as a process of applying generalization inference rules
(and conventional deductive inference rules) to initial and intermediate descrip-
tions.  This process is guided by problem-oriented background knowledge
provided to the learning system. Various generalization rules are presented and
discussed. The methodology developed is illustrated by a problem from the area
of conceptual data analysis.

In Chapter 5, Carbonell examines the issue of learning from experience, a
common phenomenon among humans, but heretofore a nemesis to machines that
could not transfer planning knowledge to new but similar situations, or otherwise
analyze their past behavior. A general planning and problem-solving paradigm is
proposed based on a computationally-effective model of analogical reasoning. In
cssence, the planner exploits prior experience in solving new problems that bear
strong similarity to past situations by transforming solutions of past problems
into potential plans that solve new, externally or internally generated problems.

~The analogical paradigm interfaces with a Icarning-from-examples method, ena-

bling the learner to formulate generalized plans for recurring situations, as well
ds to accumulate and classify more specific experiences for less common situa-
tions.

In Chapter 6, Mitchell, Utgoff and Banerji investigate the issue of acquir-
ing and refining problem-solving heuristics by examining solutions to symbolic
integration problems. Like Carbonell's approach, learning is based on past
problem-solving expericnee, but Mitchell er af. focus on acquiring heuristics for
applying known strategies, rather than generalizing recurring behaviors into reus-
able plans. Their approach also generates problems internally for the purpose of
testing and refining existing heuristics, and uses the version-space approach to
keep track of viable generalizations of current heuristics.  Unlike Carbonell’s
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analogical approach to problem-solving, Mitchell er al. rely on heuristic search
guided by the constantly updated domain heuristics to solve necw problems.
After describing the LEX program for learning heuristics, they consider ways in
which the system’s learning abilities could be improved by giving it new
knowledge about heuristic search, the problem domain, and the goals of the
learner.

In Chapter 7, Anderson examines human problem-solving in the context of
providing justifications to geometric proofs. He relies entirely upon a production
system framework to encode domain knowledge, learning heuristics, and
problem-solving strategies. ~ Anderson reviews the basic mechanisms for
production-rule knowledge acquisition and demonstrates how they apply to a
progression of tasks in Geometry. The major significance of this chapter is the
explanation and illustration of learning methods in the context of a performance
system implemented as a set of production rules.

In Chapter 8, Hayes-Roth investigates the issue of improving flawed or in-
complete theories that guide plan formation in a given domain. His primary
thrust is on refining and restructuring theories based upon the way in which ob-
served consequences of one’s behavior differ from theoretical predictions. In
short, Hayes-Roth views empirical disconfirmation not as a mechanism for
rejecting existing theories, but rather as input to various methods of modifying
theoretical concepts to accord with past and present observations. He presents
five heuristic methods and applies them to problem-solving in playing the card
game hearts.

In Chapter 9, Lenat focuses on methods for learning from observation and
discovery. He analyzes three domains in which heuristics play a dominant role in
guiding search through the space of possible concepts or processes one may ac-
quire. First, Lenat examines his AM system, where heuristic rules that measure
intrinsic “interestingness™ help the system rediscover essential concepts in num-
ber theory, such as the notion of a prime number. Then, the EURISKO system is
discussed, which acquires and modifies learning heuristics, as well as formulat-
ing task-specific heuristics and concept representations. Finally, Lenat discusses
the conjecture that evolution is a heuristically-driven learning engine in constant
operation.

In Chapter 10, Langley, Simon and Bradshaw discuss their BACON system
and its application to rediscovering some basic laws of Chemistry. BACON ap-
plies the principles of scientific inquiry first elucidated by the Friar Sir Francis
Bacon to find the simplest numerical relations that hold invariant across sets of
measurements. In this manner, it postulates meaningful combinations of inde-
pendent measurements and intrinsic properties of objects (such as specific heat),
and searches for the simplest relationship among measured and derived quantities
that summarizes all observations. Although not able to design its own experi-
ments, given the unanalyzed results of appropriate chemical experiments, BACON
has rediscovered such laws as Gay-Lussac’s law and Proust’s law of definite
proportions. '
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In Chapter 11, Michalski and Stepp investigate the problem of automated
construction of taxonomies of observed events in a manner that is mecaningful to
a human. That is, given sets of object or process descriptions, plus an a priori
set of descriptive concepts, they develop a method of grouping observations into
meaningful classes that represent selected concepts. They present an algorithm
that implements this “conceptual clustering” operation and demonstrate its utility
for the tasks of formulating descriptions of plant diseases from observed
symptoms and taxonomizing Spanish songs in a manner meaningful to
musicologists. In contrast with statistical clustering techniques, the conceptual
clustering algorithm produces characteristic descriptions of the concepts defined
by each cluster. Both the Michalski and Stepp approach and the Langley et al.
approach exemplify learning from passive observations, whereas Lenat’s ap-
proach stresses the role of active experimentation,

In Chapter 12, Mostow discusses the process of learning by taking advice.
Declaratively stated advice must be transformed into operational procedures ef-
fective in a given task domain. The transformation process can be quite complex,
as implicit domain knowledge must be accessed, the advice must be restated in
terms consistent with the existing procedural knowledge base," and plausible
reasoning heuristics must be consulted in deciding how to make best use of the
incoming advice. Mostow focuses on the general issue of providing advice to a
heuristic search mechanism, as applied to playing the game of hearts and com-
posing a cantus firmus.

In Chapter 13, Haas and Hendrix investigate the issue of automatically ex-
tending a natural language interface by acquiring domain semantics, dictionary
entries and syntactic patterns from the user. The most significant aspect of their
KLAUS system is that the user need not be a computational linguist, but rather is
guided by the system into providing exemplary information that is later trans-
formed into effective grammar and dictionary representations. This form of learn-
ing by being told, where the student (that is, the KLAUS system) is in control and
the teacher provides information only when asked, constitutes an interesting
variation on more traditional versions of the learning-from-instruction paradigm.

In Chapter 14, Rychener provides a retrospective analysis of the instruct-
able production system project, in which many different instructional techniques
for learning by being told were tried, different organizations of the knowledge
were considered, and different problem-solving strategies were investigated. Al-
though many combinations of representational schemes and instructional methods
proved infeasible, other approaches proved much more promising. Hence the
field of machine learning can learn from its own experience—false starts as well
as successful approaches. Rychener concludes his chapter with an analysis of the
organizational and instructional principles that a production-system based instruc-
tional learner should adhere to in order to maximize chances for successful
knowledge acquisition.

In Chapter 15, Quinlan presents a method for generating efficient decision
trees for classifying given exemplars, and applies his method to the analysis of
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king-and-rook versus king-and-knight chess endgames. Chess authorities had
previously believed that all but a few special positions of this type were in-
herently drawn. (with best play for both sides). Due to the size of the search
space, a systematic analysis was not performed until Quinlan applied his efficient
method of learning classifications, whereupon it became clear that a very large
fraction of king-and-rook versus king-and-knight positions were forced wins for
the side with the rook. Therefore, the Quinlan paper illustrates not only an ef-.
ficient classification method, but demonstrates the utility of at least one applica-
tion of machine learning.

In Chapter 16, Sleeman investigates the application of machine learning to
infer models of students learning algebra. Student modeling is becoming a recog-
nized necessity in intelligent computer-assisted instruction (ICAI). The difficult
task of formulating viable student models requires that the system infer a
student’s knowledge from his performance (plus general knowledge of the in-
structional material). A general model must be inferred that can generate all ob-
served student behavior, as well as account for the lack of any expected but un-
observed behavior. The search space of possible student models is large, and the
number of trials one may require of each student is proportionately small. There-
fore the problem becomes one of searching this space quickly and without requir-
ing large amounts of student testing. Sleeman provides and analyzes algorithms
that fit these requirements. An interesting aspect of Sleeman’s work is that the
teacher, in order to be effective, must learn to adapt to the student’s needs, in-
dicating that machine learning can help to make computer-assisted human educa-
tion more effective.

Finally, the book concludes with a comprehensive bibliography of past and
present research in machine learning, a glossary of selected terms, and a brief
note about each author. The bibliography is indexed according to several criteria
(methods, applications, and so on) in order to provide guidance to the reader
who desires additional background in the field.
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