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Abstract: A method for discovering multi-head attributional rules in large 
databases is presented and illustrated by results from an implemented program. 
Attributional rules (a.k.a. attributional dependencies) can be viewed as 
generalizations of standard association rules, because they use more general and 
expressive conditions than those in the latter ones, and by that can express more 
concisely inter-attribute relations in a database. Multi-head rules have multiple 
conditions/statements in their conclusion. The presented method applies AQ 
learning to create single-head characteristic rules, and then seeks conditions 
(selectors) that can be transferred to the conclusion part of the rule. Experiments 
with the program MAR1 (Multi-head Attributional Rules), implementing the 
developed method, has produced highly encouraging results. 
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1. Introduction 

The problem of discovering unknown relations among groups of 
attributes in a large database is one of the most challenging and practically 
important problems in the field of data mining. A popular form of expressing such 
relations in data mining are association rules [1]. In the original formulation, such 
rules were in the form in which a conclusion consists of only one transaction item 
(literal). Subsequently, this form was extended to many items in the conclusion 
[2]. 

This paper is concerned with discovering more general relations in the 
data, called attributional rules (or attributional dependencies). An attributional rule 
is a relation between conjunctions of attributional conditions, expressed as an 
implicative or equivalence expression in attributional calculus  [9]. An elementary 
form of an attributional condition is a relation between an attribute and a set of 



 

values. A more general form can represent a simple relation between attributes 
(see Section 2).  

The concept of attributional rule, as well as of an association rule, can be 
viewed as a special case of a more general relational structure, called parametric 
association rule or, briefly, PAR, introduced in [7]. An advantage of using 
attributional rules in data mining is that they allow the system to express 
succinctly implicative or equivalence relations among statements involving 
discrete and/or continuous variables.  

Among important problems in data mining are the determination of 
characteristic rules and rules with low support. Solving them is typically a time 
consuming task. The method proposed in this paper addresses both problems. It 
can generate characteristic descriptions as well as attributional dependencies with 
low support too.  A characteristic rule for a class (or concept) is a logic-style 
description that specifies features that are common to all objects in the class 
(defined by a specific value of the output attribute).  Such rules introduce a 
approach to characterizing classes of entities, different from statistical methods 
(e.g., [3]).  

In many cases rules with high confidence and low support are very 
interesting for analysts. Our method differs from other algorithms generating 
association rules because it allows discover weak patterns with high confidence. 
Mentioned algorithms discover only strong patterns in practice. Using 
characteristic rules our algorithm can discover such kind of a relationship easily. 
The presented method is very efficient. During each iteration a database is 
scanned only once. Moreover this method does not generate new selectors or 
numerical intervals but use only these generated during learning of characteristic 
rules. This speeds up generation of attributional dependencies. 

2. Attr ibutional dependencies 

This section describes the concept of multihead attributional rule, and 
defines closely related terms. 

2.1. For mal model of attr ibutional dependencies 

The basic element used to describe dependencies in data is called 
attributional condition (or simply selector). First time it was introduced in [4] and 
later in [5]. There are two main types of attributional conditions: nominal and 
continuous. Attributional condition nominal describes dependency between 
attribute and a nominal value or a disjunction of values. There are two relations, 
which can be used inside such condition: equal and not equal. Attributional 
condition continuous describes dependency between attribute and a value or an 
interval of values. 

The basic form of an attributional condition for attributes with a nominal 
domain is:  



 

[ A rel V ], 

where rel is a relation symbol from the set { =,!=} , A is an attribute, V is a value or 
an disjunction of values.  

The basic forms of an attributional condition for attributes with a 
continuous (or numerical) domain are: 

[ A rel V ] 

or 

[ A = I ], 

where rel is a relation symbol from the set { =,!=,<,>,<=,>=} , A is an 
attribute, V is a value and I is a range describing interval between two values. 

Attributional condition [ A rel V ] is satisfied by the example (or is true) 
if for this example the value of attribute A is in relation rel to V. 

A conjunction of attributional conditions is called a complex. We say that 
a complex is satisfied by an example if all attributional conditions in the complex 
are satisfied. 

An attributional dependency is a rule in implicate form X=>Y or in 
equivalence form X<=>Y, where X and Y are complexes. In other words, an 
attributional dependency describes relationship between conjunctions of 
attributional conditions. The rule is satisfied by an example if both a condition and 
a conclusion, which are complexes, are satisfied. 

To select most significant dependencies we use coefficients well known 
in data mining and statistics like support, confidence and lift. We also introduce a 
coefficient called concept coverage, shortly cover.  

2.2. Definitions and interpretation of coefficients 

Suppor t 

Support is the base coefficient used to make a rule assessment.  It says 
how strong is a dependency. We say that support is equal s if s% of examples 
from database satisfy dependency. It’s mean that if support is high then 
dependency is satisfied by many examples from a database. In particular we 
define support for a complex and a rule. A value of this coefficient belongs to the 
interval [0,1]. 

Support for a complex Ci is defined as follows: 

supp(Ci) = # examples satisfying Ci / N, 

where N is a number of all examples in a database. 



 

Support for a rule R is defined as follows: 

supp(R) = supp(X=>Y) = # examples satisfying X and Y / N. 

Confidence 

Confidence describes the probability of dependency. We say that 
confidence is equal c if c% of examples that satisfy condition also satisfy 
conclusion of a rule. High confidence means that if condition is true then is high 
probability that also conclusion is true. A value of this coefficient belongs to the 
interval [0,1]. 

Confidence for a rule R is defined as follows: 

conf(R) = conf(X=>Y) = supp(X and Y) / supp(X). 

Lift 

Lift describes the interestingness of the rule. It says how strong is the 
association between a condition and a conclusion of the rule. Based on statistical 
independence we can say that if lift is equal 1 then the condition and the 
conclusion are independent. If lift is greater than 1 then the condition is associated 
with the conclusion. If lift of a rule is between 0 and 1 then a condition is 
negatively associated with a conclusion. 

Lift for a rule R is defined as follows: 

lift(R) =lift(X=>Y)= N conf(X =>Y) / supp(Y) = N supp(X and Y) / supp(X) supp(Y). 

This coefficient has only informative character and isn’ t used to prune rules during 
a mining process. 

Concept coverage 

Concept coverage describes the importance of dependency. We say that 
concept coverage is equal c if c% of examples that satisfy conclusion also satisfy 
condition of a rule. High concept coverage means that dependency highly covers 
chosen concept. A value of this coefficient belongs to the interval [0,1]. 

Concept coverage for a rule R is defined as follows: 

cover(R) = cover(X=>Y) = supp(X and Y) / supp(Y). 

If cover(R) is equal 1 we can say that the rule R covers whole a concept 
Y. If cover(R) is equal to 0 then we can say that the rule R doesn’ t cover a concept 
Y. The rule R with higher cover is more general. The advantage of concept 
coverage is that it can be used to rules pruning during mining process.  



 

Equivalence tolerance 

The MAR1 algorithm can generate attributional dependencies in the form 
of implicate rules and equivalence rules. Equivalence rule says that two complexes 
are equivalent. Theoretically this situation comes when confidence is equal 1 and 
concept coverage is equal 1. Introducing of equivalence tolerance coefficient 
allow us to generate approximate (or fuzzy) equivalence rules. Using this 
parameter we can treat all dependencies which meet the following condition as 
equivalence: 

conf(R) >= (1-equivalence tolerance) and cover(R) >= (1-equivalence tolerance), 

where equivalence tolerance is in [0,1]. In practice, the value of equivalence 
tolerance parameter should be low. If the value of equivalence tolerance parameter 
is equal 0 we get real equivalence rules. 

2.3. Methodology and theoretical framework 

The methodology of discovering attributional dependencies assume that 
the process is consists of two steps. In the first step we learn characteristic rules 
(description) for given attribute or set of attributes using machine learning 
program, i.e. AQ or INLEN. In the second step, we generate attributional 
dependencies based on learned rules. 

Let’s assume we have characteristic rule in the following form: 

a1 & a2 & a3 & a4 & ...& ai & ... & an => b1 

Based on inferential theory of learning [8] if we want to move selector ai 
from the condition to the conclusion we have to check support of two 
relationships: 

R1:  a1 & a2 & a3 & a4 & ... & an => ai 

and 

R2:  a1 & a2 & a3 & a4 & ... & an => not ai 

The support of the first rule is denoted as supp(R1) and the second rule is 
denoted as supp(R2). If the supp(R1) is high in compare to supp(R2) then we can 
suppose that it is possible to move attributional condition (selector) ai to the 
conclusion. In other case we can’ t do it. To describe difference between supp(R1) 
and supp(R2) we compute coefficient trans. This coefficient expresses relative 
relation between supports of both rules in percents and is defined as follows: 

trans(ai) = supp(R1) / (supp(R1) + supp(R2)) 

The coefficient trans belongs to the interval [0,1] from definition. 



 

To decide if we can move selector from a condition to a conclusion we 
use input threshold parameter called mintrans. If trans(ai) > mintrans we can 
generate new rule in the following form: 

a1 & a2 & a3 & a4 & ... & an => b1 & ai 

Usually the value of mintrans parameter should be close to 1, then the 
process of new rules generation is most efficient. 

This methodology allows discovering attributional dependencies for both 
nominal and continuous values.  

2.4. Algor ithm MAR1 

In previous section we described the methodology of attributional 
dependencies generation. Now, we will show the new algorithm, called MAR1 
(Multi-head Attributional Rules), which implements presented ideas in practice. 
This algorithm consists of three phases: 

• reading and analyzing characteristic rules, 

• selecting rules, 

• generating attributional dependencies. 

In the first phase algorithm reads characteristic rules (procedure 
ParseRules()) form a ruleset. Next, we generate simple rules with single 
conjunction (procedure AnalizeRules()) from complex rules (which have 
alternative of conjunctions in a condition part). In second phase we prune these 
characteristic rules, which have support less than minsup (procedure 
SelectRules()). The most interesting is third phase, where the algorithm 
generates attributional dependencies (procedure Generate 
Dependencies()). 

 
 
algorithm MAR1(minsup, minconf, mincover, mintrans) 

begin 
  ruleset=0 
  ParseRules(ruleset); 
  AnalizeRules(ruleset); 
  SelectRules(ruleset, minsup); 
  GenerateDependencies(ruleset, minconf, mincover, mintrans); 
end 
 

Fig. 1 Pseudo-code of the MAR1 algorithm 

 



 

Procedure for generating attributional dependencies takes a ruleset and a 
database. At the beginning this procedure scans a database and check if selectors 
are satisfied by examples. With each selector in a rule there is associated vector of 
flags. The value of the flag i is 1 if an attributional condition is satisfied by ith 
example in a database. Otherwise the value is 0. The advantage of this solution is 
that we scan database only once during iteration. In the next step, procedure 
computes the coefficient trans for all selectors in the condition of the rule. If 
trans(s) is greater than mintrans then procedure may generate a new rule. We 
transfer selected attributional condition from the condition to the conclusion. Then 
we compute confidence and cover coefficients for new rule. If both are greater 
than minimal threshold values we add the rule to new ruleset. If new ruleset is not 
empty we continue starting next iteration.  
 
 
procedure GenerateDependencies(ruleset, minconf, mincover, 
mintrans) 

while ruleset<>0 
begin 
  newruleset=0; 
  ScanDatabase(ruleset); 
  for all r in ruleset 
  begin 
    for all selectors s in r 
    begin 
      Compute(trans(s)); 
      if trans(s)>=mintrans then 
        begin 
          newr=Transfer(r,s); 
          Compute(conf(newr) and cover(newr)); 
          if conf(r)>=minconf and cover(r)>=mincover then 
            newruleset=newruleset+newr; 
        end 
    end 
  end 
  ruleset=newruleset; 
end 
 

Fig. 2 Procedure for generating dependencies 

 

3. An example and other  exper iments 

In this paper we present results from our algorithm for database zoo. It 
contains data about animals (17 attributes and 108 examples). We set input 
parameters as follow: number of iterations = 3, trans threshold = 0.9, support 
threshold = 0.2, confidence threshold = 0.2, cover threshold = 0.8 and equivalence 



 

tolerance = 0.05. Using INLEN we found 8 characteristic rules for attribute 
airborne. According to threshold values MAR1 selected 2 rules: 

 
IF [type != 2 or 6] and [feathers = 0] THEN [airborne = 0]     { 
supp=0.72   conf=0.90   cover=0.95   lift=1.18 } 
IF [legs = 2 or 6] and [catsize = 0] and [type = 1 or 2 or 6] and 
[breathes = 1] and [fins = 0] THEN [airborne = 1]     { supp=0.21   
conf=0.84   cover=0.88   lift=3.54 } 
Rules #2 

 

Based on above characteristic rules MAR1 generated 4 rules in first 
iteration, 6 rules in second iteration and 6 rules in third iteration. We present rules 
obtained in second: 
 
Iteration=2 
IF [legs = 2 or 6] and [catsize = 0] and [fins = 0] THEN [airborne = 
1] and [type = 1 or 2 or 6] and [breathes = 1]     { supp=0.21   
conf=0.78   cover=0.88   lift=3.27   trans=0.92 } 
IF [legs = 2 or 6] and [catsize = 0] and [breathes = 1] THEN 
[airborne = 1] and [type = 1 or 2 or 6] and [fins = 0]     { 
supp=0.21   conf=0.84   cover=0.88   lift=3.54   trans=1.00 } 
IF [legs = 2 or 6] and [catsize = 0] and [fins = 0] THEN [airborne = 
1] and [breathes = 1] and [type = 1 or 2 or 6]     { supp=0.21   
conf=0.78   cover=0.88   lift=3.27   trans=0.92 } 
IF [legs = 2 or 6] and [catsize = 0] and [type = 1 or 2 or 6] THEN 
[airborne = 1] and [breathes = 1] and [fins = 0]     { supp=0.21   
conf=0.84   cover=0.88   lift=3.54   trans=1.00 } 
IF [legs = 2 or 6] and [catsize = 0] and [breathes = 1] THEN 
[airborne = 1] and [fins = 0] and [type = 1 or 2 or 6]     { 
supp=0.21   conf=0.84   cover=0.88   lift=3.54   trans=1.00 } 
IF [legs = 2 or 6] and [catsize = 0] and [type = 1 or 2 or 6] THEN 
[airborne = 1] and [fins = 0] and [breathes = 1]     { supp=0.21   
conf=0.84   cover=0.88   lift=3.54   trans=1.00 } 
Rules #6 

and third iteration: 
 
Iteration=3 
IF [legs = 2 or 6] and [catsize = 0] THEN [airborne = 1] and [type = 
1 or 2 or 6] and [breathes = 1] and [fins = 0]     { supp=0.21   
conf=0.78   cover=0.88   lift=3.27   trans=1.00 } 
IF [legs = 2 or 6] and [catsize = 0] THEN [airborne = 1] and [type = 
1 or 2 or 6] and [fins = 0] and [breathes = 1]     { supp=0.21   
conf=0.78   cover=0.88   lift=3.27   trans=0.92 } 
IF [legs = 2 or 6] and [catsize = 0] THEN [airborne = 1] and 
[breathes = 1] and [type = 1 or 2 or 6] and [fins = 0]     { 
supp=0.21   conf=0.78   cover=0.88   lift=3.27   trans=1.00 } 
IF [legs = 2 or 6] and [catsize = 0] THEN [airborne = 1] and 
[breathes = 1] and [fins = 0] and [type = 1 or 2 or 6]     { 
supp=0.21   conf=0.78   cover=0.88   lift=3.27   trans=0.92 } 
IF [legs = 2 or 6] and [catsize = 0] THEN [airborne = 1] and [fins = 
0] and [type = 1 or 2 or 6] and [breathes = 1]     { supp=0.21   
conf=0.78   cover=0.88   lift=3.27   trans=0.92 } 



 

IF [legs = 2 or 6] and [catsize = 0] THEN [airborne = 1] and [fins = 
0] and [breathes = 1] and [type = 1 or 2 or 6]     { supp=0.21   
conf=0.78   cover=0.88   lift=3.27   trans=0.92 } 
Rules #6 

 

Results for mushroom database. It contains data about mushrooms (23 
attributes and 8124 examples). We set input parameters as follow: number of 
iterations = 3, trans threshold = 0.9, support threshold = 0.2, confidence 
threshold = 0.9, cover threshold = 0.9 and equivalence tolerance = 0.05. Using 
INLEN we found 2 characteristic rules for attribute A0. Below we show example 
rule generated by MAR1: 

 
IF [odor = a or l or n] and [cap-shape = b or x or f or s] and [cap-
surface != g] and [cap-color = n or y or w or g or e] and [gill-
attachment = f] and [gill-spacing = c or w] and [gill-color = k or n 
or h or g or p or u or w] and [stalk-root = b or c or e or r] and 
[stalk-surface-above-ring = f or s] and [stalk-surface-below-ring != 
k] and [stalk-color-above-ring = g or p or w] and [stalk-color-below-
ring = g or p or w] and [veil-type = p] and [veil-color = w] and 
[ring-number = o] and [ring-type = e or p] and [spore-print-color = k 
or n or u] and [population != c] and [habitat != l or w] THEN 
[mushroom = e] 
 

from original characteristic rule: 
 
IF [odor = a or l or n] and [gill-attachment = f] and [gill-spacing = 
c or w] and [gill-color = k or n or h or g or p or u or w] and 
[stalk-root = b or c or e or r] and [stalk-surface-above-ring = f or 
s] and [stalk-surface-below-ring != k] and [stalk-color-above-ring = 
g or p or w] and [stalk-color-below-ring = g or p or w] and [veil-
type = p] and [veil-color = w] and [ring-number = o] and [ring-type = 
e or p] and [spore-print-color = k or n or u] and [population != c] 
and [habitat != l or w] THEN [mushroom = e] and [cap-shape = b or x 
or f or s] and [cap-surface != g] and [cap-color = n or y or w or g 
or e] { supp=0.42   conf=1.00   cover=0.85   lift=2.04   trans=1.00 } 

 

We carried out several experiments with MAR1 using benchmark 
databases from UCI Repository. Then we compared our results with result from 
Apriori algorithm [2] for finding association rules. In most cases additional rules 
were discovered that were not discovered by Apriori. 

Comparing a rulesets obtained from MAR1 and Apriori algorithms we 
can say that Apriori algorithm usually generates more rules. However, rules 
generated by MAR1 are more interesting because most of them have high 
confidence and high cover (even if support is low). Apriori especially prefers rules 
with high support. To generate rules with particular attribute in a conclusion part 
users need additional rules filtering in Apriori. Summarizing, the most general 



 

difference between algorithms is that Apriori focuses on rule generation directly 
from data, while MAR1 generates multi-head rules from other single-head rules. 

4. Related works, conclusions and future research 

The concept of an attributional dependency is a generalization of an 
association rule. An association rule is an implication of the form X=>Y, where X 
and Y are sets of items [1], where items are binary attributes. Our definition of 
attributional dependency says that a condition and a conclusion are conjunction of 
attributional conditions. Moreover we can formulae dependencies in either 
implicative or equivalence form. Known algorithms for discovery rules use only 
data to formulae rules. In this paper we presented new methodology to formulae 
rules from other rules especially we propose use of characteristic rules because 
they are most informative. Based on them and a database we discover attributional 
dependencies. In practice miners are interested in finding dependencies consist of 
selected feature because discovering all rules in database is very complex task. 
The advantage of our method is this that we generate only most characteristic 
dependencies for chosen attributes. Moreover, there are many interesting and 
useful dependencies with low support but with high confidence. Known 
algorithms need a lot of time to discover association rules with low support. 
Proposed methodology allows discover either strong or weak relationships without 
additional computation. To find most interesting association rules there are used 
statistical measures based on rules occurrence frequency in the database. We also 
proposed coefficient (called concept coverage) as one of measure of 
interestingness of dependency. This coefficient is used to prune rules during 
process of generation. Coverage says how a rule covers a concept interested for 
us. 

This research was completed but we see some opportunities for future 
work. In our method may be introduced better selection procedure, which will 
help to select more interesting rules. Currently select procedure is based on 
coefficients (like support, confidence, cover, lift and trans). It is also possible to 
select rules according to the content of the condition and the conclusion. It means 
that user can describe what attribute or set of attributes should be in the head 
and/or body of the rule interesting for him. 

Moreover, MAR1 algorithm can be implemented as new operator in KGL 
language (Knowledge Generation Language). In the future MAR1 module can be 
invoked by KGL using operator ADGEN with proper parameters. Implementing 
this feature will require a modification of the KGL parser. 
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