
Discover ing Multi-head Attr ibutional Rules in
Large Databases

Cezary Głowi ski, Ryszard S. Michalski*

Machine Learning and Inference Laboratory, School of Computational Sciences,
George Mason University, Fairfax, VA

*Also with the Institute of Computer Science, Polish Academy of Sciences,
Warsaw, Poland

Abstract: A method for discovering multi-head attributional rules in large
databases is presented and illustrated by results from an implemented program.
Attributional rules (a.k.a. attributional dependencies) can be viewed as
generalizations of standard association rules, because they use more general and
expressive conditions than those in the latter ones, and by that can express more
concisely inter-attribute relations in a database. Multi-head rules have multiple
conditions/statements in their conclusion. The presented method applies AQ
learning to create single-head characteristic rules, and then seeks conditions
(selectors) that can be transferred to the conclusion part of the rule. Experiments
with the program MAR1 (Multi-head Attributional Rules), implementing the
developed method, has produced highly encouraging results.

Keywords: attributional rules

1. Introduction

The problem of discovering unknown relations among groups of
attributes in a large database is one of the most challenging and practically
important problems in the field of data mining. A popular form of expressing such
relations in data mining are association rules [1]. In the original formulation, such
rules were in the form in which a conclusion consists of only one transaction item
(literal). Subsequently, this form was extended to many items in the conclusion
[2].

This paper is concerned with discovering more general relations in the
data, called attributional rules (or attributional dependencies). An attributional rule
is a relation between conjunctions of attributional conditions, expressed as an
implicative or equivalence expression in attributional calculus [9]. An elementary
form of an attributional condition is a relation between an attribute and a set of

values. A more general form can represent a simple relation between attributes
(see Section 2).

The concept of attributional rule, as well as of an association rule, can be
viewed as a special case of a more general relational structure, called parametric
association rule or, briefly, PAR, introduced in [7]. An advantage of using
attributional rules in data mining is that they allow the system to express
succinctly implicative or equivalence relations among statements involving
discrete and/or continuous variables.

Among important problems in data mining are the determination of
characteristic rules and rules with low support. Solving them is typically a time
consuming task. The method proposed in this paper addresses both problems. It
can generate characteristic descriptions as well as attributional dependencies with
low support too. A characteristic rule for a class (or concept) is a logic-style
description that specifies features that are common to all objects in the class
(defined by a specific value of the output attribute). Such rules introduce a
approach to characterizing classes of entities, different from statistical methods
(e.g., [3]).

In many cases rules with high confidence and low support are very
interesting for analysts. Our method differs from other algorithms generating
association rules because it allows discover weak patterns with high confidence.
Mentioned algorithms discover only strong patterns in practice. Using
characteristic rules our algorithm can discover such kind of a relationship easily.
The presented method is very efficient. During each iteration a database is
scanned only once. Moreover this method does not generate new selectors or
numerical intervals but use only these generated during learning of characteristic
rules. This speeds up generation of attributional dependencies.

2. Attr ibutional dependencies

This section describes the concept of multihead attributional rule, and
defines closely related terms.

2.1. For mal model of attr ibutional dependencies

The basic element used to describe dependencies in data is called
attributional condition (or simply selector). First time it was introduced in [4] and
later in [5]. There are two main types of attributional conditions: nominal and
continuous. Attributional condition nominal describes dependency between
attribute and a nominal value or a disjunction of values. There are two relations,
which can be used inside such condition: equal and not equal. Attributional
condition continuous describes dependency between attribute and a value or an
interval of values.

The basic form of an attributional condition for attributes with a nominal
domain is:

[A rel V],

where rel is a relation symbol from the set { =,!=} , A is an attribute, V is a value or
an disjunction of values.

The basic forms of an attributional condition for attributes with a
continuous (or numerical) domain are:

[A rel V]

or

[A = I],

where rel is a relation symbol from the set { =,!=,<,>,<=,>=} , A is an
attribute, V is a value and I is a range describing interval between two values.

Attributional condition [A rel V] is satisfied by the example (or is true)
if for this example the value of attribute A is in relation rel to V.

A conjunction of attributional conditions is called a complex. We say that
a complex is satisfied by an example if all attributional conditions in the complex
are satisfied.

An attributional dependency is a rule in implicate form X=>Y or in
equivalence form X<=>Y, where X and Y are complexes. In other words, an
attributional dependency describes relationship between conjunctions of
attributional conditions. The rule is satisfied by an example if both a condition and
a conclusion, which are complexes, are satisfied.

To select most significant dependencies we use coefficients well known
in data mining and statistics like support, confidence and lift. We also introduce a
coefficient called concept coverage, shortly cover.

2.2. Definitions and interpretation of coefficients

Suppor t

Support is the base coefficient used to make a rule assessment. It says
how strong is a dependency. We say that support is equal s if s% of examples
from database satisfy dependency. It’s mean that if support is high then
dependency is satisfied by many examples from a database. In particular we
define support for a complex and a rule. A value of this coefficient belongs to the
interval [0,1].

Support for a complex Ci is defined as follows:

supp(Ci) = # examples satisfying Ci / N,

where N is a number of all examples in a database.

Support for a rule R is defined as follows:

supp(R) = supp(X=>Y) = # examples satisfying X and Y / N.

Confidence

Confidence describes the probability of dependency. We say that
confidence is equal c if c% of examples that satisfy condition also satisfy
conclusion of a rule. High confidence means that if condition is true then is high
probability that also conclusion is true. A value of this coefficient belongs to the
interval [0,1].

Confidence for a rule R is defined as follows:

conf(R) = conf(X=>Y) = supp(X and Y) / supp(X).

Lift

Lift describes the interestingness of the rule. It says how strong is the
association between a condition and a conclusion of the rule. Based on statistical
independence we can say that if lift is equal 1 then the condition and the
conclusion are independent. If lift is greater than 1 then the condition is associated
with the conclusion. If lift of a rule is between 0 and 1 then a condition is
negatively associated with a conclusion.

Lift for a rule R is defined as follows:

lift(R) =lift(X=>Y)= N conf(X =>Y) / supp(Y) = N supp(X and Y) / supp(X) supp(Y).

This coefficient has only informative character and isn’ t used to prune rules during
a mining process.

Concept coverage

Concept coverage describes the importance of dependency. We say that
concept coverage is equal c if c% of examples that satisfy conclusion also satisfy
condition of a rule. High concept coverage means that dependency highly covers
chosen concept. A value of this coefficient belongs to the interval [0,1].

Concept coverage for a rule R is defined as follows:

cover(R) = cover(X=>Y) = supp(X and Y) / supp(Y).

If cover(R) is equal 1 we can say that the rule R covers whole a concept
Y. If cover(R) is equal to 0 then we can say that the rule R doesn’ t cover a concept
Y. The rule R with higher cover is more general. The advantage of concept
coverage is that it can be used to rules pruning during mining process.

Equivalence tolerance

The MAR1 algorithm can generate attributional dependencies in the form
of implicate rules and equivalence rules. Equivalence rule says that two complexes
are equivalent. Theoretically this situation comes when confidence is equal 1 and
concept coverage is equal 1. Introducing of equivalence tolerance coefficient
allow us to generate approximate (or fuzzy) equivalence rules. Using this
parameter we can treat all dependencies which meet the following condition as
equivalence:

conf(R) >= (1-equivalence tolerance) and cover(R) >= (1-equivalence tolerance),

where equivalence tolerance is in [0,1]. In practice, the value of equivalence
tolerance parameter should be low. If the value of equivalence tolerance parameter
is equal 0 we get real equivalence rules.

2.3. Methodology and theoretical framework

The methodology of discovering attributional dependencies assume that
the process is consists of two steps. In the first step we learn characteristic rules
(description) for given attribute or set of attributes using machine learning
program, i.e. AQ or INLEN. In the second step, we generate attributional
dependencies based on learned rules.

Let’s assume we have characteristic rule in the following form:

a1 & a2 & a3 & a4 & ...& ai & ... & an => b1

Based on inferential theory of learning [8] if we want to move selector ai
from the condition to the conclusion we have to check support of two
relationships:

R1: a1 & a2 & a3 & a4 & ... & an => ai

and

R2: a1 & a2 & a3 & a4 & ... & an => not ai

The support of the first rule is denoted as supp(R1) and the second rule is
denoted as supp(R2). If the supp(R1) is high in compare to supp(R2) then we can
suppose that it is possible to move attributional condition (selector) ai to the
conclusion. In other case we can’ t do it. To describe difference between supp(R1)
and supp(R2) we compute coefficient trans. This coefficient expresses relative
relation between supports of both rules in percents and is defined as follows:

trans(ai) = supp(R1) / (supp(R1) + supp(R2))

The coefficient trans belongs to the interval [0,1] from definition.

To decide if we can move selector from a condition to a conclusion we
use input threshold parameter called mintrans. If trans(ai) > mintrans we can
generate new rule in the following form:

a1 & a2 & a3 & a4 & ... & an => b1 & ai

Usually the value of mintrans parameter should be close to 1, then the
process of new rules generation is most efficient.

This methodology allows discovering attributional dependencies for both
nominal and continuous values.

2.4. Algor ithm MAR1

In previous section we described the methodology of attributional
dependencies generation. Now, we will show the new algorithm, called MAR1
(Multi-head Attributional Rules), which implements presented ideas in practice.
This algorithm consists of three phases:

• reading and analyzing characteristic rules,

• selecting rules,

• generating attributional dependencies.

In the first phase algorithm reads characteristic rules (procedure
ParseRules()) form a ruleset. Next, we generate simple rules with single
conjunction (procedure AnalizeRules()) from complex rules (which have
alternative of conjunctions in a condition part). In second phase we prune these
characteristic rules, which have support less than minsup (procedure
SelectRules()). The most interesting is third phase, where the algorithm
generates attributional dependencies (procedure Generate
Dependencies()).

algorithm MAR1(minsup, minconf, mincover, mintrans)

begin
 ruleset=0
 ParseRules(ruleset);
 AnalizeRules(ruleset);
 SelectRules(ruleset, minsup);
 GenerateDependencies(ruleset, minconf, mincover, mintrans);
end

Fig. 1 Pseudo-code of the MAR1 algorithm

Procedure for generating attributional dependencies takes a ruleset and a
database. At the beginning this procedure scans a database and check if selectors
are satisfied by examples. With each selector in a rule there is associated vector of
flags. The value of the flag i is 1 if an attributional condition is satisfied by ith
example in a database. Otherwise the value is 0. The advantage of this solution is
that we scan database only once during iteration. In the next step, procedure
computes the coefficient trans for all selectors in the condition of the rule. If
trans(s) is greater than mintrans then procedure may generate a new rule. We
transfer selected attributional condition from the condition to the conclusion. Then
we compute confidence and cover coefficients for new rule. If both are greater
than minimal threshold values we add the rule to new ruleset. If new ruleset is not
empty we continue starting next iteration.

procedure GenerateDependencies(ruleset, minconf, mincover,
mintrans)

while ruleset<>0
begin
 newruleset=0;
 ScanDatabase(ruleset);
 for all r in ruleset
 begin
 for all selectors s in r
 begin
 Compute(trans(s));
 if trans(s)>=mintrans then
 begin
 newr=Transfer(r,s);
 Compute(conf(newr) and cover(newr));
 if conf(r)>=minconf and cover(r)>=mincover then
 newruleset=newruleset+newr;
 end
 end
 end
 ruleset=newruleset;
end

Fig. 2 Procedure for generating dependencies

3. An example and other exper iments

In this paper we present results from our algorithm for database zoo. It
contains data about animals (17 attributes and 108 examples). We set input
parameters as follow: number of iterations = 3, trans threshold = 0.9, support
threshold = 0.2, confidence threshold = 0.2, cover threshold = 0.8 and equivalence

tolerance = 0.05. Using INLEN we found 8 characteristic rules for attribute
airborne. According to threshold values MAR1 selected 2 rules:

IF [type != 2 or 6] and [feathers = 0] THEN [airborne = 0] {
supp=0.72 conf=0.90 cover=0.95 lift=1.18 }
IF [legs = 2 or 6] and [catsize = 0] and [type = 1 or 2 or 6] and
[breathes = 1] and [fins = 0] THEN [airborne = 1] { supp=0.21
conf=0.84 cover=0.88 lift=3.54 }
Rules #2

Based on above characteristic rules MAR1 generated 4 rules in first
iteration, 6 rules in second iteration and 6 rules in third iteration. We present rules
obtained in second:

Iteration=2
IF [legs = 2 or 6] and [catsize = 0] and [fins = 0] THEN [airborne =
1] and [type = 1 or 2 or 6] and [breathes = 1] { supp=0.21
conf=0.78 cover=0.88 lift=3.27 trans=0.92 }
IF [legs = 2 or 6] and [catsize = 0] and [breathes = 1] THEN
[airborne = 1] and [type = 1 or 2 or 6] and [fins = 0] {
supp=0.21 conf=0.84 cover=0.88 lift=3.54 trans=1.00 }
IF [legs = 2 or 6] and [catsize = 0] and [fins = 0] THEN [airborne =
1] and [breathes = 1] and [type = 1 or 2 or 6] { supp=0.21
conf=0.78 cover=0.88 lift=3.27 trans=0.92 }
IF [legs = 2 or 6] and [catsize = 0] and [type = 1 or 2 or 6] THEN
[airborne = 1] and [breathes = 1] and [fins = 0] { supp=0.21
conf=0.84 cover=0.88 lift=3.54 trans=1.00 }
IF [legs = 2 or 6] and [catsize = 0] and [breathes = 1] THEN
[airborne = 1] and [fins = 0] and [type = 1 or 2 or 6] {
supp=0.21 conf=0.84 cover=0.88 lift=3.54 trans=1.00 }
IF [legs = 2 or 6] and [catsize = 0] and [type = 1 or 2 or 6] THEN
[airborne = 1] and [fins = 0] and [breathes = 1] { supp=0.21
conf=0.84 cover=0.88 lift=3.54 trans=1.00 }
Rules #6

and third iteration:

Iteration=3
IF [legs = 2 or 6] and [catsize = 0] THEN [airborne = 1] and [type =
1 or 2 or 6] and [breathes = 1] and [fins = 0] { supp=0.21
conf=0.78 cover=0.88 lift=3.27 trans=1.00 }
IF [legs = 2 or 6] and [catsize = 0] THEN [airborne = 1] and [type =
1 or 2 or 6] and [fins = 0] and [breathes = 1] { supp=0.21
conf=0.78 cover=0.88 lift=3.27 trans=0.92 }
IF [legs = 2 or 6] and [catsize = 0] THEN [airborne = 1] and
[breathes = 1] and [type = 1 or 2 or 6] and [fins = 0] {
supp=0.21 conf=0.78 cover=0.88 lift=3.27 trans=1.00 }
IF [legs = 2 or 6] and [catsize = 0] THEN [airborne = 1] and
[breathes = 1] and [fins = 0] and [type = 1 or 2 or 6] {
supp=0.21 conf=0.78 cover=0.88 lift=3.27 trans=0.92 }
IF [legs = 2 or 6] and [catsize = 0] THEN [airborne = 1] and [fins =
0] and [type = 1 or 2 or 6] and [breathes = 1] { supp=0.21
conf=0.78 cover=0.88 lift=3.27 trans=0.92 }

IF [legs = 2 or 6] and [catsize = 0] THEN [airborne = 1] and [fins =
0] and [breathes = 1] and [type = 1 or 2 or 6] { supp=0.21
conf=0.78 cover=0.88 lift=3.27 trans=0.92 }
Rules #6

Results for mushroom database. It contains data about mushrooms (23
attributes and 8124 examples). We set input parameters as follow: number of
iterations = 3, trans threshold = 0.9, support threshold = 0.2, confidence
threshold = 0.9, cover threshold = 0.9 and equivalence tolerance = 0.05. Using
INLEN we found 2 characteristic rules for attribute A0. Below we show example
rule generated by MAR1:

IF [odor = a or l or n] and [cap-shape = b or x or f or s] and [cap-
surface != g] and [cap-color = n or y or w or g or e] and [gill-
attachment = f] and [gill-spacing = c or w] and [gill-color = k or n
or h or g or p or u or w] and [stalk-root = b or c or e or r] and
[stalk-surface-above-ring = f or s] and [stalk-surface-below-ring !=
k] and [stalk-color-above-ring = g or p or w] and [stalk-color-below-
ring = g or p or w] and [veil-type = p] and [veil-color = w] and
[ring-number = o] and [ring-type = e or p] and [spore-print-color = k
or n or u] and [population != c] and [habitat != l or w] THEN
[mushroom = e]

from original characteristic rule:

IF [odor = a or l or n] and [gill-attachment = f] and [gill-spacing =
c or w] and [gill-color = k or n or h or g or p or u or w] and
[stalk-root = b or c or e or r] and [stalk-surface-above-ring = f or
s] and [stalk-surface-below-ring != k] and [stalk-color-above-ring =
g or p or w] and [stalk-color-below-ring = g or p or w] and [veil-
type = p] and [veil-color = w] and [ring-number = o] and [ring-type =
e or p] and [spore-print-color = k or n or u] and [population != c]
and [habitat != l or w] THEN [mushroom = e] and [cap-shape = b or x
or f or s] and [cap-surface != g] and [cap-color = n or y or w or g
or e] { supp=0.42 conf=1.00 cover=0.85 lift=2.04 trans=1.00 }

We carried out several experiments with MAR1 using benchmark
databases from UCI Repository. Then we compared our results with result from
Apriori algorithm [2] for finding association rules. In most cases additional rules
were discovered that were not discovered by Apriori.

Comparing a rulesets obtained from MAR1 and Apriori algorithms we
can say that Apriori algorithm usually generates more rules. However, rules
generated by MAR1 are more interesting because most of them have high
confidence and high cover (even if support is low). Apriori especially prefers rules
with high support. To generate rules with particular attribute in a conclusion part
users need additional rules filtering in Apriori. Summarizing, the most general

difference between algorithms is that Apriori focuses on rule generation directly
from data, while MAR1 generates multi-head rules from other single-head rules.

4. Related works, conclusions and future research

The concept of an attributional dependency is a generalization of an
association rule. An association rule is an implication of the form X=>Y, where X
and Y are sets of items [1], where items are binary attributes. Our definition of
attributional dependency says that a condition and a conclusion are conjunction of
attributional conditions. Moreover we can formulae dependencies in either
implicative or equivalence form. Known algorithms for discovery rules use only
data to formulae rules. In this paper we presented new methodology to formulae
rules from other rules especially we propose use of characteristic rules because
they are most informative. Based on them and a database we discover attributional
dependencies. In practice miners are interested in finding dependencies consist of
selected feature because discovering all rules in database is very complex task.
The advantage of our method is this that we generate only most characteristic
dependencies for chosen attributes. Moreover, there are many interesting and
useful dependencies with low support but with high confidence. Known
algorithms need a lot of time to discover association rules with low support.
Proposed methodology allows discover either strong or weak relationships without
additional computation. To find most interesting association rules there are used
statistical measures based on rules occurrence frequency in the database. We also
proposed coefficient (called concept coverage) as one of measure of
interestingness of dependency. This coefficient is used to prune rules during
process of generation. Coverage says how a rule covers a concept interested for
us.

This research was completed but we see some opportunities for future
work. In our method may be introduced better selection procedure, which will
help to select more interesting rules. Currently select procedure is based on
coefficients (like support, confidence, cover, lift and trans). It is also possible to
select rules according to the content of the condition and the conclusion. It means
that user can describe what attribute or set of attributes should be in the head
and/or body of the rule interesting for him.

Moreover, MAR1 algorithm can be implemented as new operator in KGL
language (Knowledge Generation Language). In the future MAR1 module can be
invoked by KGL using operator ADGEN with proper parameters. Implementing
this feature will require a modification of the KGL parser.

Acknowledgements

This research has been conducted in Machine Learning and Inference
Laboratory at George Mason University. Cezary Głowi

�
ski has been supported by

Kosciuszko Foundation in New York, in part by the National Science Foundation

Grant IIS 9906858, and in part by the UMBC/MPO/Lucite #32 grant. The authors
especially thank Guido Cervone for his great help during our research.

References

1. Agrawal R., Imielinski T., Swami A.: Mining Association Rules between
Sets of Items in Large Databases, Proceedings of VLBD-93, 1993

2. Agrawal R., Srikant R.: Fast Algorithms for Mining Association Rules,
Proceedings of VLBD-94, 1994

3. Bayardo R.J., Agrawal R.: Mining the Most Interesting Rules,
Proceedings of the Fifth International Conference on Knowledge
Discovery and Data Mining, 1999

4. Michalski R.S.: AQVAL/1-Computer Implementation of a Variable-
Valued Logic System VL1, Proceedings of the Third International Joint
Conference on Artificial Intelligence, Stanford, 1973

5. Michalski R.S.: Variable-Valued Logic and Its Applications to Pattern
Recognition and Machine Learning, chapter in Computer Science and
Multiple-Valued Logic Theory and Applications Rine D.C. (ed.), North-
Holland Publishing, 1975

6. Michalski R.S.: A Theory and Methodology of Inductive Learning,
Artificial Intelligence, 1983

7. Michalski R.S.: Toward a Unified Theory of Learning: Multistrategy
Task-adaptive Learning, in Readings in Knowledge Acquisition and
Learning Buchanan B.G., Wilkins D.C., 1991

8. Michalski R.S.: Inferential Theory of Learning: Developing Foundations
for Multistrategy Learning, chapter in Machine Learning A Multistrategy
Approach Volume IV Michalski R.S., Tecuci G. (eds.), Morgan Kaufman
Publishers, 1994

9. Michalski, R.S.: Natural Induction and Concept Learning: The AQ
Methodology and Its Application to Machine Learning and Knowledge
Mining, 2001, to appear.

