RECENT RESULTS FROM THE EXPERIMENTAL
EVALUATION OF THE LEARNABLE EVOLUTION
MODEL

G. Cervone
K. Kaufman
R. S5, Michalski

Proceedings of the Genetic and Evolutionary Computation Conference, GECCO-2002,
2002.

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com

SR S S

R o SR

W

Recent Results from the Experimental Evaluation of the Learnable
Evolution Model

Guido Cervone Kenneth A. Kaufman
Machine Learning and Machine Learning and
Inference Laboratory Inference Laboratory
George Mason University George Mason University
Fairfax, VA Fairfax, VA
Abstract
The Leamnable Evolution Model (LEM)

represents a form of non-Darwinian evolutionary
computation that is guided by a learning system,
Specifically, LEM “genetically engineers” new
populations via hypothesis formation and
instantiation, This paper presents results from
new studies in which LEM was systematically
tested on a range of optimization problems and a
complex real world design task. The study
involved LEM2, a new implementation oriented
toward function optimization, and LEMd-
ISHED, an implementation oriented toward
engineering design. LEM2 strongly
outperformed tested evolutionary algorithms in
terms of the evolution length, measured by the
number of fithess function evaluations needed to
reach the solution. This evolutionary speedup
also translated to an execution speedup whenever
the fitness evaluation time was above a smail
threshold (a fraction of a second). Experiments
with LEMd-ISHED o n p roblems o f o ptimizing
heat exchangers (evaporators) produced designs
that matched or e xceeded de signs produced by
human experts.

1 INTRODUCTION

Most current methods of evolutionary computation
employ various forms of mutation and/or recombination
for creating new individuals. In the Learnable Evohlution
Model (LEM), individuals are created by a process of
hypothesis generation and instantiation. Specifically,
LEM employs a machine leaming program that at each
step of evolution learns descriptions differentiating high-
performance and low-performance individuals. These
descriptions are then instantiated in different ways to

generate new individuals, (Michalski, 1998, Cervone,
1999, Michalski 2000).

47

Ryszard S. Michalski

Machine Learning and
Inference l.aboratory
George Mason University
Fairfax, VA

This paper presents results from a systematic testing of
two new LEM implementations LEM2---oriented toward
function optimization, and LEMd-ISHED—oriented
toward a class of engineering design problems. In
function optimization experiments, LEM2 was compared
with selected conventional algorithms both in terms of the
evolution length (the number of fimess function
evaluations or births needed fo achieve a desirable
solution) and the evolution time (the computation time to
achieve the solution). Among its new features, LEM2
includes an adaptive anchoring discretization method,
called ANCHOR, for adaptively discretizing continuous
variables (Michalski and Cervone, 2001).

In engineering design experiments, LEMJd-ISHED was
applied to a problem of designing optimized evaporators
in air conditioning units (in the name of the system,
LEMd stands for the LEM method tailored for design
problems, and ISHED indicates the specific problem
class. Henceforth, for simplicity, we will use “ISHED”
whenever we talk about the specific system).

2 AN OVERVIEW OF THE LEM
METHODOLOGY

The Learnable Evolution Model (LEM) represents a
fundamentally different approach to evolutionary
computation than conventional Darwinian-type
evolutionary algorithms, In Darwinian algorithms, new
individuals are generated through various forms of
mutation and/or recombination operators. Such operators
are easy to execute and apply to a wide range of
problems. They are, however, semi-random, and take into
consideration neither the experience of individuals in a
given population (as in Lamarckian-type evolution), nor
the experience of populations through the history of the
evolution process. Thus, Darwinian-type evolutionary
algorithms tend to be inefficient, and this diminishes their
effectiveness in complex real-world problems.

The novel idea introduced in LEM is that an evolutionary
computation c an be guided by hy potheses createdbya
machine learning program that identify areas in the search
space that most likely include the sought optimum, or

optima. Such hypotheses are created on the basis of the
current and, optionally, also past populations of
individuals. A general form of LEM may also include
periods of conducting a Darwinian form of evolution,
when it appears to be useful. Such a form is implemented
in the duoLEM version, which integrates the intrinsic
LEM mode of operation employing marhine leamning,
called Machine Learning mode, and a conventional
evolutionary mode, called Darwinign Evolution mode,
which executes some conventional evolutionary algorithm
(in which new individuals are generated by a form of
mutation and/or recombination operators).

LEM can also be run in a uniLEM version in which, the
Machine Learning mode, described above, is the sole
method for generating new populations.

In Machine Learning mode, at each step of evolution, a
population is divided into three groups of individuals;
High-performing individuals (H-group) that score high on
the fitness function, Low-performing individuals (L-
group) that score low on the fitness function, and the rest.
The creation of these groups can be done using various
methods (Michalski, 2000). The population from which
these groups are selected may be the current population,
or a combination of the current and past populations. The
selected H-group and L-group are supplied to a learning
program that creates general hypotheses distinguishing
between these pgroups. The hypotheses are then
instantiated in various ways to produce new, candidate
individuals. The candidate individuals compete in terms
of their fitness with previously generated individuals for
the inclusion in the new population.

Thus, unlike in Darwinian-type evolutionary computation,
the generation of new individuals in LEM may take into
consideration not only properties of individuals, but also
properties of populations of individnals, and even of the
evolution history. Initial experiments have shown that
guiding evolutionary processes by hypotheses generated
on the basis of whole populations can lead to a dramatic

evolutionary speedup (Michalski, 1998; Cervone, 1999;
Michalski, 2000).

In executing duocLEM, one mode runs until a mode
fermination criterion is met, and control is then switched
to the other mode. The mode termination criterion is met
when there is insufficient improvement of the fitness
function after a certain number of populations, or the
allocated computational resources are exhausted, The
main justification for a duoLEM approach is that
operators of hypothesis creation and instantiation are
more computationally costly than conventional
evolutionary operators, but are more powerful in selecting
individuals. By allowing the interchangeable execution of
both Darwinian and Machine Learning modes, duoLEM
can utilize the best features of both strategies, and also
facilitates comparative studies of the two. A detailed

description of the methodology can be found in
{Michaiski, 2000).

The following sections describe recent experiments
applying LEM2 to function optimization problems, the

48

ISHED implementation, and ISHED’s application to the
design of optimized heat exchangers.

3 FUNCTION OPTIMIZATION

LEM2 was applied to systematically test the LEM
methodology on function optimization problems. The
problems involved several functions widely used by the
Evolutionary Computation community for benchmarking
different evolutionary computation algorithms, and thus
were particularly attractive for doing a comparative study
of the LEM? performance.

Due to space limitations, we present here just a sample of
representative results concerning the optimization of the
Rastrigin function. This function was selected because the
results from its optimization by conventional, Darwinian-
type methods are readily available, thus enabling &
comparison of results. To test the scalability of LEM2 to
complex optimization problems, we have extended the
number of variables in the problem.

The comparison of LEM2’s results with those obtained by
Darwinian-type evolution algorithms was made both in
terms of evolution length, defined as the number of
evaluations (or births) needed to determine the target
solution, and evolution time, defined as the execution time
required to achieve this solution. The reason for
measuring both characteristics is that LEM and Darwinian
type algorithms represent a tradeoff between the
complexity of the population generating operators and the
evolution length. Operators of hypotheses generation and
instantiation used in LEM2 are more computationally
costly than mutation and crossover, but LEM2’s evolution
length is typically m uch shorter than that of Darwinian
algorithms. Using the concept of evolution length, we
analyzed the evolutionary speedup of compared
algorithms. To define this concept, note that the function
to be optimized can be transformed (by inversion and/or
adding a constant) into a form in which the function
optimum is the maximum of the transformed function,
and the function minimum is 0. Thus, the optimized
function can be considered to be a positive-only fitness
function, and the optimization problem becomes a
problem of finding a solution with the maximum fitness.

Let us introduce parameter & as a measure of the relative
distance between the highest fitness solution found by an
algorithm and the globally highest fitness solution.
Specifically, let 8 be the ratio of the difference between
the fitness of the globally maximal solution and the best
solution found by the algorithm, divided by the fitness of
the globally maximal solution. For example, if the global
maximum of a function is 100 and the best solution found
is 99, then & is 0.01. By &close solution is meant a
solution that differs from the global optimal by at most .
For the purpose of evaluating performance of LEM2 and
other algorithms in function optimization, it is assumed
that 6 is a controllable parameter, and the evolution
process continues until a 8-close solution (also called the
target solution) is found.

The relative performance of two algorithms is
characterized by two measures: the evolution speedup and
the execution speedup. The evolution speedup of
algorithm A over B for a given & is defined as the ratio,
expressed in percentage, of the number of births (or
fitness evaluations) required by B to the number of births
required by A to achieve the d-close solution. The
execution speedup of algorithm A over B for a given 6 is
defined as the ratio of the total computation time required
by B to the total computation time required by A to
achieve the target solution.

We tested different numbers of function arguments
{variables), specifically, 10 or 20, 50 and 100. We
measured the evolution length and the execution time of
the programs compared. Experiments were performed
with different sizes of the population, and repeated 10
times (runs) with different random initial populations. The
results represent the highest fitness solution from the 10
runs performed by LEM2 and, for comparison, by ES, a
program implementing an evolutionary strategy method.

The ES method was chosen because it is widely used in
the field of evolutionary computation. ES employs a real-
valued vector representation of individuals and
deterministic selection (i.e., each parent is selected, and
then mutated a fixed number of times). The mutation is
done according to a Gaussian distribution, in which the
mean is being mutated, and the standard deviation is a
controllable parameter, called the mutation rate. Each
variable has a 1/L probability of being mutated, where L
is the total number of variables defining an individual.
New individuals and their parents are sorted according to
their fitness, and the popsize highest-fitness individuals
are included in the next generation, where popsize is a
numeric parameter denoting a fixed population size.

The ES program was implemented according to the
description in (Baeck, Fogel and Michalewicz, 1997). It
was implemented anew, rather than employing some
existing program, as this has allowed us to closely
integrate it with LEM2, Such integration facilitates

running LEM2 and ES with identical parameters, that is,

with identical initial populations, the same random
number seed, and the same mutation and recombination
operators when executing duoLEM and ES. We found on
the Web an archive of the alleged best solutions for
benchmark function optimization, achieved using several

different algorithms, and for those solutions we
determined comparable solutions from LEM2.
The experiment described below concerned the

minimization of the Rastrigin function:

Ras(x,,x,,.x,)=n*10+ (x> —10*cos@*7*x,))
faal

for the number of arguments, », set to 20, 50 and 100, and
ranging between -5.12 and 5.12.

The Rastrigin function has many local optima, and it is
easy to miss the global solution. In these experiments,
both uniLEM and duocLEM versions were employed, and

49

their results were compared with previously published
results obtained by a parallel GA with 16 subpopulations
and 20 individuals per subpopulation (Muhlenbein,
Schomisch, and Born, 1991).

Experiments compared LEM2, ES, and a parallel genetic
algorithm, under different parameter settings, in terms of
the evolution length and the evolution speedup for
different values of 6. In the case of 20 variables, LEM?2
showed an evohution speedup of about 10 over the other
two strategies; for 50 variables, the speedup was about 15,
and for 100 variables, it was in the 15-20 range depending

on the value of & (Cervone, Kaufman and Michalski,
2002).

We determined the dependence of the evolution length on
the number of function arguments (variables) for the
different methods (Figure 1). As shown there, the
evolution length of ES and PGA increases with the
number of variables significantly faster than that of LEM2
(the target solution was defined by & = 0.1). This result
confirms the previous result that LEM2’s advantage in
terms of the evolution length grows with the complexity
of the function (in terms of number of variables).

SEREEE

Figure 1: The increase of the evolution length (number of

births) with the increase of the number of variables when

optimizing the Rastrigin function using ES, parallel GA,
and LEM2 (both uniLEM and duoLEM).

We also conducted experiments to determine the
dependence of the execution speedup of LEM2 over ES
on the evaluation delay. Figures 2, 3 and 4 present the
results. As shown there, the evaluation delay, ED, needed
to achieve ES =1, was in every case very small (it varied
between 0.0043 and .0025 seconds). For larger
evaluation delays, the execution speedup grew quickly
and converged to the evolution speedup (9 for 20
variables, 13 for 50 variables, and 15 for 100 variables).

These results confirm the hypothesis that the speedup of
LEM2/ES increases with the evaluation delay, and
converges 10 the evolutionary speedup.

Evalustion deley (o seonids}
P /#-— ey
L] e
i // 0.0027 pec
gs

AR el

RN
Evaiustion delary (in saconds)

Figure 2: The dependence of the execution speedup of
LEMZ2/ES for the Rastrigin function of 20 variables on the

evaluation delay parameter.

“
5 - LT TES(ED=0)'=
Y 7 s
3 A7 0.
e s
= 18
; R
I: :_!_-. _-?_
RILEZEL f‘-%
| DA
|
¢ T UT] !
Fig 2/ utl_+ yp= I f
LE i B i ﬂ% EILG_ ﬂi _':'" the
2% vkt 1amdﬁla)§ 383332
Euln.-ﬁmdlhﬂinm
“ !
!
L

) ES Executi Gpﬂup
a —r - _rl -L-. L _I- pn | — T L . h
L -] - o
SEE RS R AT EE S EEESEREEE
Eveluation delay (in seconds)

Figure 4: The dependence of the execution speedup of
LEMZ/ES on the evaluation delay for the Rastrigin
function of 100 variables.

50

4 DESIGN PROBLEM

Complex design optimization problems appear to be an
application domain for which the search capabilities of
evolutionary computation algorithms are often very
useful. They differ from the function optimization
problems described above in ome important respect.
Specifically, in function optimization problems, the
values of any of the variables may be usually set or
modified in any fashion (within their defined ranges)
without any harm to the integrity of the proposed solution.
In design problems, however, variables will typically
represent positions or configurations of components, and
are subject to various constraints. Thus, arbitrary changes
to them will often result in solutions that are either
physically or practically infeasible. Even if we may
assume that the fitness evaluator will recognize such
infeasibility and return an appropriate score, the high
density of such designs will likely hamper the evolution
process, whether Darwinian or machine learning-based.

This motivated the development of LEMd, a LEM
implementation oriented toward design problems. In
contrast to LEM, LEMd includes domain-specific
representation of variables. The optimized variables
represent real-world aspects of the design configuration,
and are subject to domain-specific constraints.

Instead of generic Darwinian operators, such as random
mutations and recombinations, LEMd employs domain-
specific Design Modification (DM) operators that make
various changes in the candidate designs that are
potentially useful according to the domain knowledge.

The algorithms for generating individuals, and
instantiation of leamned rules employ domain knowledge-
based formulas and constraints tailored toward generating
feasible designs.

LEMd assumes also that the quality of initial and
subsequently generated designs can be evaluated in some
way, for example, by a design simulator, LEMd employs
duoLEM, but the Darwinian Evolutionary mode is done
in a special way, because in practical design applications
an expert often has domain knowledge that can be used to
define meaningful design variations. As mentioned
above, to generate such variations, Design Modification
{DM) operators need to be defined based on the expert
advice or knowledge. These operators perform design
modifications that are tried in the process of evolutionary
computation, rather than the random mutations and/or
recombinations used in conventional evolutionary
computation. Since in real-world problems, various
domain constraints are known, LEMd also allows the user
to define various constraints and applies them in both
Darwinian and Machine Learning modes of operations.

In LEMG, individuals represent different designs under
consideration. Each design is defined by a vector of
atiributes that characterizes it. A Control Module takes

the current design population and determines which of
LEM’s evolutionary modes fo apply. A new population
of candidates is generated: through DM operators in

Darwinian Evolutionary mode, and through rule learning
and instantiation in Machine Leaming mode. The created
population is then passed to the simulator for evaluation.
The designs and their evaluations are passed to the
Control Module for the next generation (iteration).

4.1 EVAPORATOR DESIGN OPTIMIZATION
LEMJ-ISHED

To test the LEMd methodology in a real-world
application domain, we jmplemented it in the LEMd-
ISHED, or, briefly, the ISHED (intelligent System for
Heat Exchanger Design) program tailored to the problem
of optimizing evaporators in air conditioning units under
given environmental and technical constraints. To give
the reader a better understanding of the complexity of this
problem, a brief explanation follows.

In an air conditioner, the refrigerant flows through a loop.
It is superheated and placed in contact with cooler outside
air (in the condenser unit), where it transfers thermal
energy (heat) out and liquifies. Returning to the
evaporator, it comes into contact with the warmer interior
air that is being pushed through the evaporator, as a result
cooling the air and heating and evaporating the
refrigerant. An evaporator consists of arrays of parallel
tubes through which the refrigerant flows back and forth.

The path the refrigerant takes through these tubes will
affect both the its temperature when it reaches a given
tube, and the temperature of the air after it passes over the
tube. The amount of heat transfer (cooling) the air
conditioner will provide is the aggregate of the heat
transfer provided by each of its evaporator’s tubes. These
terms aree a function of the temperature and volume per
unit time of both the air and the refrigerant coming into
contact at that tube, Different orderings of the tubes will
change the characteristics of the refrigerant passing
through each tube, and the results of prior air/refrigerant
interactions will affect both substances’ temperatures at
later interactions, as will other factors. For instance, the
refrigerant will lose pressure (and velocity) while passing
through the bends between tubes; it thus helps if adjoining
tubes are physically close to each other.

By changing the path of the refrigerant flow, one can
therefore change the amount of heat transferred between
air and refrigerant. The more that can be transferred

overall, the more efficiently the interior air w111 be cooled
to the desired temperature.

The optimization problem involves determining an
arrangement of tubes that produces the highest evaporator
capacity under given technical and environmental
constraints. Because of the nature of the problem and the
feasible ways of internally representing evaporator
structures, both evolutionary modules utilize problem-
specific customization. Traditional genetic operators,
random mutations and crossovers, would be unworkable
in this domain; therefore, we implemented eight domain-
specific design modifying (DM) operators based on
discussions with a domain expert. The DM operators

51

change the characteristics of candidate evaporators in
ways likely to lead to admissible new structures, that is,
structures satisfving the given constraints. A selected
operator is tried repeatedly with different operands in
order to generate a feasible design, until it either succeeds
or “times out” (based on control parameters specifying the
allowed number of iterations), in which case another
operator, hopefully more applicable, will be fried.

For example, one operator may create a split in a
refrigerant path by moving the source of a tube's
refrigerant closer to the inlet tube (Figure 5), a second
operator may swap the tubes in the structure, another
operator may graft a path of tubes into another path, etc.
In Figure 5, solid arrowed lines represent the initial
connections, with dashed ones representing new ones
created by the DM operator. Each tube has only one
source, s0 the dashed links replace links from their
destination tubes’ prior sources. An arrow that is open-
ended on one side represents an inlet or outlet flow (fiow
into or out of the evaporator from/to other parts of the
refrigerant circuitry). The application of these operators
is domain knowledge driven, that is, operators are applied
according to known technical constraints.

1 2}1»3—4-—4\5 8

SP BP

Figure 5: Application of the SPLIT Operator, SPLIT(2,5).

The second strategy, based on symbolic learning,
examines the characteristics of both weli- and poorly-
performing designs, and automatically creates hypotheses
(in the form of attributional rules) that characterize the
well-performing architectures, These hypotheses are then
applied to generate a new population of designs.

Machine learning mode in ISHED is also tailored to the
evaporator design task. The hypotheses generated
describe abstractions of the individual structures.
Specifically, they specify only the location of inlet, outlet
and split tubes. Bevond that, the instantiation module
may choose among the different designs that fit the
learned template, and generate the most plausible one
according to the real-world background knowledge. Once
rules are generated, an elitist strategy is used to form the
next generation of proposed architectures..

An ISHED run proceeds as follows, Given instructions
characterizing the environment for the target evaporator,
an initial population of designs (specified by the user
and/or randomly generated), and parameters for the
evolutionary process, ISHED evolves populations of
designs using a combination of Darwinian and machine
learning operators for a specified number of generations
(kaufman and Michalski, 2000). The programs return a
report that includes the best designs found and their
estimated quality (capacity). Throughout the execution,

design capacities are determined by an evaporator
simulator (Domanski, 1989).

42 EXPERIMENTS ON EVAPORATOR
OPTIMIZATION

ISHED experiments were performed under different sets
of conditions, such as different refrigerants, evaporator
sizes and shapes, and airflow patterns. Industrially
available air conditioning systems typically perform very
efficiently if the airflow is fairly uniform. However, their
efficiency drops off sharply if that is not the case; the side
of the unit over which more air flows has a heavier
cooling burden, so for best performance it needs to carry
more and colder refrigerant. Manufacturers generally
have not built models for such a situation.

During the course of ISHED development, many
experiments with the system were conducted. The initial
experiments concentrated on a well-known problem,
using a common evaporator size and a fairly uniform
airflow pattern. ISHED designs provided results
comparable to the industry standard. One concem in
some of the ISHED-generated designs was that after
many generations of Darwinian evolution, designs would
become chaotic i n terms o ftheir in ter-tube ¢ onnections
{and the simulator wasn’t fully reflecting the detrimental
effect of this). Nonetheless, using available tools, an
engineer could easily smooth some of the connections,
hopefully at little or no cost to performance.

In later experiments, the refrigerant was changed, and the
airflow pattern was defined as highly non-uniform.
Under such conditions, industry-standard heat exchangers
do not perform well. The best ISHED-produced
architectures conformed intuitively to expectations of
what a successful architecture in a non-uniform airflow
should look like, and indeed performed far better than the
currently-used expert-designed structures. Subsequent

experiments varied the size and shape of the evaporator
and similar results were observed.

The experiments during all stages of this work served to
confirm the ability of ISHED to generate improved
designs. There appears to be promise that the LEMd

methodology would exhibit similar success in other
design tasks.

5 RELATED WORK

The LEM methodology represents a new approach to
evolutionary computation. Its relation to other
evolutionary computation methods was briefly described
in (Michalski, 2000). Unlike most methods of
evolutionary computation that draw inspiration from
Darwinian evolution, LEM attempts to model what we
call an imtellectual evolution. In intellectual evolution,
which governs the development of human artifacts, the
generation of new populations is based on the results of

the analysis of the advantages and disadvantages of past
populations.

The closest methods to LEM appear to be cultural
evolution algorithms, as they utilize top performing
individuals and use generalized beliefs in the evolutionary
process (e.g., Reynolds, 1994; Rychtyckyj and Reynolds,
1999; Saleem and Reynolds, 2000). The approach taken
in cultural algorithms differs, however, significantly from
LEM. Unlike LEM, cultural evolution is a process of
dual inheritance consisting of a "micro-evolutionary
level,” which involves individuals described by traits and
modified by conventional evolutionary operators, and a
"macro-evolutionary" level, in which individuals generate
"mappa” representing generalized beliefs that are used to
modify the performance of individuals in the population.
LEM is different from cultural evolution algorithms in
both, the way learning process is implemented and in the
way its results are used in the process of evolution.

Sebag and Schoenauer (1994) applied AQ-type leaming
to a daptively c ontrol t he ¢ rossover o peration i n genetic
algorithms, In their system, the rules are used for the
selection of the crossover operator. Sebag, Schoneauer
and Ravise (1997a) used inductive learning for
determining mutation step-size in evolutionary parameter
optimization. Ravise and Sabag (1996) described a
method for using rules to prevent new generations from
repeating past errors. In a follow-up work, Sebag,
Schoenauer and Ravise (1997b) proposed keeping track
of past evolution failures by using templates of unfit
individuals, called “virtual losers.” An evolution
operator, which they call “flee-mutation,” aims at creating
individuals different from the virtual losers.

Grefenstette (1991) developed a genetic leaming system,
SAMUEL, that implements a form of Lamarckian
evolution. The system was designed for sequential
decision making in a multi-agent environment. A
strategy, in the form of jf-then control rules, is applied to
a given world state and certain actions are performed.
This strategy is then modified either directly, based on the
interaction with the environment, or indirectly by
changing the rules’ strength within the strategy. The
changesina strategy are passedtoits o ffspring. T his
process that takes into consideration the performance of a
single individual when evolving new individuals.

Another approach that extends the traditional Darwinian
approach can be found in the GADO algorithm (Rasheed,
1998). GADO is an evolutionary algorithm developed for
complex engineering problem optimization. It differs
from traditional genetic algorithms primarily in the way
new individuals are generated. It uses five different
crossover operators, three of which are introduced in this
algorithm: Line crossover, double line crossover, and
guided crossover. However, unlike LEM, the algorithm
does not create any generalizations of the current
population, and therefore is significantly different.

6 CONCLUSION

The results presented in this paper confirm that LEM
offers a powerful new methodology for non-Darwinian

52

avolutionary computation. Two implementations of LEM
have been tested on selected and evaluated, LEM2 — on
function optimization problems and ISHED - on an
engineering design problem concerning optimization of
tube arrangements in evaporators in air conditioners. In
all function optimization experiments, LEM2
outperformed selected Darwinian-type evolutionary
algorithms (mostly ES) in terms of the evolution length,
sometimes achieving speedups of two or more orders of
magnitude. In the evaporator design domain, ISHED was
abie to find solutions that were better or comparable to the
best designs used in the industry.

Since operators of hypothesis generation and instantiation
used by LEM2 are significantly more computationally
costly than operators of mutation and recombination used
in ES, the evolution speedup does not always result in the
execution speedup. It was shown experimentally that if
the fitness evaluation time is above a small threshold (tens
of milliseconds), LEM2 also outperforms ES in terms of
the execution time. The execution time speedup grows
with fitness evaluation time, asymptotically converging to
the evolution speedup. The most remarkable result of
experiments is that the evolutionary speedup advantage of
LEM2 over ES (evolutionary strategy) grew rapidly with
the complexity of the optimized function. It is likely that a
similar advantage would be obtained with regard to other
Darwinian-type evolutionary computation algorithms.

Experiments also revealed a weakness in the LEM2
implementation that sometimes appears late in the
evolutionary processes. When most of the variables reach
their global optimum value, the program may take a long
time to find the absolute optimal value for the few
remaining variables. This problem is currently handled
using the Start-Over operator. Further research is needed
to determine a better method for handling this problem.

The LEM methodology is at a very early stage of
development, and poses many interesting new research
problems. T hey include a t heoretical a nd e xperimental
investigation of the trade-offs inherent in LEM, an
implementation of more advanced versions of LEM,
experimentation with different combinations of
conventional evolutionary algorithms and machine
learning algorithms, and testing the methodology in
different application domains. Among important research
topics are also the development of methods for applying

LEM to dynamic landscapes, and to optimization
problems with complex constraints.

Concluding, the experiments described here have strongly
confirmed the earlier results that LEM can very
significantly reduce the length of evolutionary
computation over Darwinian-type algorithms, and thus
can b e p articularly useful in do mains where t he fitness
evaluation is time-consuming or costly. They also
indicated a pattern, potentially highly significant for
practical applications, in which the LEM advantage over
Darwinian-type evolutionary computation appears to
increase with the complexity of the optimization problem.

53

Acknowledgments

The authors thank Dr. Piotr Domanski from the National
Institute of Standards and Technology for his invaluable
help and consultation in the development of ISHED, and
his simulator for evaluating evaporator designs. Thanks
are also due to Domenico Napoletani of the Department
of Mathematics at the University of Maryland for his help
in plotting graphs of the functions used in experiments.

This research was conducted in the Machine Learning and
Inference Laboratory at George Mason University. The
Laboratory’s research has been supported in part by the
National Science Foundation under Grants No. IIS-
0097476 and IIS-9906858, and in part by the
UMBC/LUCITE # 32 grant. Any opinions, findings a nd
conclusions or recomendations expressed in the material
on this site are those of the author(s) and do not

necessarily refiect the views of the National Science
Foundation (NSF).

References

Baeck, T., Fogel, D.B. and Michalewicz, Z. (eds.) (1997).

Handbook of Evolutionary Computation. Oxford: Oxford
University Press.

Cervone, G. (1999). An Experimental Application of the
Learnable Evolution Model to Selected Optimization
Problems. Reports of the Machine Learning and Inference

Laboratory, George Mason University, Fairfax, VA,
MLI-1999-12

Cervone, G, Kaufman, K.A., Michalski, R.S. (2002).
Validating Learnable Evolution Model on Selected

Optimization and Design Problems. Journal of Machine
Learning Research (submitted).

Domanski, P.A. (1989). EVSIM-An Evaporator
Simulation Model Accounting for Refrigerant and One
Dimensional Air Distribution. NISTIR 89-4133.

Grefenstette, J. (1991) Lamarckian Learning in Multi-
agent Environment. Proceedings of the Fourth
International Conference on Genetic Algorithms, R.
Belew and L. Booker (Eds.), San Mateo, CA: Morgan
Kaufmann, pp. 303-310.

Kaufman, K.A. and Michalski, R.S. (2000). Applying
Learnable Evolution Model to Heat Exchanger Design.
Proceedings of the Twelfth International Conference on

Innovative Applications of Artificial Intelligence, Austin;
TX, pp. 1014-1019.

Michalski, R.S. (1998). Learnable Evolution: Combining
Symbolic and Evolutionary Learning. Proceedings of the
Fourth International Workshop on Multistrategy

Learning, Desenzano del Garda, Italy, June 11-13, pp.14-
20.

Michalski, R.S. (2000). LEARNABLE EVOLUTION
MODEL: Evolutionary Processes Guided by Machine
Learning. Machine Learning 38(1-2), pp. 9-40.

Michalski. R.S. and Cervone, G. (2001). Adaptive
Anchoring Discretization of Continuous Variables for the

Leamnable Evolution Model. Reports of the Machine
Learning and Inference Laboratory, George Mason
University, Fairfax, VA, MLI-2001-5.

Muhlenbein, H., Schomisch, M. and Born, J. (1991). The
Parallel Genetic Algorithm as Function Optimizer,
Proceedings of the Fourth Int'l Conference on Genetic
Algorithms and their Applications.

Rasheed, K. (1998) GADO: A Genetic Algorithm for
Continuous Design Optimization. Technical Report DCS-
TR-352, Departmenmt of Computer Science, Rutgers
University, New Brunswick, NJ, 1998, Ph.D. Thesis.

Ravise, C. and Sebag, M. {1996). An Advanced Evolution
Should Not Repeat Its Past Errors, Proceedings of the 13"

International Conference on Machine Learning, L. Saifta
(ed.), pp. 400-408.

Reynolds, R.G. (1994). An Introduction to Cultural
Algorithms. Proceedings of the 3rd Annual Conference
on Evolutionary Programming.

Rychtyckyj, N. and Reynolds, R.G., (1999). Using
Cultural Algorithms to Improve Performance in Semantic
Networks, Proceedings of the Congress on Evolutionary
Computation, Michalewicz, Z., Schoenauer, M.. Yao, X.,
and Zazala, A. (eds.), Washington, DC, pp. 1651-1663.

Saleem 8. and Reynolds, R.G., (2000). Cultural
Algorithms in Dynamic Environments, Congress on

Evolutionary Computation 2000 (CSC00), vol. 2, La Jolla,
CA, pp.1513-1520.

Sebag, M. and Schoenauer, M., (1994) Controlling
Crossover Through Inductive Lcammg, Proceedings of
the 3° Conference on Parallel Problem Solving from
Nature, Springer-Verlag, LNVS 866, pp. 209-218.

Sebag, M., Schoenauer M., and Ravise C., (1997a)
Inductive Leanung of Multatlon Step-size in Evolutmnary
Paramter Optimization, Proceedings of the 6" Annual

Conference on Evolutionary Programming, LNCS 1213,
pp. 247-261, Indianapolis.

Sebag, M., Shoenauer, M., and Ravise, C., (1997b)
Toward Civilized Evolution: Developing Inhibitions,

Proceedings of the 7" International Conference on
Genetic Algorithms, pp.291-298, 1997.

54

