Reports

Machine Learning and Inference Laboratory

AQ21 User’'s Guide

Janusz Wojtusiak

MLI 04-3
P 04-5
September, 2004
Updated: September, 2005

School of Computational Sciences

George Mason University

AQ21 User s GUIDE

Janusz Woijtusiak
Machine Learning and Inference Laboratory
George Mason University

Fairfax, VA 22030-4444, USA
jwojt@mli.gmu.edu
http://www.mli.gmu.edu

Abstract

AQZ21 is a multitask machine learning and data mining systematfdbutional rule learning, rule
testing, and application to a wide range of classificatiablpms. One of its distinctive features is
that it strives to perform natural induction, that is, it séaekisictive hypotheses that are not only
accurate but also easy to understand and interpret. Although the system plevitsss with a large
number of control parameters, they all can be omitted if ongswa run it in default mode. The
parameters control the mode of learning (theory formation userpadiscovery), the degree of
generality of learned rules, and a range of prefererieiarfor selecting candidate rules that tailor
the learning process to the given problem. AQ21 includes event andegisssification programs
(ATEST and EPIC) that give the user control over thertgsand application of the learned rulesets
to the task at hand.

Keywords: AQ learning, machine learning, natural induction, data mining and ledges
discovery, knowledge mining, multistrategy learning, learning form example

Acknowledgments

Author would like to express his gratitude to all people who helpeeelodpment of AQ21
system and this manual. Professor Ryszard S. Michalski, Biretthe Machine Learning and
Inference Laboratory, continuously supervised work on AQ21 and provided thg tresated
for development of the AQ21 system. He also reviewed this manugdravided constructive
comments. Dr. Kenneth Kaufman helped prepare and correct the Imdteaalso provided
information about the AQ methodology and previous implementations of #Quding AQ19).
Dr. Bartlomiej Sniezynski and Jarek Pietrzykowski provided a nurob&omments on this
manual and the AQ21 program.

AQ21 source code includes significantly modified, debugged, improved, @added with
many new features source code of AQ20 program developed in thieindacearning and
Inference Laboratory.

Research activities in the Machine Learning and Infererad®iatory are supported in part by
the National Science Foundation Grants No. 1IS 9906857 and IIS 0097476, and by et
UMBC/LUCITE #32 grant.

This report is an extended and corrected version of the technical report MLI 04-3.

1
2
3

4

5

6

7
8

LN RO 1 B0 L O I [] N P 1
HARDWARE AND SOFTWARE REQUIREMENTS TO RUN AQ21coiiiiiiiiiieeeiineeee e 2
HOW TO START WORKING WITH AQ2L ...ttt e e e e e e e e e aaaa e e e eeannns 3
3.1 RUNNING AQ21 AND LIST OF ITS THE MOST IMPORTANT PARAMETERS.ccutuuieeiiiiiieeeeerineeeeennnnns 3.
3.2 ADVANCED COMMAND LINE PARAMETERS .. .cutituittietiett ittt etteetteseae ettt ssa s st e et s st s saseassteesassnesnns 7
AN O I 1 PP 9.
4.1 AQZ2LFILE FORMAT itttttttttttttaeetttttssesestuseaeetsaaeaaeaesta e e tetta e etestanteeteetan s eetee b aaeaaeessssseeesssnnaaaes 9
4.2 CA4.5FILE FORMAT COMPATIBILITY 1.ttuiituittettettetueeetesteesneestestessssssneesestsesestersnsstaertaeennesnseres 12
DEFINING COMMON DOMAINS OF ATTRIBUTES IN AQ21...... ooieeiiieeeeie e 4.1
51 OVERVIEW ...etiitt et ee ettt ettt et e e ettt e e s e e e e et e e e e aa e e aa e e e e s ta e e e e e ta e s aa e e s e s s sa s eb e sa s et e sbssnsenenns 14
5.2 DEFINITION OF DOMAINS ...t ittt ettt et et e e e et e et e et e e et e e e e ta e s et et e s ta e ean s et s saneeansannssnssnans 14
[N L0] 201 T= T 15
[1T TR 16
RSy (U o U =T S 16
(@00] 0111 TV T0 10 1S 17
gL C=To =T OO OPPPPRERTPTPN 18
(D [Yol =) 1 F4=Te I @Te] 1110 U (01U =TT 18
DEFINING ATTRIBUTES IN AQ2L ...ttt et e et e e e s e et e e e eeta e eaees 20
6.1 OVERVIEW . ttiitiit ettt et ettt et et e e ea e e et et e e sae e e e e et e e s e s ba e e s e et e e b e e b e aa e st e et e sassteenesnsenenns 20
6.2 ATTRIBUTE DEFINITION 11 ituiitiitett et ieteesesteeae et essesaasesa s et testae st asstestesssssneesnssnresanesaeennestenen 21
6.3 Y T O 21
Y Y AN I s VX 2 23
DEFINING LEARNING PARAMETERS IN AQ2L ot et e et e e e e 24
8.1 OVERVIEW . tteiittiteet ettt et et et e e et e e e et e e ea e e et e s et e e s e s ba e e s e et e e e e s e aa e et e et e saeeteeneesnsenenns 24
8.2 GLOBAL LEARNING PARAMETERS. ... itutittiittitettieteett et e st stt e sassaa s san e et e et e et e st e eaeetiestaseniesnees 25
ALIIDULE SEIECHION MELNOUee et ettt e e e e ettt e e e e e e e ab e e e e e ee b b e eeseesraaaaans

8.3

Attribute selection threshold
Attribute selection tolerance
COUNLING ATIIDULE ...t err et e e e st e e e a et e e e s e e e s s st e e a s rn et e s sneeeeannneeenas
(o1 (0TI = 1o F=Y i o) o PP
EVENES POICENTAQGE ... uuiiiiiiii e ittt ieeeee e e e e ettt e e e e e e s et b et e e e e e e saaabeaeeeeeeeesessastbaseeeaeeessasansbssaeeaaaesansssnnes
IgNOTE ALITOULES ... e e e e e e e e e e e e e e e e e e e s st b aa b e e e e eeeeesatbbareeeeeeesesaantaneaeaeeaaian
(@101 oW = U1 4] 01U (=T PP PPPRP
[T aTo (o] 0 IS T=T=To U
Split Events Percentage..............ccceee....
Testing Events Percentage
RUN-SPECIFICLEARNING PARAMETERS ...ccuuiiitiieittieeii et e e e e e eaa e e st s e e eean e e eaaeesteeeanneesnnaeeannaerannaees 32
PN Lo L ToTaT= 1) £= 1PN
F Y o T U1 OO PSP OUPRRP
ALribULE SEIECHION MELNOUe ettt e e e e e ettt e e e e e e e s e e e e ees bt e e e e eerenaanns
Attribute selection threshold
Attribute selection tolerance

COMPULE AEINALIVE COVEIS ... itiiieiiiitieeete e ettt e e e sttt e e s rte et e b et e e e as b b e e s ettt e e s asbeeeeaasbbeeesanbeeeesnnbeeeeeanbeeanns 35

Consequent (Class defiMItION)i et e st e e s b e e e e bb e e e eneeeeeneee 36
ContinUOUS OPLIMIZALION PrODEiiii ettt e e e st re e e e sneeas 37

COUNLING ATIIDULE ... err ettt et e e st e e ek et e e s s e e e s s s b e e e n s r e e e s nnneeeesnnneeenas 37
Define (Create) NEW attriDULE..........oouiiie e 38
DiSPlay EVENES COVEIEA......uutiiiiiiiiie e eceeeeet e ettt ettt et e e e sttt e e st te e e sabe e e e e aabbe e e e anbb et e e snbbeeeeabbreeeesreeesnnnes 39
DiSPlay SElECIOrS COVEIAGE .. .ueeiiiiiiieeieeeee it ettt e et e sttt et e e e ss bt e e s sttt e e s sabe e e e e antbeeesantteeessnnaeeeeanbenanans 39

DiISPIay VAlUES COVEIEA.ceiiiiiiiiiiiiiie ettt ettt e sttt e e s te e e s b bt e e e e tb e e s anbb e e e e snbbeeeeabbeeeeenreeennnnee 40
(ot =T o) o] TP OO PRR PRI 41
1GNOTE ALLIIDULES ...t e e e st e e st e e s e e e et e e e nnre e e s nneeeeas 41
IONOIE BVENTS ...t et e e e e oot e e e e e s e e e et e e e e e e s e nn e e e e e e e e e e e e snnnn e e e e e e e aaanrnee 42

(T T I R U111V [Lo [T 42

Lexicographical Evaluation FUNCHON (LEF).....cceeiiiiiiiiieiiice ettt 43
IVBXTUIE ..ttt ettt ettt e+ ekttt e a4k b et e e e s ket e e aa bt e e a4 nh b et e e e aR b bt e e s nb b et e e enbb e e e e enbeeeennbbe e e e nnnreas

Negatives Percentage
N U gl o1 e} ST=T= o RS SURRPPRPN
(O] o] (180T I (U] (== T PSP PP PT PP PPR PP
LI £ PSRRI

9 DEFINING TESTING PARAMETERS IN AQ2L ... oot 53
LS I R @1 = 2 1= PSP PUPPPTTRN 53
9.2 STRUCTURE OFTESTSCOMPONENT IN THEAQZLINPUT FILEciiiiiiiiiiiiiiiiae e e e e e e e eeeeetntie e 53
9.3 TESTINGPARAMETERS.ccttttitttttiaa et e e e et ettt ettt eaa s e e e e e e e e e et et eaetebaaa e e e e e e aeaeeeeeesbensnnntnnnaeaaeaens

A LU= i o] g o) HEST=] (=Tox (o S OO RPPPP PPNt
Evaluation Of CONJUNCIIONuuiiiiii i eeeeee e e e e e e e e e e e s st r e e e e e e e e e s bbb e b e e e eeeeseannranaeaeeas
Evaluation Of QiSJUNCHIONcoiiiiiiiiiieeee et e e e e e st e e e e e s e et e e e e e e e e s saastbaereeeeeesnnrrnnes
DEFAUIL CIASS. ... et ettt ettt e e e e e ettt e e e e e e e e e a bbbttt e e e e e e e e e nntbeaeeeeaeeeaannsneeeaaaeeaann
Prior probability fOr “Other” ClASScci e e e
U1 2= o o A PP PR PUPRRPP
[le] (= 1Y =T o] £ PSPPSR PRSP
Y 1= 0T Lo RO P ORI

Stop when Decisive Advantage Probe.............

Stop when Decisive Advantage Threshold......

L1 11 o TSP SEETRRP

JLIe =] o (ot T TP PO PP TP PP PPV PPRPPRTTIN

9.4 INPUT HYPOTHESES
.4, 1 OVEIVIEW ... ietieeiie ettt 4441t ee e 4 ettt e e 4 et e e s e et e e e e et e e e e et e e e e e e
9.4.2 Defining INPUL NYPOTNESEScoiiiiiiiiiitimmmmee ettt e e e

9.4.3 Defining input for Prediction-Based Model teStinGu............uvieeiiiiiiiiieiiiee e 64

O T @ 4t R @ 10 I U N PSP 65
JO.1 OVERVIEW «tuittiiieite et e et e et ettt e e et sea e et e et e e e e et e e s e et e e b s et e s b e e s e sansesa e snseaneesnsansesneetnrennns 65
10.2 OUTPUT FROM LEARNING.. ... ttuitutitttetnettn et eeteeteeanestsesnesstestessnssssesnessntrsneesnsssnreseesneensneetsernns 65
10.3 OUTPUT FROM TESTING...uuituiituittnettetteetettetuaesteeteesssssneetetteeaeeterasetaestaessaestiesasssnresneernnrans 68

Additional output form EPIC CIASSIfIErSceveiiiiiiiiiiie e e e snnee e A

APPENDIX A APPLICATION OF AQ21 TO EXAMPLE PROBLEMS.........c.. vt 75
APPENDIX B COMPARISON OF FEATURES OF C4.5, AQ19, AND AQ21...cc.ovviiiiiiiiiiiiiiiiiin, 87

APPENDIX C B Y I I = 89
TEMPLATE 1 =Y 2 N1 TN 89
TEMPLATE 2 LEARNING AND TESTING. ..t tuiuiitiitiitiittit ittt et iestesesesssntentestetteteeteeteeteetestessassassassnses 90
TEMPLATE 3 LI =311 91

APPENDIX D AQ2L PARSER ... e et 93
1. RESERVEDKEYWORDS INAQZ2LINPUT FILES.uiiiiiiiiiiiiiiiiiin e ettt e ettt seeene e st e e s e et e e s eeana s 93
2. DEFINITION OFVALUES IN AQZ2LINPUT FILES. . .uuiiiiiiiiie ettt e et ettt e e seai e s et e e e e aaa s e e e eann s 99

1 INTRODUCTION

Large amounts of data produced in the current world need to be analgyded a
transformed into knowledge. Researcibata Miningis focused on extraction of useful
knowledge from large amounts of data. The recently introduced fiehoiviedge
Mining emphasizes the use of prior knowledge and the understandabilityaroede
descriptions according to the idea wditural induction Usefulness of the learned
knowledge means not only that the knowledge should be accurate aod dreers, but
also that it should be presented in a human-oriented way. This rethwerese of a
language for learning that is human-oriented and at the 8amaeallows the inductive
learning process to be effectively performed. Such a lgggisttributional Calculus
(Michalski, 2004), a subset of which is used in the AQ21 program.

AQZ21 is a machine learning program whose learning module is based on an integration of
a simple version of the %algorithm (Michalski, 1969) for solving the general covering
problem with variable-valued logic (Michalski, 1972). The central phthe algorithm
focuses on the concept ofstar (a set of maximal generalizations of a given positive
example) and its generation. Given sets of positive and negatarepées of some
concept, the Aalgorithm learns a complete and consistent description ofttmatept.
Several modifications to the algorithm allow that the learnextrg#ions may not be
complete and/or consistent (for exampledeparameter described in Section 8.3).

The AQ21 program is the latest member of the AQ family ofgjams for rule learning
and testing. Among the best known AQ programs are AQVAL/1 (AQ7ghddski and
Larson, 1975), AQ11 (Michalski and Larson, 1983), AQ15c (Wnek et al., 1999)7-AQ
DCI (Bloedorn and Michalski, 1991), AQ17-HCI (Wnek and Michalski, 1994), AQ17-
MCI (Bloedorn et al., 1993), and AQ19 (Michalski and Kaufman, 2001).

There are a number of other machine learning programs, amoolh aig well-known

decision tree learners such as ID3 and C4.5 (Quinlan, 1993), andawdertesuch as
CN2 (Clark and Niblett, 1989) and RIPPER (Cohen, 1995). The CN2 progrhased

on some aspects of AQ learning. There are also toolboxesaimire a number of
machine learning programs e.g., WEKA (Witten and Frank, 1999). INEN system

(Kaufman, 1997), and a much more extended VINLEN system (still wiedeiopment;

Kaufman and Michalski, 2003) integrate a range of machine leaamagther programs
to provide an environment for multistrategy data exploration, visualizatlecision

making and problem solving.

AQ21 comes in two versions, (a) as a stand-alone program, and (bpiete@s an
operator of VINLEN. AQ21 is also integrated with iIAQ program ndied to
demonstrate the concept of natural induction, and to support teaching anchréseata
mining, and computational learning and discovery (Michalski and Pietrzykowski, 2004)

2 HARDWARE AND SOFTWARE REQUIREMENTS TO RUN AQ21

AQ21 can be run on Linux platform (Red Hat 7.3 or other) and Windows envinbnme

(Windows 95 or newer) with free RAM memory of at least 16 MBo illustrate the
amount of time and memory needed to execute the program, Tableslinformation
about the program performance on two problems, one relatively simipbait(7000

training examples defined by 32 binary variables and characteezsinggle concept and

its negation), and one more complex (over 8700 training examples dejirgt roulti-

valued attributes, and characterizing 10 classes). The first problees ¢mm a medical
domain and the second problem comes from a user modeling domain. lcaseth
AQ21 was executed on a Dell PowerEdge 4600 Server equipped with éuel2XGHz
processors, 1GB of RAM, and running the Red Hat Linux 7.3 operatstgnsy For

many applications much slower machines with less RAM can be used.

Problem| Number | Number Number | Number of Learning | Testing | Number of | Max.
of training | of testing | of classeg attributes Time Time rules RAM
events events learned memory
used
1 5000 2000 2 32 (all binary) 24 sec <lsec 5 MEB3
2 9041 4139 10 24 (mostly linear|, 458 sec 12 sec 3262 9.4 M
5-10 values per
attribute)

We also successfully tested AQ21lon much larger problems, e.g., @mprebth over

Table 1 Example execution times of AQ21

100,000 examples and 30 attributes, and on a problem with 200 examples and 500
attributes.

Although a study of complexity of the AQ algorithm is out obe of this manual, it
should be mentioned that time and memory complexity of the AQ21 progzndieon
number of examples, number of attributes, and number of values butsi domains.
Although the program has no specific limit on any of the above faatottse case it runs
too slow, the User should apply some method for data reduction (tcerdnrioumber

attributes, the number of examples, or the domain sizes).

3 HOW TO START WORKING WITH AQ21

3.1 Running AQ21 and list of its the most important parameters

To run AQ21 issue a command:

ag21

input-filename

Input file, whose name is given as only parameter of execusaa,plain text file that
consists of eight components to be specified in the order presented etomponents:
Attributes andRuns are always mandatory. For rule learning, compoieentsis also
mandatory, and for rule testing, one of compondat&nts or Testing_eventsis also
mandatory. The remaining components are optional. Each componestvatarta
section name and is followed by a text enclosed in bracesTht component names
are keywords in the program and have to be typed exactly tesl gialow. In this
manual, all key words are typed in bold and italics for emphbstsin the actual data
specification, these key words are typed as any regular text.

1. Problem_description (Optional)

This component allows the user to write comments about learningeatiagt data
and problem to be solved. It is ignored by AQ21 during learning tinge$ut the
text between braces is copied to the program output. Example:

Pr obl em descri pti on
{
This is an example description. User can
type here any text that will be displayed
in the program output.

}

Comment:
Any text can be written between
braces {} that does not include symbols “{" an

}

2. Common_domains (Optional)

This component allows the user to define domains (sets of lega¢syalto be

assigned to attributes in tigtributes component.

Defining these domains here is

particularly useful when several attributes have the same dorAaimlternative way
to define attribute domains is to define them directlxtitnibutes Formore detail on

this topic see Section 5. Example:

Conmon_donai ns
color nominal {r, y, b, g, w}
length continuous 0, 500
size linear {s, m, [}
shape structured {curved, quadrangle,
circle, ellipse, square, rectangle}
{circle --> curved

ellipse --> curved
square --> quadrangle

Comments:

Domain“color” is defined asominaland has
values: r,y, b, g, w.

Domain “length” is defined asontinuousand
takes values from the range between 0 and
500.

Domain “size” is defined dear with values
orderedass<m<|.

Domain “shape” is defined as structured. In
the first braces all possible values are listed|
and in the second braces relations are listed.
In a pair “valuel --> value2”, value2 is a
parent of valuel in the generalization

rectangle --> quadrangle } hierarchy.

Domain “position” is defined asontinuous
and ranges over the interval from the minimal
to the maximal real number representable gn
the computer.

position continuous

}

List of all domain types and their definitions in AQ21 input file:

nominal {comma separated list of values}

linear {comma separated list of values} (alternative name:
ordinal)

structured {comma separated list of values} {list of relations}
continuous [upper bound, lower bound]

integer [upper bound, lower bound]

discretized_continuous {comma separated list of discretization points}

3. Attributes (Mandatory)

The section that defines attributes in the input data table. Edilitide of an
attribute in the section corresponds to one column in the input data, ondérethey
are presented (columns are counted form left to right). Fordetaase refer to
Section 6 of this manual. Example:

Attributes Comments:
Attributes x1 and x4 have the domain “shapge”
x1 shape defined inCommon_domains
ig gﬁggga' fr.s. 4 Attribute x2 is of nominal type and its domain
i el is {r, S, t}. Attribute x4 has_, domain “color”
x5 continuous -10, 2000 defined inCommon_domains
user nominal {1, 2, 3} Attribute user is of nominal type and its
} domain is {1,2,3}

4. Runs (Mandatory)

The component contains global learning parameters and subcomponerdsucalle
which define tasks to be performed by a single run of the progEawchrun starts
with its single name identifying the run, e.g.,”my_runl”, followleg parameters
enclosed in braces. The only parameter needed for learnthg rsileconsequent
defined in each run. Even if the program is used only for eskng, this component
needs to be specified. For details on defimmgs please refer to Section 8 of this
manual. Example:

Runs Comments:
Global Parameters defined before the first run.
In this case two global parameters are defined:
Ignore_attributesandEvents_precentage

Each run starts with its unique name, here

Ignore_attributes = x3, x5
Events_precentage = 0.7

my_runl

{ “my_runl” and “another_run”, followed by

Consequent = [x2 = r][user = 2] list of parameters written in braces. The only

} mandatory parameter is rutonsequenthat
defines class of positive examples for this riin.

another_run Thus, run 1 will produce rules with

{ Consequent{x2 = r][user =2]"

Mode = TF If an* is used in theConsequentprogram
Consequent = [user = *] will automatically create classes for all
possible values of the attribute.

}

List of the most important global parameters and their definitions in AQ21 ingstt fil
Ignore_attributes comma separated list of attributes
Counting_attribute trueffalse
Cross_valudation 0 1, number of events -1
Attribute_selection_method PROMISH Gain_Ratio| None
Attribute_selection_threshold value from range [0, 1]
Attribute_selection_tolerance value from range [0, 1]
Output_attributes comma separated list of attributes

List of the most important run-specific parameters and theinitiehs in AQ21 input
files:

Consequent = [attribute = *] (learn for all values) OR
Consequent = [attribute = v] (learn for one value) OR
Consequent = [attribute = v1,v2,v3] (selector is
consequent) OR
Consequent = Complex (any attributional complex)
Mode = TF|PD |ATF|TEST
Ambiguity = IgnoreForLearning | IncludelnPos |
IncludeinNeg

IncludeInMajority | DisplayAmbiguities
Define attribute_name = A-rule defining attribute
Exceptions = true | false
Ignore_attributes = comma separated list of attributes
LEF PS|LEF_STAR | LEF_SORT {list of criteria and tolerances}

5. Tests (Optional)

This component defines the testing of learned or input (predefined) hgpsth&he
user can use testing algorithms such as ATEST and EPIC andnibdifications.
For details please refer to section 9 of this manual. Example:

Tests Comments:
{ Each test starts with its unique name
my_testl followed by list of parameters written in

Method = atest braces. In this case, only one test is
Threshold = 0.5 defined, and its name is "'my_test1”. It
} uses ATEST event testing method with
} acceptance threshold 0.5.

List of the most important testing parameters and their definitions in AQ21 itgzut f

Method ATEST|EPIC|EPIC_RBJ|EPIC_P
Evaluation_of_selector strict | flexible

Evauiation_of_conjunction strict | coverage_ratio| selectors_ratio |
flexible |

min | min_w| prod |avg|avg_w

Tolerance = value from range [0, 1]
Threshold value from range [0, 1]
Full_report true |false

6. Input_hypothesegOptional)

This consists of hypotheses (rulesets) used for testing. Theetalean be either a
result of previous program execution or manually created hypothesHsis
component is specified ONLY when User wants to test alr&adwn hypotheses.
For each decision class (defined by the consequent) a separatenypptitesis
section needs to be specified. For details please refer tonsat of this manual.
Example:

I nput _hypot heses my_runl Comment:
Name (in this case my_runl) is a valid
_ run name specified in tHeunssection.
[usf_r_ Exgsfrrl]s][xs =r:p=10,n=0 Consequent of rules in the hypothesis.
o L e List of rules, each rule starting with a

<-[x1=r]:p=10,n=2
} b=rl:p “<--* symbol.

7. Events(Optional)
This component specifies training and/or testing events for the progtassection
is optional in the sense that it is skipped, if the user spectfients in the
Testing_eventsomponent or in a separate file indicated in the command leee (s
Section 3.2).

Event s Comment:
{ Events are specified as rows of a data
S Sl o L table. Each of the events is a comma
%% S0 E 4 separated list of values of attributes in the
rtsrr2 ; . h
LT, g, 2 order defined in thA_ttrlbutes
nrsr,g, 2 component. There is no comma after
} each event, and the last value in the event
must be followed by new line

8. Testing_event$Optional)

The section that specifies events used by the AQ21 testing modile. testing
events can be also selected from training events or provided in a separate file

Testing_events Comment:
{ Data table is a list of testing examples
(events). Each of the events is a comma
separated list of values of attributes in
order defined in thattributes

component. There is no comma after
} each event, and the last value in the event
must be followed by new line.

SSoS 0o
o=
NN R -

99w

Endi L PN
S o Sa o

caa:

Examples of input files are presented in Section 4, and also in Appendigmplates of
the AQ21 input files for the most common problems are presentéppendix C.
Detailed description of structure of AQ21 input files and compdtibilith C4.5 input

files is presented in Section 4.

3.2 Advanced command line parameters

It was mentioned above that to execute AQ21 the user needs to proddefss in the

command line.

If run without any parameters AQ21 displays irdbam about

programs and brief description about its parameters. At leagtavameter is needed for
learning or testing, which is the name of the input file withpitedlem definition and the
examples for learning and/or testing. Such case was descnlf®dction 3.1 and is
shown in Example 1. In general, AQ21 is invoked by typing in the command line:

ag2l command-line-parameters

In the simplest case, when the input file consists of problemitilefh and examples, the

invoking command is (see Examples 2 and 3 below):

ag2l parameters-events-

filename

It is also possible to provide problem definition, learning and testing examdeparate

files:

ag2l parameters—filename training-events-filename test

filename

ing-events-

The parameters file is used to define AQ21 parametersd(dés, runs, tests, etc.). The
training events file consists of a list of examples used &nitrg, and a testing events
file consisting of a list of testing examples may also be specified.

Exanpl e 1:
ag2l inputl.agq21
Exanpl e 2:
ag2l input2.aq21 datal
Exanpl e 3:
data2

ag2l input3.agq2l datal

Both: parameters and events must
present in thénputl.ag2ifile.

Parameters are definedimput2.aq21file
and data for training and/or testing
defined indatalfile.

Parameters are defined imput3.agq21
file, training data is defined idatal file,
and testing data is defineddata2file.

In case when input file, training data file and testing datahfikee the same stem in the
name it is possible to usd- <name> option wherename>.ag21lis a AQ21 parameter
file, <name>.datas a training data file, andrame>.tests an optional testing data file.

Exanpl e:

ag2l1 -F input

Parameters are specified input.ag21
file, data is specified imput.datafile. If
input.testfile exists, testing events will b

loaded from it.

be

S

It is also possible to read input files in C4.5 format usthgption.

Similarly to—F

option, program loads parameters and data from respectively <names,na
<name>.data, and <name>.test files. For details of c4.5 file formaéeplkfas to Section
4.2,
Exanpl e: Attributes in c4.5 format are specified
input.names file, data is specified i
ag2l -f input input.data file. If input.testfile exists,

testing events will be loaded from it.

in

By default AQ21 does not display events in the output.

To displayraiméng and

testing events sectioreventsparameter should be used. Please note that in such case,

when datasets are large, the output will also be large.

Exanpl e: Parameters and events are loaded fprm
input.ag21file. Program displays in its
ag2l -events input.ag2l output events loaded from the input file
(Eventssection).
The AQ21 can write its output to a file whose name is specifiedser. To use this
feature
—o <filename>option should be used as shown in the example below. Format okthe fil
is identical as format of output displayed to screen.
Exanpl e: Parameters and events are loaded from
input.ag21 file. Output is written into
ag2l input.aqg2l -o output.ag2l output.ag2ifile.
The —r option overwrites random seed specified in the input file with oneraeade
automatically using the system time. For details of rand®d ssage please refer to
Section 8.2.
Exanpl e: Parameters and events are loaded from
input.ag21file. Even if theinput.aq21
ag2l input.ag2l -r file contains definition of random seed,| it
is overwritten by automatic one.
In general AQ21 allows combining different parameters descriiee with some
plausible constraints (egF and—f parameters cannot be used together).
Exanpl e: Parameters are loaded fromput.ag21
file. Events are loaded from input.data
ag21l -F input -events -o output.ag2l file and input.test file (if exists). Loaded

events are displayed to the output wh
name is output.ag21

DSe

4 INPUT FILES

4.1 AQZ21 file format

The format of the AQ21 input file allows user to define all paogrparameters in a
convenient way. The input file is a text file contains componantsdfining common

domains of attributes, attributes, their types and domains (thabenagmmon domains
or domains defined together with attributes), and parametdrse giflanned runs of the
algorithms for learning and testing.

The only program parameters that have to be defined in the iilpatré the decision

classes to be learned and a list of attributes that correspahé tolumns in the data
tables (lists of events) provided to the program. All other passbave default values,
so the user does not have to specify them. These parameters camemhdve set

differently to adjust the way program runs appropriately for a given problem

An example of a simple AQ21 input file is presented below. A momeplex example
of an input file is presented in Appendix A. Information about AQ2%qyaand list of
reserved keywords is presented in APPENDIX D.

Probl em descri pti on

{)) In the optional description
This is an example of an AQ21 input file. component you can put any
} comments about the run, and|it
Common domai ns will be copied to the output.
The domains component is used to define domains that In common domains user
can be shared among attributes assigns types and lists of
shape nominal {r, s, t} values with common domaing
color nominal {r, y, b, g, w} that can be used later to defirje
} attributes.
Attributes Each defined attribute
The attributes component is used to define attributes corresponds to one column in
for events in the data. input data table.
x1 shape Attributes can be either
X2 shape defined using common
x3 nominal {r, s, t, q, o} domains (eg. x1, X2, x4, X5) ar
ig gg:g; their types and domains can be
class nominal {1, 2, 3} defined explicitly in this
} component (eg. x3, class).
Runs Runs component is used to
{ define classes and learning
z;l'he runs component is used to define parameters for parameters. In this example
earning.

4 one global parameter is used
Split_events_percentage = 0.6

e U i sl Name of a run is any unique

{ word.
Define specific parameters for this run Parameters defined within a
Mode = TF run affect only the run.

Consequent = [class = *]

}

another_example_run

Mode = TF
Ignore_attributes = class
Consequent = [x4 =r]

}

Tests

The tests component us used to define parameters for
testing.
testl

{
Method = ATEST
Tolerance = 0.1
}
}

Event s

In this component are the examples used for learning
and testing.
s, s, rrrl

i
=

N2
W e =

n oo
Y
wn
—Q o
s

—
-
=

o
)
o
@

o
o
:ﬁ—1
Q@
N o NN

~=S=S=S5=-5
w
o
©

=
7
=
«

Consequenis the only
mandatory parameter. It is
used to define classes for
learning and/or testing. When
* is used in the consequent
program learns for all values
of the attribute, otherwise it
learns only for specified
values.

Definition of testing
parameters. In this example
one test is defined. It uses
ATESTmethod implemented
in AQ21.

Toleranceis used to classify
an event to more that one class
if their degree of match is
similar.

Data table with training and/of
testing events (examples).
Each event is a list of comma
separated values of attributes
in order defined in the
Attributescomponent. All
values are mandatory (for
missing or special values
please refer to Section 7.
Events are used for learning
and/or testing (in this case
both, since no testing events
are explicitly specified in
Testing_eventsomponent).

The input file provides AQ21 with information about training and testiaig, and the

way to execute rule learning and testing operations.

The gmmogilows the user to

perform many different experiments in a single execution usiagsame input training

and testing data.

The AQ21 input file is organized into components that reflect the omjsomzof the
program and provide a clear way to specify parameters. This sectiorbdeduiefly the
components of the input files, details are presented in the followoimpze (hames of
the components are keywords). Some of the components are optional andreome

mandatory.

1. Problem_description (Optional)

The component consists of comments about learning and testing praighemtiles
etc. Itis ignored by AQ21, but is copied to the program output.ett teswrite any
information that is desired in output (like the problem description).

10

. Common_domains (Optional)

Optional component that defines types and domains for which attribugsben
defined (domains can also be defined inAltteibutes component). For details please
refer to Section 5 of this manual.

. Attributes (Mandatory)

Mandatory component that defines the attributes used in the input daaah
definition in the component corresponds to one column in the input data, irddre or
they are presented (columns are counted form left to right)ddtails please refer to
Section 6 of this manual.

. Runs (Mandatory)

Mandatory component that defines classes and learning operations datdhe It
consists of global parameters, and subcomponents that representrsnsgte the
program (at least on&in subcomponent needs to be defined). Even if only testing is
to be performed, this component needs to be specified. For detads péfar to
Section 8 of this manual.

. Tests (Optional)

Optional component that defines the testing of learned or input (predgfi
hypotheses. The user can use testing algorithms such asTAAFEEPIC and their
modifications. For details please refer to Section 9 of this manual.

. Input_hypotheses (Optional)

Optional component that is used to define input hypotheses for teskimg.input
hypotheses can be result of previous execution of AQ21 or can be manuall
written/modified by expert. Onbput_hypothesescomponent corresponds to one
class, so for example to define input hypotheses for three clalssss components
are needed in input file. For details please refer to Section 9.4 of this manual.

. PBM_input (Optional)

Optional component that is used to manually define models for Poedludised
model testing (using EPIC-P). For details please refer to Section 9.4.3 of thialma
. Events (Optional)

Optional component used to specify training events (exampleshéoprogram.
While this component is optional, events must be specified either ubkisg
component, or in a separate file as specified from the command line.

. Testing_events (Optional)

Optional component that specifies events (examples) used lgstimeg module of
AQ21. The testing events can be also selected from traingrgsewr provided in a
separate file.

An important feature of AQ21 is that its output can be used as fopaitsubsequent
execution of the program. This feature makes experiments usi@d AQy repeatable.

11

The user can also refine output hypotheses using a text editogpahdthem to the
testing events again without additional work.

The user can make comments in the AQ21 input files. To commentsigla line put
“#” in front of the line. To comment out a whole continuous part ofea(filore or less
than one full line), put “(#” at the beginning of the region to be comadernd “#)” at
the end.

There are two main types of input files recognized by AQ21. fireetype is in the
format of the AQ21 input file described above that contains a tefinof attributes,
runs, tests, events etc. The second type of file is an input dataly that contains data
to be used for training or testing. The data files are Wilgls events (examples) in the
same format as in theventsandTesting_eventgomponents. Each example is a list of
comma separated values of attributes in order defined imAtindutes component.
There is no comma at the end of example.

AQZ21 is not case sensitive in terms of component names and paganfeterexample it
is correct to write an input file: Runs, runs, RUNS, ruNs, etmgfam is case sensitive
for values of attributes as defined@ommon_domainsnd/orAttributes components.

4.2 CA4.5 file format compatibility

AQZ21 has a feature that allows the user to load input files peefaréhe C4.5 program.
The C4.5 input is specified using three files having “.names”, “.daatl “.test”
filename extensions that define respectively attributes, traidatg, and testing data.
They can be loaded using thkeoption in the AQ21 command line followed by the
filename stem common to both .names and .data files — without the extensions.

AQ21 loads definitions of
attributes fronrobots.namefile,
ag2l -f robots training data from robots.data file
and testing data from robots.test
file (if exists). The files are in c4.5
format.

Although AQ21 is able to read c4.5 input files, it is not possildespecify any AQ21
parameters within this file format. Therefore, it is strgly recommended to modify
“.names” file in the c4.5 format into “.ag21” file in the AQ21 formatsing any text

editor (eg. notepad in Windows OS, or emacs in UNIX OS).

Example of simple “.names” c4.5 file and corresponding AQ21 filgpeesented below.
Please note that in the AQ21 version of file more meaning is added to some at{fidoute
example type of attributieoldingis structured, what is not available in c4.5).

friendly, unfriendly.

head: round, square, triangle. Example of c4.5 .names
body: round, square, triangle. file. The first row

mile: n . oo
Sl e e specifies classes (last

12

holding: sword, balloon, flag, us_flag, polish_flag.
height: short, medium, tall.

antenna: red, yellow, blue, green, black, white.
jacket: red, yellow, blue, green, black, white.

tie: no, yes.

column in data) and othe
rows specify attributes
and their domains.

=

Conmon_donai ns

{
shape nominal {round, square, triangle}
color nominal {red, yellow, blue, green, black,

white}
}
Attributes
{
head shape
body shape

smile nominal {no, yes}

holding structured {sword, balloon, flag, us_flag,
polish_flag}
{polish_flag --> flag
us_flag --> flag}

height linear {short, medium, tall}

antenna color

jacket color

tie nominal {no, yes}

class nominal {friendly, unfriendly}

}

Runs

robots

{

Consequent = [class = *]

}

Test s

{

robots_test

Method = ATEST

}
}

AQ21 format.

In order not to repeat
definition of color and
shape two common
domains are defined.

Attributes as they appeat
in data. Types and
domains of attributes
head, body, antenna, and
jacket are defined using
common domains.
Attribute holding is a
structured attribute that
is not available in c4.5.
Class is defined as the
last attribute as it is in the
original data.

One simple run is defined
in which only Consequen
parameter is specified.
Used ¥ indicates
learning for all values of
attribute class (in this
casefriendly and
unfriendly).

—

One test is defined. It
used ATEST
classification program for
classification of testing
examples.

Data files in c4.5 format do not need be converted into AQ21 formdte ohly
difference between the two formats in “.” at the end of each ewers.5 file and AQ21

is able to automatically remove it.

13

5 DEFINING COMMON DOMAINS OF ATTRIBUTES IN AQ21

5.1 Overview

All attributes that are defined in AQ21 need to be associatdd avilefined domain.
There are two possible ways to define a domain for an attribdje:in(the
Common_domaingomponent, and (2) explicitly, when the attribute is defined (s=e t
Attributes component description). Although both methods are allowed, it is often
preferable to define the domain first and later bind attributés éspecially when more
than one attribute uses the same domain. In add@émmting attributegSection 8.2)
require that the attributes to be counted explicitly have the same domain.

AQ21 supports most of the attribute types defined in AttributionaduBed (Michalski,
2004), namelynominal linear, andstructured The linear attributes are divided into
continuousdiscretized continuoysndinteger The type of an attribute depends on the
structure of its domain. The following section explains how to défieettribute types
and domains.

The structure of th€ommon_domaingomponent in the AQ21 input file is presented
below:

Comon_donai ns

first domain definition
second domain definition

“h—th domain definition

}

Exanpl e:

Comon_donai ns
{
color nominal {red, green, blue, yellow, blac k}
height linear {short, medium, tall}
length continuous 0.0 127.45
seconds linear 60

}

5.2 Definition of Domains

The general form of a domain definition is:
domain name domain type [parameters]

wheredomain names a unique name of the domain defined by the wkemain typds
one of the types supported by AQ21, gmrametersis an optional specification of
additional properties of the defined domains (e.g., ranges, listalués, etc.). The

14

following is the detailed description of the domain typesminal linear, structured
continuousinteger, anddiscretized continuous

Nominal
Syntax:

domain_name nominal {list of values }
or

domain_name nominal size
Components:

domain name — a single word that specifies a unique name for the domain

list of values — a comma separated unordered list of valudee afamain to be
defined

size — a positive integer that specifies the number of values in the domain

Example:

color nominal {red, green, blue}
host nominal 22

Comment:

Nominal domains represent discrete, unordered sets of possible valuaQ21, there
are two ways of specifying such domains: (1) by listing all iptssalues, and (2) by
defining the number of possible values. In the first case, #renusst specify a comma-
separated list of legal values enclosed in braces. In the seaemdite user specifies an
integer denoting number of values in the domain. In this caseprtbgram will
automatically generate values that are positive numbers 0, 2, 3;1,.wimere n is the
number specified by user. In the following examples, both definitions are equivalent

Exanmpl e 1:

host nominal 7
Exanpl e 2:

host nominal {0, 1, 2, 3, 4, 5, 6}

The minimum number of values of a nominal domain is two.

15

Linear

Syntax:

domain_name linear {list of values}
or

domain_name linear size
Components:

domain name — a single word that specifies a unique name for the domain

list of values — a comma separated, ordered list of values afaimain to be
defined

size — a positive integer that specifies the number of values in the domain

Exanpl e:

size linear {small, medium, large}
host linear 22

Comment:

Linear domains represent discrete, ordered sets of values. Irastotd nominal
attributes, the order of values is important, as there is atégrwan” relationship
defined between values. For example, the definition:

D linear {vi,v2,v3, v4, Vv5}

means that v1, v2, v3, and v4 are possible values of domain D, and vl < \R w43
v5, and that conditions such as [D <= v3] or [D = v2..v4] have meaning.

As can nominal domains, linear domains can be specified eithestimglall possible
values or by giving an integer number that denotes the number of possible values.

The minimum number of values of a linear domain is two.

Structured

Syntax:
domain_name structured {list of values} {list of relationships }

Components:
domain name — a single word that specifies a uniqgue name for the domain
list of values — a comma separated list of values of the domain to be defined

list of relationships — a list that defines the relationships dmtwthe specified
values, using-> operator

16

Exanpl e:

place structured { World, Europe, Poland, Germa ny,
America, Mexico, US, Virginia,
Maryland, Alaska, Mars
}
{ Europe, America --> World
Poland --> Europe
Germany --> Europe
US --> America
Virginia --> US
Maryland --> US
Alaska --> US
Mexico --> America

Comment:

Structured domains represent partially ordered sets or hiemrmhigossible values in
which the partial order is defined by the relation where the “pointed” element is
parent. Structured attributes can be used to represent hiesascich as shapes, animals,
or geographical data. Note that the list of relationships is not comma-geparat

The minimum number of values of a structured domain is two.

Continuous
Syntax:
domain_name continuous lower bound, upper bound
or
domain_name continuous
Components:
domain name — a single word that specifies a unigue name of the domain
lower and upper bound — optional parameters that define the range of the
continuous domain
Exanpl e:
income continuous -1000.0, 3486.33
Comment:

The use of continuous domains allows a user to represent real vaheth iearning and
testing. AQ21 can deal with continuous attributes without discretiz#hat is required
by most machine learning programs (performed either by useutomatically). For
details on how generalization is applied to continuous attributesseplesdier to the
epsilonparameter described in Section 6.2.

17

Internally, continuous domains in AQ21 are implemented ustudplevariables in C++,
and all the limitations that apply to this type of variables yapplcontinuous domains
and attributes.

Integer
Syntax:
domain_name integer lower bound, upper bound
or
domain_name integer
Components:

domain name — a single word that specifies a uniqgue name for the domain

lower and upper bound — optional parameters that define the ratige infeger
domain

Example:

years integer -100, 100

Comment:

The integer domains were introduced to the program in order to allovtaudeal with
large linear domains. When the number of values of a linear domagfaiwely big, it
affects the performance of the program, which has to renreexpdicitly all values of
the domain. When integer domains are used, the program stores only oanghses
(similarly to how it handles continuous domains).

Discretized Continuous

Syntax:

domain_name discretized continuous size, lower bound, upper bound
or

domain_name discretized continuous [list of points |
or

domain_name discretized continuous ranges [list of points]
Components:

domain name — a single word that specifies a uniqgue name for the domain

lower and upper bound — parameters that define the range of thauooisti
domain

18

size — an integer value that defines the number of discretized points

list of points — a comma separated list of real values

Exanpl e:
distance discretized continuous 100, 0.0, 4000. 0
temperature discretized continuous [-50, -40, -30, -
20, -10, -5, 0, 0.5, 1, 2, 3, 4, 5, 10, 20, 50, 100 , 200]
length discretized_continuous ranges [0, 0.5, 1 , 2, 3]
Comment:

As shown in the above example, the discretized continuous domains castietizéid
either automatically, or manually by specifying a list cdcdetized points. In the first
case, the program generates discretized equal-size intetvad® number is specified by
the user (thesizeparameter in definition of the domain “distance” in the examipte/a).

It is also possible to invoke the ChiMerge algorithm (Kerber, 1998)scretize a single
attribute (Section 6.2).

Manual discretization can be done by specifying a list of digeten points explicitly.
The smallest and the largest values in the list will be ussgkctively as the lower and
upper bound for the domain.

Suppose that there analiscretization pointSx Xy, ..., X, and ¥ < X < ... <X, In such
setting % will be used as the lower bound of the domain, andik be used as the upper
bound of the domain. Real values in the rang®Xx + X2)/2 will be discretized as;x
Real values in the range from,{(x+ X,)/2 to %, will be discretized aspx For all x where

i # 1 and i# n, real numbers in the range from.y (% x)/2 to (% + X + 1)/2 will be
discretized as;x

When the keywordangesis used in the domain definition, the list of points is treated as
a list of borders between intervals. In the above example, in timitidefof the domain
“length,” the intervals are: 0 to 0.5, 0.5t0 1, 1 to 2, and so on.

19

6 DEFINING ATTRIBUTES IN AQ21

6.1 Overview

The previous section described how to define domains that can be usefineo de
attributes. However, as mentioned before, this is not the only wagfiteedattributes.
They can be defined either by specifying domains as defined befots; explicitly
specifying the domain type. The details on how to do it follow.

For a description of types of attributes that are availabfQ81 please refer to Section
5.

The attributes in AQ21 are defined in Attributes component that has the following
form:

Attri butes
{

first attribute definition

second attribute definition

n-th attribute definition

}

Each row in the attributes definition corresponds to exactly one oadlurtine input data
(top row corresponds to the leftmost column in the data). Every odluthe input data
can be defined using a standard attribute or a meta-attribute, or can be ignored.

Exanpl e:

Attributes
{
x1 height cost=2
body nominal { square, round, triangle }
ignore
location place
episode
significance

In the above example the attribute x1 is defined based on a commondoengtit
(defined previously), and with cost equal to two. Body is a nomitrdbiate with three
possible values. The third column in the input data is to be ignoredtidwods defined
using the place domain that was defined in@eenmon_domaincomponent. Episode
and Significance are two meta-attributes that are described ios6c3i

20

6.2 Attribute Definition

To define an attribute, the following line of text is used:
attribute name attribute domain attribute options

Attribute names a unique name of the attribute. The name can be used latepantsl
of the AQ21 input file and, for example, in the learned rules.

Attribute domainis either the name of a domain already defined or a defimtidhe
domain. For details on domain definition, see Section 5.

Attribute optionsare used to define additional features of the attributes. The m@ossibl
options arecost epsilon anddiscretization

The cost of an attribute is a positive integer, whose value can be intedpeet the
relative expense of evaluating the attribute. It is used bynitheostLEF criterion (see
Section 8.3) to minimize the cost of the learned rules (e.g., Midhand Kaufman,
2001).

Epsilon provides the program with information on how to generalize continuous
attributes. Its value can be between zero and one where zero me@amaum
generalization (a condition is maximally general so as nobt@r a negative example)
and one means minimum generalization (a condition is maximallyfispgithout losing

any positive coverage).

Discretization followed by the desired number of ranges is introduced ONLY for
continuous attributes and invokes an automatic program that discrétigesata.
Currently the ChiMerge discretization method (Kerber, 1992) is imm@hted. In the
example below attribute “width” will be discretized into severenwdls using the
ChiMerge method.

Exanpl e:

body nominal {square, round, triangle } cost=1
length continuous cost=3 epsilon =0.2
width continuous ChiMerge 7

6.3 Meta-attributes

There are four predefined, special attributes, caleeta-attributes that express
information about the events, namekey, episode frequency andsignificance The
most significant difference between attributes and metinatids is that meta-attributes
are not used directly in the learning process (they are newepanents of learned
hypotheses); they can only be used to control the AQ21 learning aind testescribed
below.

Keyis a unigue positive integer that is used to identify the event.

21

Episodeis used to distinguish between series or sequences of evemtexafmple one

series of activities of a computer user during one session caewed as one episode.
The episode parameter does not affect the learning processydroives used during

testing when one of EPIC methods is applied and the program @agsifiire episodes
instead of single events.

Frequencyis a positive integer value that indicates how many timewvant @ppears in

the data. The events that appear more than once in the data camdiavedquency

fields set to values greater than one, they can appear in theolie@ahan once, or both.
The value of frequency is important for the program executionjsansed, for example,
by many of the LEF criteria.

Significanceis a real number that indicates how important the event s.used by the
maxsignificance_EF criterion to give preference to rules that cover the nmygortant
events (see the LEF criteria descriptions, Section 8.3).

22

7 META-VALUES IN AQ21

In several situations, the exact value of an attribute is not protodae@ program. Such
situations may happen, for example, when the value is not known, or theeagked not

to use it for learning. AQ21 implements three meta-values Hrabe used instead of
real values in the attribute domains. A theoretical descriptficthe meta-values can be
found in (Michalski, 2004; Michalski and Wojtusiak, 2005). The three metasralue
implemented in AQ21 are described below.

The “Missing (a.k.a. don’t know and unknown meta-value, denoted in data by “?”,
represents situations in which the value of an attribute exist$pbsbme reason is not
known. For example, it may not have been measured, or for other reesnatipresent
in the data.

The ‘Irrelevant (also known as Don't car€’) meta-value, denoted in data by “*”,
represents situations in which a value is irrelevant for legrthe specific class. For
example color of the eyes is rather irrelevant when determiairgjudent’s grade.
Information that an attribute is irrelevant for a given evengntered into data by a
domain expert.

The “Not applicablé meta-value, denoted in data by “NA” or “N/A”, represents
situations in which the value of an attribute makes no sense forea gvent. For
example color of a jacket is not applicable when there is no jacket.

The example below illustrates a toy problem in which meta-vauesised (in this case
“N/A” and “?” are used). It shows only the definition of attrilmusnd events (no other
components of the AQ21 input are specified).

Exanpl e:
Attributes

head_shape nominal { square, round, triangle}
body_shape { square, round, triangle }
wearing_jacket { yes, no }

color_of_jacjet { red, green blue }

}

Events

{
square, ?, yes, red
round, triangle, no, N/A
round, triangle, yes, blue

}

23

8 DEFINING LEARNING PARAMETERS IN AQ21

8.1 Overview

The learning parameters are organized inRli@s component of the AQ21 input file.
The structure of this component is presented below:

Runs
global parameters

run_one

{

parameters for the first run

}

run_two

{

parameters for the second run

}

run_n

{

parameters for the n-th run

}
}

Exanpl e:

Runs

{
Output = group

Split_events_percentage = .7

good

{
Consequent = [group = good]
Maxstar = 1
Maxrule = 1
Trim = Optimal
Mode = PD
Display_selectors_coverage = true

LEF_sort
{

MaxPositives, 0

}

LEF _ps

MaxQ, 0

24

MinComplexity, 0
}
}

bad
{

Consequent = [group = bad]
Trim = Optimal
Mode = PB

}

The Runs component contains definitions of global parameters that apply tore|
followed by definitions of specific runs. Inside the runs componelgaat one run must
be defined, and each run must have a unique name (as in the example above).

The definition of a parameter’s values takes two possible forms:

parameter = value
or
parameter = list of comma separated values

Exanpl e:
Consequent = [group = good]

Ignore_attributes = color, height

8.2 Global Learning Parameters

Global parameters are common to all defined runs and apply taiaihty and testing
events. Some of them, however, are identical to run-specific paramatel can be
defined either as global parameters that apply to all runs mmispecific components
that apply to a single ruAll Global Parameters are optional; none are mandatoryA
list of the global parameters defined in AQ21 is presented below in alphabedieal or

Attribute selection method

Syntax:

Attribute_selection_method = method
Possible values:

promise gain_ratig none
Default value:

none

25

Exanpl e:

Attribute_selection_method = promise

Comment:

In large datasets that have many attributes it is importaselect the most relevant
attributes before starting the learning process. In manycagphs, attempting the
learning process on the full dataset with all attributdsasslow and inefficient. Here,
the selected method is used to determine the attributes thathleawghest chance to be
relevant for the learning. Two criteripromise(Baim, 1982; Kaufman, 1997) gain
ratio (Quinlan, 1993) can be used to determine which attributes are likbly the most
relevant.

In AQ21 to select attributes for learning we compute diseriminatory power(dis-
powel) of each attribute and compare it with the acceptance threshttdbufes whose
dis-power is below the threshold will not be used for learning. cbingplete algorithm
can be written in three steps shown below.

1. Given a dataset, evaluate the discriminatory power of
each individual attribute according to some measure
(applied to each class vs. the rest of the classes)

2. establish an acceptance threshold for attributes
depending on the number of attributes in the data

3. remove from dataset the attributes whose dis-power is
below the threshold

To make the method more general, it is permissible thagfdr decision class, the set of
attributes that will be used for learning can be differenbteNhat the discriminatory
power in step 1 is computed for each class against the collective rest obtescla

AQZ21 gives three possibilities of selecting the acceptanesttbld parameter. First, it
can be defined explicitly by the user. For instance, an acceptameshold set to 0.5 will
filter out all attributes whose dis-power is below 0.5. The wser also define the
parameterattribute selection tolerangevhich specifies the acceptance threshold using
the following formula (MIN and MAX are respectively minimumdamaximum values

of dis-power for evaluated attributes):

acceptance threshold = MIN + (MAX — MIN) * acceptance threshold tolerance

If in the AQ21 input file the user defines both the acceptanceshbie and the
acceptance threshold percentage, the acceptance threshold &ligndrcomputed as
described above.

There are two implemented methods for determining the dis-powettabutes —
Promise and Gain Ratio. Both return values in the range [0, 1] that can be easily
compared with the acceptance threshold.

26

Promise

The implemented method is a simplififdomise(Baim, 1982; Kaufman 1997) method
that uses two classes represented by positive and negativs.eviéhe negative events
are all events that are not from the class that is beingdeved. The algorithm for
attribute x and class C can be described by the following pseudo-code:

P=0

For each value of the attribute v i
S ={examples : x=v i}
Find class C that has the largest number of exa mplesin S
P=P+#C NS/#S

Return P

After a simple normalization the returned value is in the range [0, 1].
Gain Ratio

The Gain Ratio is a well known attribute quality measure usqatdgrams such as C4.5
for building decision trees (Quinlan, 1993). The Gain Ratio is defined as

gain ratio(X) = gain(X)/split info(X)

where split info represents the potential information gained bytisgliexamples by
using attribute X, and gain is the information that is gained bitipamg events by
using attribute X. For exact formulas please refer to for example (Quir9i88).

Attribute selection threshold

Syntax:
Attribute_selection_threshold = value

Possible values:
real number in the range from 0 to 1 inclusive

Default value:

0
Exanpl e:

Attribute_selection_threshold = 0.5

Comment:

This parameter is used to define the minimum value of an attsbdistriminatory
power for the attribute to be used for learning. For detaitstlse description of the
attribute selection methoparameter. Note that this parameter is ignored whenever the
parameteattribute selection tolerands defined.

27

Attribute selection tolerance

Syntax:

Attribute_selection_tolerance = value
Possible values:

real number in the range O to 1
Default value:

0

Exanpl e:

Attribute_selection_tolerance = 0.5

Comment:

This parameter is used to define a tolerance for the minimuoe \&fl an attribute’s
discriminatory power in order to determine if the attribute ibgaused for learning. If
this parameter is present, the acceptance threshold is comymited the following
formula:

attribute selection threshold = MAX - (MAX — MIN) * attribute selection tolerance

where MIN and MAX are the minimum and maximum attribute disicratory powers
found, respectively. For further details, please referattobute selection method
parameter description.

Counting Attribute

Syntax:

Counting_attribute = value
Possible values:

true, false

Default value:
false

Exanpl e:

Counting_attribute = true

Comment:

This option is used to enable tB®unting Attributeggeneration in AQ21. The counting
attributes are automatically constructed for all input nomindihear attributes with the
same domains. For instance:

28

count(x1,x2,x3=r)=2
means that value of exactly two attributes of the three (x1, x2, x3) are equal t

Output and ignored attributes must be defined in this component beforéateof the
counting attributes (please refer @utput_attributesandlgnore_attributesparameters).
Thus, output attributes are the same for all runs defined in the run-specific components

Cross Validation

Syntax:

Cross_validation = k
Possible values:

integer
Default value:

0

Example:

Cross_validation = 3

Comment:

Cross Validationruns AQ learning and testing a number of times that is spedify
parametek, on different subsets of data. The program splits the inputrdatia subsets
D1, D2, ..., Dk and applies learning and testing in the following way:

1. Learnon D1, ..., D(k-1) and test on Dk
2. Learnon D1, ..., D(k-2), Dk and test on D(k-1)

k. Learn on D2, ..., Dk and test on D1

A summary of the cross validation operation is displayed in tefniise average of the
primary learning and testing results (e.g., accuracy, precision, numbeesjt rul

Events Percentage
Syntax:

Events_percentage = ratio
Possible values:

real value between 0 and 1

28

Default value:
1.0

Example:

Events_percentage = 0.9

Comment:

TheEvents percentagearameter is used to control the percentage of input events that are
used for training. If, for instance, the parameter is set to 0.@rtlggam will use 90% of
the training events, and the other 10% will be ignored.

Ignore Attributes

Syntax:
Ignore_attributes = attributel [,attribute2 [, ...]]
Possible values:

comma-separated list of attributes

Example:

Ignore_attributes = x1, x3, color, height

Comment:

Parameter used to ignore attributes from original data folewming process. The
selected attributes are ignored for learning in all runs defined Ruhecomponent.

The Ignore_attributesparameter can also be used as a run-specific parameter te ignor
attributes only in the run in which it is specified. If ignoteilautes are defined in both
places (global and run-specific parameters), the union of thbuédt is ignored in a
given run.

Output attributes

Syntax:
Output_attributes = attributel [, attribute2 [, ...]]

30

Possible values:

comma-separated list of attributes

Example:

Output_attributes = color

Comment:

This option is used to specify the output attributes used in the leamihgpsting phases.
They must be consistent with consequents defined in run-specific congpoiaig
option is mandatory when any of the constructive induction methods ade (fzse
example counting attributes).

Random Seed
Syntax:
Random_seed = seed

Possible values:
integer

Example:

Random_seed = 123

Comment:

This number specifies an initial value for the random number genenaed in the
program. There are several places in the algorithm wheresvalaeselected randomly,
and in order to be sure that results are precisely repeatabtedebged, there must be
such option. If not selected, its value is generated using current date and time.

Split Events Percentage
Syntax:

Split_events_percentage = ratio
Possible values:

real value between 0 and 1
Default value:

1.0

31

Example:

Split_events percentage = 0.8

Comment:

The Split Events Percentage is used to set the ratio between maftraining and
testing events. For instance, a value 0.8 means that 80% of the witebts used for
training, and the other 20% will be used for testing. Selectionvehts is done
automatically by the program.

Testing Events Percentage

Syntax:

Testing_events_precentage = ratio
Possible values:

real value between 0 and 1
Default value:

1.0

Exanpl e:

Testing_events_percentage = 0.9

Comment:

The Testing Events Percentagarameter is used to control the fraction of events that are
used for testing. If, for instance, the parameter is set to 0.@rdlgeam will use 90% of
the testing events, and 10% will be ignored.

8.3 Run-Specific Learning Parameters

Run-specific parameters are those that are defined for aypartrun only. They do not
affect other runs. The reason for this is that a user may twamde a specific set of
parameters when learning for one class and another set ofgbarsnwhen learning
another class. Run-specific parameters are defined insidRutiteecomponent after the
global parameters by specifying the unique run’s name followed'byThe end of the
definition of run-specific parameters for a single run is $@ecby the symbol “}”. A
user can define as many runs as is needed.

The only parameter in run-specific component that has to be sddsiftmnsequen(in
learning mode only — sédode parameter). All other parameters are optional, and their
values are taken either from the global parameter settings, or programsdefaul

32

Exanpl e:
Runs

{

my_run
{
Consequent = [group = *]
Maxstar = 1
Trim = Optimal
Mode = TF
}

Additional stars

Syntax:

Additional_stars = value
Possible values:

Integer

Default value:
0

Example:

Additional_stars =5

Comment:

In the Theory Formation mode (see below), AQ21 learns completecamsistent
rulesets. This also means that covering all positive evertseisnination condition for
the learning process. In some cases, it may be desicafmerate additional stars even
if the learned cover is already complete, and this paranteifies how many times to
do so.

Ambiguity
Syntax:

ambiguity = value
Possible values:

IncludelnPos IncludeInNeg IgnoreForLearning IncludelnMajority,
DetectAmbiguity

33

Default value:

IncludelnPos

Example:

Ambiguity = IgnoreForLearning

Comment:

This parameter is used to control how AQ21 handles ambiguous datéac@teméents in
both the positive and negative classes). Five possible methods are described below.

IncludelnPos

Ambiguous events are used as positive examples for learning

IncludeInNeg

Ambiguous events are used as negative examples for learning.

IgnoreForLearning

Ambiguous events are removed (ignored) from the training datg

IncludeInMajority

Ambiguous events belong to the class for wthely occur the mos

often (their frequency is the highest).

—

DetectAmbiguity

The program checks if there are ambiguous euernlte training
data. If so, a list of the ambiguous events is displayed, othe

rwise

learning is performed as normal.

Attribute selection method

Syntax:

Attribute_selection_method = method

Possible values:

promise gain_ratio, none

Default value:

none

Exanpl e:

Attribute_selection_method = promise

Comment:

Please refer to the description in global parameters in Section 8.2.

34

Attribute selection threshold

Syntax:

Attribute_selectoin_threshold = value
Possible values:

real number in range from 0 to 1
Default value:

0

Exanpl e:

Attribute_selection_threshold = 0.5

Comment:

Please refer to the description in Section 8.2.

Attribute selection tolerance

Syntax:

Attribute_selection_tolerance = value
Possible values:

real number in range from 0 to 1
Default value:

0

Exanpl e:

Attribute_selection_tolerance = 0.5

Comment:

Please refer to description in Section 8.2.

Compute Alternative Covers

Syntax:

Compute_alternative_covers = value

35

Possible values:
true, false
Default value:

false

Exanpl e:

Compute_alternative_covers = true

Comment:

The learning process can usually produce more than one alternatggpton of a
learned class (alternative cover). AQ21 generates altersdtom final rules generated
in the star generation process. This is done only ifrtheruleparameter is greater than
one and this parameter is setttoe. When the option is enabled, program computes
displays the alternative covers in tRaitput_hypothesexomponent. The maximum
number of displayed alternatives is controlled byNae_alternativeparameter.

Consequent (class definition)
Syntax:

Consequent = complex
Possible values:

complex

Exanpl e:

Consequent = [color = red, blue]

Comment:

Consequent defines the class(es) for which learning is to be mpedoby AQ21. It
defines all left sides of rules that describe learned clasias value of the consequent is
given by a complex (Michalski, 2004). The consequent is used to dedgpositive and
negative examples for the runs (those who match consequent are positive examples).

If the paramete®Output_attributess used in the global parameters (Section 8.2), then all
specified output attributes must be used in the consequent.

Note:

To learn rules that distinguish between all possible values of an attribattheuicomplex
in the form [attribute = *], where attribute distinguishes leetwclasses. The possible

36

values of the attribute are taken from its domain definition, not fiteenactual data.
Because of that, it may happen that there are classes without any positingesxa

Exanpl e:

consequent = [color = *]

Continuous Optimization Probe

Syntax:

Continuous_optimization_probe = value
Possible values:

positive integer
Default value:

5

Example:

Continuous_optimization_probe = 10

Comment:

Used for optimization of continuous selectors (conditions). This pagardefines the
maximum number of possible extensions of an interval during the optionzof
continuous selectors. This parameter works only when AQ21 is omenat?D or ATF
modes, and th®ptimize_ruleseparameter is on. For details on ruleset optimization
please refer to th®ptimize_ rulesgparameter description on page 51.

Counting Attribute

Syntax:

Counting_attribute = value
Possible values:

true, false, ga
Default value:

false

37

Exanpl e:

Counting_attribute = true

Comment:

The Counting_attributeparameter specified in the run-specific component is sinalar t
one that is defined in the global parameters, but works only locally within a speaific

In addition to the values available in the gloRaunting_attributeparameter, the one
specified in the run-specific component also takes the value “ghiclfwstands for
Genetic Algorithmh The option must be followed by four integer numbers that specify:
population size, number of generations, number of children, and maximum namber
attributes to be used for constructing the new attributes. Faesaription of the
parameters’ meanings, please refer to Evolutionary Computatevatlite for example
(Michalewicz, 1994).

Define (create) new attribute

Syntax:
Define attribute_name [parameters] = definition

Possible values:
attribute_name — unique name of attribute to be constructed
definition — arithmetic expression that is used to define the attribute

parameters — definition of attribute parameters suepsitonandcost

Exanpl e:

Define x4 = x1 + x2 * sin(x3)
Define x5 [epsilon = 0.2, cost = 3] = x1 * x4

Comment:

There are situations where it is not possible to describe sedesoncept using the
original attributes. It may also happen that the user knows thratrieey be an arithmetic
interrelation between existing attributes, and wants to représenelationship in the
program. The simplest way to do this is to define new attributderin of A-Rules

(Arithmetic Rulelthat explicitly specify new attributes.

AQZ21 allows the user to define A-Rules using only continuous and irdéigéutes. The
generated attributes are continuous. The following operators can thdoudefine A-
Rules: +, - (binary minus), *, /, (power), - (unary minus), and fanstmax(ex1, ex2

38

), min(ex1, ex2,)avg(ex1, ex2,)abs(ex)sin(ex) cos (ex)tan(ex) In the list of
functionsexl, ex2 exare valid expressions.

In cases where the value of the derived attribute does not exigx@ormple division by
zero) AQ21 assigns the valbEA (Not Applicable described in Section 7).

Display Events Covered

Syntax:

Display_events_covered = value
Possible values:

true, false
Default value:

false

Exanpl e:

Display_events_covered = true

Comment:

If this parameter is turned on, in the output hypotheses componetiefautrent run,
after each rule, the program displays a component namented_positivethat contains
positive examples covered by the rule, amvered negativethat contains negative
examples covered by the rule.

Display Selectors Coverage

Syntax:

Display_selectors_coverage = value
Possible values:

true, false
Default value:

true

Exanpl e:

Display_selectors_coverage = false

39

Comment:

This option is used to indicate if the user wants to display cgedraumbers of positive
and negative examples covered) of selectors when displaying rélgsough rules are
displayed at the end of output, this affects only rules that aredé in the current run.
For instance a rule displayed with and without coverage of selectors is pcekelaw.

sel ectors_coverage = true:

<-- [x2=s . 4,0]
I p=4,np=4,u=4,cx=7,c=1,s=4 #92

sel ectors_coverage = fal se:

<-- [x2=9]
: p=4,np=4,u=4,cx=7,c=1,s=4 #92

Display Values Covered

Syntax:

Display_values_covered = value
Possible values:

true, false
Default value:

false

Exanpl e:

Display_values_covered = true

Comment:

If this parameter is activated, when displaying rules, &#eh selector, AQ21 displays
the coverage of each value of the attribute used in the selectaxdimple below shows
an example rule with the list of values covered by selectors.

The example below shows rule with one condition that sk&es0.35. The information

written after the condition is a list of covered values that apjpethe training dataset.
For example value 0.5 is present in one positive and zero negatiniagraxamples,

which is denoted by “ :1, 0;”, similarly value 1.4 is also presermne positive and zero
negative examples. In the second line of the example, a rule synspesented (the
rule has only one condition). For a description of the parametersaylsiplith the rule

please refer to Section 10.2.

40

Exanpl e:

<--[x6>=0.35:3,0] (#0.5:1,0;1.4:1,0; 2 :1, 0; #)
: p=3,np=3,enp=3,n=0,en=0,u=3,cx=5,c=1,s=3 # 30

Exceptions

Syntax:

Exceptions = value
Possible values:

true, false
Default value:

false

Exanpl e:

Exceptions = true

Comment:

In Pattern DiscoveryPD) andApproximate Theory FormatiofATF) modes AQ21 can
learn rules with exceptions (Michalski, 2004).

Ignore Attributes
Syntax:

ignore_attributes = attribitel [, attribute2 [, ...]]
Possible values:

comma-separated list of attributes

Exanpl e:

ingnore_attributes = color, height, age

Comment:

The parameter is identical to one that is defined in the glolbahy@ers component, but
works only for a specific run. For more details please refer to the Section 8.2.

41

Ignore events

Syntax:

Ignore_events = rules
Possible values:

a set of rules

Exanpl e:

Ignore_events <-- [color = red, yellow][shape = square]
<-- [color = blue]

Comment:

This option provides the possibility of ignoring events in the learpingess. The user
can specify a list of rules that describe events to be ignored. Strattintats used when
matching events with these rules.

Learn Rules Mode

Syntax:

Learn_rules_mode = value
Possible values:

standard, multi_seed

Default value:
standard

Exanpl e:

Learn_rules_mode = multi_seed

Comment:

This parameter controls the selection of seeds used to gertarate Iastandardmode,
AQ21 randomly selects one seed for star generatiormulti-seedmode, the program
selects randomly seeds that are extended against the first negative event l(ibeofa

is specified using thaumber_of_seedgsarameter). In the next step, AQ21 selects the
partial star with the highest value néw positives (Jplease refer to the LEF criteria
described below).

42

Lexicographical Evaluation Function (LEF)

Syntax:
lef type
{

[(criterionl, tolerancel)]

[(criterion2, tolerance2)]

}
Possible values:

lef type —LEF_star LEF_partial_star LEF_sort

criterion —MaxNewPositivedMaxNewPositives(MaxPositivesMinNegatives

MinNumberSelectordMaxNumberSelectoyslinCost
MaxSignificanceMaxQ, MaxEstimatedPositives
MinEstimatedNegativedaxEstimatedQ, GainRatio

tolerance— real value in range from O to 1

Default values:
TF and ATF modes:

lef_ps

{
MaxNewPositives, O
MinComplexity, O
MinNumSelectors, 0
MinCost, O

}

lef_star
MaxNewPositives, .3
MinComplexity, .3
MinNumSelectors, .3
MinCost, .3

}

lef_sort

{
MaxPositives, 0
MinComplexity, O

}

PD mode:

lef_ps

{
MaxNewPositivesQ, 0
MaxNewPositives, 0
MinNumSelectors, 0
MinComplexity, O
MinCost, O

43

}

lef_star

{
MaxNewPositives, .3
MinComplexity, .3
MinNumSelectors, .3
MinCost, .0

lef sort

{
MaxQ, 0
MaxPositives, 0
MinComplexity, O

Exanpl e:

lef_ps
{

MaxNewPositives, 0.1
MinNumSelectors, 0

Comment:

Lexicographical Evaluation FunctiodLEF) provides a simple and efficient way of
specifying a multi-criteria evaluation. The LEF is definedaalist of pairs <criterion,
tolerance>. Elements are evaluated criterion after criteniasrder from the list. All
elements that are beyond the tolerance from the best value of a criteriitterack out.

LEF is applied during a partial star generation (LEF-PS)yv&duate rules in generated
stars (LEF-STAR), and to sort rules in the program output (LEF-SORT).

MaxPositives

Maximum Number of Positives can be applied when user wants AQ#t&fer rules that
cover the largest number of positive events. This criterion is time-consunmog itshas
to count the number of positive examples that are covered.

MaxEstimatedPositives

Maximum Estimated Number of Positives covered by a rule. drtexion is based on
an estimate (upper bound) of the number of positives covered by a rule.

MinNegatives

Minimum Number of Negative Examples can be applied when the wm@Es wWQ21 to
prefer rules that cover the smallest number of negative eramflhis criterion is time-
consuming since it has to count number of negative examples theb\aeed by the
rule.

44

MinEstimatedNegatives

Minimum Estimated Number of Negatives covered by a rule. daged on an estimate
of the number of negatives and can be used to replace the MinNegaitasn in order
to increase program speed.

MaxNewPositives

Maximum Number of New Positives covered by a rule. Please that in order to
compute this value, the program needs to check all positives and chieek #ire already
covered or not, which is very time consuming for large datasets.

MaxEstimatedNewPositives

Maximum Estimated Number of Positives covered by a rule. Therion can be used
instead of MaxPosivesNewPositives criterion, since it is fadtlowever its result is an
estimate (upper bound) of the number of new positives that may not be correct.

MaxQ

Maximum Q is the most time-consuming LEF Criterion. It mazés the value of Q(w)
(see the “minimum q” parameter, page 48). It is very extelysiged in the PD and
ATF modes of AQ21 for selection of best rules.

MaxEstimatedQ

Max Estimated Q is used to maximize the value of the Q@gsure based on estimation
of positive and negative events covered by a rule. For definition ¢ measure,
please refer to the minimum g parameter.

MaxNewPositivesQ

Maximum New Positives Q is used to maximize Q(w) based onpasitives. It is very
time-consuming, since it has to compute the numbers of new positivesed by the
rule and negatives covered by the rule. For a definition of @(@gsure please refer to
the description of the minimum g parameter.

MaxEstimatedNewPositivesQ

Maximum Estimated Number of Positives Q is used to maximize\ad Q(w) based on
an estimate of new positives and new negatives covered by.a ltuten be used to
replace MaxNewPositivesQ criterion since it is fastesr ddefinition of Q(w) measure,
please refer to the description of the minimum g parameter.

MaxNumSelectors

Maximum Number of Selectors can be applied when the user prafessthat contain
more attributes (a larger number of selectors). This meabordd not be used as a first
criterion for LEF_PS and LEF_STAR, because it does not includéenorynation about
positive and negative examples covered.

45

MinNumSelectors

Minimum Number of Selectors can be applied when the user prefesswith smaller
numbers of selectors.

MaxSignificance

The Maximum Significance LEF criterion is used to prefer ruleth the highest

significance. Significance of a rule is defined as the sfirthe significances of the
positive examples covered by the rule. Significance of an evpnbvided by user using
the significance meta-attribute (see Section 6). To computeathe, it is necessary to
loop through all positive examples, which is time-consuming for large datasets

MinComplexity

Minimum Complexity is used to minimize complexity of learned sul@he complexity
of a rule is measured as complexity of premise + 2 * contglexf exception.
Complexity of a complex (either premise or exception) is medsas the sum of the
complexities of its single selectors. Weights of operatoeelectors are presented in the
table below.

conjunction 4
disjunction 10
internal disjunction 2
range 2
less or grater 1
equal 1
Not equal 2

Table 2 Weights used to compute complexity

MinCost

The Minimize Cost LEF criterion is used to select rules withlowest cost of attributes.
As was described in Section 6.2, each attribute has an assignedvestost of a rule is
defined as the sum of the costs of the attributes included in the rule.

Maxrule

Syntax:

Maxrule = value
Possible values:

positive integer
Default value:

5

46

Exanpl e:

Maxrule = 2

Comment:

Maximum number of rules kept from each star (only one is requimeafder to improve
performance. Maxrule greater than one is also required when alternative covers are
generated.

Maxstar

Syntax:

Maxstar = value
Possible values:

positive integer
Default value:

2

Exanpl e:

Maxstar = 5

Comment:

Maxstar parameter defines the maximum number of rules kepemory during the star
generation (Michalski and Kaufman, 2001). This parameter is useattow down the

search space over all possible rules that can be learnedbaesingsearch Selection of

the best rules is done according to criteria defined byLéxécographical Evaluation
Function(LEF-PS).

Model
Syntax:
Model = complex

Possible values:
complex

Exanpl e:

Model = [user = user2][host = host13]

47

Comment:

This parameter is used to define a model in Rhediction Based ModeDuring the
learning phase, AQ21 will ignore all events (both positive and neydtia¢ do not
match the model. The definition of model also affects the predibased testing (EPIC-
P) defined for the current run (for details on EPIC paramgtiease refer to the Section
9.2)

Minimum u

Syntax:

Minimum_u = value
Alias:

Minimum_rule_coverage
Possible values:

integer
Default value:

1

Exanpl e:

Minimum_u = 10

Comment:

This option defines a minimumnique coveragef a rule that is required for it to be
added to a ruleset. This parameter works only in TF mode, and dy truncate
parameter is set toue.

Minimum Q Percentage

Syntax:

Minimum_q_percentage = value
Possible values:

double
Default value:

5

48

Exanpl e:

Minimum_q_percentage = 0.2

Comment:

This parameter defines a minimum acceptable valu®(wf) for learned rules, where
Q(R, w) = compl(R"* consig(R ¥*. The minimum Q is computed as the best Q
found multiplied by the minimum Q percentageCompl(R)is a measure of
completeness of the ruRR andconsig(R)is a measure of consistency of the leIn
Pattern Discoverymode, AQ21 removes rules whose value of Q(w) is below the
minimum.

Mode

Syntax:

Mode = value
Possible values:

TF, PD, ATF, TEST
Default value:

TF

Exanpl e:

Mode = PD

Comment:

Learning mode is used to select which algorithm will be useduterlearning. In TF
(Theory Formatioh mode, learned rules are complete and consistent, while in PD
(Pattern Discovery and ATF Approximate Theory Formatiprmodes, they may be
neither complete nor consistent. Rules learned in PD and ATF nawdesptimized
according to value of Q(w). In the PD mode, AQ21 optimizes rukeke wearning them

(in the star generation phase), while in the ATF mode init@iyplete and consistent
rules are learned (as in the TF mode), but later the rulesptineized according to their
Q(w) measure, which may cause a loss of completeness and/or consistency.

In the TESTmode, the program does not learn rules, but only passes paramelers to t
testing module (please refer to fhestscomponent).

49

Negatives Percentage

Syntax:

Negatives_percentage = value
Possible values:

real value in range from Oto 1
Default value:

0.8

Exanpl e:

Negatives_percentage = 0.5

Comment:

This parameter controls the stop condition for the star generation latgorit there is no
progress after extending agaim&gatives probéimes, AQ21 selects another seed (and
starts generating a new star). Tiegatives probes defined asegatives percentage
multiplied by the number of negative examples.

Number of Seeds

Syntax:

Number_of_seeds = value
Possible values:

positive integer
Default value:

10

Exanpl e:

Number_of seeds =3

Comment:

This parameter controls the number of seeds used in the multi-sedegeration
algorithm. For details please refer to tbearn Rules Modgarameter description on
page 42.

50

Optimize ruleset

Syntax:

Optimize_ruleset = value
Possible values:

true, false
Default value:

true

Exanpl e:

Optimize_ruleset = false

Comment:

This option affects learning in the ATF and PD modes. If sdtu®, the program
optimizes learned rulesets (1) after each star is generated (2) the final rulesets
learned by program. As an effect of the optimization, learnexsetd may be neither
complete nor consistent. Optimization of rules may involve droppingeletcters,

extension of intervals, and climbing the hierarchy trees for structurdzltds.

Trim
Syntax:
Trim = value
Possible values:
MostGen MostSpecOptimal
Default value:

Optimal

Example:

Trim = MostGen

Comment:

A parameter used to control the generality of rules. The trimalguyithm is applied to
learned rules in order to specialize them (note that learned biafese trimming are
maximally general descriptions of the learned conceptMdstGenmode, learned rules
remain unchanged. IMostSpeanode, they are specialized to cover only these values

51

that appear in positive examples, and the learned rules contaitriblites (the most
general rule is intersected with the refunion of positive exahpl optimal mode, the
rules also cover only values from positive examples, but use omilyutgs that are
required to distinguish positive from negative.

Truncate

Syntax:

Truncate = value
Possible values:

true, false
Default value:

true

Exanpl e:

Truncate = false

Comment:

An option used to determine if rules should be truncated in TF mode. If set to true, AQ21
removes rules with unique coverage levels lower thmnimum uparameter. The
truncation is applied after all rules are learned.

w

Syntax:
w = value
Possible values:
real number in range from O0to 1

Default value:
0.5
Exanpl e:

w=0.1

Comment:

W is a parameter that controls the tradeoff between consistamtyompleteness of
learned rules ifPattern Discoveryand Approximate Theory Formatiomode. It is used
in the Q(w) measure. For details of tlig{w) measure please refer to thenimum Q
parameter.

52

9 DEFINING TESTING PARAMETERS IN AQ21

9.1 Overview

AQZ21, in addition to its learning capabilities, also provides a wadge of methods for
testing learned hypotheses and classifying new examptesdarg to the learned class
descriptions. This section describes implemented methods of {emtithdrow thedsts
component is organized in the AQ21 input file.

AQZ21 provides a variety of ways to test learned hypotheses follbwing sub-sections
describe the testing algorithms that are implemented (ATEFIC, EPIC-RB, and
EPIC-P).

9.2 Structure of Testscomponent in the AQ21 input file

This component specifies the tests to be performed on thedearesets and the testing
parameters to be used. The following paragraphs will deskribetail the parameters
that are used for testing.

Exanpl e:

Tests

{

examples

{
Method = ATEST

Full_report = true

}
episodes

Method = EPIC
Tolerance = 0.3
Full_report = true

}
}

The definition of thelestscomponent should follow the mandatétyns component and

the optional input hypotheses components (both for standard and prediceon-bas
testing). Its definition starts with the keywor@sts followed by the tests description.
The general form of the component is presented below.

53

Tests
{
testl

test 1 parameters

}
testn
{

test n parameters

}
}

The number of tests defined in AQ21 is not limited, and depends only @odlsethat
the user wants to achieve. Definitions of all tests stalt avunique test name followed
by the test parameters.

9.3 Testing Parameters

This section describes in detail all parameters that can be used to dsfne te

Evaluation of selector

Syntax:

Evaluation_of_selector = value
Possible values:

strict, flexible
Default value:

flexible

Exanpl e:

Evaluation_of_selector = strict

Comment:

The ATEST module in the AQ21 system has two possible ways to certijgutegree of
match between an event and a selector (condition): strictiexibly. The strict match
returns 1 whenever an event is covered by a selector and 0 otheFheflexible match
returns 1 whenever the event is covered by the selector and ad\ahedler than 1 and
greater or equal to O whenever the selector does not coverdtie d-orcontinuousand
discretized continuouattributes, the valueé decreases linearly with the distance between
the interval specified in the selector and value from the event. offer types of

54

attributes thdlexible selector match is equivalent to tieict selector match. Details if
the matchind methods are described in (Michalski, 2004)

Evaluation of conjunction

Syntax:

Evaluation_of conjunction = value
Possible values:

strict, coverage_ratipselectors_ratipflexible min, min_w prod, avg avg_w
Default value:

strict

Exanpl e:

Evaluation_of_conjunction = selectors_ratio

Comment:

This parameter is used to select the method of evaluating degmesgalf of an event to
conjunction of selectors (single rule).

Depending on the method used to evaluate selectors, AQ21 provides a rafmber
different methods of evaluating conjunctions of selectors (rules). The stact@ match
can be used withstrict, coverage ratip selectors_ratip and flexible methods of
evaluating conjunctions, while the flexible selector match can &g wigh min, min_w
prod, avg and avg_w methods of evaluating conjunctions (Michalski, 2004). The
following paragraphs describe these methods.

Evaluation of conjunction of strict selector evaluations:

The strict match checks if the event is fully included in the rule ($yrictatches all
selectors in the rule). If yes, the value of degree of match is one, othénwizero.

If the testing event fully matches the rule, towerage ratiaeturns the ratio between the
number of positive examples covered by the rule and the total numpesitye training
examples in the class. It returns zero otherwise. This methaglof¢ion of conjunction
makes sense when a probabilistic sum is used for evaluation of disjunction (see below)

The selectors ratianeasure returns the ratio between number of matched selectbes t
total number of selectors in the rule.

Theflexible match returns the ratio between the sum of matched selectors and the number
of output attributes to the number of attributes in the event, selpdi@téhe continuous

and discrete attributes. The program takes average of dagfrflexible match for the
continuous and discrete attributes.

55

Evaluation of conjunction of flexible selector evaluations:

Themin match returns the minimum of the degrees of match of the indiséigdtors in
the rule.

The min_w match returns the degree of match of the selector that hamiti@um
degree of match weighted by its coverage. The weight of edetia is defined by the
formulaw = p/(p+n), wherew is weight of the selectop,is number of positive examples
covered by the selector ands the number of negative examples covered by the selector.

The productmatch returns the product of the degrees of match of all themslat the
rule.

Theavgmatch returns the average of the degrees of match of all the seletharsuite.

The avg_wmatch returns the average of degrees of match of all saleateighted by
the coverage of the selectors. Analogously to min_w method, the wéigath selector
is defined by the formulav = p/(p+n), wherew is weight of the selectop, is number of
positive examples covered by the selector and the number of negative examples
covered by the selector.

Evaluation of disjunction

Syntax:

Evaluation_of_disjunction = value
Possible values:

averageprob_summax best_only
Default value:

average

Exanpl e:

Evaluation_of_disjunction = prob_sum

Comment:

The evaluation of disjunction parameter is used to control how degremstoh for
individual rules are combined into a degree of match for a rul&sete degree of match

is a number in the range 0 to 1, each degree of match can be dswpeobability; the
combination of such numbers must still be a degree of match (a number in range O to 1).

Averagecomputes the average of degrees of match of rules. Simiesty sumuses
probabilistic sum as the aggregation functidviax selects the highest degree of match.
Best_onlyreturns the degree of match from the best rule in the rulesetrding to the
LEF sort criteria (not necessarily the highest degree of match).

56

Default class

Syntax:

Default class = class
Possible values:

Name of the run that represents the selected class.
Default value:

other

Exanpl e:

Default_class = good_robots

Comment:

If an event or episode could not be classified, because itsedegjrenatch to all classes
are below the acceptance threshold, it is assigned to thetd#émsd. The default class
can be either one of classes or “other,” which means that seifedation is made.
Please note that the program does not check if the class ndraeatual name of one of
the classes, but if not, AQ21 sets the classification as other.

Prior probability for “other” class

Syntax:

Prior_probability _other = value
Possible values:

A real number in range from 0 to 1.
Default value:

1 /(2 * number of classes + 1)

Exanpl e:

Prior_probability_other = 0.01

Comment:

EPIC-RB, the rule-Bayesian hybrid testing method assumes ithreppobability of the
“other” class to be the value of this parameter. The defaudttjvely small, value is
defined as

1/ (2 * number of classes +.1)

57

Full report

Syntax:

Full_report = value
Possible values:

true or false
Default value:

false

Exanpl e:

Full_report = true

Comment:

This parameter is used to specify how detailed the output froteshieg module should
be. The full report additionally contains information about the dleagon of each
testing event. In cases when the testing dataset is largaytihe is also large. Format
of the output is described in Section 10.3.

Ignore events
Syntax:

Ignore_events = rules
Possible values:

a set of rules

Exanpl e:
Ignore_events <-- [color = red, yellow][shape = square]
<-- [color = blue]
Comment:

This parameter is similar to one defined in Rens component It allows AQ21 to
ignore events that match any of the specified rules. For dutadls, please refer to the
Runscomponentdescription in Section 8.2 and definition on page 42.

58

Method
Syntax:
Method = value
Possible values:
atest epic epic_p epic_rb
Default value:
atest

Exanpl e:

Method = epic

Comment:

This parameter is used to apply a basic method of testinging esin be performed for
classification of single events (ATEST) or for classtiilma of whole episodes (EPIC,
EPIC-P, EPIC-BR). The following paragraphs will describe tegrng methods in more
detail.

ATEST

Atest is an event classification algorithm implemented in AQRtie program matches a
single event against rulesets for each class to genedatgree of match for the classes.
Matching procedure is controlled lewaluation of selectorevaluation of conjunctign
andevaluation of disjunctioparameters described previously. Depending on parameters
settings, it may provide a single or multiple classificatibth@ event matches more than
one class with approximately the same degree or match -heséadrance parameter
description).

EPIC

Epic is an extension of the ATEST algorithm. Instead of chasgifsingle events, EPIC
classifies entire episodes (sequences of events that shaaabesalue of the Episode
meta-attribute). EPIC works by applying ATEST to all of épésode’s events, and then
aggregating their degrees of match. As can event classification ISR TPIC can give
a single or multiple classifications for the episode.

EPIC-P

Epic-P is an episode classification algorithm that class#@sodes according to the
prediction-based classification algorithm.

EPIC-BR

This version of the Epic algorithm combines a standard episodeficktssn algorithm
that computes degrees of match between rulesets and events vBwyesian

58

classification model. A degree of match of en event to class is computed as aatmmbi
of the degree generated by tWEESTmodule and a probability value from the Bayesian
model.

Runs

Syntax:

Runs = list of runs
Possible values:

comma separated list of runs
Default value:

all runs

Exanpl e:

Runs = good_robots, bad_robots

Comment:

This option is used to specify runs that are used for testing.ndies of the runs used
here need to be defined before in thes componentEach run identifies a learned class
or group of classes (in cases where * was used — samisequendescription in the
runs componen(page 36).

Stop when Decisive Advantage Probe

Syntax:

SDA_probe = value
Possible values:

integer greater than 1
Default value:

100

Exanpl e:

SDA probe = 30

Comment:

Stop when Decisive Advantage an EPIC algorithm modification that allows
classifications to be made on parts of episodes. When the degnetcbf of an episode

60

to one of the classes is clearly better than its degree whna the second best class,
EPIC-SDA ignores the rest of the examples from this episdue dfassification is
already indicative). Theda_probeparameter controls the minimum number of events
from the testing episode that must be evaluated before the SDA condition will kelappli

Stop when Decisive Advantage Threshold

Syntax:

SDA threshold = value
Possible values:

integer greater or equal O
Default value:

0

Exanpl e:

SDA _threshold = 2.5

Comment:

The SDA _thresholdontrols the minimum ratio between the best degree of match and the
second best degree of match needed to stop evaluating new example€PIS-SDA
testing algorithm. If this value is below 1, the SDA method is not used.

Threshold

Syntax:

Threshold = value
Possible values:

real value in range from Oto 1
Default value:

0

Exanpl e:

Threshold = 0.3

61

Comment:

Threshold defines the minimum value of the degree of match forssaifetation to be

accepted. If the degree of match of an event or an episode tss isl below the
threshold, it will not be classified to this class. If the degreematch are below the
threshold for all classes, the event (or episode) is classHidefault clasqusually class

“other”).

Tolerance

Syntax:

Tolerance = value
Possible values:

real value in range from Oto 1
Default value:

0

Exanpl e:

Tolerance = 0.1

Comment:

Tolerance defines range of the degree of match that is usedufiiplenclassifications.

The testing event or episode is classified to a class dagree of match to the class is
both above the Threshold, and above the product of the maximum degree of match for the
event/episode and the tolerance.

9.4 Input hypotheses

9.4.1 Overview

The AQ21 testing can be applied not only to the hypotheses learned the same
execution of the program, but also to those loaded from the input ftles especially
important feature when there is huge amount of data to learn fromh wiould be very
time-consuming. AQ21 allows testing hypotheses previously leameéfbraentered
manually, by an expert in the domain.

9.4.2 Defining Input hypotheses

The Input_hypothesesomponent can be used to load hypotheses that will be examined
by the ATEST, EPIC, and EPIC-RB testing methods. It contdefisitions of classes,
rules, and optionally additional information about the hypotheses.

62

For each class for which hypotheses are loaded from the inputhidre must be a run
component that corresponds to the class (has the same nameg¢arfimgglmode in such
run definition should be set to “test,” meaning that no learning takes place, dinlg.tes

The structure and description of the input hypotheses component is presented below.
I nput _hypot heses class
positive_events = pos
negative_events = neg

consequent

rules

}

Classis a unique name of a class that is identical with the nanaeroh in the runs
component.

Posis the number of positive examples covered by the hypothesis.
Negis the number of negative examples covered by the hypothesis.

Consequenis a complex that defines the class. For details pleasetoedescription of
consequent in theins componen(iSection 8.3).

Rules is a list of rules, where each rule is denoted by a “<--" sign followadcomplex.

Thepositive_eventandnegative_evenfgarameters are optional.

Exanpl e:
| nput _hypot heses userl

positive_events = 72
negative_events = 12

[user = 1]
<-- [host = 11, 13][app = outlook] : p =60, n =9
<--[hour=7..10] : p=10,n =2
<-- [app = acc, word][del=3.5] : p=7,n=3

}

For each class there must be exactly lopeit_hypothese€omponent

ATEST, EPIC, and EPIC-RB do not allow ambiguities in testing.détmeans that each
testing event has to match exactly one decision among the consequents ofdesé=d cl

63

9.4.3 Defining input for Prediction-Based Model testing

The Prediction Based Model learns rules within a model without comgiddata for
other models. During the testing phase, rules from all modelssiesittogether and need
to be loaded at the same time. Hypotheses for the PredictsmdBaodel can be tested
using only the EPIC-P method.

The structure of the prediction-based model input is presented below.
PBM i nput

modell

{

consequent = consequentl.1
rules

consequent = consequentl.2
rules

.

model2

{

consequent = consequent2.1
rules

.

Modell, model2 ... are complexes that define mode@onsequentl, ... are complexes
that define classes within modelRulesis list of rules where each rule is “<--" sign
followed by complex.

Exanpl e:

PBM i nput
{
[user = 1]
{
class = [shape =]
<-- [shape-3 =]
<-- [color-1 =1]
class = [shape = s]
<-- [shape-3 = 1]

[color-1 =g]
}
[user = 2]
{

class = [shape =1]
<-- [color-2<>r]
}

}

For details of the EPIC-P algorithm please refer to thecright®n of the Method
parameter described earlier in this document.

64

10 AQ21 OUTPUT

10.1 Overview

The AQ21 program generates output in a format that is idémtitae one used the input
files described in the previous sections. This is a very impdeatire of the program,
since the same parameters can be reused and applied withateevlearned hypotheses
can be manually modified and applied to testing data, or they capdaged when new
data became available. The following sections describe the outputhtie learning and
testing modules. An example of full AQ21 input and output is presented in Appendix A.

10.2 Output from learning

Similar to the input files, the AQ21 output starts with descript@ommon_domains

and attributes components. The components are generated from the actual program
settings, meaning that any default parameter values are displayed.
Common_domainandAttributes components may be different from the input file if the
program has constructed new attributes or dropped existing onesscApten of all
parameters in theCommon_domainsand Attributes components are presented in
Sections 5 and 6.

Learning parameters are displayed in the same format e Runs component in the
input file. This component contains all parameters used famitepr not only those set
up by the user, but also the parameters for which default valuesuged. Such an
output provides the user with complete information about the learning praes can
be used to reproduce experiments.

Example:

Comon_donai ns
{
color nominal {r,y, b, g,w}
shape linear {r,s,t}
user nominal {1, 2, 3}
Derived Domains
Count_shape linear 4
Count_color linear 3

Attributes

{
x1 shape epsilon = 0.5 cost = 1
X2 shape epsilon = 0.5 cost = 1
x3 shape epsilon = 0.5 cost = 1
x4 color epsilon = 0.5 cost =1
x5 color epsilon = 0.5 cost = 1
user user epsilon = 0.5 cost = 1

Runs

65

Output_attributes = user
Random_seed = 975313573

userl

{
Consequent = [user=1]
Learn_rules_mode = standard

Maxstar =2 Maxrule =5 Ambiguity = po sitive
Trim = Optimal
Exceptions = false

Mode = tf
Minimum_u =1

Optimize_ruleset = true
Continuous_optimization_probe =5

Truncate = true
Display_selectors_coverage = true
Display_values coverage = false
Display_events_covered = false
Dompute_alternative_covers = false

LEF_star

{
MaxNewPositives, 0.3
MinNumSelectors, 0.3
MinComplexity, 0.3
MinCost, 0.3

}

LEF partial_star
{

MaxNewPositives, 0
MinNumSelectors, 0
MinComplexity, O
MinCost, O

}

LEF_sort

MaxPositives, 0

}
}

}

The most important part of the output is etput_hypothesi€omponent, which shows
the results of the learning process. The structure dDthput_hypothesisomponent is
identical to structure of thtnhput_hypothesiscomponent presented in Section 9.4. It
contains learned rules and additional information: learning timepeuwf rules in the
cover, number of selectors (conditions) in the cover, complexity otdker, average
number of rules kept from each star, and number of uncovered positives.

Positive events and negative events are parameters that denoteshafriesitive and
negative events used for learning the target class respectively.

Each rule consists of the sign “<--" followed by a list ofestors and additional
parameters. AQ21 uses a simplified form of the selectorsedeiim(Michalski, 2004),
specifically:

66

[att rel val]

whereatt is the attribute nameegl is a relation, andal is a value, list of values, or a
range. In addition, each selector may contain two numbers prasemt the numbers of
positive and negative events covered by the selector. The presé¢hedwd numbers is
controlled by theDisplay_selectors_coveragearameter described in Section 8.3. The
list of selectors is followed by the symbol “:” followed bycamma-separated list of
additional parameters. The list of additional parameters ienexs in the table below.
Parameters are shown only if their values are computed (fon@g when appropriate
LEF criteria are selected). For example the value isfnot present in the output if the
unique coverage is not computed for a rule.

p number of positive examples covered by the rule
ep estimated number of positive examples covered by the rule
np number of positive examples covered by the rule and not covered by the

previously learned rules

enp number of positive examples covered by the rule and not covered by the
previously learned rules

n number of negative examples covered by the rule

en estimated number of negative examples covered by the rule
q value of qg)

eq estimated value ofw)

npq value of g{) for new positives
enpq estimated value ofwg(for new positives

u unigue coverage of the rule, i.e, the number of positive events covered by
this rule and not covered by any other rules

CX complexity of the rule

c cost of the rule

S significance of the rule

rule unique numeric identifier

Table 3 Parameters displayed with rules

67

Exanpl e:
Output_Hypotheses userl

-- This learning took =

-- System (CPU) time =2

-- User (Total) time =2

-- Number of rules in the cover = 1

-- Number of conditions =2
-- Complexity for this cover =14
-- Average number of rules kept from each stars =3

-- Uncovered Positives = 0

positive_events =4
negative_events =2
[user=1]
Rule 1

<-- [Count_shape_Eq_s=2:4,1]
[Count_color_Eq_g=0: 4,1]
: p=4,np=4,u=4,cx=14,c=1,5=4 # 36

}

In the above example the hypothesis for “user=1" contains one ftiletwo selectors

(conditions). It covers four positives and zero negatives, the unauerage of the rule
is four, its complexity is fourteen, its cost is one, and gaiicance is four. The rule’s
unigue identifier is 36. The learning time for this hypothesis wasseconds, and the
cover has two conditions (selectors).

10.3 Output from testing

Output from the testing module consists of two part$estscomponent that contains
parameters used in testing, and the actual result of testing¢hales classifications that
were made and some summaries. For a description of testinggbara please refer to
Section 9. The example below presents the output of testing forpéegproblem from
the robots domain from the IAQ program (Michalski and Pietrzykow&b®4). The
ATEST program was used for testing (classification of events).

68

Exanpl e:

#
-- Testing: Atest

Class0 = robots_friendly
Class1 = robots_unfriendly

True Event Event Event Degrees of nmtch

Class Episode Nunmber Freqg. C assO Classl Assigned
Cl ass(es)

0 0 14 1 1.0000 0.0000 {0}

0 0 15 1 1.0000 0.0000 {0}

0 0 16 1 1.0000 0.0000 {0}

1 0 17 1 0.0000 0.5000 {1}

1 0 18 1 0.0000 0.5000 {1}

1 0 19 1 0.0000 0.5000 {1}

ClassO0 Classl Oher # of Exanples
Cl assO 3 0 0 3
Cl assl 0 3 0 3
O her 0 0 0 0

Event C assification bars

of deci sions Correct I ncorrect

1 6 0

2 0 0

Other 0 0

Total Events =6

Defi nite Deci sions =6

Mul tiple Event C assifications =6

Correct Multiple Event Cl assifications=6
Predi ctive Accuracy Miltiple = 100.00%
Predi ctive Accuracy Averaged Milti ple =100.00%
Precision Miltiple = 100.00%

Singl e Event d assifications =6

Correct Single Event Cl assifications =6

Predi cti ve Accuracy Single = 100.00%
Predicti ve Accuracy Averaged Single =100.00%
Preci sion Single =100.00%

Deci sion rate =1.0000

Predi ction gain = 2.0000

Test Method Type = ATest

Evaluation of Selector = strict
Evaluation of Conjunction = strict
Evaluation of Disjunction = average

tolerance = 0.0000
threshold = 0.0000

Test Method name

Mapping of class
names

Description of
Events (only in
full_report mode)

Confusion Matrix

Event Class. Bars

Summary
information about
testing

Measures of the
quality of
classifications

Method’s
Parameters

69

This testing took:
0.0000 of System (CPU) time
0.0000 of User (Total) time

#-- end testing
#)

As shown in the above example all testing results are commentedootite AQ21
output can be directly used also as input, and testing results will be ignored bystre par

The testing output starts with the definition of classes and t¢beiespondence to runs
defined in the AQ2Runs component. In the example above, classO and classl denote
respectivelyrobots_friendlyand robots_unfriendlyruns. The order of classes may or
may not be the same as the order of definitions of runs; they aleredr
lexicographically.

In the full output mode, the program displays classification information for aliirtg
events (one row per testing event). The meaning of the columnsbitggthose events
is following: (1) true class (from testing data), (2) episode nur{fibem testing data,
used only by EPIC classifiers), (3) event number (unique evesisadreferred to as a
key), (4) event frequency, (5) degrees of match to all dasswl (6) assigned classes.
Because classification is based on degrees of match, the prowgrolassify events to
more than one class depending on the tolerance parameter (multiple ctesssjca

Confusion matrixdefines how many events for true classes (rows) are fedsso
different classes (columns). In a perfect classification, ipesitalues will be present
only on the diagonal of the matrix, and zeros will be prevalent outditiee diagonal.
The last column in the matrix shows the total number of eventsédaarh class. In case
of multiple classifications, it will not simply be the sum of the other columns.

Event classification barshow how many times the program made classifications to one,
two, three, etc. classes, and how many times the decision wastamrincorrect. Such
information is important to evaluate the multiple classificati@rs] check how often
AQ21 could not find a correct class within a given tolerance. Irexiaenple above, all
events were correctly and precisely classified, as indicated by nénnmbéhe first row of
classification bars.

Total eventss the total number of events (examples) used in testing.

Definite decisiongefers to how many times AQ21 assigns one class to an even¢. N
that it is not necessarily the number of events (for example when progrars malkiple
classifications).

Another section of the output from the testing module refers to nauktipksifications.
Multiple Event ClassificatioandCorrect Multiple Event Classificatiorefer respectively
to the total number and the number of correct multiple classifia Predictive

Accuracy Multipleis defined as the ratio of the number of the correctly diedsi
examples to the total number of testing examples, even if #ssifitation was not
precise and the program has chosen more than one possible Riled&tive Accuracy

70

Averaged Multipleis defined as the average of predictive accuracies focladises
computed separately. It is computed using the formula:

correct(i))

ave(total(i)

wherecorrect(i) is number of correctly classified examples for i-th clas$tatal(i) is
total number of testing examples from the i-th cld3ecision Multipleis defined as:

#events# classes#mclassifiations
#mclassifiations* (#classes-1)

if number of classes is greater than one, and

#events
#mclassifiations

if number of classes is equal to one. In the formulas above, #events islthendiar of
test events, #classes is the total number of classes, and #cala®ss is the total
number of multiple classifications.

The Single Event Classificatiosection refers to the single classification of events (a.k.a.
first choice classification). A single classificatiomisde when the degree of match to a
given class is the highest among degrees of match of aleslass fact, even if an
example was classified to more that one class it may comribwgingle classification if

its degree of match to the correct class is the strongéstgle Event Classification
Correct Single Event ClassificatipiPredictive Accuracy SinglePredictive Accuracy
Averaged Singleand Precision Singleare defined similarly to the parameters for
multiple classifications.

Decision rateis the ratio between the number of decisions (i.e., classificatd at least
one class) to the total number of exampléxediction Gainis defined as Prediction
Accuracy Multiple multiplied by the number of classes, whichesponds to “how often
the result is better than a random guess.”

At the end of the testing output, AQ21 displays the parametersfosdédsting and
information about system and user times that were required for the testing.

Additional output form EPIC classifiers

The EPIC classification program similarly displays information aboutléesification of
episodes. An example of specific output from the EPIC prograpmesented below,
where there are only sections corresponding to the episode cldssificall sections
common with the ATEST testing module are omitted (in the regdubuhey are also
present since EPIC applies ATEST for event classification).

Exanpl e:

Classifications for the Episodes

71

Cl assO Cl ass1 O her Confidence
Cl assO Matrix (degrees
Episodel 0.7500 0.0000 0.1250 of match of
Episode2 0.7500 0.0000 0.1250 episodes to all
classes)
Cl ass1
Episode3 0.2500 0.7500 0.0000
Episode4 0.0000 0.2500 0.3750
O her
Cl assO C ass1 Qher # of Episodes | Confusion
d assO 2 2 Matrl_x (numbers
d assi 1 1 2 of episodes
O her 0 clas§|f|ed to
particular
class)
Epi ¢ Epi sode Cl assification bars Episode
if of deci si ons3 Cor rlect I ncorrect Classification
bars
2 0 0
Other 0 0
. . Summary
Epi ¢ Total Epi sodes =4 information
Epi ¢ Defi nite Deci sions =4 about testing
Epi c Multiple Episode Classifications =4 Measures of the
Epic Correct Multiple Episode Classifications=3 quality of
Epi c Predictive Accuracy Miltiple = 75.00% classifications
Epi ¢ Predictive Accuracy Averaged Multiple =75.00%
Epi c Precision Miltiple =100.00%
Epi ¢ Single Episode O assifications =4
Epi ¢ Correct Single Episode Cassifications =3
Epi ¢ Predictive Accuracy Single =75.00%
Epi c Predictive Accuracy Averaged Single =75.00%
Epi ¢ Precision Single = 100.00%
Epic Decision rate = 1.0000
Epic Prediction gain = 1.2500
Epic Classification gain = 0.0000

In the presented example, all sections have analogous meanitigs ¢orresponding

sections for individual event classification. The degree of nadteln episode to a given
class is defined as the average of degrees of match ofealisefrom the episode to the
class.

In the EPIC section of the testing output, AQ21 first showZoafidence Matrixthat
contains the degrees of match between episodes and classesna@dh&ision Matrix
that contains the numbers of episodes classified to particulaeslag he next sections
of the EPIC output contain summarigsc¢uracy Precisionetc.) that are analogous to
the ATEST summaries. The only difference between the ATESTE&@ outputs is
that all summaries in EPIC are based on the classificatioapsiodes rather than
individual events.

72

REFERENCES

Baim, P., "The PROMISE Method For Selecting Most Relevant Atet&br Inductive
Learning SystemsReports of the Intelligent Systems Grol§G 82-1, UIUCDCS-F-82-
898, Department of Computer Science, University of lllinois, Urbana, September 1982.

Bloedorn, E. and Michalski R.S., “Constructive Induction from Data inlAQCI:
Further Experiments,Reports of the Machine Learning and Inference Laborativiiyl
91-12, School of Information Technology and Engineering, George Mason Utyivers
Fairfax, VA, December, 1991.

Bloedorn, E., Wnek, J. and Michalski R.S., “Multistrategy Constructiveudtion:
AQ17-MCI,” Reportsof the Machine Learning and Inference LaboratoLl 93-4,
School of Information Technology and Engineering, George Mason Uniyekddy,
1993.

Clark, P. and Niblett T., “The CN2 Induction Algorithmfachine Learning3(4):261-
283, 1989.

Glowinski, C. and Michalski R.S., “Discovering Multi-head Attributional €uin Large
Databases,” Tenth International Symposium on Intelligent Information Systems
Zakopane, Poland, June, 2001.

Kaufman K., “INLEN: A Methodology and Integrated System for KnowleBigeovery

in Databases,” Ph.D. Dissertation, School of Information TechnolodyEagineering,

Reports of the Machine Learning and Inference Laboratbtyl 97-15, George Mason
University, Fairfax, VA, November, 1997.

Kaufman K. and Michalski R.S., “The Development of the Inductive DataBgstem
VINLEN: A Review of Current Research,International Intelligent Information
Processing and Web Mining Conferengakopane, Poland, 2003.

Kerber, R. “Chimerge: Discretization for Numeric AttributeBroceedings of the Tenth
National Conference on Artificial Intelligence (AAAI '92AAI Press, pp. 123-128,
1992.

Michalewicz, Z., “Genetic algorithms + data structures = eimiuprograms,” Springer-
Verlag New York, 1994

Michalski R.S., “On the Quasi-Minimal Solution of the General CovefRngblem,”
Proceedings of the V International Symposium on Information Processing (FCIP
69)(Switching Circuits), Vol. ABled, Yugoslavia, pp. 125-128, October 8-11, 1969.

Michalski R.S., “ATTRIBUTIONAL CALCULUS: A Logic and Repsentation
Language for Natural Induction,Reports of the Machine Learning and Inference
Laboratory, MLI 04-2, George Mason University, Fairfax, VA, April, 2004.

Michalski R.S. and Kaufman, K., “The AQ19 System for Machine LearaimtjPattern
Discovery: A General Description and User's Guidegports of the Machine Learning
and Inference LaboratoryMLI 01-2, George Mason University, Fairfax, VA, 2001.

73

Michalski R.S. and Kaufman K., "Learning Patterns in Noisy Dalte AQ Approach,"
Machine Learning and its ApplicationRaliouras, G., Karkaletsis, V. and Spyropoulos,
C. (Eds.), pp. 22-38, Springer-Verlag, 2001b.

Michalski R.S. and Larson, J., “AQVAL/1 (AQ7) User's Guide and Prmgra
Description,” Report No. 731, Department of Computer Science, Universlllinois,
Urbana, June, 1975.

Michalski R.S. and Larson, J., “Incremental Generation of VL1 HypotheBes
Underlying Methodology and the Description of Program AQIRgports of the
Intelligent Systems GroydSG 83-5, UIUCDCS-F-83-905, Department of Computer
Science, University of Illinois, Urbana, January 1983.

Michalski, R.S and Pietrzykowski, J., "iIAQ: A Natural Induction 8Sygstfor Education
and Research in Machine Learning and Knowledge MiniRgports of the Machine
Learning and Inference Laboratgryseorge Mason University, Fairfax, VA, 2004 (to
appear).

Michalski, R.S and Wojtusiak, J., "Reasoning with Meta-values in l&@rning,"
Reports of the Machine Learning and Inference Laboratbtyl 05-1, George Mason
University, Fairfax, VA, 2005.

Quinlan, J. R.C4.5 Systems for Machine Learnjiidorgan Kaufmann Publishers Inc.,
1993.

Witten, H. and Frank, E.Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementatiphrgan Kaufmann, October, 1999.

Whnek, J., Kaufman K., Bloedorn, E. and Michalski R.S., “Inductive Learninge®ys
AQ15c: The Method and User's Guid&gports of the Machine Learning and Inference
Laboratory, MLI 95-4, George Mason University, Fairfax, VA, March ,1995.

Whnek, J. and Michalski R.S., “Hypothesis-driven Constructive Induction ib7AQCI:
A Method and ExperimentsMachine LearningVol. 14, No. 2, pp. 139-168, 1994.

The AQ21 and iAQ programs can be downloaded from The Machine Lgaamad
Inference Laboratory websitbttp://www.mli.gmu.edu/msoftware.html

74

APPENDIX A APPLICATION OF AQ21 TO EXAMPLE PROBLEMS

This appendix shows an example of an AQ21 input file, AQ21 executiopragdam
output. For ease of reading, in the presented example all commeiiteies and all
names of components ab®ld italics In the real AQ21 input file no formatting is
allowed (a text file).

This example is taken from the iIAQ program and uses the toygpnotbbmain based on
the classification of robots into friendly and unfriendly groups.

Descri pti on

{

This is an example of robots from the iIAQ program.

settings of AQ21. In this example AQ21 learns rules discrimi

friendly and unfriendly robots. It is done by learn
separately. After learning AQ21 applies the ATEST

It shows basic parameter
nating between
ing the two classes
program to test learned

hypotheses.

All lines starting with # sign are comments, and ar

}

This component defines common domains that can be
that appear in data. Please note that this is opt

input file and attributes’ domains can be defined

component. Section 4 of this manual describes def

AQ21.

Please also note that the presented example uses

while AQ21 supports wide range of different types
Comon_donai ns

e not interpreted by AQ21.

used to define attributes
ional component of the
explicitly in attributes
inition of domains in

only nominal attributes,

{
color nominal { red, yellow, blue, green, b lack, white }
shape nominal { round, square, triangle }
height linear { short, medium, tall }
inhand nominal { sword, balloon, flag, us_f lag, polish_flag }
bool nominal { no, yes }

}

This component defines attributes that appear in data and are used for

learning and testing. Each attribute corresponds to exactly one column

in the data (rows in data are events/examples). T 0 ignore

certain columns use key word “ignore” instead of name and definition of an
attribute. Definition of attributes in AQ21 is de scribed in section 5 of

this manual.

Please note that this component of input file is mandatory.

Attributes

{
head shape cost=1
body shape cost=1
smile bool cost=1
holding inhand cost=2
height height cost=1
antenna color cost=3
jacket color cost=1
tie bool cost=2

75

group nominal { friendly, unfriendly }

}

This component of the input file defines classes

The runs component is split into two parts, one d

for all runs and run-specific components that def

for each class to be learned. AQ21 requires defin

class. Please note the runs component is mandator
refer to section 8 of this manual.

Runs

definition of global parameters
Attribute_selection_method = promise

Definition of class robots-friendly
robots-friendly

{
Learn rules in Theory Formation (TF) mode in whic
is complete and consistent.
Mode = TF

Consequent of the class is defined as “gro
means that all events with value of attrib
will be used as positive examples for lear
will be used as negative examples.
Consequent = [group = friendly]

LEF Partial Star (LEF_PS) defines criteria
learned rules during the star generation p
criteria are used to select the best rules

positive examples with tolerance 0.1, mini
with tolerance 0, and minimum cost with to
be defined and its default value is presen
lef_ps

MaxNewPositives, 0.1
MinNumSelectors, 0
MinCost, 0

}

AQ21 can learn and display alternative rul
learned class.
Compute_alternative_covers = true

}

Definition of class robots-unfriendly
Please note that some parameters like definit
specified and AQ21 uses their default values.
robots-unfriendly
{

Learn in Theory formation Mode

Mode = tf

Define positive events as those that have
equal unfriendly
Consequent = [group = unfriendly]

and learning parameters.
efining global parameters
ine specific parameters
ition of at least one

y. For details please

h learned cover

up is friendly” what
ute group equal friendly
ning. All other events

of selection partially
rocess. In this case three

: maximum number of

mum number of selectors
lerance 0. LEF_PS need not
ted in section 8.3.

esets for the

ion of LEF are not

value of group

76

Do not display alternative covers
Compute_alternative_covers = false

end of runs component

}

This component of the input file defines tests of

performed. Each subcomponent corresponds to one t
total number of tests is two). If no tests are de

component should be omitted in the input file. Wi

subcomponent at least one parameter needs to be s
please refer to Section 8 of this manual.

Tests

Definition of the first test

robots-testl

{
Method of testing is ATEST (event classific
Method = ATEST

Defines method of matching events against r
strict matching is applied to match events

If an testing event matches all selectors i
#is 1, otherwise degree of match is 0.
Evaluation_of_conjunction = strict

Defines method of evaluating degrees of mat
degree of match of a testing event against

as maximum of degrees of match of all rules
Evaluation_of_disjunction = max

In full report mode program displays classi
event. Please note that for larger datasets
also be very large.

Full_report = true

}

Definition of the second test

robots-test2

{
Selectors ratio method is used to compute d
single testing event and a rule.
Evaluation_of_conjunction = selectors_ratio

Maximum is used to aggregate degrees of mat
degree of match of entire ruleset.
Evaluation_of _disjunction = max

Tolerance defines range of degree of match
are classified. In this case program will ¢

within 0.1 tolerance.

Tolerance = 0.1

Display classification for every single eve
Full_report = true

end of tests component

}

learned hypotheses to be
est (in this case the

fined, the entire tests

thin each test

pecified. For details

ation program)

ules. In this case the
against rules.
n a rule, degree of match

ch for rulesets. Here
a ruleset is computed
from this ruleset.

fication for every single
output from program may

egree of match of an

ch of single rules into

within which events
lassify to all classes

nt.

77

The events component consists of a list of traini

this case it consists of only training examples b

examples are in specified in a separate component
Each event consists of a list of comma-separated
order and number of attributes must be the same a
attributes component. There is no comma after the
Events are required by AQ21, however they may be
file, not necessarily in the events component of
Event s

ng and testing events. In
ecause testing

values of attributes.
s defined in the
last value in the event.
specified in separate
the input file.

{
triangle, square, yes, flag, medium, green , blue, vyes, friendly
round, square, Yes, flag, tall, green , blue, vyes, friendly

round, triangle, yes, balloon, medium, green
square, square, Yyes, balloon, short, red,

round, triangle, yes, us_flag, medium, green
round, triangle, yes, polish_flag, medium, green

triangle, square, no, us_flag, medium, yellow,
round, square, yes, sword, medium, green,
round, square, no, balloon, medium, yellow,
square, square, no, balloon, medium, red,
square, triangle, yes, sword, short, green,
round, triangle, no, flag, short, green,
square, square, Yyes, sword, tall, red,

}

This component defines events used for testing. F
same as in the events component. Testing events ¢
this component or in a separate file. Testing eve
Testing_events

{
triangle, square, yes, balloon, medium, green, b
round, triangle, yes, flag, short, blue, r
triangle, triangle, yes, us_flag, short, yellow, r

square, square, no, us_flag, short, blue, yell
round, triangle, no, flag, short, green, blac
square, round, yes, sword, medium, red, red,

}

, yellow, no, friendly

yellow, no, friendly
, yellow, no, friendly
, yellow, no, friendly

blue, yes, unfriendly
blue, yes, unfriendly
red, yes, unfriendly
green, yes, unfriendly
yellow, no, unfriendly
black, yes, unfriendly
red, yes, unfriendly

ormat of events is the
an be specified either in
nts are optional.

lue, no, friendly
ed, yes, friendly
ed, yes, friendly

ow, no, unfriendly
k, yes, unfriendly
yes, unfriendly

The

AQ21 executed on input file presented above generates output preseated Geitput
from the program has the same format as the input file, but comtaires information.
The unshaded commentsiialics were added manually to explain the output. Section 10
of this manual describes details of the AQ21 output.

-- Opening file robots1.ag21

-- Done Parsing

-- Number of Events: 13

-- Number of Testing Events: 6
Creating file

-- Output Generated by AQ21

The description component is copied directly from t
Description

{

he input file.

78

definition_filename = robotsl.aq21

This is an example of robots from the iIAQ program. It shows basic parameter
settings of AQ21. In this example AQ21 learns rules discriminating betwe en
friendly and unfriendly robots. It is done by learn ing the two classes
separately. After learning AQ21 applies the ATEST program to test learned
hypotheses.

All lines starting with # sign are comments, and ar e not interpreted by AQ21.

}

The debug information is displayed for technical purposes only and should be

ignored by users. It is used to identify the versio n of the program, and

needs to be used when submitting any problems.
(# -- Debugging information

The following information are required when submitt ing a bug.
They specify which version of the program was used.

$ld: ag21.cpp,v 1.8 2004/06/30 20:32:35 jwojt Exp $

$ld: AgLearner.cpp,v 1.14 2004/08/13 22:49:39 jwojt Exp $

$ld: BasicComplex.cpp,v 1.7 2004/08/12 22:53:11 jwo jt Exp $

$ld: LEF.cpp,v 1.1.1.1 2003/06/18 21:07:23 jwojt Ex p$

$ld: LEFCriterion.cpp,v 1.2 2004/08/12 22:53:11 jwo jtExp $

$ld: Domain.cpp,v 1.7 2004/06/30 20:32:12 jwojt Exp $

$Id: Attribute.cpp,v 1.8 2004/06/30 20:32:12 jwojt Exp $

$ld: Tests.cpp,v 1.10 2004/06/30 20:32:12 jwojt Exp $

$ld: Cl.cpp,v 1.5 2004/05/10 23:11:14 jwojt Exp $

#)

In the domains component, AQ21 displays all domains used by the program. This

includes domains defined by user and domains of der ived attributes (please
refer to Constructive Induction section). Please no te that the domain f or
attribute “group” defined explicitly in the attribu tes component was

displayed with the other domains.

Common_domains

{

bool nominal {no, yes}

color nominal {red, yellow, blue, green, black, white }

group nominal { friendly, unfriendly }

height linear { short, medium, tall }

inhand nominal { sword, balloon, flag, us_flag, p olish_flag }

shape nominal {round, square, triangle }
}
The attributes component displays all attributes used in learning and
testing. This includes derived attributes built by the Constructive Induction
module.
Attributes

head shape epsilon = 0.5 cost = 1
body shape epsilon = 0.5 cost =1

78

}

smile bool epsilon = 0.5 cost =1
holding inhand epsilon = 0.5 cost = 2
height height epsilon = 0.5 cost = 1
antenna color epsilon = 0.5 cost = 3
jacket color epsilon = 0.5 cost =1

tie bool epsilon = 0.5 cost = 2

group group epsilon = 0.5 cost=1

The runs component is copied fro

parameters are di

m the input file, but all relevant AQ21

splayed. This guarantees that all results can be re

For a description of displayed parameters please re fer to section 8
manual.

Runs

random_seed = 975313573

robots-friendly

consequent = [group=friendly]
learn_rules_mode = standard

maxstar =2 maxrule =5 ambiguity = |

trim = Optimal
exceptions = false

mode = tf
minimum_u =1

optimize_ruleset = true
continuous_optimization_probe = 5

truncate = true
display_selectors_coverage = true
display_values_coverage = false
display_events_covered = false
compute_alternative_covers = true
max_alternatives = 10

LEF_star
{

MaxNewPositives, 0.3
MinNumSelectors, 0.3
MinComplexity, 0.3
MinCost, 0.3

}

LEF_partial_star
MaxNewPositives, 0.1

MinNumSelectors, 0
MinCost, O

}
LEF_sort

MaxPositives, 0

cludelnPos

produced.
of the

80

Similar to the runs component, the tests component is displayed to the
output. All parameters, including those whose defau It values are used, are
printed.

evaluation_of_conjunction = strict
evaluation_of_disjunction = max
method = ATest

tolerance =0

threshold =0
full_report = true
sda_probe =100
sda_threshold =0

}

robots-test2

{

evaluation_of_selector = flexible
evaluation_of_conjunction = selectors_ratio
evaluation_of_disjunction = max

method = ATest

tolerance =0.1

threshold =0

full_report = true

sda_probe =100

sda_threshold =0

}

}
The output hypotheses components a re used to display learned rules and
additional information generated during the learnin g process. For the class
robots-friendly the alternative covers were generat ed (as requested in the
input file) and one generated alternative is displa yed. Additional
i nformation including number of positive and negativ e examples, complexity of
cover etc. is also displayed. For a detailed description please refer to
Section 10.2.

Output_Hypotheses robots-friendly

-- This learning took =

-- System (CPU) time =0

-- User (Total) time =0

-- Number of rules in the cover = 1

-- Number of conditions =2
-- Complexity for this cover =15
-- Average number of rules kept from each stars =4

-- Uncovered Positives = 0

positive_events =6
negative_events =7

This part of output refers to alternative covers.
-- 1 Rule(s) Eliminated because not necessary
-- [smile=yes] [holding<>sword] [jacket=yellow, blue,white]
: np=6,cx=26,c=1.33,s=5 # 51

(# Alternative ruleset 1

Number of rules =1
Number of conditions = 3
Complexity =26

82

[group=friendly]
<-- [holding<>sword] [antenna=red,green] [jacket
: p=6,np=6,cx=26,c=2,5=6 # 61

#)

And finally the learned hypotheses. In this case th
covers all six positive examples and none negative
selectors with attributes smile and holding respect

of the parameters displayed with the rules, please

[group=friendly]
Rule 1
<-- [smile=yes : 6,3]
[holding<>sword : 6,4]
: p=6,np=6,u=6,cx=15,c=1.5,5=6 # 60

}

=yellow,blue]

ere i s one rule that
examples. The rule has two
ively. For a description

refer to Section 10.2.

The class robots- unfriendly was learned without alternative covers (

default), so the only rules displayed are from the selected

cover has two rules, the first covering four, and t
positive examples.

Output_Hypotheses robots-unfriendly

-- This learning took =

-- System (CPU) time =0

-- User (Total) time =0

-- Number of rules in the cover = 2

-- Number of conditions =2

-- Complexity for this cover =14

-- Average number of rules kept from each stars
-- Uncovered Positives = 0

positive_events =7
negative_events =6
[group=unfriendly]
Rule 1
<-- [smile=no : 4,0]
: p=4,np=4,ep=4,n=0,en=0,u=4,cx=7,c=1,5=4 #

Rule 2
<-- [holding=sword : 3,0]
: p=3,np=3,u=3,cx=7,c=2,5=3 # 161

}

Output from testing is described in Section 10.3. |
tests were applied: robots_testl and robots_test?2.
events were classified correctly.

(#
-- Testing: robots-testl

ClassO0 = robots-friendly
Class1 = robots-unfriendly

program

best cover. This

he second covering

160

n the presented case, t

three

wo

In both tests, all testing

83

This part of the output is generated when the Full _report parameter is used.
It shows event-by-event degrees of match to all cla sses and lists of classes
to which each event was classified.

True Event Event Event Degrees of match

Class Episode Number Freq. Class0 Classl Assigned
Class(es)

0 0 14 1 1.0000 0.0000 {0}

0 0 15 1 1.0000 0.0000 {0}

0 0 16 1 1.0000 0.0000 {0}

1 0 17 1 0.0000 1.0000 {1}

1 0 18 1 0.0000 1.0000 {1}

1 0 19 1 0.0000 1.0000 {1}

The matrix below shows the number of events ¢ lassified to different classes.
Rows represent real classes and columns represent ¢ lasses to which events
were classified. In a perfect classification (like in this example) all

nonzero numbers are in diagonal.

Class0 Class1 Other # of Examples
Class0 3 0 0 3
Classl 0 3 0 3
Other 0 0 0 0

Event Classification bars

of decisions Correct Incorrect

1 6 0

2 0 0

Other 0 0

Total Events =6

Definite Decisions =6

Multiple Event Classifications =6

Correct Multiple Event Classifications = 6
Predictive Accuracy Multiple = 100.00%
Predictive Accuracy Averaged Multiple = 100.00%
Precision Multiple =100.00%

Single Event Classifications =6

Correct Single Event Classifications =6
Predictive Accuracy Single =100.00%
Predictive Accuracy Averaged Single = 100.00%
Precision Single =100.00%
Decision rate =1.0000

Prediction gain =2.0000

Test Method Type = ATest

Evaluation of Selectors = flexible
Evaluation of Conjunction = strict
Evaluation of Disjunction = max

SDA probe =100

84

SDA threshold = 0.0000

tolerance = 0.0000
threshold = 0.0000

This testing took:
0.0000 of System (CPU) time
0.0000 of User (Total) time

#-- end testing
-- Testing: robots-test2

ClassO0 = robots-friendly
Class1 = robots-unfriendly

True Event Event Event Degrees of match

Class Episode Number Freq. Class0 Classl Assigned

Class(es)

0 0 14 1 1.0000 0.0000 {0}

0 0 15 1 1.0000 0.0000 {0}

0 0 16 1 1.0000 0.0000 {0}

1 0 17 1 0.5000 1.0000 {1}

1 0 18 1 0.5000 1.0000 {1}

1 0 19 1 0.5000 1.0000 {1}
Class0 Classl Other # of Examples

Class0 3 0 0 3

Class1 0 3 0 3

Other O 0 0 0

Event Classification bars

of decisions Correct Incorrect

1 6 0

2 0 0

Other 0 0

Total Events =6

Definite Decisions =6

Multiple Event Classifications =6

Correct Multiple Event Classifications = 6
Predictive Accuracy Multiple = 100.00%
Predictive Accuracy Averaged Multiple = 100.00%
Precision Multiple =100.00%

Single Event Classifications =6

Correct Single Event Classifications =6
Predictive Accuracy Single =100.00%
Predictive Accuracy Averaged Single = 100.00%
Precision Single =100.00%
Decision rate = 1.0000

Prediction gain =2.0000

86

APPENDIX B

COMPARISON OF FEATURES OF C4.5, AQ19, AND AQ21

Feature:

C4.5

AQ19

AQ21

Comment

Attribute types

Nominal

Linear

Cyclic

Discretized Continuous

Integer

Continuous

Structured nominal

Structured linear

Set-valued

Compound

Output types

Single attribute (selected o
all values)- nominal

Structured attribute

Sequential covers

Multi-head

Y*

* Definition of class is a complekat may have more than one
attribute. Program cannot compute automaticallyte3gan
product of domains of output attributes to leatmallti-head
classes.

Order of selectors

Alternative covers

Y*

Y**

* Implemented in speciakrsion used for IAQ
** Based on maxrule

Negation of selectors

Y*

Y**

* Implemented in spalcversion used for iIAQ
** Negation ratio is 0.6

Special values

Do not know “?”

Not applicable “N/A”

Irrelevant “*”

<<

<|<|<

Running Program

Batch mode

C4.5 input format

AQ19 input format

* Can be converted to AQffrmat by an external program

AQ21 input format

Input data processing

Random event selection

PROMISE based attribute
quality

* Used for attribute selection

Gain ratio based attribute
quality

Y*

Y**

* Used for building decision trees
** Used for attribute selection

ChiMerge for automatic
discretization

Automatic domain
discovery

Ambiguities

Y*

Y**

* IncludelnPos, IncludeIinNegntludelnMajority, Ignore, Max
** IncludelnPos, IncludelnNeg, IncludelnMajoritygrore

Ignoring events

Y*

* Rules that define eventbwignored. Can be ignored for all

87

classes or a specific class.

Intelligent Target Dataset
Generator (ITG)*

* Implemented in INLEN and VINLEN systems

Learning Modes

Theory Formation (TF)

Approximate Theory
Formation (ATF)

* Learns rules like in TF mode, but optimizé®m as in PD
mode. Does not guarantee neither completenessonsistency.

Pattern Discovery (PD)

Uniclass

Incremental Learning

Full Event Memory*

* Implemented in INLEN system

Partial Event Memory*

* Implemented in AQ11 syst

No Event Memory

Other Learning Params

Trim

Y*

* MostSpec, Optimal, MostGen

Multi-seed star generation

Rule/ruleset optimization

Truncate rules

No-loss truncation

LEF Criteria*

* AQ19 has additional criteria not listed here

MaxPositives

MaxEstimatedPositives

MinNegatives

MinEstimatedNegatives

MaxNewPositives

MaxEstimatedNewPositive$

MaxQ

MaxEstimatedQ

MaxNewPositivesQ

MaxEstimatedNewPositivesQ

MaxNumSelectors

MinNumSelectors

MaxSignificance

MinComplexity

MinCost

GainRatio

<<

'<'<'<-<-<-<_<-<-<'<_<-<_<-<_<—<

Constructive Induction

A-rules

<

L-rules

DCI

HCI

KCI - Advise

Counting Attributes

<< <

Testing

ATEST

EPIC

EPIC-RB

EPIC-P

EPIC-SDA

<|<|=|<|<

88

APPENDIX C TEMPLATES

Template 1 Learning

Descri ption

{

Template for learning problem. Please comment out not needed parts of the
file by using # and/or (# #).

Donai ns

{

color nominal {red, green, blue}

}

Attributes

background color
number linear {0, 1, 2 }
length continuous 0, 200
class nominal {c1, c2}

}

Runs

{
Run_c1

{

Mode = TF # Possible values: TF, ATF, and PD

Consequent = [class=c1]

Ambiguity = IncludelnPos # Possible values: IncludelnPos, IncludelnNeg,
IgnoreForLearning, and DisplayAmbiguities

Trim = Optimal # Possible values: MostGen, Optimal, MostSpec
Compute_alternative_covers = True

Maxstar = 1

Maxrule = 10

}

Run_c2

{

Mode = TF # Possible values: TF, ATF, and PD

Consequent = [class=c2]

Ambiguity = IncludelnPos # Possible values: IncludelnPos, IncludelnNeg,
IgnoreForLearning, and DisplayAmbiguities

Trim = Optimal # Possible values: MostGen, Optimal, MostSpec

Compute_alternative_covers = False

Maxstar = 1

Maxrule = 1

}
Run_All_in_PD

{

Mode = PD # Possible values: TF, ATF, and PD

Consequent = [class=*] # "' indicates learning for all possible values

Ambiguity = IncludelnPos # Possible values: IncludelnPos, IncludelnNeg,
IgnoreForLearning, and DisplayAmbiguities

Trim = Optimal # Possible values: MostGen, Optimal, MostSpec
Compute_alternative_covers = False

Maxstar = 1

Maxrule = 1

}

89

Run_Multi-head

{

Mode = PD # Possible values: TF, ATF, and PD

Consequent = [class=c1][length<=40] # Definition of Multi-head rules

Ambiguity = IncludelnPos # Possible values: IncludelnPos, IncludeinNeg,
IgnoreForLearning, and DisplayAmbiguities

Trim = Optimal # Possible values: MostGen, Optimal, MostSpec

Compute_alternative_covers = False

Maxstar = 1
Maxrule = 1
}

}

Event s

{
red, 1, 34.6, cl
green, 0, 2.45, c2

red, 1, 33.0, cl
blue, 0, 33.5, c2
}

Template 2 Learning and Testing

Description

Template for learning and testing problem. Please comment out not needed parts
lsi)lfetrtl)?/ using # and/or (# #).

}

Domai ns

color nominal {red, green, blue}

}

Attributes

background color
number linear {0, 1, 2 }
length continuous 0, 200
class nominal {c1, c2}

}
Runs
{
Run_All_in_PD
i\/lode =PD # Possible values: TF, ATF, and PD

Consequent = [class=*] # " indicates learning for all possible values
Ambiguity = IncludelnPos # Possible values: IncludelnPos, IncludelnNeg,
IgnoreForLearning, and DisplayAmbiguities

Trim = Optimal # Possible values: MostGen, Optimal, MostSpec
Compute_alternative_covers = False

Maxstar = 1

Maxrule = 1

}

90

}

Test s
Testl

Method = ATest # Possible Values: ATest, EPIC, EPIC_P, EPIC_RB
Evaluation_of selector = Strict # Possible values: Strict, Flexible
Evaluation_of_conjunction = Strict # Possible values: Strict,
Coverage_ratio,
Selectors_ratio, Flexible, Min,
Min_w, Prod, Avg, Avg_w
Evaluation_of _disjunction = Max # Possible values: Max, Prob_sum,
Average, Best_only
Default_class = Other # Specity name of run or 'Other’
Full_report = False
Tolerance = 0.1
Threshold = 0.1

}
Test2

Method = ATest # Possible Values: ATest, EPIC, EPIC_P, EPIC_RB
Evaluation_of_selector = Strict ~ # Possible values: Strict, Flexible
Evaluation_of _conjunction = Selectors_ratio # Possible values: Strict,
Coverage_ratio,
Selectors_ratio,
Flexible, Min,
Min_w, Prod, Avg, Avg_w
Evaluation_of_disjunction = Max # Possible values: Max, Prob_sum,
Average, Best_only
Default_class = Other # Specity name of run or 'Other’
Full_report = False
Tolerance = 0.1
Threshold = 0.1

}

Events

{
red, 1, 34.6, c1
green, 0, 2.45, c2

red, 1, 33.0, c1
blue, 0, 33.5, c2
}

Testing_events

{
blue, 1, 34.6, c1
blue, 0, 9.999, c2

}

Template 3 Testing

Description

Template for testing problem. Please comment out not needed parts of the
file by using # and/or (# #).

91

}

Donai ns

{

color nominal {red, green, blue}

}

Attributes

{

background color
number linear {0, 1, 2}
length continuous 0, 200
class nominal {c1, c2}

}

Runs

{

Run_cl

Mode = Test # Don't learn - only testing
];{un_cz
{
Mode = Test # Don't learn - only testing
}

}

Tests

{
Testl

Method = ATest # Possible Values: ATest, EPIC, EPIC_P, EPIC_RB
Evaluation_of_selector = Strict # Possible values: Strict, Flexible
Evaluation_of_conjunction = Strict # Possible values: Strict,
Coverage_ratio,
Selectors_ratio, Flexible, Min,
Min_w, Prod, Avg, Avg_w
Evaluation_of _disjunction = Max # Possible values: Max, Prob_sum,
Average, Best_only
Default_class = Other # Specity name of run or 'Other’
Full_report = False
Tolerance = 0.1
Threshold = 0.1

}

I nput _hypot heses Run_cl

[class=c1] # Consequest of the class
<-- [number=1] # First rule
<-- [length>=200][background=red] # Second rule

}

I nput _hypot heses Run_c2

[class=c2] # Consequent of the class
<-- [number=0] # Only one rule defined

}

Testing_events

{

blue, 1, 34.6, c1
blue, 0, 9.999, c2
}

92

APPENDIX D AQ21 PARSER

1. Reserved Keywords in AQ21 Input Files

The following is a list of reserved keywords in AQ21 input filleat cannot be used to
define values of domains and therefore cannot be used in evensexdmple the
following definition is_incorrect

x4 nominal { robot, blue, clouds, continuous }

because of used keywombntinuous In such case it is needed to replace the value
continuous by for example valueontinuous_in domain definition and all events.
Correctedversions of the definition are presented below:

x4 nominal { robot, blue, clouds, continuous_ }
x4 nominal { robot, blue, clouds, continuous1 }

AQZ21 parser is not case sensitfee keywords and for example “advise” is equivalent to

“ADVISE” and “AdVise”.

advise key
attribute_selection_method lef
attribute_selection_threshold lef_partial_star
attribute_selection_tolerance lef ps
attributes lef_sort
chimerge lef_star
common_domains linear
consequent model
continuous n/a
cost na
counting_attribute nominal

covered_negatives
covered_positives

output_attributes
output_hypotheses

cross_validation pbm_input

dci random_seed
define ranges

discr runs
discretized significance
domains split_events_percentage
episode str

epsilon structured
events testing_events
events_percentage tests
frequency tevent

has_a

ignore_attributes
ignore_events
indexinput_hypotheses
integer

is_a

93

2. Definition of Values in AQ21 Input Files

All values of attributes need to fall into one of three catego8&RING, DOUBLE, or
INTEGER.

STRING = ([a-zA-Z])+(([a-zA-Z])*([0-9)*(\\-_~&])*)*

As shown above, STRING values start with a letter that cafollywed by sequence of
letters, digits, or special signs. For exampad, redl, reld RED, andred’s are valid
STRING values, whildred 123 and‘red are invalid.

DOUBLE := (-)?[0-9]*"."[0-9]+([eE]([+-])?[0-9]+)?

DOUBLE values start with a digit or “—* (minus) sign, followedg digits, mandatory “.”
sign, mandatory list of digits and optional exponent. For exarij@8.456 -0.33 123.4
123 and-123.456E+7are valid DOUBLE numbers whif23-34 12.34.56 twenty and+-34
are invalid.

INTEGER = (-)?[0-9]+([eE]([+-])?[0-9]+)?

INTEGER values start with optional “-“ (minus) sign followed itmandatory list of digits
and optional exponent. For example -123, 0, and 23E+33 are valid INTEGHEES vatile
123.456 and123+456are invalid.

99

A publication of theMachine Learning and Inference Laboratory
School of Computational Sciences

George Mason University

Fairfax, VA 22030-4444 U.S.A.

http://www.mli.gmu.edu

Editor: R. S. Michalski
Assistant Editor: K. A. Kaufman

The Machine Learning and Inference (MLI) Laboratory Repodse an official publication of the Machine
Learning and Inference Laboratory, which has beeplighed continuously since 1971 by R.S. Michakski’
research group (until 1987, while the group wathatUniversity of lllinois, they were called IStfglligent
Systems Group) Reports, or were part of the Departrof Computer Science Reports).

Copyright © 2004-2005 by the Machine Learning amigérience Laboratory.

