
Reports 
Machine Learning and Inference Laboratory 

 AQ21 User’s Guide 
 

 

 

Janusz Wojtusiak 
 
 
 
 
 

MLI 04-3 
P 04-5 

September, 2004 
Updated: September, 2005 

 
 

MLI 04-1- 
 
 
 
 

 

School of Computational Sciences 
 

George Mason University 



AQ21 USER’S GUIDE 
 

Janusz Wojtusiak 
 Machine Learning and Inference Laboratory 

George Mason University 

Fairfax, VA 22030-4444, USA 
jwojt@mli.gmu.edu 

http://www.mli.gmu.edu 

Abstract 
AQ21 is a multitask machine learning and data mining system for attributional rule learning, rule 
testing, and application to a wide range of classification problems. One of its distinctive features is 
that it strives to perform natural induction, that is, it seeks inductive hypotheses that are not only 
accurate but also easy to understand and interpret.  Although the system provides the user with a large 
number of control parameters, they all can be omitted if one wants to run it in default mode. The 
parameters control the mode of learning (theory formation vs. pattern discovery), the degree of 
generality of learned rules, and a range of preference criteria for selecting candidate rules that tailor 
the learning process to the given problem. AQ21 includes event and episode classification programs 
(ATEST and EPIC) that give the user control over the testing and application of the learned rulesets 
to the task at hand. 

 

Keywords:  AQ learning, machine learning, natural induction, data mining and knowledge 
discovery, knowledge mining, multistrategy learning, learning form examples. 

 

Acknowledgments 

Author would like to express his gratitude to all people who helped in development of AQ21 
system and this manual.  Professor Ryszard S. Michalski, Director of the Machine Learning and 
Inference Laboratory, continuously supervised work on AQ21 and provided the theory needed 
for development of the AQ21 system.  He also reviewed this manual and provided constructive 
comments.  Dr. Kenneth Kaufman helped prepare and correct the manual.  He also provided 
information about the AQ methodology and previous implementations of AQ (including AQ19).  
Dr. Bartlomiej Sniezynski and Jarek Pietrzykowski provided a number of comments on this 
manual and the AQ21 program. 

AQ21 source code includes significantly modified, debugged, improved, and extended with 
many new features source code of AQ20 program developed in the Machine Learning and 
Inference Laboratory.   

Research activities in the Machine Learning and Inference Laboratory are supported in part by 
the National Science Foundation Grants No. IIS 9906857 and IIS 0097476, and in part by the 
UMBC/LUCITE #32 grant. 

This report is an extended and corrected version of the technical report MLI 04-3.



1 INTRODUCTION........................................................................................................................................1 

2 HARDWARE AND SOFTWARE REQUIREMENTS TO RUN AQ21 ....... ..........................................2 

3 HOW TO START WORKING WITH AQ21............................................................................................3 
3.1 RUNNING AQ21 AND LIST OF ITS THE MOST IMPORTANT PARAMETERS...................................................3 
3.2 ADVANCED COMMAND LINE PARAMETERS..............................................................................................7 

4 INPUT FILES...............................................................................................................................................9 
4.1 AQ21 FILE FORMAT ................................................................................................................................9 
4.2 C4.5 FILE FORMAT COMPATIBILITY .......................................................................................................12 

5 DEFINING COMMON DOMAINS OF ATTRIBUTES IN AQ21...... ..................................................14 
5.1 OVERVIEW ............................................................................................................................................14 
5.2 DEFINITION OF DOMAINS ......................................................................................................................14 

Nominal .....................................................................................................................................................................15 
Linear.........................................................................................................................................................................16 
Structured...................................................................................................................................................................16 
Continuous.................................................................................................................................................................17 
Integer ........................................................................................................................................................................18 
Discretized Continuous..............................................................................................................................................18 

6 DEFINING ATTRIBUTES IN AQ21.......................................................................................................20 
6.1 OVERVIEW ............................................................................................................................................20 
6.2 ATTRIBUTE DEFINITION ........................................................................................................................21 
6.3 META-ATTRIBUTES ...............................................................................................................................21 

7 META-VALUES IN AQ21........................................................................................................................23 

8 DEFINING LEARNING PARAMETERS IN AQ21 ............... ...............................................................24 
8.1 OVERVIEW ............................................................................................................................................24 
8.2 GLOBAL LEARNING PARAMETERS.........................................................................................................25 

Attribute selection method .........................................................................................................................................25 
Attribute selection threshold ......................................................................................................................................27 
Attribute selection tolerance ......................................................................................................................................28 
Counting Attribute .....................................................................................................................................................28 
Cross Validation.........................................................................................................................................................29 
Events Percentage ......................................................................................................................................................29 
Ignore Attributes ........................................................................................................................................................30 
Output attributes.........................................................................................................................................................30 
Random Seed .............................................................................................................................................................31 
Split Events Percentage..............................................................................................................................................31 
Testing Events Percentage .........................................................................................................................................32 

8.3 RUN-SPECIFIC LEARNING PARAMETERS ...............................................................................................32 
Additional stars ..........................................................................................................................................................33 
Ambiguity ..................................................................................................................................................................33 
Attribute selection method .........................................................................................................................................34 
Attribute selection threshold ......................................................................................................................................35 
Attribute selection tolerance ......................................................................................................................................35 
Compute Alternative Covers......................................................................................................................................35 
Consequent (class definition).....................................................................................................................................36 
Continuous Optimization Probe.................................................................................................................................37 
Counting Attribute .....................................................................................................................................................37 
Define (create) new attribute......................................................................................................................................38 
Display Events Covered.............................................................................................................................................39 
Display Selectors Coverage .......................................................................................................................................39 
Display Values Covered.............................................................................................................................................40 
Exceptions..................................................................................................................................................................41 
Ignore Attributes ........................................................................................................................................................41 
Ignore events..............................................................................................................................................................42 
Learn Rules Mode......................................................................................................................................................42 



 

 2 

Lexicographical Evaluation Function (LEF)..............................................................................................................43 
Maxrule......................................................................................................................................................................46 
Maxstar ......................................................................................................................................................................47 
Model.........................................................................................................................................................................47 
Minimum u ................................................................................................................................................................48 
Minimum Q Percentage .............................................................................................................................................48 
Mode..........................................................................................................................................................................49 
Negatives Percentage .................................................................................................................................................50 
Number of Seeds........................................................................................................................................................50 
Optimize ruleset .........................................................................................................................................................51 
Trim ...........................................................................................................................................................................51 
Truncate .....................................................................................................................................................................52 
w ................................................................................................................................................................................52 

9 DEFINING TESTING PARAMETERS IN AQ21 ..................................................................................53 
9.1 OVERVIEW ............................................................................................................................................53 
9.2 STRUCTURE OF TESTS COMPONENT IN THE AQ21 INPUT FILE ................................................................53 
9.3 TESTING PARAMETERS..........................................................................................................................54 

Evaluation of selector.................................................................................................................................................54 
Evaluation of conjunction ..........................................................................................................................................55 
Evaluation of disjunction ...........................................................................................................................................56 
Default class...............................................................................................................................................................57 
Prior probability for “other” class ..............................................................................................................................57 
Full report ..................................................................................................................................................................58 
Ignore events..............................................................................................................................................................58 
Method.......................................................................................................................................................................59 
Runs...........................................................................................................................................................................60 
Stop when Decisive Advantage Probe .......................................................................................................................60 
Stop when Decisive Advantage Threshold.................................................................................................................61 
Threshold ...................................................................................................................................................................61 
Tolerance ...................................................................................................................................................................62 

9.4 INPUT HYPOTHESES...............................................................................................................................62 
9.4.1 Overview.......................................................................................................................................62 
9.4.2 Defining Input hypotheses ............................................................................................................62 
9.4.3 Defining input for Prediction-Based Model testing......................................................................64 

10 AQ21 OUTPUT ..........................................................................................................................................65 
10.1 OVERVIEW ............................................................................................................................................65 
10.2 OUTPUT FROM LEARNING......................................................................................................................65 
10.3 OUTPUT FROM TESTING.........................................................................................................................68 

Additional output form EPIC classifiers ....................................................................................................................71 

REFERENCES...................................................................................................................................................73 

APPENDIX A  APPLICATION OF AQ21 TO EXAMPLE PROBLEMS............ ..................................75 

APPENDIX B COMPARISON OF FEATURES OF C4.5, AQ19, AND AQ21.....................................87 

APPENDIX C TEMPLATES .....................................................................................................................89 
TEMPLATE 1 LEARNING .............................................................................................................................89 
TEMPLATE 2 LEARNING AND TESTING.......................................................................................................90 
TEMPLATE 3 TESTING................................................................................................................................91 

APPENDIX D AQ21 PARSER...................................................................................................................93 
1. RESERVED KEYWORDS IN AQ21 INPUT FILES...........................................................................................93 
2. DEFINITION OF VALUES IN AQ21 INPUT FILES..........................................................................................99 



. 

 1 

1 INTRODUCTION 

Large amounts of data produced in the current world need to be analyzed and 
transformed into knowledge.  Research in Data Mining is focused on extraction of useful 
knowledge from large amounts of data.  The recently introduced field of Knowledge 
Mining emphasizes the use of prior knowledge and the understandability of learned 
descriptions according to the idea of natural induction.  Usefulness of the learned 
knowledge means not only that the knowledge should be accurate and free of errors, but 
also that it should be presented in a human-oriented way.  This requires the use of a 
language for learning that is human-oriented and at the same time allows the inductive 
learning process to be effectively performed.  Such a language is Attributional Calculus 
(Michalski, 2004), a subset of which is used in the AQ21 program. 

AQ21 is a machine learning program whose learning module is based on an integration of 
a simple version of the Aq algorithm (Michalski, 1969) for solving the general covering 
problem with variable-valued logic (Michalski, 1972).  The central part of the algorithm 
focuses on the concept of a star (a set of maximal generalizations of a given positive 
example) and its generation.  Given sets of positive and negative examples of some 
concept, the Aq algorithm learns a complete and consistent description of that concept.  
Several modifications to the algorithm allow that the learned descriptions may not be 
complete and/or consistent (for example mode parameter described in Section 8.3). 

The AQ21 program is the latest member of the AQ family of programs for rule learning 
and testing. Among the best known AQ programs are AQVAL/1 (AQ7) (Michalski and 
Larson, 1975), AQ11 (Michalski and Larson, 1983), AQ15c (Wnek et al., 1995), AQ17-
DCI (Bloedorn and Michalski, 1991), AQ17-HCI (Wnek and Michalski, 1994), AQ17-
MCI (Bloedorn et al., 1993), and AQ19 (Michalski and Kaufman, 2001). 

There are a number of other machine learning programs, among which are well-known 
decision tree learners such as ID3 and C4.5 (Quinlan, 1993), and rule learners such as 
CN2 (Clark and Niblett, 1989) and RIPPER (Cohen, 1995).  The CN2 program is based 
on some aspects of AQ learning.  There are also toolboxes that combine a number of 
machine learning programs e.g., WEKA (Witten and Frank, 1999).  The INLEN system 
(Kaufman, 1997), and a much more extended VINLEN system (still under development; 
Kaufman and Michalski, 2003) integrate a range of machine learning and other programs 
to provide an environment for multistrategy data exploration, visualization, decision 
making and problem solving.  

AQ21 comes in two versions, (a) as a stand-alone program, and (b) integrated as an 
operator of VINLEN.  AQ21 is also integrated with iAQ program intended to 
demonstrate the concept of natural induction, and to support teaching and research in data 
mining, and computational learning and discovery (Michalski and Pietrzykowski, 2004)  

 

 



. 

 2 

2 HARDWARE AND SOFTWARE REQUIREMENTS TO RUN AQ21 

AQ21 can be run on Linux platform (Red Hat 7.3 or other) and Windows environment 
(Windows 95 or newer) with free RAM memory of at least 16 MB.   To illustrate the 
amount of time and memory needed to execute the program, Table 1 gives information 
about the program performance on two problems, one relatively simple (about 7000 
training examples defined by 32 binary variables and characterizing a single concept and 
its negation), and one more complex (over 8700 training examples defined by 32 multi-
valued attributes, and characterizing 10 classes).  The first problem comes from a medical 
domain and the second problem comes from a user modeling domain. In both cases 
AQ21 was executed on a Dell PowerEdge 4600 Server equipped with Intel Xeon 2 GHz 
processors, 1GB of RAM, and running the Red Hat Linux 7.3 operating system.  For 
many applications much slower machines with less RAM can be used. 

Problem Number 
of training 
events 

Number 
of testing 
events 

Number 
of classes 

Number of 
attributes 

Learning 
Time 

Testing 
Time 

Number of 
rules 
learned 

Max. 
RAM 
memory 
used 

1 5000 2000 2 32 (all binary) 24 sec < 1 sec 5 3.8 MB 
2 9041 4139 10 24 (mostly linear, 

5-10 values per 
attribute) 

458 sec 12 sec 3262 9.4 MB 

Table 1: Example execution times of AQ21 

We also successfully tested AQ21on much larger problems, e.g., a problem with over 
100,000 examples and 30 attributes, and on a problem with 200 examples and 500 
attributes.   

Although a study of complexity of the AQ algorithm is out of scope of this manual, it 
should be mentioned that time and memory complexity of the AQ21 program depends on 
number of examples, number of attributes, and number of values in attributes’ domains.  
Although the program has no specific limit on any of the above factors, in the case it runs 
too slow, the User should apply some method for data reduction (to reduce the number 
attributes, the number of examples, or the domain sizes).  

 

 

 

 

 

 

 

 



. 

 3 

3 HOW TO START WORKING WITH AQ21  

3.1 Running AQ21 and list of its the most important parameters 

To run AQ21 issue a command: 

aq21     input-filename 

Input file, whose name is given as only parameter of execution, is a plain text file that 
consists of eight components to be specified in the order presented below.  Components: 
Attributes and Runs are always mandatory.  For rule learning, component Events is also 
mandatory, and for rule testing, one of components, Events or Testing_events, is also 
mandatory.  The remaining components are optional.  Each component starts with a 
section name and is followed by a text enclosed in braces“{ }“. The component names 
are keywords in the program and have to be typed exactly as stated below.  In this 
manual, all key words are typed in bold and italics for emphasis, but in the actual data 
specification, these key words are typed as any regular text.   

1. Problem_description    (Optional) 

This component allows the user to write comments about learning and testing data 
and problem to be solved.  It is ignored by AQ21 during learning or testing, but the 
text between braces is copied to the program output.  Example: 

Problem_description 
{ 
This is an example description.  User can 
type here any text that will be displayed 
in the program output.  
} 

Comment:  
Any text can be written between  
braces {} that does not include symbols “{“ and 
“}” 

2. Common_domains    (Optional) 

This component allows the user to define domains (sets of legal values)  to be 
assigned to attributes in the Attributes component.  Defining these domains here is 
particularly useful when several attributes have the same domain.  An alternative way 
to define attribute domains is to define them directly in Attributes.  For more detail on 
this topic see Section 5.  Example:  

Common_domains 
  { 
   color nominal {r, y, b, g, w} 
    
   length continuous 0, 500 
 
   size linear {s, m, l} 
 
    
   shape structured {curved, quadrangle, 
          circle, ellipse, square, rectangle}  
              {circle --> curved  
               ellipse --> curved  
               square --> quadrangle 

Comments: 
Domain “color”  is defined as nominal and has 
values:  r, y, b, g, w.  
Domain “length” is defined as continuous and 
takes values from the    range between 0 and 
500. 
Domain “size” is defined as linear with values 
ordered as s < m < l. 
Domain “shape” is defined as structured.  In 
the first braces all possible values are listed, 
and in the second braces relations are listed.   
In a pair “value1 --> value2”, value2 is a 
parent of value1 in the generalization 



. 

 4 

               rectangle --> quadrangle } 
 
   position continuous  
}      

hierarchy. 
Domain “position” is defined as continuous, 
and ranges over the interval from the minimal 
to the maximal real number representable on 
the computer.    

List of all domain types and their definitions in AQ21 input file: 
nominal    {comma separated list of values} 
linear     {comma separated list of values}       (alternative name: 
ordinal) 
structured      {comma separated list of values} {list of relations} 
continuous       [upper bound,    lower bound] 
integer   [upper bound,    lower bound] 
discretized_continuous     {comma separated list of discretization points} 

3. Attributes    (Mandatory) 

The section that defines attributes in the input data table.  Each definition of an 
attribute in the section corresponds to one column in the input data, in the order they 
are presented (columns are counted form left to right).  For details please refer to 
Section 6 of this manual.  Example: 

Attributes 
  {       
  x1 shape 
  x2 nominal {r, s, t} 
  x3 shape 
  x4 color 
  x5 continuous -10, 2000 
  user nominal {1, 2, 3} 
  } 

Comments: 
Attributes x1 and x4 have the domain “shape” 
defined in Common_domains. 
Attribute x2 is of nominal type and its domain 
is {r, s, t}.  Attribute x4 has domain “color” 
defined in Common_domains. 
Attribute user is of nominal type and its 
domain is {1,2,3} 

4. Runs    (Mandatory)  

The component contains global learning parameters and subcomponents, called runs, 
which define tasks to be performed by a single run of the program.  Each run starts 
with its single name identifying the run, e.g.,”my_run1”, followed by parameters 
enclosed in braces.  The only parameter needed for learning is the rule consequent 
defined in each run.  Even if the program is used only for rule testing, this component 
needs to be specified.  For details on defining runs please refer to Section 8 of this 
manual.  Example: 

Runs 
{ 
 Ignore_attributes =  x3, x5  
 Events_precentage = 0.7 
 
  my_run1 
  { 
  Consequent = [x2 = r][user = 2] 
  } 
  
  another_run 
  { 

Comments: 
Global Parameters defined before the first run.  
In this case two global parameters are defined: 
Ignore_attributes and Events_precentage. 
Each run starts with its unique name, here 
“my_run1” and “another_run”, followed by 
list of parameters written in braces.  The only 
mandatory parameter is rule Consequent that 
defines class of positive examples for this run. 
Thus, run 1 will produce rules with 
Consequent “[x2 = r][user =2]” 



. 

 5 

  Mode = TF 
  Consequent = [user = *] 
  } 
} 

If an‘*’ is used in the Consequent, program 
will automatically create classes for all 
possible values of the attribute. 

List of the most important global parameters and their definitions in AQ21 input files: 
Ignore_attributes   = comma separated list of attributes 
Counting_attribute   =  true|false 
Cross_valudation   = 0, 1, …. number of events -1 
Attribute_selection_method  =  PROMISE | Gain_Ratio | None  
Attribute_selection_threshold = value from range [0, 1] 
Attribute_selection_tolerance = value from range [0, 1] 
Output_attributes   = comma separated list of attributes 

List of the most important run-specific parameters and their definitions in AQ21 input 
files: 

Consequent    = [attribute = *] (learn for all values) OR 
Consequent    = [attribute = v] (learn for one value) OR 
Consequent    = [attribute = v1,v2,v3] (selector is 
consequent) OR 
Consequent    = Complex (any attributional complex) 
Mode    = TF | PD | ATF | TEST 
Ambiguity    = IgnoreForLearning | IncludeInPos | 
IncludeInNeg |  

IncludeInMajority | DisplayAmbiguities 
Define attribute_name = A-rule defining attribute 
Exceptions    = true | false 
Ignore_attributes   = comma separated list of attributes 
LEF_PS | LEF_STAR | LEF_SORT {list of criteria and tolerances} 

5. Tests    (Optional) 

This component defines the testing of learned or input (predefined) hypotheses.  The 
user can use testing algorithms such as ATEST and EPIC and their modifications.  
For details please refer to section 9 of this manual.  Example: 

Tests 
{ 
  my_test1 
  { 
    Method = atest 
    Threshold = 0.5 
  } 
} 

Comments: 
Each test starts with its unique name 
followed by list of parameters written in 
braces.  In this case, only one test is 
defined, and its name is ”my_test1”.  It 
uses ATEST event testing method with 
acceptance threshold 0.5.   

List of the most important testing parameters and their definitions in AQ21 input files: 

Method    = ATEST | EPIC | EPIC_RB | EPIC_P 
Evaluation_of_selector  = strict | flexible 
Evauiation_of_conjunction  = strict | coverage_ratio | selectors_ratio | 
flexible | 
      min | min_w | prod | avg | avg_w 



. 

 6 

Tolerance    = value from range [0, 1] 
Threshold    = value from range [0, 1] 
Full_report    = true | false 
 

6. Input_hypotheses (Optional)      

This consists of hypotheses (rulesets) used for testing.  The rulesets can be either a 
result of previous program execution or manually created hypotheses.  This 
component is specified ONLY when User wants to test already known hypotheses.  
For each decision class (defined by the consequent) a separate input hypothesis 
section needs to be specified.  For details please refer to section 9.4 of this manual.  
Example: 

Input_hypotheses my_run1 
{ 
 
[user = user1] 
    <-- [x3 = r, s][x5 = r]: p = 10, n = 0 
    <-- [x1 = r] : p = 10, n = 2 
}  

Comment: 
Name (in this case my_run1) is a valid 
run name specified in the Runs section. 
Consequent of rules in the hypothesis. 
List of rules, each rule starting with a  
“<--“ symbol. 
 

7. Events (Optional) 

This component specifies training and/or testing events for the program. This section 
is optional in the sense that it is skipped, if the user specifies events in the 
Testing_events component or in a separate file indicated in the command line (see 
Section 3.2).  

Events 
{ 
  s, s, r, r, r, 1 
  s, s, s, r, b, 1 
  r, t, s, r, r, 2 
  r, r, t, r, g, 2 
  r, r, s, r, g, 2 
} 

Comment: 
Events are specified as rows of a data 
table.  Each of the events is a comma 
separated list of values of attributes in the 
order defined in the Attributes 
component.  There is no comma after 
each event, and the last value in the event 
must be followed by new line  

8. Testing_events (Optional)      

The section that specifies events used by the AQ21 testing module.  The testing 
events can be also selected from training events or provided in a separate file.  

Testing_events 
{ 
  s, s, s, r, r, 1 
  s, s, t, g, r, 1 
  r, s, r, r, g, 2 
  r, r, s, r, g, 2 
  r, s, t, r, g, 2 
} 

Comment: 
Data table is a list of testing examples 
(events).  Each of the events is a comma 
separated list of values of attributes in 
order defined in the Attributes 
component.  There is no comma after 
each event, and the last value in the event 
must be followed by new line. 



. 

 7 

Examples of input files are presented in Section 4, and also in Appendix A.  Templates of 
the AQ21 input files for the most common problems are presented in Appendix C.  
Detailed description of structure of AQ21 input files and compatibility with C4.5 input 
files is presented in Section 4. 

3.2 Advanced command line parameters 

It was mentioned above that to execute AQ21 the user needs to provide parameters in the 
command line.  If run without any parameters AQ21 displays information about 
programs and brief description about its parameters.  At least one parameter is needed for 
learning or testing, which is the name of the input file with the problem definition and the 
examples for learning and/or testing.  Such case was described in Section 3.1 and is 
shown in Example 1.  In general, AQ21 is invoked by typing in the command line:     

aq21    command-line-parameters  

In the simplest case, when the input file consists of problem definition and examples, the 
invoking command is (see Examples 2 and 3 below): 

aq21    parameters-events- filename  

It is also possible to provide problem definition, learning and testing examples in separate 
files: 

aq21  parameters–filename  training-events-filename  test ing-events-
filename  

The parameters file is used to define AQ21 parameters (attributes, runs, tests, etc.).  The 
training events file consists of a list of examples used for training, and a testing events 
file consisting of a list of testing examples may also be specified. 

Example 1: 
 
    aq21    input1.aq21 
 
Example 2: 
 
    aq21    input2.aq21    data1 
 
Example 3: 
 
    aq21    input3.aq21    data1       data2 
 

 
Both: parameters and events must be 
present in the input1.aq21 file. 
 
Parameters are defined in input2.aq21 file 
and data for training and/or testing is 
defined in data1 file. 
 
Parameters are defined in input3.aq21 
file, training data is defined in data1 file, 
and testing data is defined in data2 file. 

In case when input file, training data file and testing data file have the same stem in the 
name it is possible to use –F <name> option where <name>.aq21 is a AQ21 parameter 
file, <name>.data is a training data file, and <name>.test is an optional testing data file. 

Example: 
 
    aq21    -F    input 
 

Parameters are specified in input.aq21 
file, data is specified in input.data file.  If 
input.test file exists, testing events will be 
loaded from it. 



. 

 8 

It is also possible to read input files in C4.5 format using –f option.  Similarly to –F 
option, program loads parameters and data from respectively <name>.names, 
<name>.data, and <name>.test files.  For details of c4.5 file format please refer to Section 
4.2. 

Example: 
 
    aq21    -f    input 
 

Attributes in c4.5 format are specified in 
input.names file, data is specified in 
input.data file.  If input.test file exists, 
testing events will be loaded from it. 

By default AQ21 does not display events in the output.  To display the training and 
testing events section –events parameter should be used.  Please note that in such case, 
when datasets are large, the output will also be large. 

Example: 
 
    aq21    -events    input.aq21 
 

Parameters and events are loaded form 
input.aq21 file.  Program displays in its 
output events loaded from the input file 
(Events section). 

The AQ21 can write its output to a file whose name is specified by user.  To use this 
feature  
–o <filename> option should be used as shown in the example below.  Format of the file 
is identical as format of output displayed to screen. 

Example: 
 
    aq21    input.aq21    -o    output.aq21 
 

Parameters and events are loaded from 
input.aq21 file.  Output is written into 
output.aq21 file. 

The –r option overwrites random seed specified in the input file with one generated 
automatically using the system time.  For details of random seed usage please refer to 
Section 8.2. 

Example: 
 
    aq21    input.aq21    -r 
 

Parameters and events are loaded from 
input.aq21 file.  Even if the input.aq21 
file contains definition of random seed, it 
is overwritten by automatic one. 

In general AQ21 allows combining different parameters described above with some 
plausible constraints (eg. –F and –f parameters cannot be used together).  

Example: 
 
    aq21  -F  input   -events   -o output.aq21 
 

Parameters are loaded from input.aq21 
file.  Events are loaded from input.data 
file and input.test file (if exists).  Loaded 
events are displayed to the output whose 
name is output.aq21 

 

 



. 

 9 

4 INPUT FILES 

4.1 AQ21 file format 

The format of the AQ21 input file allows user to define all program parameters in a 
convenient way.  The input file is a text file contains components for defining common 
domains of attributes, attributes, their types and domains (that may be common domains 
or domains defined together with attributes), and parameters of the planned runs of the 
algorithms for learning and testing. 

The only program parameters that have to be defined in the input file are the decision 
classes to be learned and a list of attributes that correspond to the columns in the data 
tables (lists of events) provided to the program.  All other parameters have default values, 
so the user does not have to specify them.  These parameters can, however, be set 
differently to adjust the way program runs appropriately for a given problem.   

An example of a simple AQ21 input file is presented below.  A more complex example 
of an input file is presented in Appendix A.  Information about AQ21 parser and list of 
reserved keywords is presented in APPENDIX D. 
 

Problem_description 
{ 
This is an example of an AQ21 input file.  
} 
 
Common_domains 
  { 
   # The domains component is used to define domains that  
   # can be shared among attributes 
   shape nominal {r, s, t} 
   color nominal {r, y, b, g, w} 
  } 
 
Attributes 
  {       
  # The attributes component is used to define attributes  
  # for events in the data. 
  x1 shape 
  x2 shape 
  x3 nominal {r, s, t, q, o} 
  x4 color 
  x5 color 
  class nominal {1, 2, 3} 
  } 
 
Runs 
{ 
  # The runs component is used to define parameters for  
  # learning. 
  Split_events_percentage = 0.6 
  
  example_run_of_aq21 
  { 
  # Define specific parameters for this run 
  Mode = TF 

 
In the optional description 
component you can put any 
comments about the run, and it 
will be copied to the output. 
 
In common domains user 
assigns types and lists of 
values with common domains 
that can be used later to define 
attributes. 
 
Each defined attribute 
corresponds to one column in 
input data table.  
Attributes can be either 
defined using common 
domains (eg. x1, x2, x4, x5) or 
their types and domains can be 
defined explicitly in this 
component (eg. x3, class). 
 
Runs component is used to 
define classes and learning 
parameters.  In this example 
one global parameter is used. 
 
Name of a run is any unique 
word. 
Parameters defined within a 
run affect only the run. 



. 

 10 

  Consequent = [class = *] 
  } 
 
  another_example_run 
  { 
    Mode = TF 
    Ignore_attributes = class 
    Consequent = [x4 = r] 
  } 
 
} 
 
Tests 
{ 
  # The tests component us used to define parameters for  
  # testing. 
  test1 
  { 
    Method = ATEST 
    Tolerance = 0.1 
  } 
} 
 
Events 
{ 
  # In this component are the examples used for learning    
  # and testing.  
  s, s, r, r, r, 1 
  s, s, s, r, r, 1 
  s, s, t, g, r, 1 
  s, s, s, r, b, 1 
  r, t, s, r, r, 2 
  r, r, t, r, g, 2 
  r, s, r, r, g, 2 
  r, r, s, r, g, 2 
  r, s, q, r, g, 2 
  r, r, s, r, g, 2 
} 
 

Consequent is the only 
mandatory parameter.  It is 
used to define classes for 
learning and/or testing.  When 
* is used in the consequent 
program learns for all values 
of the attribute, otherwise it 
learns only for specified 
values.  
 
Definition of testing 
parameters.  In this example 
one test is defined.  It uses 
ATEST method implemented 
in AQ21. 
Tolerance is used to classify 
an event to more that one class 
if their degree of match is 
similar. 
 
Data table with training and/or 
testing events (examples). 
Each event is a list of comma 
separated values of attributes 
in order defined in the 
Attributes component. All 
values are mandatory (for 
missing or special values 
please refer to Section 7.  
Events are used for learning 
and/or testing (in this case 
both, since no testing events 
are explicitly specified in 
Testing_events component). 

The input file provides AQ21 with information about training and testing data, and the 
way to execute rule learning and testing operations.  The program allows the user to 
perform many different experiments in a single execution using the same input training 
and testing data. 

The AQ21 input file is organized into components that reflect the organization of the 
program and provide a clear way to specify parameters.  This section describes briefly the 
components of the input files, details are presented in the following sections (names of 
the components are keywords).  Some of the components are optional and some are 
mandatory. 

1. Problem_description    (Optional) 

The component consists of comments about learning and testing problem, input files 
etc.  It is ignored by AQ21, but is copied to the program output.  It used to write any 
information that is desired in output (like the problem description). 



. 

 11 

2. Common_domains    (Optional) 

Optional component that defines types and domains for which attributes may be 
defined (domains can also be defined in the Attributes component).  For details please 
refer to Section 5 of this manual. 

3. Attributes    (Mandatory) 

Mandatory component that defines the attributes used in the input data.  Each 
definition in the component corresponds to one column in the input data, in the order 
they are presented (columns are counted form left to right).  For details please refer to 
Section 6 of this manual. 

4. Runs    (Mandatory) 

Mandatory component that defines classes and learning operations on the data.  It 
consists of global parameters, and subcomponents that represent single runs of the 
program (at least one run subcomponent needs to be defined).  Even if only testing is 
to be performed, this component needs to be specified.  For details please refer to 
Section 8 of this manual. 

5. Tests    (Optional) 

Optional component that defines the testing of learned or input (predefined) 
hypotheses.  The user can use testing algorithms such as ATEST and EPIC and their 
modifications.  For details please refer to Section 9 of this manual. 

6. Input_hypotheses    (Optional) 

Optional component that is used to define input hypotheses for testing.  The input 
hypotheses can be result of previous execution of AQ21 or can be manually 
written/modified by expert.  One Input_hypotheses component corresponds to one 
class, so for example to define input hypotheses for three classes, three components 
are needed in input file.  For details please refer to Section 9.4 of this manual. 

7. PBM_input    (Optional) 

Optional component that is used to manually define models for Prediction-based 
model testing (using EPIC-P).  For details please refer to Section 9.4.3 of this manual. 

8. Events    (Optional) 

Optional component used to specify training events (examples) for the program.  
While this component is optional, events must be specified either using this 
component, or in a separate file as specified from the command line.  

9. Testing_events    (Optional) 

Optional component that specifies events (examples) used by the testing module of 
AQ21.  The testing events can be also selected from training events or provided in a 
separate file.  

An important feature of AQ21 is that its output can be used as input to a subsequent 
execution of the program.  This feature makes experiments using AQ21 fully repeatable.  



. 

 12 

The user can also refine output hypotheses using a text editor, and apply them to the 
testing events again without additional work.  

The user can make comments in the AQ21 input files.  To comment out a single line put 
“#” in front of the line.  To comment out a whole continuous part of a file (more or less 
than one full line), put “(#” at the beginning of the region to be commented, and “#)” at 
the end. 

There are two main types of input files recognized by AQ21.  The first type is in the 
format of the AQ21 input file described above that contains a definition of attributes, 
runs, tests, events etc. The second type of file is an input data file only that contains data 
to be used for training or testing.  The data files are files with events (examples) in the 
same format as in the Events and Testing_events components.  Each example is a list of 
comma separated values of attributes in order defined in the Attributes component.  
There is no comma at the end of example. 

AQ21 is not case sensitive in terms of component names and parameters.  For example it 
is correct to write an input file: Runs, runs, RUNS, ruNs, etc.  Program is case sensitive 
for values of attributes as defined in Common_domains and/or Attributes components. 

 

4.2 C4.5 file format compatibility 

AQ21 has a feature that allows the user to load input files prepared for the C4.5 program.  
The C4.5 input is specified using three files having “.names”, “.data”, and “.test” 
filename extensions that define respectively attributes, training data, and testing data.  
They can be loaded using the -f option in the AQ21 command line followed by the 
filename stem common to both .names and .data files – without the extensions.   

 
 
 
    aq21    -f    robots 
 

AQ21 loads definitions of 
attributes from robots.names file, 
training data from robots.data file, 
and testing data from robots.test 
file (if exists).  The files are in c4.5 
format. 

Although AQ21 is able to read c4.5 input files, it is not possible to specify any AQ21 
parameters within this file format.  Therefore, it is strongly recommended to modify 
“.names” file in the c4.5 format into “.aq21” file in the AQ21 format using any text 
editor (eg. notepad in Windows OS, or emacs in UNIX OS). 

Example of simple “.names” c4.5 file and corresponding AQ21 file are presented below.  
Please note that in the AQ21 version of file more meaning is added to some attributes (for 
example type of attribute holding is structured, what is not available in c4.5). 

friendly, unfriendly. 
head:    round, square, triangle. 
body:    round, square, triangle. 
smile:   no, yes. 

 
Example of c4.5 .names 
file.  The first row 
specifies classes (last 



. 

 13 

holding: sword, balloon, flag, us_flag, polish_flag. 
height:  short, medium, tall. 
antenna: red, yellow, blue, green, black, white. 
jacket:  red, yellow, blue, green, black, white. 
tie:     no, yes.  

column in data) and other 
rows specify attributes 
and their domains. 

 
Common_domains 
{ 
  shape  nominal  {round, square, triangle} 
  color  nominal  {red, yellow, blue, green, black, 
                   white} 
} 
 
Attributes 
{ 
  head     shape 
  body     shape 
  smile    nominal    {no, yes} 
  holding  structured {sword, balloon, flag, us_flag,  
                       polish_flag}  
                      {polish_flag --> flag 
                       us_flag --> flag} 
  height   linear     {short, medium, tall} 
  antenna  color 
  jacket   color 
  tie      nominal    {no, yes} 
  class    nominal    {friendly, unfriendly} 
} 
 
Runs 
{ 
  robots 
  { 
    Consequent = [class = *] 
  } 
} 
 
Tests 
{ 
  robots_test 
  { 
    Method = ATEST 
  } 
} 

AQ21 format. 
In order not to repeat 
definition of color and 
shape two common 
domains are defined. 
 
 
Attributes as they appear 
in data.  Types and 
domains of attributes 
head, body, antenna, and 
jacket are defined using 
common domains. 
Attribute holding is a 
structured attribute  that 
is not available in c4.5. 
Class is defined as the 
last attribute as it is in the 
original data. 
 
One simple run is defined 
in which only Consequent 
parameter is specified. 
Used ‘*’ indicates 
learning for all values of 
attribute class (in this 
case friendly and 
unfriendly). 
 
One test is defined.  It 
used ATEST 
classification program for 
classification of testing 
examples. 

Data files in c4.5 format do not need be converted into AQ21 format.  The only 
difference between the two formats in “.” at the end of each event in c4.5 file and AQ21 
is able to automatically remove it. 

 

 
 



. 

 14 

5 DEFINING COMMON DOMAINS OF ATTRIBUTES IN AQ21  

5.1 Overview 

All attributes that are defined in AQ21 need to be associated with a defined domain. 
There are two possible ways to define a domain for an attribute: (1) in the 
Common_domains component, and (2) explicitly, when the attribute is defined (see the 
Attributes component description).  Although both methods are allowed, it is often 
preferable to define the domain first and later bind attributes to it, especially when more 
than one attribute uses the same domain.  In addition, counting attributes (Section 8.2) 
require that the attributes to be counted explicitly have the same domain. 

AQ21 supports most of the attribute types defined in Attributional Calculus (Michalski, 
2004), namely, nominal, linear, and structured.  The linear attributes are divided into 
continuous, discretized continuous, and integer.  The type of an attribute depends on the 
structure of its domain.  The following section explains how to define the attribute types 
and domains. 

The structure of the Common_domains component in the AQ21 input file is presented 
below: 

 
Common_domains 
{ 
  first domain definition 
  second domain definition 
  … 
  n-th domain definition 
} 

 

Example: 
 
    Common_domains 
    { 
      color nominal {red, green, blue, yellow, blac k} 
      height linear {short, medium, tall} 
      length continuous 0.0 127.45 
      seconds linear 60 
    }  

 

5.2 Definition of Domains  

The general form of a domain definition is: 

domain name    domain type     [parameters] 

where domain name is a unique name of the domain defined by the user, domain type is 
one of the types supported by AQ21, and parameters is an optional specification of 
additional properties of the defined domains (e.g.,  ranges, lists of values, etc.).  The 



. 

 15 

following is the detailed description of the domain types: nominal, linear, structured, 
continuous, integer, and discretized continuous. 

Nominal 

Syntax: 
domain_name    nominal    { list of values } 

or 
 domain_name    nominal    size 

Components: 

 domain name – a single word that specifies a unique name for the domain 

 list of values – a comma separated unordered list of values of the domain to be 
defined 

size – a positive integer that specifies the number of values in the domain 

 
Example: 
 
    color nominal {red, green, blue} 
    host nominal 22 

 

 

Comment: 

Nominal domains represent discrete, unordered sets of possible values.  In AQ21, there 
are two ways of specifying such domains: (1) by listing all possible values, and (2) by 
defining the number of possible values.  In the first case, the user must specify a comma-
separated list of legal values enclosed in braces.  In the second case, the user specifies an 
integer denoting number of values in the domain.  In this case, the program will 
automatically generate values that are positive numbers 0, 2, 3, …, n-1, where n is the 
number specified by user.  In the following examples, both definitions are equivalent: 

 
Example 1: 
 
    host nominal 7 
 
Example 2: 
 
    host nominal {0, 1, 2, 3, 4, 5, 6} 
 

 

 The minimum number of values of a nominal domain is two. 

 



. 

 16 

Linear 

Syntax: 
 domain_name   linear    { list of values } 
or 
 domain_name    linear    size 

Components: 

 domain name – a single word that specifies a unique name for the domain 

 list of values – a comma separated, ordered list of values of the domain to be 
defined 

size – a positive integer that specifies the number of values in the domain 
 

Example: 
 
    size linear {small, medium, large} 
    host linear 22 
 

Comment: 

Linear domains represent discrete, ordered sets of values.  In contrast to nominal 
attributes, the order of values is important, as there is a “greater-than” relationship 
defined between values. For example, the definition: 

D    linear    {v1, v2, v3, v4, v5} 

means that v1, v2, v3, and v4 are possible values of domain D, and v1 < v2 < v3 < v4 < 
v5, and that conditions such as [D <= v3] or [D = v2..v4] have meaning. 

As can nominal domains, linear domains can be specified either by listing all possible 
values or by giving an integer number that denotes the number of possible values. 

The minimum number of values of a linear domain is two. 

 

Structured 

Syntax: 
 domain_name    structured    { list of values }    { list of relationships } 

Components: 

 domain name – a single word that specifies a unique name for the domain 

list of values – a comma separated list of values of the domain to be defined 

list of relationships – a list that defines the relationships between the specified 
values, using -->  operator 

 



. 

 17 

Example: 
 
    place structured { World, Europe, Poland, Germa ny, 

America, Mexico, US, Virginia, 
Maryland, Alaska, Mars  

                     } 
    { Europe, America --> World 
      Poland --> Europe 
      Germany --> Europe 
      US --> America 
      Virginia --> US 
      Maryland --> US 
      Alaska --> US 
      Mexico --> America 
    } 
 

Comment: 

Structured domains represent partially ordered sets or hierarchies of possible values in 
which the partial order is defined by the -->  relation where the “pointed” element is 
parent.  Structured attributes can be used to represent hierarchies such as shapes, animals, 
or geographical data.  Note that the list of relationships is not comma-separated. 

 The minimum number of values of a structured domain is two. 

 

Continuous 

Syntax: 
 domain_name   continuous    lower bound,    upper bound 
or 
 domain_name   continuous 

Components: 

 domain name – a single word that specifies a unique name of the domain 

lower and upper bound – optional parameters that define the range of the 
continuous domain 

Example: 
 
    income continuous -1000.0, 3486.33 
 

Comment: 

The use of continuous domains allows a user to represent real values in both learning and 
testing. AQ21 can deal with continuous attributes without discretization that is required 
by most machine learning programs (performed either by user or automatically).  For 
details on how generalization is applied to continuous attributes, please refer to the 
epsilon parameter described in Section 6.2. 



. 

 18 

Internally, continuous domains in AQ21 are implemented using double variables in C++, 
and all the limitations that apply to this type of variables apply to continuous domains 
and attributes. 

 

Integer 

Syntax: 
 domain_name   integer    lower bound ,    upper bound 
or 
 domain_name   integer 

Components: 

 domain name – a single word that specifies a unique name for the domain 

 lower and upper bound – optional parameters that define the range of the integer 
domain 

 
Example: 
 
    years integer -100, 100 

 

Comment: 

The integer domains were introduced to the program in order to allow user to deal with 
large linear domains. When the number of values of a linear domain is relatively big, it 
affects the performance of the program, which has to remember explicitly all values of 
the domain. When integer domains are used, the program stores only ranges of values 
(similarly to how it handles continuous domains). 

 

Discretized Continuous 

Syntax: 
 domain_name   discretized continuous    size ,    lower bound,    upper bound 
or 
 domain_name   discretized continuous    [    list of points    ] 
or 
 domain_name   discretized continuous    ranges    [    list of points    ] 
 

Components: 

 domain name – a single word that specifies a unique name for the domain 

 lower and upper bound – parameters that define the range of the continuous 
domain 



. 

 19 

 size – an integer value that defines the number of discretized points 

 list of points – a comma separated list of real values 

 
Example: 
 
    distance discretized continuous 100, 0.0, 4000. 0 
 
    temperature discretized continuous [ -50, -40, -30, -
20, -10, -5, 0, 0.5, 1, 2, 3, 4, 5, 10, 20, 50, 100 , 200 ] 
 
    length discretized_continuous ranges [0, 0.5, 1 , 2, 3] 

Comment: 

As shown in the above example, the discretized continuous domains can be discretized 
either automatically, or manually by specifying a list of discretized points. In the first 
case, the program generates discretized equal-size intervals whose number is specified by 
the user (the size parameter in definition of the domain “distance” in the example above).  
It is also possible to invoke the ChiMerge algorithm (Kerber, 1992) to discretize a single 
attribute (Section 6.2). 

Manual discretization can be done by specifying a list of discretization points explicitly. 
The smallest and the largest values in the list will be used respectively as the lower and 
upper bound for the domain. 

Suppose that there are n discretization points x1, x2, …, xn and x1 < x2 < … < xn.  In such 
setting x1 will be used as the lower bound of the domain, and xn will be used as the upper 
bound of the domain.  Real values in the range x1 to (x1 + x2)/2 will be discretized as x1.  
Real values in the range from (xn-1 + xn)/2 to xn will be discretized as xn.  For all xi where 
i ≠ 1 and i ≠ n, real numbers in the range from (xi-1 + xi)/2 to (xi + xi + 1)/2 will be 
discretized as xi.  

When the keyword ranges is used in the domain definition, the list of points is treated as 
a list of borders between intervals.  In the above example, in the definition of the domain 
“length,” the intervals are: 0 to 0.5, 0.5 to 1, 1 to 2, and so on. 

 
 

 

 



. 

 20 

6 DEFINING ATTRIBUTES IN AQ21 

6.1 Overview 

The previous section described how to define domains that can be used to define 
attributes. However, as mentioned before, this is not the only way to define attributes.  
They can be defined either by specifying domains as defined before, or by explicitly 
specifying the domain type.  The details on how to do it follow. 

For a description of types of attributes that are available in AQ21 please refer to Section 
5.  

The attributes in AQ21 are defined in an Attributes component that has the following 
form: 

 
Attributes 

{ 

  first attribute definition 

  second attribute definition 

  … 

  n-th attribute definition 

} 

Each row in the attributes definition corresponds to exactly one column in the input data 
(top row corresponds to the leftmost column in the data).  Every column in the input data 
can be defined using a standard attribute or a meta-attribute, or can be ignored.  

 
Example: 
 
Attributes 
{ 
    x1      height    cost = 2 
    body     nominal    { square, round, triangle }  
    ignore 
    location     place 
    episode 
    significance 
} 
 

In the above example the attribute x1 is defined based on a common domain height 
(defined previously), and with cost equal to two.  Body is a nominal attribute with three 
possible values.  The third column in the input data is to be ignored.  Location is defined 
using the place domain that was defined in the Common_domains component.  Episode 
and Significance are two meta-attributes that are described in Section 6.3. 



. 

 21 

6.2 Attribute Definition 

To define an attribute, the following line of text is used: 

 attribute name    attribute domain    attribute options     

Attribute name is a unique name of the attribute. The name can be used later in all parts 
of the AQ21 input file and, for example, in the learned rules. 

Attribute domain is either the name of a domain already defined or a definition of the 
domain. For details on domain definition, see Section 5. 

Attribute options are used to define additional features of the attributes. The possible 
options are cost, epsilon, and discretization. 

The cost of an attribute is a positive integer, whose value can be interpreted as the 
relative expense of evaluating the attribute. It is used by the mincost LEF criterion (see 
Section 8.3) to minimize the cost of the learned rules (e.g., Michalski and Kaufman, 
2001). 

Epsilon provides the program with information on how to generalize continuous 
attributes.  Its value can be between zero and one where zero means maximum 
generalization (a condition is maximally general so as not to cover a negative example) 
and one means minimum generalization (a condition is maximally specific without losing 
any positive coverage). 

Discretization followed by the desired number of ranges is introduced ONLY for 
continuous attributes and invokes an automatic program that discretizes the data.  
Currently the ChiMerge discretization method (Kerber, 1992) is implemented.  In the 
example below attribute “width” will be discretized into seven intervals using the 
ChiMerge method. 

 
Example: 
 
  body    nominal     { square, round, triangle }  cost = 1 
  length  continuous  cost = 3   epsilon = 0.2 
  width   continuous  ChiMerge 7 
 

 

6.3 Meta-attributes 

There are four predefined, special attributes, called meta-attributes, that express 
information about the events, namely: key, episode, frequency, and significance.  The 
most significant difference between attributes and meta-attributes is that meta-attributes 
are not used directly in the learning process (they are never components of learned 
hypotheses); they can only be used to control the AQ21 learning and testing as described 
below. 

Key is a unique positive integer that is used to identify the event.  



. 

 22 

Episode is used to distinguish between series or sequences of events.  For example one 
series of activities of a computer user during one session can be viewed as one episode.  
The episode parameter does not affect the learning process; however it is used during 
testing when one of EPIC methods is applied and the program classifies entire episodes 
instead of single events. 

Frequency is a positive integer value that indicates how many times an event appears in 
the data. The events that appear more than once in the data can have their frequency 
fields set to values greater than one, they can appear in the data more than once, or both.  
The value of frequency is important for the program execution, and is used, for example, 
by many of the LEF criteria.  

Significance is a real number that indicates how important the event is. It is used by the 
maxsignificance LEF criterion to give preference to rules that cover the most important 
events (see the LEF criteria descriptions, Section 8.3). 

 

 

 

 

 



. 

 23 

7 META-VALUES IN AQ21 

In several situations, the exact value of an attribute is not provided to the program.  Such 
situations may happen, for example, when the value is not known, or the user decided not 
to use it for learning.  AQ21 implements three meta-values that can be used instead of 
real values in the attribute domains.  A theoretical description of the meta-values can be 
found in (Michalski, 2004; Michalski and Wojtusiak, 2005).  The three meta-values 
implemented in AQ21 are described below. 

The “Missing” (a.k.a. don’t know and unknown) meta-value, denoted in data by “?”, 
represents situations in which the value of an attribute exists, but for some reason is not 
known.  For example, it may not have been measured, or for other reason it is not present 
in the data. 

The “Irrelevant” (also known as “Don’t care”) meta-value, denoted in data by “*”, 
represents situations in which a value is irrelevant for learning the specific class.  For 
example color of the eyes is rather irrelevant when determining a student’s grade.  
Information that an attribute is irrelevant for a given event is entered into data by a 
domain expert. 

The “Not applicable” meta-value, denoted in data by “NA” or “N/A”, represents 
situations in which the value of an attribute makes no sense for a given event.  For 
example color of a jacket is not applicable when there is no jacket. 

The example below illustrates a toy problem in which meta-values are used (in this case 
“N/A” and “?” are used).  It shows only the definition of attributes and events (no other 
components of the AQ21 input are specified). 

 
Example: 
 
Attributes 
{ 
  head_shape nominal { square, round, triangle} 
  body_shape { square, round, triangle } 
  wearing_jacket { yes, no } 
  color_of_jacjet { red, green blue }  
} 
 
Events 
{ 
  square, ?, yes, red 
  round, triangle, no, N/A 
  round, triangle, yes, blue 
} 
 

 

 

 



. 

 24 

8 DEFINING LEARNING PARAMETERS IN AQ21  

8.1 Overview 

The learning parameters are organized in the Runs component of the AQ21 input file.  
The structure of this component is presented below: 

Runs 
{ 
  global parameters 
 
  run_one 
  { 
    parameters for the first run 
  } 
 
  run_two 
  { 
    parameters for the second run 
  } 
  … 
 
  run_n 
  { 
   parameters for the n-th run 
  } 
}  

Example: 
 
    Runs 
    { 
      Output = group  
  
      Split_events_percentage = .7 
 
      good 
      {   
        Consequent = [ group = good ]        
        Maxstar = 1 
        Maxrule = 1 
        Trim = Optimal 
        Mode = PD 
        Display_selectors_coverage = true 
 
        LEF_sort 
        { 
          MaxPositives, 0 
        } 
 
 
        LEF_ps 
        { 
          MaxQ, 0 



. 

 25 

          MinComplexity, 0 
        } 
      } 
 
      bad 
      {   
        Consequent = [ group = bad ]        
        Trim = Optimal 
        Mode = PB 
 
    }  

The Runs component contains definitions of global parameters that apply to all runs, 
followed by definitions of specific runs.  Inside the runs component, at least one run must 
be defined, and each run must have a unique name (as in the example above). 

The definition of a parameter’s values takes two possible forms: 

 
  parameter = value 
 or 
  parameter = list of comma separated values. 

 
Example: 
 
    Consequent = [ group = good ] 
 
    Ignore_attributes = color, height 
 

 

8.2 Global Learning Parameters  

Global parameters are common to all defined runs and apply to all training and testing 
events. Some of them, however, are identical to run-specific parameters, and can be 
defined either as global parameters that apply to all runs or in run-specific components 
that apply to a single run. All Global Parameters are optional; none are mandatory. A 
list of the global parameters defined in AQ21 is presented below in alphabetical order. 

Attribute selection method 

Syntax: 

 Attribute_selection_method = method 

Possible values: 

 promise, gain_ratio, none 

Default value: 

 none 



. 

 26 

 
Example: 
 
    Attribute_selection_method = promise 
 

Comment: 

In large datasets that have many attributes it is important to select the most relevant 
attributes before starting the learning process.  In many applications, attempting the 
learning process on the full dataset with all attributes is too slow and inefficient.  Here, 
the selected method is used to determine the attributes that have the highest chance to be 
relevant for the learning.  Two criteria: promise (Baim, 1982; Kaufman, 1997) or gain 
ratio (Quinlan, 1993) can be used to determine which attributes are likely to be the most 
relevant. 

In AQ21 to select attributes for learning we compute the discriminatory power (dis-
power) of each attribute and compare it with the acceptance threshold.  Attributes whose 
dis-power is below the threshold will not be used for learning.  The complete algorithm 
can be written in three steps shown below. 

 
 

1.  Given a dataset, evaluate the discriminatory power of 
each individual attribute according to some measure  
(applied to each class vs. the rest of the classes)  

2.  establish an acceptance threshold for attributes 
depending on the number of attributes in the data 

3.  remove from dataset the attributes whose dis-power is 
below the threshold 

 

To make the method more general, it is permissible that for each decision class, the set of 
attributes that will be used for learning can be different.  Note that the discriminatory 
power in step 1 is computed for each class against the collective rest of the classes. 

AQ21 gives three possibilities of selecting the acceptance threshold parameter.  First, it 
can be defined explicitly by the user.  For instance, an acceptance threshold set to 0.5 will 
filter out all attributes whose dis-power is below 0.5.  The user can also define the 
parameter attribute selection tolerance, which specifies the acceptance threshold using 
the following formula (MIN and MAX are respectively minimum and maximum values 
of dis-power for evaluated attributes):  

acceptance threshold = MIN + (MAX – MIN) * acceptance threshold tolerance. 

If in the AQ21 input file the user defines both the acceptance threshold and the 
acceptance threshold percentage, the acceptance threshold is ignored and computed as 
described above. 

There are two implemented methods for determining the dis-power of attributes – 
Promise and Gain Ratio.  Both return values in the range [0, 1] that can be easily 
compared with the acceptance threshold. 



. 

 27 

Promise 

The implemented method is a simplified Promise (Baim, 1982; Kaufman 1997) method 
that uses two classes represented by positive and negative events.  The negative events 
are all events that are not from the class that is being considered.  The algorithm for 
attribute x and class C can be described by the following pseudo-code: 

 
 
P = 0 
For each value of the attribute v j  
    S = { examples : x = v j  } 
    Find class C that has the largest number of exa mples in S 
    P = P + #C

∩
S/#S 

Return P 
 

After a simple normalization the returned value is in the range [0, 1]. 

Gain Ratio 

The Gain Ratio is a well known attribute quality measure used by programs such as C4.5 
for building decision trees (Quinlan, 1993).  The Gain Ratio is defined as  

gain ratio( X ) = gain( X )/split info( X ) 

where split info represents the potential information gained by splitting examples by 
using attribute X, and gain is the information that is gained by partitioning events by 
using attribute X.  For exact formulas please refer to for example (Quinlan, 1993). 

 

Attribute selection threshold 

Syntax: 
 Attribute_selection_threshold = value 

Possible values: 
 real number in the range from 0 to 1 inclusive 

Default value: 

 0 
Example: 
 
    Attribute_selection_threshold = 0.5 
 

Comment: 

This parameter is used to define the minimum value of an attribute’s discriminatory 
power for the attribute to be used for learning.  For details, see the description of the 
attribute selection method parameter.  Note that this parameter is ignored whenever the 
parameter attribute selection tolerance is defined. 



. 

 28 

Attribute selection tolerance 

Syntax: 

 Attribute_selection_tolerance = value 

Possible values: 

 real number in the range 0 to 1 

Default value: 

 0 

Example: 
 
    Attribute_selection_tolerance = 0.5 
 

Comment: 

This parameter is used to define a tolerance for the minimum value of an attribute’s 
discriminatory power in order to determine if the attribute is to be used for learning.  If 
this parameter is present, the acceptance threshold is computed using the following 
formula: 

attribute selection threshold = MAX - (MAX – MIN) * attribute selection tolerance, 

where MIN and MAX are the minimum and maximum attribute discriminatory powers 
found, respectively.  For further details, please refer to attribute selection method 
parameter description. 

Counting Attribute 

Syntax: 

 Counting_attribute = value 

Possible values: 

 true, false 

Default value: 

 false 

Example: 
 
    Counting_attribute = true 
 

Comment: 

This option is used to enable the Counting Attributes generation in AQ21. The counting 
attributes are automatically constructed for all input nominal or linear attributes with the 
same domains. For instance: 



. 

 29 

count( x1, x2, x3 = r ) = 2 

means that value of exactly two attributes of the three (x1, x2, x3) are equal to r. 

Output and ignored attributes must be defined in this component before definition of the 
counting attributes (please refer to Output_attributes and Ignore_attributes parameters).  
Thus, output attributes are the same for all runs defined in the run-specific components. 

Cross Validation 

Syntax: 

 Cross_validation = k 

Possible values: 

 integer 

Default value: 

 0 

Example: 
 
    Cross_validation = 3 

 

Comment: 

Cross Validation runs AQ learning and testing a number of times that is specified by 
parameter k, on different subsets of data.  The program splits the input data into k subsets 
D1, D2, …, Dk and applies learning and testing in the following way: 

1. Learn on D1, …, D(k-1) and test on Dk 

2. Learn on D1, …, D(k-2), Dk and test on D(k-1) 

… 

k. Learn on D2, …, Dk and test on D1 

A summary of the cross validation operation is displayed in terms of the average of the 
primary learning and testing results (e.g., accuracy, precision, number of rules). 

Events Percentage 

Syntax: 

 Events_percentage = ratio 

Possible values: 

 real value between 0 and 1 



. 

 30 

Default value: 

 1.0 

 
Example: 
 
    Events_percentage = 0.9 

 

Comment: 

The Events percentage parameter is used to control the percentage of input events that are 
used for training. If, for instance, the parameter is set to 0.9, the program will use 90% of 
the training events, and the other 10% will be ignored. 

 

Ignore Attributes 

Syntax: 

 Ignore_attributes = attribute1 [,attribute2 [, …] ] 

Possible values: 

 comma-separated list of attributes 

 
Example: 
 
    Ignore_attributes = x1, x3, color, height 

 

 

Comment: 

Parameter used to ignore attributes from original data for the learning process.  The 
selected attributes are ignored for learning in all runs defined in the Runs component.  

The Ignore_attributes parameter can also be used as a run-specific parameter to ignore 
attributes only in the run in which it is specified.  If ignore attributes are defined in both 
places (global and run-specific parameters), the union of the attributes is ignored in a 
given run. 

 

Output attributes 

Syntax: 

 Output_attributes = attribute1 [, attribute2 [, …] ] 

 



. 

 31 

Possible values: 

 comma-separated list of attributes 

 
Example: 
 
    Output_attributes = color 

 

Comment: 

This option is used to specify the output attributes used in the learning and testing phases. 
They must be consistent with consequents defined in run-specific components. This 
option is mandatory when any of the constructive induction methods are used (for 
example counting attributes). 

 

Random Seed 

Syntax: 

 Random_seed = seed 

Possible values: 

 integer  

Example: 
 
    Random_seed = 123 

 

Comment: 

This number specifies an initial value for the random number generator used in the 
program. There are several places in the algorithm where values are selected randomly, 
and in order to be sure that results are precisely repeatable when desired, there must be 
such option.  If not selected, its value is generated using current date and time. 

Split Events Percentage 

Syntax: 

 Split_events_percentage = ratio 

Possible values: 

 real value between 0 and 1 

Default value: 

 1.0 



. 

 32 

Example: 
 
    Split_events_percentage = 0.8 

 

Comment: 

The Split Events Percentage is used to set the ratio between number of training and 
testing events.  For instance, a value 0.8 means that 80% of the events will be used for 
training, and the other 20% will be used for testing.  Selection of events is done 
automatically by the program. 

Testing Events Percentage 

Syntax: 

 Testing_events_precentage = ratio 

Possible values: 

 real value between 0 and 1 

Default value: 

 1.0 

 
Example: 
 
    Testing_events_percentage = 0.9 
 

 

Comment: 

The Testing Events Percentage parameter is used to control the fraction of events that are 
used for testing. If, for instance, the parameter is set to 0.9, the program will use 90% of 
the testing events, and 10% will be ignored. 

8.3 Run-Specific Learning Parameters    

Run-specific parameters are those that are defined for a particular run only.  They do not 
affect other runs.  The reason for this is that a user may want to use a specific set of 
parameters when learning for one class and another set of parameters when learning 
another class.  Run-specific parameters are defined inside the Runs component after the 
global parameters by specifying the unique run’s name followed by “{“.  The end of the 
definition of run-specific parameters for a single run is specified by the symbol “}”.  A 
user can define as many runs as is needed. 

The only parameter in run-specific component that has to be specified is Consequent (in 
learning mode only – see Mode parameter).  All other parameters are optional, and their 
values are taken either from the global parameter settings, or program defaults. 



. 

 33 

 
Example: 
Runs 
{ 
 
    my_run 
      {   
        Consequent = [ group = * ]        
        Maxstar = 1 
        Trim = Optimal 
        Mode = TF 
      } 
… 
}  

Additional stars 

Syntax: 

 Additional_stars = value 

Possible values: 

 Integer 

Default value: 

 0 

Example: 

 
    Additional_stars = 5 

 

Comment: 

In the Theory Formation mode (see below), AQ21 learns complete and consistent 
rulesets.  This also means that covering all positive events is a termination condition for 
the learning process.  In some cases, it may be desirable to generate additional stars even 
if the learned cover is already complete, and this parameter specifies how many times to 
do so. 

 

Ambiguity 

Syntax: 

 ambiguity = value 

Possible values: 

IncludeInPos, IncludeInNeg, IgnoreForLearning, IncludeInMajority, 
DetectAmbiguity 



. 

 34 

Default value: 

 IncludeInPos 

 
Example: 

 
    Ambiguity = IgnoreForLearning 

 

Comment: 

This parameter is used to control how AQ21 handles ambiguous data (identical events in 
both the positive and negative classes). Five possible methods are described below. 

 

IncludeInPos Ambiguous events are used as positive examples for learning.  

IncludeInNeg Ambiguous events are used as negative examples for learning. 

IgnoreForLearning Ambiguous events are removed (ignored) from the training data. 

IncludeInMajority Ambiguous events belong to the class for which they occur the most 
often (their frequency is the highest). 

DetectAmbiguity The program checks if there are ambiguous events in the training 
data. If so, a list of the ambiguous events is displayed, otherwise 
learning is performed as normal.  

 

Attribute selection method 

Syntax: 

 Attribute_selection_method = method 

Possible values: 

 promise, gain_ratio, none 

Default value: 

 none 

 
Example: 
 
    Attribute_selection_method = promise 
 

Comment: 

Please refer to the description in global parameters in Section 8.2. 



. 

 35 

Attribute selection threshold 

Syntax: 

 Attribute_selectoin_threshold = value 

Possible values: 

 real number in range from 0 to 1 

Default value: 

 0 

 
Example: 
 
    Attribute_selection_threshold = 0.5 
 

Comment: 

Please refer to the description in Section 8.2. 

Attribute selection tolerance 

Syntax: 

 Attribute_selection_tolerance = value 

Possible values: 

 real number in range from 0 to 1 

Default value: 

 0 

 
Example: 
 
    Attribute_selection_tolerance = 0.5 
 

Comment: 

Please refer to description in Section 8.2. 

 

Compute Alternative Covers 

Syntax: 

 Compute_alternative_covers = value 



. 

 36 

Possible values: 

 true, false 

Default value: 

 false 

 
Example: 
 
    Compute_alternative_covers = true 
 

Comment: 

The learning process can usually produce more than one alternative description of a 
learned class (alternative cover).  AQ21 generates alternatives from final rules generated 
in the star generation process.  This is done only if the maxrule parameter is greater than 
one and this parameter is set to true.  When the option is enabled, program computes 
displays the alternative covers in the Output_hypotheses component.  The maximum 
number of displayed alternatives is controlled by the Max_alternatives parameter. 

 

Consequent (class definition) 

Syntax: 

 Consequent = complex  

Possible values: 

 complex 

 
Example: 
 
    Consequent = [ color = red, blue ] 
 

Comment: 

Consequent defines the class(es) for which learning is to be performed by AQ21.  It 
defines all left sides of rules that describe learned classes.  The value of the consequent is 
given by a complex (Michalski, 2004).  The consequent is used to determine positive and 
negative examples for the runs (those who match consequent are positive examples). 

If the parameter Output_attributes is used in the global parameters (Section 8.2), then all 
specified output attributes must be used in the consequent. 

Note: 

To learn rules that distinguish between all possible values of an attribute, use the complex 
in the form [ attribute = * ], where attribute distinguishes between classes.  The possible 



. 

 37 

values of the attribute are taken from its domain definition, not from the actual data.  
Because of that, it may happen that there are classes without any positive examples. 

 
Example: 
 
    consequent = [ color = * ] 
 

 

Continuous Optimization Probe 

Syntax: 

 Continuous_optimization_probe = value 

Possible values: 

 positive integer 

Default value: 

 5 

 
Example: 

 
    Continuous_optimization_probe = 10 

 

Comment: 

Used for optimization of continuous selectors (conditions).  This parameter defines the 
maximum number of possible extensions of an interval during the optimization of 
continuous selectors.  This parameter works only when AQ21 is operating in PD or ATF 
modes, and the Optimize_ruleset parameter is on.  For details on ruleset optimization 
please refer to the Optimize_ ruleset parameter description on page 51. 

 

Counting Attribute 

Syntax: 

 Counting_attribute = value 

Possible values: 

 true, false, ga 

Default value: 

 false 



. 

 38 

 
Example: 
 
    Counting_attribute = true 
 

Comment: 

The Counting_attribute parameter specified in the run-specific component is similar to 
one that is defined in the global parameters, but works only locally within a specific run. 

In addition to the values available in the global Counting_attribute parameter, the one 
specified in the run-specific component also takes the value “ga” (which stands for 
Genetic Algorithm).  The option must be followed by four integer numbers that specify: 
population size, number of generations, number of children, and maximum number of 
attributes to be used for constructing the new attributes.  For a description of the 
parameters’ meanings, please refer to Evolutionary Computation literature for example 
(Michalewicz, 1994). 

 

Define (create) new attribute 

Syntax: 

 Define   attribute_name [parameters]  =   definition 

Possible values: 

 attribute_name – unique name of attribute to be constructed 

 definition – arithmetic expression that is used to define the attribute 

 parameters – definition of attribute parameters such as epsilon and cost 

 
Example: 
 
    Define x4 = x1 + x2 * sin( x3 ) 
    Define x5 [epsilon = 0.2, cost = 3] = x1 * x4 
 

Comment: 

There are situations where it is not possible to describe a desired concept using the 
original attributes. It may also happen that the user knows that there may be an arithmetic 
interrelation between existing attributes, and wants to represent the relationship in the 
program. The simplest way to do this is to define new attributes in form of A-Rules 
(Arithmetic Rules) that explicitly specify new attributes.  

AQ21 allows the user to define A-Rules using only continuous and integer attributes. The 
generated attributes are continuous. The following operators can be used to define A-
Rules: +, - (binary minus), *, /, ^ (power), - (unary minus), and functions: max( ex1, ex2 



. 

 39 

), min( ex1, ex2 ), avg( ex1, ex2 ), abs( ex ), sin( ex ), cos ( ex ), tan( ex ). In the list of 
functions ex1, ex2, ex are valid expressions. 

In cases where the value of the derived attribute does not exist (for example division by 
zero) AQ21 assigns the value N/A (Not Applicable, described in Section 7). 

 

Display Events Covered 

Syntax: 

 Display_events_covered = value 

Possible values: 

 true, false 

Default value: 

 false 

 
Example: 
 
    Display_events_covered = true 
 

Comment: 

If this parameter is turned on, in the output hypotheses component for the current run, 
after each rule, the program displays a component named covered_positives that contains 
positive examples covered by the rule, and covered_negatives that contains negative 
examples covered by the rule.  

 

Display Selectors Coverage 

Syntax: 

 Display_selectors_coverage = value 

Possible values: 

true, false 

Default value: 

 true 

 
Example: 
 
    Display_selectors_coverage = false 
 



. 

 40 

Comment: 

This option is used to indicate if the user wants to display coverage (numbers of positive 
and negative examples covered) of selectors when displaying rules.  Although rules are 
displayed at the end of output, this affects only rules that are learned in the current run.  
For instance a rule displayed with and without coverage of selectors is presented below. 

 
selectors_coverage = true: 
 
<-- [x2=s : 4,0] 
      : p=4,np=4,u=4,cx=7,c=1,s=4 #92 
 
selectors_coverage = false: 
 
<-- [x2=s] 
      : p=4,np=4,u=4,cx=7,c=1,s=4 #92 

 

Display Values Covered 

Syntax: 

 Display_values_covered = value 

Possible values: 

 true, false 

Default value: 

 false 

 
Example: 
 
    Display_values_covered = true 
 

Comment: 

If this parameter is activated, when displaying rules, after each selector, AQ21 displays 
the coverage of each value of the attribute used in the selector. The example below shows 
an example rule with the list of values covered by selectors.  

The example below shows rule with one condition that states x6>=0.35.  The information 
written after the condition is a list of covered values that appear in the training dataset.  
For example value 0.5 is present in one positive and zero negative training examples, 
which is denoted by “ :1, 0;”, similarly value 1.4 is also present in one positive and zero 
negative examples.  In the second line of the example, a rule summary is presented (the 
rule has only one condition).  For a description of the parameters displayed with the rule 
please refer to Section 10.2. 



. 

 41 

 
Example: 
 
<-- [x6>=0.35 : 3,0] (# 0.5 :1, 0; 1.4 :1, 0; 2 :1,  0;  #) 
    : p=3,np=3,enp=3,n=0,en=0,u=3,cx=5,c=1,s=3 # 30  
 

 

Exceptions 

Syntax: 

Exceptions = value 

Possible values: 

 true, false 

Default value: 

 false 

 
Example: 
 
    Exceptions = true 
 

Comment: 

In Pattern Discovery (PD) and Approximate Theory Formation (ATF) modes AQ21 can 
learn rules with exceptions (Michalski, 2004).  

Ignore Attributes   

Syntax: 

 ignore_attributes = attribite1 [, attribute2 [, …]] 

Possible values: 

 comma-separated list of attributes 

 
Example: 
 
    ingnore_attributes = color, height, age 
 

Comment: 

The parameter is identical to one that is defined in the global parameters component, but 
works only for a specific run.  For more details please refer to the Section 8.2. 



. 

 42 

Ignore events 

Syntax: 

 Ignore_events = rules 

Possible values: 

 a set of rules 

 
Example: 
 
    Ignore_events <-- [color = red, yellow][shape =  square] 
                  <-- [color = blue] 
 

Comment: 

This option provides the possibility of ignoring events in the learning process.  The user 
can specify a list of rules that describe events to be ignored.  Strict matching is used when 
matching events with these rules. 

 

Learn Rules Mode 

Syntax: 

 Learn_rules_mode = value 

Possible values: 

 standard, multi_seed 

Default value: 

 standard 

Example: 
 
    Learn_rules_mode = multi_seed 
 

Comment: 

This parameter controls the selection of seeds used to generate stars.  In standard mode, 
AQ21 randomly selects one seed for star generation.  In multi-seed mode, the program 
selects randomly n seeds that are extended against the first negative event (the value of n 
is specified using the number_of_seeds parameter).  In the next step, AQ21 selects the 
partial star with the highest value of new positives Q (please refer to the LEF criteria 
described below). 



. 

 43 

Lexicographical Evaluation Function (LEF) 

Syntax: 

 lef_type 

{ 

[(criterion1, tolerance1)] 

[(criterion2, tolerance2)] 

… 

} 

Possible values: 

 lef_type – LEF_star, LEF_partial_star, LEF_sort 

criterion  – MaxNewPositives, MaxNewPositivesQ, MaxPositives, MinNegatives, 
MinNumberSelectors, MaxNumberSelectors, MinCost, 
MaxSignificance, MaxQ, MaxEstimatedPositives, 
MinEstimatedNegatives, MaxEstimatedQ, GainRatio 

 tolerance – real value in range from 0 to 1 

Default values: 

 TF and ATF modes: 
lef_ps 
{ 

MaxNewPositives, 0 
MinComplexity, 0 
MinNumSelectors, 0 
MinCost, 0 

}  
 
lef_star 
{ 

MaxNewPositives, .3 
MinComplexity, .3 
MinNumSelectors, .3 
MinCost, .3 

} 
 
lef_sort 
{ 

MaxPositives, 0 
MinComplexity, 0 

} 

 PD mode: 
lef_ps 
{ 

MaxNewPositivesQ, 0 
MaxNewPositives, 0 
MinNumSelectors, 0 
MinComplexity, 0 
MinCost, 0 



. 

 44 

}  
 
lef_star 
{ 

MaxNewPositives, .3 
MinComplexity, .3 
MinNumSelectors, .3 
MinCost, .0 

 
lef_sort 
{ 

MaxQ, 0 
MaxPositives, 0 
MinComplexity, 0 

} 

 

 
Example: 

 
lef_ps 
{ 

MaxNewPositives, 0.1 
MinNumSelectors, 0 

 
} 

     

Comment: 

Lexicographical Evaluation Function (LEF) provides a simple and efficient way of 
specifying a multi-criteria evaluation.  The LEF is defined as a list of pairs <criterion, 
tolerance>.  Elements are evaluated criterion after criterion in order from the list.  All 
elements that are beyond the tolerance from the best value of a criterion are filtered out.  

LEF is applied during a partial star generation (LEF-PS), to evaluate rules in generated 
stars (LEF-STAR), and to sort rules in the program output (LEF-SORT).   

MaxPositives 

Maximum Number of Positives can be applied when user wants AQ21 to prefer rules that 
cover the largest number of positive events.  This criterion is time-consuming, since it has 
to count the number of positive examples that are covered. 

MaxEstimatedPositives 

Maximum Estimated Number of Positives covered by a rule.  This criterion is based on 
an estimate (upper bound) of the number of positives covered by a rule. 

MinNegatives 

Minimum Number of Negative Examples can be applied when the user wants AQ21 to 
prefer rules that cover the smallest number of negative examples.  This criterion is time-
consuming since it has to count number of negative examples that are covered by the 
rule. 



. 

 45 

MinEstimatedNegatives 

Minimum Estimated Number of Negatives covered by a rule.  It is based on an estimate 
of the number of negatives and can be used to replace the MinNegatives criterion in order 
to increase program speed. 

MaxNewPositives 

Maximum Number of New Positives covered by a rule.  Please note that in order to 
compute this value, the program needs to check all positives and check if they are already 
covered or not, which is very time consuming for large datasets. 

MaxEstimatedNewPositives 

Maximum Estimated Number of Positives covered by a rule.  This criterion can be used 
instead of MaxPosivesNewPositives criterion, since it is faster.  However its result is an 
estimate (upper bound) of the number of new positives that may not be correct. 

MaxQ 

Maximum Q is the most time-consuming LEF Criterion.  It maximizes the value of Q(w) 
(see the “minimum q” parameter, page 48).  It is very extensively used in the PD and 
ATF modes of AQ21 for selection of best rules. 

MaxEstimatedQ 

Max Estimated Q is used to maximize the value of the Q(w) measure based on estimation 
of positive and negative events covered by a rule.  For definition of the Q(w) measure, 
please refer to the minimum q parameter. 

MaxNewPositivesQ 

Maximum New Positives Q is used to maximize Q(w) based on new positives.  It is very 
time-consuming, since it has to compute the numbers of new positives covered by the 
rule and negatives covered by the rule.  For a definition of Q(w) measure please refer to 
the description of the minimum q parameter. 

MaxEstimatedNewPositivesQ 

Maximum Estimated Number of Positives Q is used to maximize value of Q(w) based on 
an estimate of new positives and new negatives covered by a rule.  It can be used to 
replace MaxNewPositivesQ criterion since it is faster.  For a definition of Q(w) measure, 
please refer to the description of the minimum q parameter. 

MaxNumSelectors 

Maximum Number of Selectors can be applied when the user prefers rules that contain 
more attributes (a larger number of selectors).  This measure should not be used as a first 
criterion for LEF_PS and LEF_STAR, because it does not include any information about 
positive and negative examples covered.   



. 

 46 

MinNumSelectors 

Minimum Number of Selectors can be applied when the user prefers rules with smaller 
numbers of selectors.  

MaxSignificance 

The Maximum Significance LEF criterion is used to prefer rules with the highest 
significance.  Significance of a rule is defined as the sum of the significances of the 
positive examples covered by the rule.  Significance of an event is provided by user using 
the significance meta-attribute (see Section 6).  To compute the value, it is necessary to 
loop through all positive examples, which is time-consuming for large datasets. 

MinComplexity 

Minimum Complexity is used to minimize complexity of learned rules.  The complexity 
of a rule is measured as complexity of premise + 2 * complexity of exception.  
Complexity of a complex (either premise or exception) is measured as the sum of the 
complexities of its single selectors.  Weights of operators in selectors are presented in the 
table below. 
 

conjunction 4 
disjunction 10 
internal disjunction  2 
range 2 
less or grater 1 
equal 1 
Not equal 2 

Table 2: Weights used to compute complexity 

MinCost 

The Minimize Cost LEF criterion is used to select rules with the lowest cost of attributes.  
As was described in Section 6.2, each attribute has an assigned cost.  The cost of a rule is 
defined as the sum of the costs of the attributes included in the rule.  

 

Maxrule 

Syntax: 

 Maxrule = value 

Possible values: 

 positive integer 

Default value: 

 5 



. 

 47 

 
Example: 
 
    Maxrule = 2 
 

Comment: 

Maximum number of rules kept from each star (only one is required) in order to improve 
performance.   Maxrule greater than one is also required when alternative covers are 
generated. 

Maxstar 

Syntax: 

 Maxstar = value 

Possible values: 

 positive integer 

Default value: 

 2 

 
Example: 
 
    Maxstar = 5 
 

Comment: 

Maxstar parameter defines the maximum number of rules kept in memory during the star 
generation (Michalski and Kaufman, 2001).  This parameter is used to narrow down the 
search space over all possible rules that can be learned using beam search.  Selection of 
the best rules is done according to criteria defined by the Lexicographical Evaluation 
Function (LEF-PS). 

Model 

Syntax: 

 Model = complex 

Possible values: 

 complex 

Example: 
 
    Model = [user = user2][host = host13] 
 



. 

 48 

Comment: 

This parameter is used to define a model in the Prediction Based Model. During the 
learning phase, AQ21 will ignore all events (both positive and negative) that do not 
match the model. The definition of model also affects the prediction-based testing (EPIC-
P) defined for the current run (for details on EPIC parameters please refer to the Section 
9.2) 

 

Minimum u 

Syntax: 

 Minimum_u = value 

Alias: 

 Minimum_rule_coverage 

Possible values: 

 integer 

Default value: 

 1 

 
Example: 
 
    Minimum_u = 10 
 

Comment: 

This option defines a minimum unique coverage of a rule that is required for it to be 
added to a ruleset.  This parameter works only in TF mode, and only when truncate 
parameter is set to true. 

 

Minimum Q Percentage 

Syntax: 

 Minimum_q_percentage = value 

Possible values: 

 double 

Default value: 

 .5 
 



. 

 49 

Example: 
 
    Minimum_q_percentage = 0.2 
 

Comment: 

This parameter defines a minimum acceptable value of Q(w) for learned rules, where 
Q(R, w) = compl( R )w * consig( R )(1-w).   The minimum Q is computed as the best Q 
found multiplied by the minimum Q percentage.  Compl( R ) is a measure of 
completeness of the rule R, and consig(R) is a measure of consistency of the rule R.  In 
Pattern Discovery mode, AQ21 removes rules whose value of Q(w) is below the 
minimum.  

 

Mode 

Syntax: 

 Mode = value 

Possible values: 

 TF, PD, ATF, TEST 

Default value: 

 TF 

 
Example: 
 
    Mode = PD 
 

Comment: 

Learning mode is used to select which algorithm will be used for rule learning.  In TF 
(Theory Formation) mode, learned rules are complete and consistent, while in PD 
(Pattern Discovery) and ATF (Approximate Theory Formation) modes, they may be 
neither complete nor consistent. Rules learned in PD and ATF modes are optimized 
according to value of Q(w).  In the PD mode, AQ21 optimizes rules while learning them 
(in the star generation phase), while in the ATF mode initially complete and consistent 
rules are learned (as in the TF mode), but later the rules are optimized according to their 
Q(w) measure, which may cause a loss of completeness and/or consistency. 

In the TEST mode, the program does not learn rules, but only passes parameters to the 
testing module (please refer to the Tests component). 

 

 



. 

 50 

Negatives Percentage 

Syntax: 

 Negatives_percentage = value 

Possible values: 

 real value in range from 0 to 1 

Default value: 

 0.8 

 
Example: 
 
    Negatives_percentage = 0.5 
 

Comment: 

This parameter controls the stop condition for the star generation algorithm.  If there is no 
progress after extending against negatives probe times, AQ21 selects another seed (and 
starts generating a new star).  The negatives probe is defined as negatives percentage 
multiplied by the number of negative examples. 

 

Number of Seeds 

Syntax: 

 Number_of_seeds = value 

Possible values: 

 positive integer  

Default value: 

 10 

 
Example: 
 
    Number_of_seeds = 3 
 

 

Comment: 

This parameter controls the number of seeds used in the multi-seed star generation 
algorithm.  For details please refer to the Learn Rules Mode parameter description on 
page 42. 



. 

 51 

Optimize ruleset 

Syntax: 

 Optimize_ruleset = value 

Possible values: 

 true, false 

Default value: 

 true 

 
Example: 
 
    Optimize_ruleset = false 
 

Comment: 

This option affects learning in the ATF and PD modes.  If set to true, the program 
optimizes learned rulesets (1) after each star is generated, and (2) the final rulesets 
learned by program.  As an effect of the optimization, learned rulesets may be neither 
complete nor consistent.  Optimization of rules may involve dropping of selectors, 
extension of intervals, and climbing the hierarchy trees for structured attributes. 

 

Trim 

Syntax: 

 Trim = value 

Possible values: 

 MostGen, MostSpec, Optimal 

Default value: 

 Optimal 
 

Example: 
 
    Trim = MostGen 

 

Comment: 

A parameter used to control the generality of rules.  The trimming algorithm is applied to 
learned rules in order to specialize them (note that learned rules before trimming are 
maximally general descriptions of the learned concept).  In MostGen mode, learned rules 
remain unchanged.  In MostSpec mode, they are specialized to cover only these values 



. 

 52 

that appear in positive examples, and the learned rules contain all attributes (the most 
general rule is intersected with the refunion of positive examples).  In optimal mode, the 
rules also cover only values from positive examples, but use only attributes that are 
required to distinguish positive from negative. 

Truncate 

Syntax: 

 Truncate = value 

Possible values: 

 true, false 

Default value: 

 true 

 
Example: 
 
    Truncate = false 
 

Comment: 

An option used to determine if rules should be truncated in TF mode.  If set to true, AQ21 
removes rules with unique coverage levels lower than minimum u parameter.  The 
truncation is applied after all rules are learned. 

w 

Syntax: 

 w = value 

Possible values: 

 real number in range from 0 to 1 

Default value: 

 0.5 

Example: 
 
   w = 0.1 
 

Comment: 

W is a parameter that controls the tradeoff between consistency and completeness of 
learned rules in Pattern Discovery and Approximate Theory Formation mode.  It is used 
in the Q(w) measure.  For details of the Q(w) measure please refer to the minimum Q 
parameter. 



. 

 53 

9 DEFINING TESTING PARAMETERS IN AQ21  

9.1 Overview 

AQ21, in addition to its learning capabilities, also provides a wide range of methods for 
testing learned hypotheses and classifying new examples according to the learned class 
descriptions.  This section describes implemented methods of testing, and how the tests 
component is organized in the AQ21 input file. 

AQ21 provides a variety of ways to test learned hypotheses.  The following sub-sections  
describe the testing algorithms that are implemented (ATEST, EPIC, EPIC-RB, and 
EPIC-P). 

9.2 Structure of Tests component in the AQ21 input file 

This component specifies the tests to be performed on the learned rulesets and the testing 
parameters to be used. The following paragraphs will describe in detail the parameters 
that are used for testing.  

 
Example: 

 
Tests 
{ 
  examples 
    { 
      Method = ATEST 
      Full_report = true 
    } 
 
  episodes 
    { 
      Method = EPIC 
      Tolerance = 0.3 
      Full_report = true 
  } 
 
} 
 

  

The definition of the Tests component should follow the mandatory Runs component and 
the optional input hypotheses components (both for standard and prediction-based 
testing).  Its definition starts with the keyword Tests, followed by the tests description.  
The general form of the component is presented below. 

 

 



. 

 54 

 
Tests 
{ 
  test1 
    { 
      test 1 parameters 
    } 
  … 
  testn 
    { 
      test n parameters 
    } 
} 

The number of tests defined in AQ21 is not limited, and depends only on the goals that 
the user wants to achieve.  Definitions of all tests start with a unique test name followed 
by the test parameters. 

 

9.3 Testing Parameters 

This section describes in detail all parameters that can be used to define tests. 

Evaluation of selector 

Syntax: 

 Evaluation_of_selector = value 

Possible values: 

 strict, flexible 

Default value: 

 flexible 

 
Example: 
 
    Evaluation_of_selector = strict 
 

Comment: 

The ATEST module in the AQ21 system has two possible ways to compute the degree of 
match between an event and a selector (condition): strictly of flexibly. The strict match 
returns 1 whenever an event is covered by a selector and 0 otherwise. The flexible match 
returns 1 whenever the event is covered by the selector and a value d smaller than 1 and 
greater or equal to 0 whenever the selector does not cover the event.  For continuous and 
discretized continuous attributes, the value d decreases linearly with the distance between 
the interval specified in the selector and value from the event.  For other types of 



. 

 55 

attributes the flexible selector match is equivalent to the strict selector match.  Details if 
the matchind methods are described in (Michalski, 2004) 

 

Evaluation of conjunction 

Syntax: 

 Evaluation_of_conjunction = value 

Possible values: 

 strict, coverage_ratio, selectors_ratio, flexible, min, min_w, prod, avg, avg_w 

Default value: 

 strict 

Example: 
 
    Evaluation_of_conjunction = selectors_ratio 
 

Comment: 

This parameter is used to select the method of evaluating degree of match of an event to 
conjunction of selectors (single rule). 

Depending on the method used to evaluate selectors, AQ21 provides a number of 
different methods of evaluating conjunctions of selectors (rules). The strict selector match 
can be used with strict, coverage_ratio, selectors_ratio, and flexible methods of 
evaluating conjunctions, while the flexible selector match can be used with min, min_w, 
prod, avg, and avg_w methods of evaluating conjunctions (Michalski, 2004).  The 
following paragraphs describe these methods. 

Evaluation of conjunction of strict selector evaluations: 

The strict match checks if the event is fully included in the rule (strictly matches all 
selectors in the rule).  If yes, the value of degree of match is one, otherwise it is zero. 

If the testing event fully matches the rule, the coverage ratio returns the ratio between the 
number of positive examples covered by the rule and the total number of positive training 
examples in the class. It returns zero otherwise. This method of evaluation of conjunction 
makes sense when a probabilistic sum is used for evaluation of disjunction (see below). 

The selectors ratio measure returns the ratio between number of matched selectors to the 
total number of selectors in the rule.  

The flexible match returns the ratio between the sum of matched selectors and the number 
of output attributes to the number of attributes in the event, separately for the continuous 
and discrete attributes.  The program takes average of degrees of flexible match for the 
continuous and discrete attributes. 



. 

 56 

Evaluation of conjunction of flexible selector evaluations: 

The min match returns the minimum of the degrees of match of the individual selectors in 
the rule.  

The min_w match returns the degree of match of the selector that has the minimum 
degree of match weighted by its coverage.  The weight of each selector is defined by the 
formula w = p/(p+n), where w is weight of the selector, p is number of positive examples 
covered by the selector and n is the number of negative examples covered by the selector. 

The product match returns the product of the degrees of match of all the selectors in the 
rule. 

The avg match returns the average of the degrees of match of all the selectors in the rule. 

The avg_w match returns the average of degrees of match of all selectors, weighted by 
the coverage of the selectors.  Analogously to min_w method, the weight of each selector 
is defined by the formula w = p/(p+n), where w is weight of the selector, p is number of 
positive examples covered by the selector and n is the number of negative examples 
covered by the selector. 

 

Evaluation of disjunction 

Syntax: 

 Evaluation_of_disjunction = value 

Possible values: 

 average, prob_sum, max, best_only 

Default value: 

 average 

 
Example: 
 
    Evaluation_of_disjunction = prob_sum 
 

Comment: 

The evaluation of disjunction parameter is used to control how degrees of match for 
individual rules are combined into a degree of match for a ruleset.  Since degree of match 
is a number in the range 0 to 1, each degree of match can be viewed as probability; the 
combination of such numbers must still be a degree of match (a number in range 0 to 1).   

Average computes the average of degrees of match of rules. Similarly prob_sum uses 
probabilistic sum as the aggregation function.  Max selects the highest degree of match. 
Best_only returns the degree of match from the best rule in the ruleset, according to the 
LEF sort criteria (not necessarily the highest degree of match).  



. 

 57 

Default class 

Syntax: 

 Default class = class 

Possible values: 

 Name of the run that represents the selected class. 

Default value: 

 other 

 
Example: 
 
    Default_class = good_robots 
 

Comment: 

If an event or episode could not be classified, because its degrees of match to all classes 
are below the acceptance threshold, it is assigned to the default class.  The default class 
can be either one of classes or “other,” which means that no classification is made.  
Please note that the program does not check if the class name is the actual name of one of 
the classes, but if not, AQ21 sets the classification as other. 

Prior probability for “other” class 

Syntax: 

 Prior_probability_other = value 

Possible values: 

 A real number in range from 0 to 1. 

Default value: 

 1 / (2 * number of classes + 1) 

 
Example: 
 
    Prior_probability_other = 0.01 
 

Comment: 

EPIC-RB, the rule-Bayesian hybrid testing method assumes the prior probability of the 
“other” class to be the value of this parameter.  The default, relatively small, value  is 
defined as  

1 / (2 * number of classes + 1). 



. 

 58 

Full report 

Syntax: 

 Full_report = value 

Possible values: 

 true or false 

Default value: 

 false 

 
Example: 
 
    Full_report = true 
 

Comment: 

This parameter is used to specify how detailed the output from the testing module should 
be.  The full report additionally contains information about the classification of each 
testing event.  In cases when the testing dataset is large, the output is also large.  Format 
of the output is described in Section 10.3. 

 

Ignore events 

Syntax: 

 Ignore_events = rules 

Possible values: 

 a set of rules 

 
Example: 
 
    Ignore_events <-- [color = red, yellow][shape =  square] 

<-- [color = blue] 
 

Comment: 

This parameter is similar to one defined in the Runs component.  It allows AQ21 to 
ignore events that match any of the specified rules.  For more details, please refer to the 
Runs component description in Section 8.2 and definition on page 42. 

 

 



. 

 59 

Method 

Syntax: 

 Method = value 

Possible values: 

 atest, epic, epic_p, epic_rb 

Default value: 

 atest 

Example: 
 
    Method = epic 
 

Comment: 

This parameter is used to apply a basic method of testing.  Testing can be performed for 
classification of single events (ATEST) or for classification of whole episodes (EPIC, 
EPIC-P, EPIC-BR).  The following paragraphs will describe the testing methods in more 
detail. 

ATEST 

Atest is an event classification algorithm implemented in AQ21.  The program matches a 
single event against rulesets for each class to generate a degree of match for the classes.  
Matching procedure is controlled by evaluation of selector, evaluation of conjunction, 
and evaluation of disjunction parameters described previously.  Depending on parameters 
settings, it may provide a single or multiple classification (if the event matches more than 
one class with approximately the same degree or match – see the tolerance parameter 
description). 

EPIC 

Epic is an extension of the ATEST algorithm.  Instead of classifying single events, EPIC 
classifies entire episodes (sequences of events that share the same value of the Episode 
meta-attribute).  EPIC works by applying ATEST to all of the episode’s events, and then 
aggregating their degrees of match.  As can event classification in ATEST, EPIC can give 
a single or multiple classifications for the episode.  

EPIC-P 

Epic-P is an episode classification algorithm that classifies episodes according to the 
prediction-based classification algorithm.  

EPIC-BR 

This version of the Epic algorithm combines a standard episode classification algorithm 
that computes degrees of match between rulesets and events with a Bayesian 



. 

 60 

classification model. A degree of match of en event to class is computed as a combination 
of the degree generated by the ATEST module and a probability value from the Bayesian 
model. 

Runs 

Syntax: 

 Runs = list of runs 

Possible values: 

 comma separated list of runs 

Default value: 

 all runs 

 
Example: 
 
    Runs = good_robots, bad_robots 
 

Comment: 

This option is used to specify runs that are used for testing.  The names of the runs used 
here need to be defined before in the runs component.  Each run identifies a learned class 
or group of classes (in cases where * was used – see the consequent description in the 
runs component (page 36).  

Stop when Decisive Advantage Probe 

Syntax: 

 SDA_probe = value 

Possible values: 

 integer greater than 1 

Default value: 

 100 

Example: 
 
    SDA_probe = 30 
 

Comment: 

Stop when Decisive Advantage is an EPIC algorithm modification that allows 
classifications to be made on parts of episodes.  When the degree of match of an episode 



. 

 61 

to one of the classes is clearly better than its degree of match to the second best class, 
EPIC-SDA ignores the rest of the examples from this episode (the classification is 
already indicative).  The sda_probe parameter controls the minimum number of events 
from the testing episode that must be evaluated before the SDA condition will be applied. 

 

Stop when Decisive Advantage Threshold 

Syntax: 

 SDA_threshold = value 

Possible values: 

 integer greater or equal 0 

Default value: 

 0 

 
Example: 
 
    SDA_threshold = 2.5 
 

Comment: 

The SDA_threshold controls the minimum ratio between the best degree of match and the 
second best degree of match needed to stop evaluating new examples in the EPIS-SDA 
testing algorithm.  If this value is below 1, the SDA method is not used.  

 

Threshold 

Syntax: 

 Threshold = value 

Possible values: 

 real value in range from 0 to 1 

Default value: 

 0 

 
Example: 
 
    Threshold = 0.3 
 



. 

 62 

Comment: 

Threshold defines the minimum value of the degree of match for a classification to be 
accepted. If the degree of match of an event or an episode to a class is below the 
threshold, it will not be classified to this class.  If the degrees of match are below the 
threshold for all classes, the event (or episode) is classified as default class (usually class 
“other”). 

 

Tolerance 

Syntax: 

 Tolerance = value 

Possible values: 

 real value in range from 0 to 1 

Default value: 

 0 

 
Example: 
 
    Tolerance = 0.1 
 

Comment: 

Tolerance defines range of the degree of match that is used for multiple classifications.  
The testing event or episode is classified to a class if its degree of match to the class is 
both above the Threshold, and above the product of the maximum degree of match for the 
event/episode and the tolerance. 

9.4 Input hypotheses 

9.4.1 Overview  

The AQ21 testing can be applied not only to the hypotheses learned during the same 
execution of the program, but also to those loaded from the input file.   It is especially 
important feature when there is huge amount of data to learn from, which would be very 
time-consuming.  AQ21 allows testing hypotheses previously learned and/or entered 
manually, by an expert in the domain. 

9.4.2 Defining Input hypotheses 

The Input_hypotheses component can be used to load hypotheses that will be examined 
by the ATEST, EPIC, and EPIC-RB testing methods.  It contains definitions of classes, 
rules, and optionally additional information about the hypotheses.  



. 

 63 

For each class for which hypotheses are loaded from the input file, there must be a run 
component that corresponds to the class (has the same name).  The learning mode in such 
run definition should be set to “test,” meaning that no learning takes place, only testing. 

The structure and description of the input hypotheses component is presented below. 

 
Input_hypotheses class 
{ 
 
positive_events = pos 
negative_events = neg 
 
consequent 
 
rules 
} 

Class is a unique name of a class that is identical with the name of a run in the runs 
component. 

Pos is the number of positive examples covered by the hypothesis. 

Neg is the number of negative examples covered by the hypothesis. 

Consequent is a complex that defines the class.  For details please refer to description of 
consequent in the runs component (Section 8.3). 

Rules is a list of rules, where each rule is denoted by a “<--” sign followed by a complex. 

The positive_events and negative_events parameters are optional. 

 
Example: 
 
Input_hypotheses user1 
{ 
  positive_events = 72 
  negative_events = 12 
 
[user = 1] 
    <-- [host = 11, 13][app = outlook] : p = 60, n = 9 
    <-- [hour = 7..10] : p = 10, n = 2 
    <-- [app = acc, word][del=3.5] : p = 7, n = 3 
} 
 

For each class there must be exactly one Input_hypotheses component.  

ATEST, EPIC, and EPIC-RB do not allow ambiguities in testing data.  It means that each 
testing event has to match exactly one decision among the consequents of tested classes. 



. 

 64 

9.4.3 Defining input for Prediction-Based Model testing 

The Prediction Based Model learns rules within a model without considering data for 
other models. During the testing phase, rules from all models are tested together and need 
to be loaded at the same time. Hypotheses for the Prediction-Based Model can be tested 
using only the EPIC-P method. 

The structure of the prediction-based model input is presented below. 

PBM_input 
{ 
  model1 
  { 
    consequent = consequent1.1 
        rules 
    consequent = consequent1.2 
        rules 
    ... 
  } 
 
  model2 
  { 
    consequent = consequent2.1 
        rules 
    ...   
  } 
… 
} 

Model1, model2, … are complexes that define models.  Consequent1.1, … are complexes 
that  define classes within models.  Rules is list of rules where each rule is “<--” sign 
followed by complex. 

Example: 
 
PBM_input 
{ 
  [user = 1] 
  { 
     class = [shape = t] 
         <-- [shape-3 = r] 
         <-- [color-1 = r] 
     class = [shape = s]  
       <-- [shape-3 = t] 
           [color-1 = g] 
  } 
 
  [user = 2] 
  { 
     class = [shape = r] 
         <-- [color-2<>r] 
  } 
 
}  

For details of the EPIC-P algorithm please refer to the description of the Method 
parameter described earlier in this document. 



. 

 65 

10 AQ21 OUTPUT 

10.1 Overview  

The AQ21 program generates output in a format that is identical to the one used the input 
files described in the previous sections.  This is a very important feature of the program, 
since the same parameters can be reused and applied with new data, learned hypotheses 
can be manually modified and applied to testing data, or they can be updated when new 
data became available.  The following sections describe the output from the learning and 
testing modules.  An example of full AQ21 input and output is presented in Appendix A. 

10.2 Output from learning 

Similar to the input files, the AQ21 output starts with description, Common_domains, 
and attributes components.  The components are generated from the actual program 
settings, meaning that any default parameter values are also displayed.  
Common_domains and Attributes components may be different from the input file if the 
program has constructed new attributes or dropped existing ones.  A description of all 
parameters in the Common_domains and Attributes components are presented in 
Sections 5 and 6. 

Learning parameters are displayed in the same format as in the Runs component in the 
input file.  This component contains all parameters used for learning - not only those set 
up by the user, but also the parameters for which default values were used.  Such an 
output provides the user with complete information about the learning process, and can 
be used to reproduce experiments. 

 
Example: 
 
Common_domains 
{ 
 color nominal  { r, y, b, g, w } 
 shape linear  { r, s, t } 
 user nominal  { 1, 2, 3 } 
 # Derived Domains 
 Count_shape linear  4 
 Count_color linear  3 
} 
 
 
Attributes 
{ 
 x1 shape epsilon = 0.5 cost = 1 
 x2 shape epsilon = 0.5 cost = 1 
 x3 shape epsilon = 0.5 cost = 1 
 x4 color epsilon = 0.5 cost = 1 
 x5 color epsilon = 0.5 cost = 1 
 user user epsilon = 0.5 cost = 1 
} 
 
Runs 
{ 



. 

 66 

 Output_attributes = user 
 Random_seed = 975313573 
 
   user1 
   { 
     Consequent = [user=1]  
     Learn_rules_mode = standard 
 
     Maxstar = 2     Maxrule = 5     Ambiguity = po sitive 
     Trim = Optimal 
     Exceptions = false 
 
     Mode = tf 
     Minimum_u = 1 
 
     Optimize_ruleset = true 
     Continuous_optimization_probe = 5 
 
     Truncate = true 
     Display_selectors_coverage = true 
     Display_values_coverage = false 
     Display_events_covered = false 
     Dompute_alternative_covers = false 
 
     LEF_star 
     { 
         MaxNewPositives, 0.3   
         MinNumSelectors, 0.3   
         MinComplexity, 0.3   
         MinCost, 0.3   
     } 
 
     LEF_partial_star 
     { 
         MaxNewPositives, 0   
         MinNumSelectors, 0   
         MinComplexity, 0   
         MinCost, 0   
     } 
 
     LEF_sort 
     {          
         MaxPositives, 0   
     } 
 
   } 
}  

The most important part of the output is the Output_hypothesis component, which shows 
the results of the learning process.  The structure of the Output_hypothesis component is 
identical to structure of the Input_hypothesis component presented in Section 9.4.  It 
contains learned rules and additional information: learning time, number of rules in the 
cover, number of selectors (conditions) in the cover, complexity of the cover, average 
number of rules kept from each star, and number of uncovered positives. 

Positive events and negative events are parameters that denote numbers of positive and 
negative events used for learning the target class respectively.  

Each rule consists of the sign “<--” followed by a list of selectors and additional 
parameters.  AQ21 uses a simplified form of the selectors defined in (Michalski, 2004), 
specifically:  



. 

 67 

[ att rel val ] 

where att is the attribute name, rel is a relation, and val is a value, list of values, or a 
range.  In addition, each selector may contain two numbers that represent the numbers of 
positive and negative events covered by the selector.  The presence of the two numbers is 
controlled by the Display_selectors_coverage parameter described in Section 8.3.  The 
list of selectors is followed by the symbol “:” followed by a comma-separated list of 
additional parameters.  The list of additional parameters is presented in the table below.  
Parameters are shown only if their values are computed (for example when appropriate 
LEF criteria are selected).  For example the value of u is not present in the output if the 
unique coverage is not computed for a rule. 

 

p number of positive examples covered by the rule 

ep estimated number of positive examples covered by the rule 

np number of positive examples covered by the rule and not covered by the 
previously learned rules 

enp number of positive examples covered by the rule and not covered by the 
previously learned rules 

n number of negative examples covered by the rule 

en estimated number of negative examples covered by the rule 

q value of q(w) 

eq estimated value of q(w) 

npq value of q(w) for new positives 

enpq estimated value of q(w) for new positives 

u unique coverage of the rule, i.e, the number of positive events covered by 
this rule and not covered by any other rules 

cx complexity of the rule 

c cost of the rule 

s significance of the rule 

# rule unique numeric identifier 
Table 3: Parameters displayed with rules 

 

 

 

 

 



. 

 68 

 
Example: 
 
Output_Hypotheses user1 
{ 
  # -- This learning took =  
  # -- System (CPU) time  = 2 
  # -- User (Total) time  = 2 
  # -- Number of rules in the cover = 1 
  # -- Number of conditions         = 2 
  # -- Complexity for this cover    = 14 
  # -- Average number of rules kept from each stars  = 3 
  # -- Uncovered Positives = 0 
 
  positive_events           = 4 
  negative_events           = 2 
[user=1]  
       # Rule 1 
   <-- [Count_shape_Eq_s=2 : 4,1] 
       [Count_color_Eq_g=0 : 4,1] 
        : p=4,np=4,u=4,cx=14,c=1,s=4 # 36 
 
 
}  

In the above example the hypothesis for “user=1” contains one rule with two selectors 
(conditions).  It covers four positives and zero negatives, the unique coverage of the rule 
is four, its complexity is fourteen, its cost is one, and its significance is four.  The rule’s 
unique identifier is 36.  The learning time for this hypothesis was two seconds, and the 
cover has two conditions (selectors). 

10.3 Output from testing 

Output from the testing module consists of two parts: a Tests component that contains 
parameters used in testing, and the actual result of testing that includes classifications that 
were made and some summaries.  For a description of testing parameters please refer to 
Section 9.  The example below presents the output of testing for a simple problem from 
the robots domain from the iAQ program (Michalski and Pietrzykowski, 2004).  The 
ATEST program was used for testing (classification of events). 



. 

 69 

Example: 
 
(#  
# -- Testing: Atest 
 
Class0 = robots_friendly 
Class1 = robots_unfriendly 
  
True Event  Event  Event    Degrees of match  
Class Episode  Number  Freq. Class0         Class1   Assigned 
Class(es) 

0 0 14  1 1.0000 0.0000 { 0 } 
0 0 15  1 1.0000 0.0000 { 0 } 
0 0 16  1 1.0000 0.0000 { 0 } 
 
1 0 17  1 0.0000 0.5000 { 1 } 
1 0 18  1 0.0000 0.5000 { 1 } 
1 0 19  1 0.0000 0.5000 { 1 } 
 
 
   Class0  Class1  Other # of Examples 
Class0 3 0 0 3  
Class1 0 3 0 3  
Other       0 0 0 0  
 
Event Classification bars 
# of decisions Correct Incorrect 
1        6       0  
2        0       0  
Other        0       0  
 
 
Total Events                           = 6 
Definite Decisions                     = 6 
 
Multiple Event Classifications         = 6 
Correct Multiple Event Classifications = 6 
Predictive Accuracy Multiple           = 100.00% 
Predictive Accuracy Averaged Multiple  = 100.00% 
Precision Multiple                     = 100.00% 
 
Single Event Classifications           = 6 
Correct Single Event Classifications   = 6 
Predictive Accuracy Single             = 100.00% 
Predictive Accuracy Averaged Single    = 100.00% 
Precision Single                       = 100.00% 
 
Decision rate                          = 1.0000 
Prediction gain                        = 2.0000 
 
Test Method Type          = ATest 
Evaluation of Selector    = strict 
Evaluation of Conjunction = strict 
Evaluation of Disjunction = average 
 
tolerance = 0.0000 
threshold = 0.0000 

 
 
 
Test Method name 
 
Mapping of class 
names 
 
Description of 
Events (only in 
full_report mode) 
 
 
 
 
 
 
 
 
 
Confusion Matrix 
 
 
 
 
 
Event Class. Bars 
 
 
 
 
 
Summary 
information about 
testing 
 
Measures of the 
quality of 
classifications 
 
 
 
 
 
 
 
 
 
 
 
 
Method’s 
Parameters 
 
 
 
 
 



. 

 70 

 
This testing took: 
0.0000 of System (CPU) time  
0.0000 of User (Total) time  
 
#-- end testing 

#)  

 
 
 
 
 
 

As shown in the above example all testing results are commented out, so the AQ21 
output can be directly used also as input, and testing results will be ignored by the parser. 

The testing output starts with the definition of classes and their correspondence to runs 
defined in the AQ21 Runs component.  In the example above, class0 and class1 denote 
respectively robots_friendly and robots_unfriendly runs.  The order of classes may or 
may not be the same as the order of definitions of runs; they are ordered 
lexicographically.  

In the full output mode, the program displays classification information for all testing 
events (one row per testing event).  The meaning of the columns describing those events 
is following: (1) true class (from testing data), (2) episode number (from testing data, 
used only by EPIC classifiers), (3) event number (unique event id also referred to as a 
key), (4) event frequency, (5) degrees of match to all classes, and (6) assigned classes.  
Because classification is based on degrees of match, the program may classify events to 
more than one class depending on the tolerance parameter (multiple classifications). 

Confusion matrix defines how many events for true classes (rows) are classified to 
different classes (columns).  In a perfect classification, positive values will be present 
only on the diagonal of the matrix, and zeros will be prevalent outside of the diagonal.  
The last column in the matrix shows the total number of events from each class. In case 
of multiple classifications, it will not simply be the sum of the other columns.  

Event classification bars show how many times the program made classifications to one, 
two, three, etc. classes, and how many times the decision was correct or incorrect.  Such 
information is important to evaluate the multiple classifications, and check how often 
AQ21 could not find a correct class within a given tolerance.  In the example above, all 
events were correctly and precisely classified, as indicated by number 6 in the first row of 
classification bars. 

Total events is the total number of events (examples) used in testing.   

Definite decisions refers to how many times AQ21 assigns one class to an event.  Note 
that it is not necessarily the number of events (for example when program makes multiple 
classifications).  

Another section of the output from the testing module refers to multiple classifications.  
Multiple Event Classification and Correct Multiple Event Classification refer respectively 
to the total number and the number of correct multiple classifications.  Predictive 
Accuracy Multiple is defined as the ratio of the number of the correctly classified 
examples to the total number of testing examples, even if the classification was not 
precise and the program has chosen more than one possible class.  Predictive Accuracy 



. 

 71 

Averaged Multiple is defined as the average of predictive accuracies for all classes 
computed separately.  It is computed using the formula:  

)
)(

)(
(

itotal

icorrect
avg  

 where correct(i) is number of correctly classified examples for i-th class and total(i) is 
total number of testing examples from the i-th class.  Precision Multiple is defined as: 

)1(#*#

#*##

−
−

classesationsmclassific

ationsmclassificclassesevents
 

if number of classes is greater than one, and 

ationsmclassific

events

#

#
 

if number of classes is equal to one.  In the formulas above, #events is the total number of 
test events, #classes is the total number of classes, and #mclassifications is the total 
number of multiple classifications. 

The Single Event Classification section refers to the single classification of events (a.k.a. 
first choice classification).  A single classification is made when the degree of match to a 
given class is the highest among degrees of match of all classes.  In fact, even if an 
example was classified to more that one class it may contribute to single classification if 
its degree of match to the correct class is the strongest.  Single Event Classification, 
Correct Single Event Classification, Predictive Accuracy Single, Predictive Accuracy 
Averaged Single, and Precision Single are defined similarly to the parameters for 
multiple classifications.  

Decision rate is the ratio between the number of decisions (i.e., classifications to at least 
one class) to the total number of examples.  Prediction Gain is defined as Prediction 
Accuracy Multiple multiplied by the number of classes, which corresponds to “how often 
the result is better than a random guess.”  

At the end of the testing output, AQ21 displays the parameters used for testing and 
information about system and user times that were required for the testing. 

Additional output form EPIC classifiers 

The EPIC classification program similarly displays information about the classification of 
episodes.  An example of specific output from the EPIC program is presented below, 
where there are only sections corresponding to the episode classification - all sections 
common with the ATEST testing module are omitted (in the real output they are also 
present since EPIC applies ATEST for event classification). 

 
Example: 
 
Classifications for the Episodes 
 

 
 
 
 



. 

 72 

  Class0 Class1 Other 
Class0 
  Episode1 0.7500 0.0000 0.1250  
  Episode2 0.7500 0.0000 0.1250  
 
Class1 
  Episode3 0.2500 0.7500 0.0000  
  Episode4 0.0000 0.2500 0.3750  
 
Other 
 
       Class0 Class1 Other   # of Episodes 
Class0 2                      2 
Class1          1        1    2 
Other                              0 
 
 
Epic Episode Classification bars 
# of decisions Correct Incorrect 
1        3       1  
2        0       0  
Other        0       0  
 
Epic Total Episodes                           = 4 
Epic Definite Decisions                       = 4 
 
Epic Multiple Episode Classifications         = 4 
Epic Correct Multiple Episode Classifications = 3 
Epic Predictive Accuracy Multiple             = 75.00% 
Epic Predictive Accuracy Averaged Multiple    = 75.00% 
Epic Precision Multiple                       = 100.00% 
 
Epic Single Episode Classifications           = 4 
Epic Correct Single Episode Classifications   = 3 
Epic Predictive Accuracy Single               = 75.00% 
Epic Predictive Accuracy Averaged Single      = 75.00% 
Epic Precision Single                         = 100.00% 
 
Epic Decision rate       = 1.0000 
Epic Prediction gain     = 1.2500 
Epic Classification gain = 0.0000  
 

Confidence 
Matrix  (degrees 
of match of 
episodes to all 
classes) 
 
 
 
 
 
 
Confusion 
Matrix  (numbers 
of episodes 
classified to 
particular 
class) 
 
Episode 
Classification 
bars  
 
 
Summary 
information 
about testing 
 
Measures of the 
quality of 
classifications 
 

In the presented example, all sections have analogous meanings to the corresponding 
sections for individual event classification.  The degree of match of an episode to a given 
class is defined as the average of degrees of match of all events from the episode to the 
class.  

In the EPIC section of the testing output, AQ21 first shows a Confidence Matrix that 
contains the degrees of match between episodes and classes, and then a Confusion Matrix 
that contains the numbers of episodes classified to particular classes.  The next sections 
of the EPIC output contain summaries (Accuracy, Precision etc.) that are analogous to 
the ATEST summaries.  The only difference between the ATEST and EPIC outputs is 
that all summaries in EPIC are based on the classification of episodes rather than 
individual events. 



. 

 73 

REFERENCES 

Baim, P., "The PROMISE Method For Selecting Most Relevant Attributes For Inductive 
Learning Systems," Reports of the Intelligent Systems Group, ISG 82-1, UIUCDCS-F-82-
898, Department of Computer Science, University of Illinois, Urbana, September 1982. 

Bloedorn, E. and Michalski R.S., “Constructive Induction from Data in AQ17-DCI: 
Further Experiments,” Reports of the Machine Learning and Inference Laboratory, MLI 
91-12, School of Information Technology and Engineering, George Mason University, 
Fairfax, VA, December, 1991. 

Bloedorn, E., Wnek, J. and Michalski R.S., “Multistrategy Constructive Induction: 
AQ17-MCI,” Reports of the Machine Learning and Inference Laboratory, MLI 93-4, 
School of Information Technology and Engineering, George Mason University, May, 
1993. 

Clark, P. and Niblett T., “The CN2 Induction Algorithm,” Machine Learning, 3(4):261-
283, 1989. 

Glowinski, C. and Michalski R.S., “Discovering Multi-head Attributional Rules in Large 
Databases,” Tenth International Symposium on Intelligent Information Systems, 
Zakopane, Poland, June, 2001. 

Kaufman K., “INLEN: A Methodology and Integrated System for Knowledge Discovery 
in Databases,” Ph.D. Dissertation, School of Information Technology and Engineering, 
Reports of the Machine Learning and Inference Laboratory, MLI 97-15, George Mason 
University, Fairfax, VA, November, 1997. 

Kaufman K. and Michalski R.S., “The Development of the Inductive Database System 
VINLEN: A Review of Current Research,” International Intelligent Information 
Processing and Web Mining Conference, Zakopane, Poland, 2003. 

Kerber, R. “Chimerge: Discretization for Numeric Attributes.” Proceedings of the Tenth 
National Conference on Artificial Intelligence (AAAI ’92), AAAI Press, pp. 123-128, 
1992. 

Michalewicz, Z., “Genetic algorithms + data structures = evolution programs,” Springer-
Verlag New York, 1994 

Michalski R.S., “On the Quasi-Minimal Solution of the General Covering Problem,” 
Proceedings of the V International Symposium on Information Processing (FCIP 
69)(Switching Circuits), Vol. A3, Bled, Yugoslavia,  pp. 125-128, October 8-11, 1969. 

Michalski R.S., “ATTRIBUTIONAL CALCULUS: A Logic and Representation 
Language for Natural Induction,” Reports of the Machine Learning and Inference 
Laboratory, MLI 04-2, George Mason University, Fairfax, VA, April, 2004. 

Michalski R.S. and Kaufman, K., “The AQ19 System for Machine Learning and Pattern 
Discovery: A General Description and User's Guide,” Reports of the Machine Learning 
and Inference Laboratory, MLI 01-2, George Mason University, Fairfax, VA, 2001. 



. 

 74 

Michalski R.S. and Kaufman K., "Learning Patterns in Noisy Data: The AQ Approach," 
Machine Learning and its Applications, Paliouras, G., Karkaletsis, V. and Spyropoulos, 
C. (Eds.), pp. 22-38, Springer-Verlag, 2001b. 

Michalski R.S. and Larson, J., “AQVAL/1 (AQ7) User's Guide and Program 
Description,” Report No. 731, Department of Computer Science, University of Illinois, 
Urbana, June, 1975. 

Michalski R.S. and Larson, J., “Incremental Generation of VL1 Hypotheses: The 
Underlying Methodology and the Description of Program AQ11," Reports of the 
Intelligent Systems Group, ISG 83-5, UIUCDCS-F-83-905, Department of Computer 
Science, University of Illinois, Urbana, January 1983. 

Michalski, R.S and Pietrzykowski, J., "iAQ: A Natural Induction System for Education 
and Research in Machine Learning and Knowledge Mining," Reports of the Machine 
Learning and Inference Laboratory, George Mason University, Fairfax, VA, 2004 (to 
appear). 

Michalski, R.S and Wojtusiak, J., "Reasoning with Meta-values in AQ Learning," 
Reports of the Machine Learning and Inference Laboratory, MLI 05-1, George Mason 
University, Fairfax, VA, 2005. 

Quinlan, J. R., C4.5 Systems for Machine Learning, Morgan Kaufmann Publishers Inc., 
1993. 

Witten, H. and Frank, E., Data Mining: Practical Machine Learning Tools and 
Techniques with Java Implementations, Morgan Kaufmann, October, 1999. 

Wnek, J., Kaufman K., Bloedorn, E. and Michalski R.S., “Inductive Learning System 
AQ15c: The Method and User's Guide,” Reports of the Machine Learning and Inference 
Laboratory, MLI 95-4, George Mason University, Fairfax, VA, March ,1995. 

Wnek, J. and Michalski R.S., “Hypothesis-driven Constructive Induction in AQ17-HCI: 
A Method and Experiments,” Machine Learning, Vol. 14, No. 2, pp. 139-168, 1994. 

The AQ21 and iAQ programs can be downloaded from The Machine Learning and 
Inference Laboratory website: http://www.mli.gmu.edu/msoftware.html 

 

 



. 

 75 

APPENDIX A APPLICATION OF AQ21 TO EXAMPLE PROBLEMS 

This appendix shows an example of an AQ21 input file, AQ21 execution and program 
output.  For ease of reading, in the presented example all comments are italics and all 
names of components are bold italics.  In the real AQ21 input file no formatting is 
allowed (a text file). 

This example is taken from the iAQ program and uses the toy problem domain based on 
the classification of robots into friendly and unfriendly groups. 

 
Description 
{ 
This is an example of robots from the iAQ program. It shows basic parameter 
settings of AQ21. In this example AQ21 learns rules discrimi nating between 
friendly and unfriendly robots. It is done by learn ing the two classes 
separately. After learning AQ21 applies the ATEST  program to test learned 
hypotheses. 
 
All lines starting with # sign are comments, and ar e not interpreted by AQ21. 
} 
 
# This component defines common domains that can be  used to define attributes 
# that appear in data. Please note that this is opt ional component of the  
# input file and attributes’ domains can be defined  explicitly in attributes 
# component. Section 4 of this manual describes def inition of domains in  
# AQ21 . 
# Please also note that the presented example uses only nominal attributes, 
# while AQ21 supports wide range of different types . 
Common_domains 
{ 
        color nominal { red, yellow, blue, green, b lack, white } 
        shape nominal { round, square, triangle } 
        height linear { short, medium, tall } 
        inhand nominal { sword, balloon, flag, us_f lag, polish_flag } 
        bool nominal { no, yes } 
} 
  
# This component defines attributes that appear in data and are used for 
# learning and testing. Each attribute corresponds to exactly one column 
# in the data (rows in data are events/examples). T o ignore 
# certain columns use key word “ignore” instead of name and definition of an 
# attribute. Definition of attributes in AQ21 is de scribed in section 5 of 
# this manual.  
# Please note that this component of input file is mandatory. 
Attributes 
{ 
    head     shape             cost = 1 
    body     shape             cost = 1  
    smile    bool              cost = 1 
    holding  inhand            cost = 2 
    height   height            cost = 1 
    antenna  color             cost = 3  
    jacket   color             cost = 1  
    tie      bool              cost = 2 



. 

 76 

    group    nominal { friendly, unfriendly } 
 
} 
 
# This component of the input file defines classes and learning parameters.  
# The runs component is split into two parts, one d efining global parameters 
# for all runs and run-specific components that def ine specific parameters  
# for each class to be learned. AQ21 requires defin ition of at least one  
# class. Please note the runs component is mandator y. For details please  
# refer to section 8 of this manual. 
Runs 
{ 
    # definition of global parameters 
    Attribute_selection_method = promise 
 
    # Definition of class robots-friendly 
    robots-friendly 
    {   
       # Learn rules in Theory Formation (TF) mode in whic h learned cover 
       # is complete and consistent.  
       Mode = TF 
 
       # Consequent of the class is defined as “gro up is friendly” what 
       # means that all events with value of attrib ute group equal friendly 
       # will be used as positive examples for lear ning. All other events 
       # will be used as negative examples.  
       Consequent = [ group = friendly ] 
 
       # LEF Partial Star (LEF_PS) defines criteria  of selection partially 
       # learned rules during the star generation p rocess. In this case three 
       # criteria are used to select the best rules : maximum number of 
       # positive examples with tolerance 0.1, mini mum number of selectors 
       # with tolerance 0, and minimum cost with to lerance 0. LEF_PS need not  
       # be defined and its default value is presen ted in section 8.3.  
       lef_ps 
         { 
           MaxNewPositives, 0.1 
           MinNumSelectors, 0 
           MinCost, 0 
         } 
        
       # AQ21 can learn and display alternative rul esets for the 
       # learned class.  
       Compute_alternative_covers = true 
    }  
     
    # Definition of class robots-unfriendly 
    # Please note that some parameters like definit ion of LEF are not  
    # specified and AQ21 uses their default values.  
    robots-unfriendly 
    {  
       # Learn in Theory formation Mode 
       Mode = tf 
 
       # Define positive events as those that have value of group 
       # equal unfriendly 
       Consequent = [ group = unfriendly ] 
  



. 

 77 

       # Do not display alternative covers 
       Compute_alternative_covers = false 
    }  
# end of runs component 
} 
 
# This component of the input file defines tests of  learned hypotheses to be 
# performed. Each subcomponent corresponds to one t est (in this case the  
# total number of tests is two). If no tests are de fined, the entire tests  
# component should be omitted in the input file. Wi thin each test  
# subcomponent at least one parameter needs to be s pecified. For details  
# please refer to Section 8 of this manual. 
Tests 
{ 
   # Definition of the first test 
   robots-test1 
   { 
      # Method of testing is ATEST (event classific ation program) 
      Method = ATEST    
 
      # Defines method of matching events against r ules. In this case the 
      # strict matching is applied to match events against rules.  
      # If an testing event matches all selectors i n a rule, degree of match 
      # is 1, otherwise degree of match is 0. 
      Evaluation_of_conjunction = strict 
 
      # Defines method of evaluating degrees of mat ch for rulesets. Here 
      # degree of match of a testing event against a ruleset is computed 
      # as maximum of degrees of match of all rules  from this ruleset. 
      Evaluation_of_disjunction = max 
 
      # In full report mode program displays classi fication for every single  
      # event. Please note that for larger datasets  output from program may 
      # also be very large. 
      Full_report = true 
   } 
 
   # Definition of the second test 
   robots-test2 
   { 
      # Selectors ratio method is used to compute d egree of match of an 
      # single testing event and a rule.  
      Evaluation_of_conjunction = selectors_ratio 
 
      # Maximum is used to aggregate degrees of mat ch of single rules into 
      # degree of match of entire ruleset. 
      Evaluation_of_disjunction = max 
 
      # Tolerance defines range of degree of match within which events  
      # are classified. In this case program will c lassify to all classes 
      # within 0.1 tolerance.  
      Tolerance = 0.1 
 
      # Display classification for every single eve nt. 
      Full_report = true 
   }  
# end of tests component 
} 



. 

 78 

 
# The events component consists of a list of traini ng and testing events. In  
# this case it consists of only training examples b ecause testing 
# examples are in specified in a separate component . 
# Each event consists of a list of comma-separated values of attributes. The 
# order and number of attributes must be the same a s defined in the 
# attributes component. There is no comma after the  last value in the event. 
# Events are required by AQ21, however they may be specified in separate  
# file, not necessarily in the events component of the input file.  
Events 
{     
triangle, square,   yes, flag,        medium, green , blue,   yes, friendly 
round,    square,   yes, flag,        tall,   green , blue,   yes, friendly 
round,    triangle, yes, balloon,     medium, green , yellow, no,  friendly 
square,   square,   yes, balloon,     short,  red,   yellow, no,  friendly 
round,    triangle, yes, us_flag,     medium, green , yellow, no,  friendly 
round,    triangle, yes, polish_flag, medium, green , yellow, no,  friendly 
 
triangle, square,   no,  us_flag, medium,  yellow, blue,   yes, unfriendly 
round,    square,   yes, sword,   medium,  green,  blue,   yes, unfriendly 
round,    square,   no,  balloon, medium,  yellow, red,    yes, unfriendly 
square,   square,   no,  balloon, medium,  red,    green,  yes, unfriendly 
square,   triangle, yes, sword,   short,   green,  yellow, no,  unfriendly 
round,    triangle, no,  flag,    short,   green,  black,  yes, unfriendly 
square,   square,   yes, sword,   tall,    red,    red,    yes, unfriendly 
} 
 
# This component defines events used for testing. F ormat of events is the  
# same as in the events component. Testing events c an be specified either in  
# this component or in a separate file. Testing eve nts are optional. 
Testing_events 
{ 
triangle, square,   yes, balloon, medium, green,  b lue, no,  friendly 
round,    triangle, yes, flag,    short,  blue,   r ed,  yes, friendly 
triangle, triangle, yes, us_flag, short,  yellow, r ed,  yes, friendly 
 
square, square,   no,  us_flag, short,  blue,  yell ow, no,  unfriendly 
round,  triangle, no,  flag,    short,  green, blac k,  yes, unfriendly 
square, round,    yes, sword,   medium, red,   red,     yes, unfriendly  

} 

AQ21 executed on input file presented above generates output presented below.  Output 
from the program has the same format as the input file, but contains more information.  
The unshaded comments in italics were added manually to explain the output.  Section 10 
of this manual describes details of the AQ21 output. 

 
# -- Opening file robots1.aq21 
# -- Done Parsing 
# -- Number of Events: 13 
# -- Number of Testing Events: 6 
# Creating file  
# -- Output Generated by AQ21 
 
The description component is copied directly from t he input file. 
Description                                  
{                                            
 



. 

 79 

definition_filename = robots1.aq21 
 
 
This is an example of robots from the iAQ program. It shows basic parameter 
settings of AQ21. In this example AQ21 learns rules discriminating betwe en 
friendly and unfriendly robots. It is done by learn ing the two classes 
separately. After learning AQ21 applies the ATEST  program to test learned 
hypotheses. 
 
All lines starting with # sign are comments, and ar e not interpreted by AQ21. 
 
} 
      
The debug information is displayed  for technical purposes only and should be 
ignored by users. It is used to identify the versio n of the program,  and 
needs to be used when submitting any problems. 
                                         
(#  -- Debugging information                  
                                              
The following information are required when submitt ing a bug. 
They specify which version of the program was used.  
 
$Id: aq21.cpp,v 1.8 2004/06/30 20:32:35 jwojt Exp $  
$Id: AqLearner.cpp,v 1.14 2004/08/13 22:49:39 jwojt  Exp $ 
$Id: BasicComplex.cpp,v 1.7 2004/08/12 22:53:11 jwo jt Exp $ 
$Id: LEF.cpp,v 1.1.1.1 2003/06/18 21:07:23 jwojt Ex p $ 
$Id: LEFCriterion.cpp,v 1.2 2004/08/12 22:53:11 jwo jt Exp $ 
$Id: Domain.cpp,v 1.7 2004/06/30 20:32:12 jwojt Exp  $ 
$Id: Attribute.cpp,v 1.8 2004/06/30 20:32:12 jwojt Exp $ 
$Id: Tests.cpp,v 1.10 2004/06/30 20:32:12 jwojt Exp  $ 
$Id: CI.cpp,v 1.5 2004/05/10 23:11:14 jwojt Exp $ 
 
#) 
 
In the domains component, AQ21  displays all domains used by the program. This 
includes domains defined by user and domains of der ived attributes  (please 
refer to Constructive Induction section). Please no te that the domain f or 
attribute “group” defined explicitly in the attribu tes component  was 
displayed with the other domains. 
                                             
Common_domains                                      
{                                            
 bool nominal  { no, yes } 
 color nominal  { red, yellow, blue, green, black, white } 
 group nominal  { friendly, unfriendly } 
 height linear  { short, medium, tall } 
 inhand nominal  { sword, balloon, flag, us_flag, p olish_flag } 
 shape nominal  { round, square, triangle } 
} 
 
The attributes component displays all attributes  used in learning and 
testing. This includes derived attributes built by the Constructive Induction 
module. 
 
Attributes 
{ 
 head shape epsilon = 0.5 cost = 1 
 body shape epsilon = 0.5 cost = 1 



. 

 80 

 smile bool epsilon = 0.5 cost = 1 
 holding inhand epsilon = 0.5 cost = 2 
 height height epsilon = 0.5 cost = 1 
 antenna color epsilon = 0.5 cost = 3 
 jacket color epsilon = 0.5 cost = 1 
 tie bool epsilon = 0.5 cost = 2 
 group group epsilon = 0.5 cost = 1 
} 
 
The runs component is copied fro m the input file, but all relevant AQ21 
parameters are di splayed. This guarantees that all results can be re produced. 
For a description of displayed parameters please re fer to section 8  of the 
manual. 
 
Runs 
{ 
 random_seed = 975313573 
 
   robots-friendly 
   { 
     consequent = [group=friendly]  
     learn_rules_mode = standard 
 
     maxstar = 2     maxrule = 5     ambiguity = In cludeInPos 
     trim = Optimal 
     exceptions = false 
 
     mode = tf 
     minimum_u = 1 
 
     optimize_ruleset = true 
     continuous_optimization_probe = 5 
 
     truncate = true 
     display_selectors_coverage = true 
     display_values_coverage = false 
     display_events_covered = false 
     compute_alternative_covers = true 
     max_alternatives = 10 
 
     LEF_star 
     { 
         MaxNewPositives, 0.3   
         MinNumSelectors, 0.3   
         MinComplexity, 0.3   
         MinCost, 0.3   
     } 
 
     LEF_partial_star 
     { 
         MaxNewPositives, 0.1   
         MinNumSelectors, 0   
         MinCost, 0   
     } 
 
     LEF_sort 
     {          
         MaxPositives, 0   



. 

 81 

     } 
   } 
 
   robots-unfriendly 
   { 
     consequent = [group=unfriendly]  
     learn_rules_mode = standard 
 
     maxstar = 2     maxrule = 5     ambiguity = In cludeInPos 
     trim = Optimal 
     exceptions = false 
 
     mode = tf 
     minimum_u = 1 
 
     optimize_ruleset = true 
     continuous_optimization_probe = 5 
 
     truncate = true 
     display_selectors_coverage = true 
     display_values_coverage = false 
     display_events_covered = false 
     compute_alternative_covers = false 
 
     LEF_star 
     { 
         MaxNewPositives, 0.3   
         MinNumSelectors, 0.3   
         MinComplexity, 0.3   
         MinCost, 0.3   
     } 
 
     LEF_partial_star 
     { 
         MaxNewPositives, 0   
         MinNumSelectors, 0   
         MinComplexity, 0   
         MinCost, 0   
     } 
 
     LEF_sort 
     {          
         MaxPositives, 0   
     } 
 
   } 
 
} 
 
Similar to the runs component, the tests component  is displayed to the 
output. All parameters, including those whose defau lt values are used, are 
printed. 
 
Tests 
{ 
 robots-test1 
 { 
     evaluation_of_selector    = flexible 



. 

 82 

     evaluation_of_conjunction = strict 
     evaluation_of_disjunction = max 
     method      = ATest 
     tolerance   = 0 
     threshold   = 0 
     full_report = true  
     sda_probe       = 100 
     sda_threshold   = 0 
 } 
 
 robots-test2 
 { 
     evaluation_of_selector    = flexible 
     evaluation_of_conjunction = selectors_ratio 
     evaluation_of_disjunction = max 
     method      = ATest 
     tolerance   = 0.1 
     threshold   = 0 
     full_report = true  
     sda_probe       = 100 
     sda_threshold   = 0 
 } 
 
} 
 
The output hypotheses components a re used to display learned rules and 
additional information generated during the learnin g process. For the class 
robots-friendly the alternative covers were generat ed (as requested in the 
input file) and one generated alternative is displa yed. Additional 
i nformation including number of positive and negativ e examples, complexity of 
cover etc. is also displayed. For a  detailed description please refer to 
Section 10.2. 
 
Output_Hypotheses robots-friendly 
{ 
  # -- This learning took =  
  # -- System (CPU) time  = 0 
  # -- User (Total) time  = 0 
  # -- Number of rules in the cover = 1 
  # -- Number of conditions         = 2 
  # -- Complexity for this cover    = 15 
  # -- Average number of rules kept from each stars  = 4 
  # -- Uncovered Positives = 0 
 
  positive_events           = 6 
  negative_events           = 7 
 
This part of output refers to alternative covers. 
 
  # -- 1 Rule(s) Eliminated because not necessary 
  # -- [smile=yes] [holding<>sword] [jacket=yellow, blue,white] 
  : np=6,cx=26,c=1.33,s=5 # 51 
 
(# Alternative ruleset 1 
    Number of rules      = 1 
    Number of conditions = 3 
    Complexity           = 26 
 



. 

 83 

[group=friendly]  
   <-- [holding<>sword] [antenna=red,green] [jacket =yellow,blue] 
  : p=6,np=6,cx=26,c=2,s=6 # 61 
#) 
 
And finally the learned hypotheses. In this case th ere i s one rule that 
covers all six positive examples and none negative examples. The rule has two 
selectors with attributes smile and holding respect ively. For a  description 
of the parameters displayed with the rules, please refer to Section 10.2. 
 
[group=friendly]  
       # Rule 1 
   <-- [smile=yes : 6,3] 
       [holding<>sword : 6,4] 
        : p=6,np=6,u=6,cx=15,c=1.5,s=6 # 60 
 
 
} 
 
The class robots- unfriendly was learned without alternative covers ( program 
default),  so the only rules displayed are from the selected best cover. This 
cover has two rules, the first covering four, and t he second covering three 
positive examples.  
 
Output_Hypotheses robots-unfriendly 
{ 
  # -- This learning took =  
  # -- System (CPU) time  = 0 
  # -- User (Total) time  = 0 
  # -- Number of rules in the cover = 2 
  # -- Number of conditions         = 2 
  # -- Complexity for this cover    = 14 
  # -- Average number of rules kept from each stars  = 1 
  # -- Uncovered Positives = 0 
 
  positive_events           = 7 
  negative_events           = 6 
[group=unfriendly]  
       # Rule 1 
   <-- [smile=no : 4,0] 
        : p=4,np=4,ep=4,n=0,en=0,u=4,cx=7,c=1,s=4 #  160 
 
       # Rule 2 
   <-- [holding=sword : 3,0] 
        : p=3,np=3,u=3,cx=7,c=2,s=3 # 161 
 
 
} 
 
Output from testing is described in Section 10.3. I n the presented case, t wo 
tests were applied: robots_test1 and robots_test2. In both tests,  all testing 
events were classified correctly.  
 
(#  
# -- Testing: robots-test1 
 
Class0 = robots-friendly 
Class1 = robots-unfriendly 



. 

 84 

 
This part of the output is generated when the Full _report parameter is used. 
It shows event-by-event degrees of match to all cla sses and lists  of classes 
to which each event was classified. 
 
True Event Event Event    Degrees of match  
Class Episode Number Freq.  Class0 Class1 Assigned 
Class(es) 
0 0  14  1  1.0000 0.0000 { 0 } 
0 0  15  1  1.0000 0.0000 { 0 } 
0 0  16  1  1.0000 0.0000 { 0 } 
 
1 0  17  1  0.0000 1.0000 { 1 } 
1 0  18  1  0.0000 1.0000 { 1 } 
1 0  19  1  0.0000 1.0000 { 1 } 
 
 
The matrix below shows the number of events c lassified to different classes. 
Rows represent real classes and columns represent c lasses to which events 
were classified. In a  perfect classification (like in this example) all 
nonzero numbers are in diagonal. 
 
  Class0 Class1 Other  # of Examples 
Class0 3  0  0  3  
Class1 0  3  0  3  
Other  0  0  0  0  
 
 
Event Classification bars 
# of decisions Correct Incorrect 
1  6 0  
2  0 0  
Other  0 0  
 
Total Events                           = 6 
Definite Decisions                     = 6 
 
Multiple Event Classifications         = 6 
Correct Multiple Event Classifications = 6 
Predictive Accuracy Multiple           = 100.00% 
Predictive Accuracy Averaged Multiple  = 100.00% 
Precision Multiple                     = 100.00% 
 
Single Event Classifications           = 6 
Correct Single Event Classifications   = 6 
Predictive Accuracy Single             = 100.00% 
Predictive Accuracy Averaged Single    = 100.00% 
Precision Single                       = 100.00% 
 
Decision rate                          = 1.0000 
Prediction gain                        = 2.0000 
 
Test Method Type          = ATest 
Evaluation of Selectors   = flexible 
Evaluation of Conjunction = strict 
Evaluation of Disjunction = max 
 
SDA probe     = 100 



. 

 85 

SDA threshold = 0.0000 
 
tolerance = 0.0000 
threshold = 0.0000 
 
This testing took: 
0.0000 of System (CPU) time  
0.0000 of User (Total) time  
 
#-- end testing 
# -- Testing: robots-test2 
 
Class0 = robots-friendly 
Class1 = robots-unfriendly 
 
True Event Event Event Degrees of match  
Class Episode Number Freq. Class0 Class1 Assigned 
Class(es) 
0 0  14  1 1.0000 0.0000 { 0 } 
0 0  15  1 1.0000 0.0000 { 0 } 
0 0  16  1 1.0000 0.0000 { 0 } 
 
1 0  17  1 0.5000 1.0000 { 1 } 
1 0  18  1 0.5000 1.0000 { 1 } 
1 0  19  1 0.5000 1.0000 { 1 } 
 
 
 
 
 Class0 Class1 Other # of Examples 
Class0 3 0 0 3  
Class1 0 3 0 3  
Other 0 0 0 0  
 
 
Event Classification bars 
# of decisions Correct Incorrect 
1  6 0  
2  0 0  
Other  0 0  
 
Total Events                           = 6 
Definite Decisions                     = 6 
 
Multiple Event Classifications         = 6 
Correct Multiple Event Classifications = 6 
Predictive Accuracy Multiple           = 100.00% 
Predictive Accuracy Averaged Multiple  = 100.00% 
Precision Multiple                     = 100.00% 
 
Single Event Classifications           = 6 
Correct Single Event Classifications   = 6 
Predictive Accuracy Single             = 100.00% 
Predictive Accuracy Averaged Single    = 100.00% 
Precision Single                       = 100.00% 
 
Decision rate                          = 1.0000 
Prediction gain                        = 2.0000 



. 

 86 

 
Test Method Type          = ATest 
Evaluation of Selectors   = flexible 
Evaluation of Conjunction = selectors_ratio 
Evaluation of Disjunction = max 
 
SDA probe     = 100 
SDA threshold = 0.0000 
 
tolerance = 0.1000 
threshold = 0.0000 
 
This testing took: 
0.0000 of System (CPU) time  
0.0000 of User (Total) time  
 
#-- end testing 
 
#) 

 

 

 

 

 



. 

 87 

APPENDIX B COMPARISON OF FEATURES OF C4.5, AQ19, AND AQ21  
 

Feature: C4.5 AQ19 AQ21 Comment 
Attribute types     
Nominal Y Y Y  
Linear  Y Y  
Cyclic  Y   
Discretized Continuous  Y Y  
Integer   Y  
Continuous Y Y Y  
Structured nominal  Y Y  
Structured linear     
Set-valued     
Compound     
     
Output types     
Single attribute (selected or 
all values)- nominal 

Y Y Y  

Structured attribute  Y   
Sequential covers  Y   
Multi-head   Y* * Definition of class is a complex that may have more than one 

attribute. Program cannot compute automatically Cartesian 
product of domains of output attributes to learn all multi-head 
classes. 

Order of selectors  Y   
Alternative covers  Y* Y** * Implemented in special version used for iAQ 

** Based on maxrule 
Negation of selectors  Y* Y** * Implemented in special version used for iAQ 

** Negation ratio is 0.6 
     
Special values     
Do not know “?” Y  Y  
Not applicable “N/A”  Y Y  
Irrelevant “*”  Y Y  
     
Running Program     
Batch mode Y Y Y  
C4.5 input format Y  Y  
AQ19 input format  Y Y* * Can be converted to AQ21 format by an external program 
AQ21 input format   Y  
     
Input data processing     
Random event selection   Y  
PROMISE based attribute 
quality 

  Y* * Used for attribute selection 

Gain ratio based attribute 
quality 

Y*  Y** * Used for building decision trees 
** Used for attribute selection 

ChiMerge for automatic 
discretization 

  Y  

Automatic domain 
discovery 

    

Ambiguities  Y* Y** * IncludeInPos, IncludeInNeg, IncludeInMajority, Ignore, Max 
** IncludeInPos, IncludeInNeg, IncludeInMajority, Ignore 

Ignoring events   Y* * Rules that define events to be ignored. Can be ignored for all 



. 

 88 

classes or a specific class. 
Intelligent Target Dataset 
Generator (ITG)* 

   * Implemented in INLEN and VINLEN systems 

     
Learning Modes     
Theory Formation (TF)  Y Y  
Approximate Theory 
Formation (ATF) 

  Y* * Learns rules like in TF mode, but optimizes them as in PD 
mode. Does not guarantee neither completeness nor consistency. 

Pattern Discovery (PD)  Y Y  
Uniclass  Y   
     
Incremental Learning     
Full Event Memory*    * Implemented in INLEN system 
Partial Event Memory*    * Implemented in AQ11 system 
No Event Memory  Y   
     
Other Learning Params     
Trim  Y Y* * MostSpec, Optimal, MostGen 
Multi-seed star generation   Y  
     
Rule/ruleset optimization     
Truncate rules  Y Y  
No-loss truncation  Y   
     
LEF Criteria*    * AQ19 has additional criteria not listed here 
MaxPositives  Y Y  
MaxEstimatedPositives   Y  
MinNegatives  Y Y  
MinEstimatedNegatives   Y  
MaxNewPositives  Y Y  
MaxEstimatedNewPositives   Y  
MaxQ  Y Y  
MaxEstimatedQ   Y  
MaxNewPositivesQ   Y  
MaxEstimatedNewPositivesQ   Y  
MaxNumSelectors  Y Y  
MinNumSelectors  Y Y  
MaxSignificance   Y  
MinComplexity   Y  
MinCost  Y Y  
GainRatio  Y Y  
     
Constructive Induction     
A-rules   Y  
L-rules     
DCI   Y  
HCI     
KCI - Advise   Y  
Counting Attributes   Y  
     
Testing     
ATEST Y Y Y  
EPIC  Y Y  
EPIC-RB   Y  
EPIC-P   Y  
EPIC-SDA   Y  



. 

 89 

APPENDIX C TEMPLATES 

Template 1 Learning 
 
Description 
{ 
Template for learning problem. Please comment out not needed parts of the 
file by using # and/or (#  #). 
} 
 
Domains 
{ 
  color nominal {red, green, blue} 
} 
 
Attributes 
{ 
background color 
number linear { 0, 1, 2 } 
length continuous 0, 200 
class nominal {c1, c2} 
} 
 
Runs 
{ 
 
  Run_c1 
  { 
  Mode = TF                  # Possible values: TF, ATF, and PD     
  Consequent = [class=c1] 
  Ambiguity = IncludeInPos   # Possible values: IncludeInPos, IncludeInNeg, 
                             #   IgnoreForLearning, and DisplayAmbiguities 
  Trim = Optimal             # Possible values: MostGen, Optimal, MostSpec 
  Compute_alternative_covers = True 
  Maxstar = 1 
  Maxrule = 10  
  } 
 
  Run_c2 
  { 
  Mode = TF                  # Possible values: TF, ATF, and PD     
  Consequent = [class=c2] 
  Ambiguity = IncludeInPos   # Possible values: IncludeInPos, IncludeInNeg, 
                             #   IgnoreForLearning, and DisplayAmbiguities 
  Trim = Optimal             # Possible values: MostGen, Optimal, MostSpec 
  Compute_alternative_covers = False 
  Maxstar = 1 
  Maxrule = 1 
  } 
  
  Run_All_in_PD 
  { 
  Mode = PD                  # Possible values: TF, ATF, and PD     
  Consequent = [class=*]     # '*' indicates learning for all possible values 
  Ambiguity = IncludeInPos   # Possible values: IncludeInPos, IncludeInNeg, 
                             #   IgnoreForLearning, and DisplayAmbiguities 
  Trim = Optimal             # Possible values: MostGen, Optimal, MostSpec 
  Compute_alternative_covers = False 
  Maxstar = 1 
  Maxrule = 1 
  } 



. 

 90 

 
  Run_Multi-head 
  { 
  Mode = PD                           # Possible values: TF, ATF, and PD     
  Consequent = [class=c1][length<=40] # Definition of Multi-head rules 
  Ambiguity = IncludeInPos      # Possible values: IncludeInPos, IncludeInNeg, 
                                #   IgnoreForLearning, and DisplayAmbiguities 
  Trim = Optimal      # Possible values: MostGen, Optimal, MostSpec 
  Compute_alternative_covers = False 
  Maxstar = 1 
  Maxrule = 1 
  } 
 
 
} 
 
Events 
{ 
red, 1, 34.6, c1 
green, 0, 2.45, c2 
red, 1, 33.0, c1 
blue, 0, 33.5, c2 
} 
 
 

Template 2 Learning and Testing 
 
Description 
{ 
Template for learning and testing problem. Please comment out not needed parts 
of the 
file by using # and/or (#  #). 
} 
 
Domains 
{ 
  color nominal {red, green, blue} 
} 
 
Attributes 
{ 
background color 
number linear { 0, 1, 2 } 
length continuous 0, 200 
class nominal {c1, c2} 
} 
 
Runs 
{ 
 
  Run_All_in_PD 
  { 
  Mode = PD                  # Possible values: TF, ATF, and PD     
  Consequent = [class=*]     # '*' indicates learning for all possible values 
  Ambiguity = IncludeInPos   # Possible values: IncludeInPos, IncludeInNeg, 
                             #   IgnoreForLearning, and DisplayAmbiguities 
  Trim = Optimal             # Possible values: MostGen, Optimal, MostSpec 
  Compute_alternative_covers = False 
  Maxstar = 1 
  Maxrule = 1 
  } 



. 

 91 

 
} 
 
Tests 
{ 
  Test1 
    { 
      Method = ATest         # Possible Values: ATest, EPIC, EPIC_P, EPIC_RB 
      Evaluation_of_selector = Strict    # Possible values: Strict, Flexible 
      Evaluation_of_conjunction = Strict # Possible values: Strict,  
                                         #   Coverage_ratio, 
                                         #   Selectors_ratio, Flexible, Min, 
                                         #   Min_w, Prod, Avg, Avg_w 
      Evaluation_of_disjunction = Max    # Possible values: Max, Prob_sum,  
                                         #   Average, Best_only 
      Default_class = Other              # Specity name of run or 'Other' 
      Full_report = False 
      Tolerance = 0.1 
      Threshold = 0.1  
    } 
 
  Test2 
    { 
      Method = ATest         # Possible Values: ATest, EPIC, EPIC_P, EPIC_RB 
      Evaluation_of_selector = Strict      # Possible values: Strict, Flexible 
      Evaluation_of_conjunction = Selectors_ratio # Possible values: Strict,  
                                                  #   Coverage_ratio, 
                                                  #   Selectors_ratio,  
                                                  #   Flexible, Min, 
                                                  #   Min_w, Prod, Avg, Avg_w 
      Evaluation_of_disjunction = Max    # Possible values: Max, Prob_sum,  
                                         #   Average, Best_only 
      Default_class = Other       # Specity name of run or 'Other' 
      Full_report = False 
      Tolerance = 0.1 
      Threshold = 0.1  
    } 
 
} 
 
Events 
{ 
red, 1, 34.6, c1 
green, 0, 2.45, c2 
red, 1, 33.0, c1 
blue, 0, 33.5, c2 
} 
 
Testing_events 
{ 
blue, 1, 34.6, c1 
blue, 0, 9.999, c2 
} 
 
 

Template 3 Testing 
 
Description 
{ 
Template for testing problem. Please comment out not needed parts of the 
file by using # and/or (#  #). 



. 

 92 

} 
 
Domains 
{ 
  color nominal {red, green, blue} 
} 
 
Attributes 
{ 
background color 
number linear { 0, 1, 2 } 
length continuous 0, 200 
class nominal {c1, c2} 
} 
 
Runs 
{ 
  Run_c1 
  { 
  Mode = Test             # Don't learn - only testing 
  } 
  Run_c2 
  { 
  Mode = Test             # Don't learn - only testing 
  } 
} 
 
Tests 
{ 
  Test1 
    { 
      Method = ATest         # Possible Values: ATest, EPIC, EPIC_P, EPIC_RB 
      Evaluation_of_selector = Strict    # Possible values: Strict, Flexible 
      Evaluation_of_conjunction = Strict # Possible values: Strict,  
                                         #   Coverage_ratio, 
                                         #   Selectors_ratio, Flexible, Min, 
                                         #   Min_w, Prod, Avg, Avg_w 
      Evaluation_of_disjunction = Max    # Possible values: Max, Prob_sum,  
                                         #   Average, Best_only 
      Default_class = Other              # Specity name of run or 'Other' 
      Full_report = False 
      Tolerance = 0.1 
      Threshold = 0.1  
    } 
 
Input_hypotheses Run_c1 
{ 
  [class=c1]         # Consequest of the class 
    <-- [number=1]   # First rule 
    <-- [length>=200][background=red] # Second rule 
} 
 
Input_hypotheses Run_c2 
{ 
  [class=c2]  # Consequent of the class 
    <-- [number=0]  # Only one rule defined  
} 
 
Testing_events 
{ 
blue, 1, 34.6, c1 
blue, 0, 9.999, c2 
} 



. 

 93 

APPENDIX D AQ21 PARSER 

1. Reserved Keywords in AQ21 Input Files 

The following is a list of reserved keywords in AQ21 input files that cannot be used to 
define values of domains and therefore cannot be used in evens.  For example the 
following definition is incorrect: 

x4 nominal { robot, blue, clouds, continuous } 

because of used keyword continuous.  In such case it is needed to replace the value 
continuous by for example value continuous_ in domain definition and all events.  
Corrected versions of the definition are presented below: 

x4 nominal { robot, blue, clouds, continuous_ } 
x4 nominal { robot, blue, clouds, continuous1 } 

AQ21 parser is not case sensitive for keywords and for example “advise” is equivalent to 
“ADVISE” and “AdVise”. 
advise 
attribute_selection_method 
attribute_selection_threshold 
attribute_selection_tolerance 
attributes 
chimerge 
common_domains 
consequent 
continuous 
cost 
counting_attribute 
covered_negatives 
covered_positives 
cross_validation 
dci 
define 
discr 
discretized 
domains 
episode 
epsilon 
events 
events_percentage 
frequency 
has_a 
ignore_attributes 
ignore_events 
indexinput_hypotheses 
integer 
is_a 

key 
lef 
lef_partial_star 
lef_ps 
lef_sort 
lef_star 
linear 
model 
n/a 
na 
nominal 
output_attributes 
output_hypotheses 
pbm_input 
random_seed 
ranges 
runs 
significance 
split_events_percentage 
str 
structured 
testing_events 
tests 
tevent 



   . 

 99 

2. Definition of Values in AQ21 Input Files 

All values of attributes need to fall into one of three categories STRING, DOUBLE, or 
INTEGER. 

STRING  ::= ([a-zA-Z])+(([a-zA-Z])*([0-9])*([\'\-_~&])*)* 

As shown above, STRING values start with a letter that can by followed by sequence of 
letters, digits, or special signs.  For example red, red1, re1d, RED, and red’s are valid 
STRING values, while 1red, 123, and ‘red are invalid. 

DOUBLE ::= (-)?[0-9]*"."[0-9]+([eE]([+-])?[0-9]+)? 

DOUBLE values start with a digit or “–“ (minus) sign, followed by digits, mandatory “.” 
sign, mandatory list of digits and optional exponent.  For example -123.456, -0.33, 123.4, 
.123, and -123.456E+7 are valid DOUBLE numbers while 23-34, 12.34.56, twenty, and +-34 
are invalid. 

INTEGER ::= (-)?[0-9]+([eE]([+-])?[0-9]+)? 

INTEGER values start with optional “-“ (minus) sign followed by mandatory list of digits 
and optional exponent.  For example -123, 0, and 23E+33 are valid INTEGER values while 
123.456, and 123+456 are invalid. 

 

 
 

 



   . 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A publication of the Machine Learning and Inference Laboratory 
School of Computational Sciences 
George Mason University 
Fairfax, VA 22030-4444 U.S.A. 
http://www.mli.gmu.edu 
 
Editor:  R. S. Michalski 
Assistant Editor:  K. A. Kaufman 
 
The Machine Learning and Inference (MLI) Laboratory Reports are an official publication of the Machine 
Learning and Inference Laboratory, which has been published continuously since 1971 by R.S. Michalski’s 
research group (until 1987, while the group was at the University of Illinois, they were called ISG (Intelligent 
Systems Group) Reports, or were part of the Department of Computer Science Reports). 
 
Copyright © 2004-2005 by the Machine Learning and Inference Laboratory. 


