Reports

Machine Learning and I nference Laboratory

The LEM3 Implementation of
Learnable Evolution Model
User’'s Guide

Janusz Wojtusiak

MLI 04-5
P 04-7
November, 2004

School of Computational Sciences

George Mason University

THE LEM3 IMPLEMENTATION OF L EARNABLE EVOLUTION M ODEL
USER sGuIDE?

Janusz Wojtusiak
Machine Learning and Inference Laboratory, Georgesdh University, Fairfax, VA

jwojt@mli.gmu.edu http://www.mli.gmu.edu/jwbj
also
Institute of Computer Science, Jagiellonian Uniitgr&rakow, Poland

Abstract

This report presents a User's Guide for the LEM3 programpleémenting Learnable Evolution
Model, a machine learning-guided form of evolutionary computatiorcoltrast to the previous
implementations, LEM3 employs the newest AQ21 machine learnowyan and includes several
extensions and new features. The new features include a degqatiote of machine learning and
conventional evolution modes, capabilities for defining the f#r@aluation function outside of the
main program, setting up LEM3 parameters, and deciding what irtiorm@® be outputted by the
program. LEM3 appears to be particularly suitable for soleimigplex optimization problems in
which the fitness evaluation function is time-consuming, Anotheoitant feature is that it can be
applied to the optimization of non-numerical problems involving mplitsttributes.

Keywords: machine learning, evolutionary computation, learnable evolution Imode
function optimization, engineering design.

Acknowledgments

A number of people helped with LEM3 program and this manual. Work drBhleproject

is constantly supervised by Professor Ryszard S. Michalski \gwimvented the LEM
algorithm and a number of its extensions. He also provided commmeht®@ections to this
document. Dr. Kenneth Kaufman, Dr. Bartlomiej Sniezynski, and Jaretkzykowski
reviewed this manual and provided useful comments about the program avd LE
methodology.

Research activities in the Machine Learning and Inferenberatory are supported in part
by the National Science Foundation Grants No. 1IS 9906857 and IIS 0097476, mart by
the UMBC/LUCITE #32 grant.

! User's Guide based on LEM3 version 2004-11-10

4

5

INTRODUGCTION L.ttt e e et e e e e et e et e ettt e e e et e e e et ee s e s ae st s e eaa s e st s e esansssanssetnesnenss 1
RUNNING THE LEM3 PROGRAM ...ttt ettt e et e e e et e st seeaa e s saae e s b e eeanans 1
2.1 OPTIMIZATION PROBLEM DEFINITION . ctuttuiitiiiteitetteetetteeteetestessssesssesnessnsesneesnsssnsesnessneesneesnersnees 3
-f name of a predefined fitNESS FUNCLION...........cooiiiiie e 3
= L o101 0] o < o) = 111] 01U | (=T 5
-Ib [0 1LY g o1 11 T TN 5
SUD UPPEN BOUNG. ...ttt e e e e e a e e e 5
2.2 LEMS3 ALGORITHM PARAMETERS. ... ttutitttiitietetttttaeetetteetetteesaeeetestessttesteestesstsesneesnersneesnessaaees 6
-p 16 o101 K= 10 16 PSRRI 6
-C (18 Taal oI g e a1 o [= P 6
-g NUMDEN O GENEIALIONS ...t ettt e sttt e e e sk e e e e s aabr e e e e s sanneeeeeeaae 6
-h a1 T (= o [P PUURPTRRRR 6
-1 Lo TV A1 a1 == gTo] [TR 7
-Ip (L= T T o o] o o= P 7
B 0] ST 4110 = o o I o 0] o= R 7
Lo | I o = o g 2= Lo I o 0] o= T 8
s I =T (0= g o o] o= T OO PP PP U PP PTRPPPPPIN 8
1 0| GO 010 =11 [0 g T =1 1o J TR 8
-sel Lo Lo o T a =1 410 o [F TN 9
-surv SUrVIVAl SEIECHTION MELNOU e e e e e e raeeeeen 9
Lo (1S Ao [{1 o LU] 1) I 9
B[00 (1S = (= 10
~AESCI <ABSCITPLION LY. eeie ettt e e ettt e e e e e st bt e e e e s ebre e e e e e anbneeeeeesaanes 10
2.3 EXPERIMENT PARAMETERS. ...t tttttittittet et et et eeteeteet et eeteseaseaeeataeraeaetaetataetaetasasassssnsrnsensenrenns 10
I 0o 01 1= 0= T PP PPR P OTPPPPP 10
-runs LU a0 = o 0 1N 11
-sr NUMbEr Of SIGNITICANT FUNS......ooeiiiiee e e e e e e e e e e e e e e 11
-r (= 1[0 (o 0= << o 1R 12
2.4 LEMS OUTPUT PARAMETERS . .. et iitett ettt ettt e e e e et e s e e et e e s s et e et s e b s et s e sa s sa s et esaesanssensernnarens 12
-0 OULPUL FITE NMAIME. ... et e e e et e e e e e aarneeas 12
2 (6 [P TP TP 12
B Y2 13
B o o L PO PSPPRTPP 13
o] 13
oL T TP T PP PP PP 13
OUTPUT FROM LEMS3 ..ottt ettt et e e et e et e e e et e e e e e s et e e s et e e eat e e saa e s st easanseesaneees 14
3.1 (D= O L = TN 14
3.2 (@ = o] Y I @ 10 1 1= U RS 18
DEFINING THE FITNESS FUNCTIONottt s e e et s e e s e eaa e e s s e eaneeeeas 19
g SV U 1y S 19
4.2 DEFINITION OF FITNESSFUNCTION IN THELEM3 SOURCECODEcccvuiiiieeiieeeeieeeeeee e, 20
421 Class cOMpPULe_SIgNIfICANCEueiiiii i ceeeee ettt e e e e ee s 20
4.2.2 Defining Your OWN FitNeSS FUNCHIONciiiieiiiiiii ettt 22
CONCLUSIONS AND FUTURE EXTENSIONS OF LEMS.... oo 23

REFERENCES ..o bbb e e et e e e r e e e e e e e e e e s 23

1 INTRODUCTION

The Learnable Evolution Model (LEM) is a modern approach to evolufiac@nputation

that combines evolutionary algorithms with machine learning. ldstéaapplying semi-
random Darwinian operators such as mutation and recombination, LEMsappheachine
learning program to determine characteristic featuresttdrggerforming individuals that do
not appear in worse-performing individuals. These features, learnddeirform of

attributional rulesets, are used to generate new individuals in an instantiatiessproc

LEMS3 is an implementation of the Learnable Evolution Model that u§glAas a learning
module. A deep integration of AQ21 within the system makes LEM3 mffic@ent than

previous implementations, and allows the user to specify a desorggtiindividuals in the
population using a wide range of attribute types available in Hraihg program. These
attribute types includenominal ordinal, interval, ratio and structured The ratio (or

continuous) attributes can be used directly, or after discretizasory the ANCHOR

algorithm (Michalski and Cervone, 2001).

This manual serves a guide for using the program and it is not idtdndprovide a
description of the method or algorithms involved. For the latterrahder is referred to a
LEMS3 technical report (Wojtusiak, 2004b) available on the website diidehine Learning
and Inference Laboratory http://www.mli.gmu.edu, from which the BEWbgram can also
be downloaded. Detailed information about the AQ21 machine learroggapn can also be
found in the MLI website (Wojtusiak, 2004a).

2 RUNNING THE LEM3 PROGRAM

LEM3 is a command-based program that can be executed under Linuxindows
environments. LEM3 does not require any installation, and only gutable binary file is
needed to run the program and perform experiments. Computational paywired for
LEM3 depends on the optimization problem. When computation of the fitnesson is
not time-consuming, LEM3 can be run on a personal computer with hundratisitutes
and for thousands of iterations.

For illustration LEM3 performance, Table 1 presents the ex@tutme and maximum
memory usage in experiment on optimizing the Rastrigin function diffterent numbers of
variables. In this example, the program was not run with the oppiarameter settings, so
the presented memory usage and computational time are only roughtestiThe program
was run on DELL PowerEdge 4600 with Intel Xeon 2 GHz processors rurmeniinux
Red Hat 7.3 operating system.

of attributes | Population size # of iterationime of execution| Maximum
(generations) memory usage

10 100 100 <ls 1.3 MB

100 100 100 21s 6.7 MB

200 150 200 222's 22 MB

500 300 500 5130 s 110 MB

Table 1 Examples of execution time and memory usage of LEM3 in optimizing
Rastrigin Function with 10, 100, 200, and 500 variables

In both Linux and Windows operating systems LEM3 is executed frorshék as shown
below.

To run the LEM3 under Windows OS (95 or higher) open the command prangawand
type:

lem3 [parameters]
To run the LEM3 under Linux OS (Red Hat or other) type in the shell:

Jlem3 [parameters]

where [parameters] stands for a list of possible options deddatss in this document. The
following example shows command that executes LEM3 with selgmaeameters. Other
parameters are listed later in this document.

Example:

Jlem3 —p 100 —c 100 —g 300 —f rastrigin —att 100
—runs 10 —o myfile -ph

-p indicates that the foll owi ng nunber is the popul ation size, so the
popul ation size is in this case 100.

-c indicates that the foll owi ng nunber is the nunber of children, so
the nunmber of children is in this case 100.

-g indicates that the foll owi ng nunber is the nmaxi mum nunber of
generations, so the naxi mum nunber of generations is in this
case 300.

-f indicates that the foll owi ng name specifies the optimnization fitness
function to be used, so the fitness function is in this case the
predefi ned Rastrigin function

-att indicates that the follow ng nunber is the nunmber of attri butes,
so the nunber of attributes
is in this case 100.

-runs indicates that the foll owi ng nunmber is the nunber of executions
of programwith different random seeds and the sanme paraneters; so th
nunmber of executions is in this case 10.

-0 indicates that the following nane is the nane of the output file to
be generated; so the filenanme is in this case myfile

-ph neans that program prints hypotheses | earned by AQ1 nodule in
all iterations.

As seen in the example above parameters are passed to the program in form
-param val

whereparamis the parameter name awmdl is the (optional) value of the parameter. For
instance, —att 100 or —pp. The following sections of this manual degtrlatail all LEM3
parameters.

2.1 Optimization Problem Definition

-f <name of a predefined fitness function>

Default: Rosenbrock

This parameter is used to set a fitness function from a tiohecf predefined functions, or
to specify a user-defined fitness function. The predefined functimr®senbrock sphere
rastrigin, step gaussuser, andsimulator.

To use a new function, the user has to define it irsigeinct.cpfile (see the description of
user “fitness function” in Section 4.2).

It is also possible to use an external simulator to evaluate dididg (solutions). Such a
simulator has to be a computer program, written in any languagerdent to the user,
whose executable is namsithulatorand placed in the LEM3 directory. LEM3 writes a text
file namedsimulator.inpthat contains the definition of one individual to be evaluated, and
runs the simulator. The simulator returns an output file namedlator.outcontaining the
value of the fitness function. The input file for the simulatorta@iois a description
characterizing a single individual to be evaluated, expressed irothee of a comma-
separated list of values of all attributes. For details aboutsithelator program, file
structures and simple simulator program written in C langyalgase refer to Section 4.1 of
this guide.

Example:

/lem3 —p 100 —c 100 —g 200 —att 100 —f simulator

LEM3 waits for the computation of fitness values for each iddizi, and the simulator
cannot be executed in parallel on different individuals.

The predefined functions, mentioned above, are well-known benchmark funbabican be
used to illustrate LEM3 operation, and to compare LEM3's performatitbethat of other
programs on the same functions. There functions are briefly reviewed below.

A. Rosenbrock function. This is a widely-used in testing evolutionary algorithms. It
presents a difficult optimization problem because its argumadat(variables) are highly
correlated. The closed-form expression of the function is:

() = 31 (100 (%, =007 + (% ~1))

A plot of the function for n=2 is presented in Figure 1. Given aiipealue of n, LEM3
seeks the maximum of the expression 1/(Rosenbrock + 1), which iskiito seeking the
minimum of the Rosenbrock function.

Figure I Plot of the Rosenbrock function Figure 2 Plot of the Sphere function

B. Sphere function. This function presents a less complex optimization problem than
Rosenbrock function, and is also widely used in testing evolutionaryitalgs. A closed-
form expression of the function is:

n

f(XyenX,) = DX

i=1
A plot of the function for n=2 is presented in Figure 2. LEM3 sdeksmaximum of
1/(sphere + 1), which is equivalent to seeking the minimum of the sphere function.

C. Rastrigin function. This function is also widely used in testing evolutionary aligors.
It has a large number of local optima caused by the cositer ficthe formula shown
below. A plot of the Rastrigin function with two variables is presented in Figure 3.

f(X,nennX,) =10* n+Zn:(xi2 ~10* cos@* 77*x,))

i=1

Figure 3 Plot of the Rastrigin function

D. Step function This is the simplest example of a discontinuous function used omgtesti
evolutionary algorithms.

f(XgyeesX,) = Zn:round(xi)

whereround(x)is value of attribute rounded to the nearest integer value.

E. Gaussian quadratic function.This is an example of a fitness function whose value
changes over time by a random factor. It is defined by the formula below.

f(XeenX,) = ii* X4+ gausg)

where gauss() is function that returns a random number selectedaustagdard normal
distribution.

-att <number of attributes>
Default: 10

This parameter defines the number of attributes of the optimurestidn. All parameters
are defined in the same continuous domain whose upper and lower boundseack wehg
—ub and —Ib parameters.

Example:

/lem3 —p 100 —c 100 —f rosenbrock —att 100

-1Ib <lower bound>

Default: -5

Sets a lower bound for attribute domains.

Example:

/lem3 —p 100 —c 100 —g 200 —att 100 -lb -3.24

-ub <upper bound>

Default: 5

Sets an upper bound for attribute domains.

Example:

/lem3 —p 100 —c 100 —g 200 —att 100 —ub 7.11

Please note that in the case of the —Ib and/or —ub parametersulseshgdomains of all
attributes must be the same (all continuous with the same upper and lower bounds).

2.2 LEM3 Algorithm Parameters
-p <population size>

Default: 100

This parameter sets the population size — the number of individuai® igeneration. In the
current implementation of LEM3, this number is constant during the matiion process.
The value of this parameter must be greater than zero.

Example:

Jlem3 —p 200 -c 100 —g 300 —f rosenbrock

-C <number of children>

Default: 100

This parameter sets the number of individuals generated during ploéhbgis instantiation
process. Instantiation is done just after the AQ21 program cnesg¢sscharacterizing high-
performing individuals versus those with low fitness function values. Velee of this
parameter must be an integer greater than zero.

Example:

Jlem3 —p 100 —c 200 —g 300 —f rosenbrock

-0 <number of generations>

Default: 100

Number of generations is equivalent to number of iterations of thd3LEain loop.
However this is a maximal value, because the program may $tep tlve stop condition is
met (please refer telp —-mp—dp—spparameters). The value of the parameter must be greater
than zero.

Example:

/lem3 —p 100 —c 100 —g 300 —f rosenbrock

-h <high threshold>
Default: 0.3

- <low threshold>

Default: 0.3

High threshold and low threshold are parameters that controtliéxetion of individuals into
the H-group and L-group respectively. Both parameters must be beteseeand one. It is
also required that sum of these thresholds does not exceed 1, in orderinwbduce
ambiguity into the AQ21 learning module (the same individuals wouldolte positive and
negative examples for learning). For a detailed description oketbetisn methods, please
refer to—selparameter described below.

Example:

Jlem3 —p 100 -c 100 —g 300 -f rosenbrock -h 0.3
-10.2

-lp <learning probe>

Default: 10

Learning probe is a parameter that defines how many iterahensogram can fail to make
evolutionary progress before additional actions are taken. The a¢thutation, adjust
discretization, startover) are defined in the-progress conditiondefinition, and are
additionally controlled by themp—dp, and—spparameters. The value of thip parameter
must be a nonnegative integer.

Example:

Jlem3 —p 100 —c 100 —g 300 —f rosenbrock —Ip 6

-mp <mutation probe>

Default: 10

This parameter defines the maximum number of consecutive mutatioatiops with no

progress before the program switches to next operation defined mo4{wgress condition.
The value of this parameter must be a nonnegative integer (zarts rtieat the mutation is
disabled). Please note that in LEM3, the goal of mutation is ntgatb the evolution

process, but rather to introduce diversity into the population and praned&Q21 learning

module with a more diverse set of examples.

Example:

Jlem3 —p 100 —c 100 —g 300 —f rosenbrock —mp 20

-dp <discretization probe>

Default: 2

This parameter defines the maximum number of adjust discretizaperations with no
progress, after which the program switches to next operation definéhe no-progress
condition. The value of this parameter must be a nonnegative irfleEgermeans that the
operation is disabled).

Example:

Jlem3 —p 100 —c 100 —g 300 —f rosenbrock —dt 4

-sp <startover probe>

Default: 10

This parameter defines the maximum number of startover operatlmrs thvere is still no
progress. It is part of the no-progress condition. Before runningtahn®ver operation, the
program adds the current result (the best individual in the current giopyleo its list of
results, in order not to lose the local optima found so far. When théanuof startover
operations exceeds ttstartover probeparameter, the global LEM3 stop condition is met.
The value of this parameter must be a nonnegative integer.

Example:

Jlem3 —p 100 —c 100 —g 300 —f rosenbrock —sp 4

-mr <mutation ratio>

Default: 0.1

The mutation operation changes randomly values of attributes. For attibute, the
uniform distribution is used, and the value is changed by no more than

mutation ratio / domain range

where domain range is difference between the largest arsinléest possible value in the
domain, as defined byuband-Ib parameters respectively.

Example:

Jlem3 —p 100 —c 100 —g 300 —f rosenbrock —mr 0.2

-sel <selection method>

Default: pop

This parameter defines the method used for selecting individsialembers of the H-group
and L-group. There are two possible values of the paranfiétandpop, which represent
fitness-basedndpopulation-basedelection respectively.

The population-basedmethod selects the H-group by taking the fraction of the current
population defined byhigh thresholdwith the best fitness. Similarly, it takes thav
thresholdfraction of the worst individuals into the L-group. It should be noted ttieat
number of individuals selected into the H- and L-groups under a population{inasead
depends only on the population size and the thresholds.

The profile of the fitness function on the current population is refteit thefithess-based
method, which selects into H-group individuals whose fithess valuewitm& the high
threshold portion of the range of fitness values in the current papulag&imilarly, the L-
group consists of individuals whose fitness values are in the lowoértie current
population’s fitness range, as defined by the low threshold tolerance.

Example:

Jlem3 —p 100 —c 100 —g 300 —f rosenbrock —sel pop

-surv <survival selection method>

Default: rank

This parameter defines the survival selection method used to ereaw population from
the old population and the new individuals instantiated from learned hgpsthdossible
values are@ank andtournamenftor respectively rank-based and tournament selections.

The rank-based selection selects the best individuals accdodihg fitness function. The
tournament method randomly selects two individuals and the bettee tfvo is copied into
the new population. This operation is repeated until the new populatiothédakesired

number of individuals (as controlled by the population size parameter).

Example:

J/lem3 —p 100 —c 100 —f rosenbrock —sel tournament

-dist <distribution>
Default: uniform

This parameter defines the distribution method used in the ruletiasitan process. It is
used to select randomly values of an attribute within the areaetblgra rule. The possible
values areuniform and projectionsrepresenting respectively a uniform distribution and a

10

distribution based on frequencies of individuals projected onto thebuatribeing
instantiated.

Example:

Jlem3 —p 100 —c 100 —f rosenbrock —dist projections

-nodiscretize

By default LEM3 uses the ANCHOR algorithm to discretizeugal of attributes. It is,
however, possible to use a continuous representation of attributggaasdundiscretized
examples into the AQ21 learning module.

Example:

Jlem3 —p 100 —c 100 —att 100 —f gauss —otest —nodiscretize

-descr <description type>

Default: discr

This parameter controls the type of descriptions learned by@#4 AArogram. Three values
char, discr, and sim are accepted by program and stand for tehigtac descriptions,
discriminant descriptions, and simplicity-based descriptions, respectively.

Example:

Jlem3 —p 100 —c 100 —att 100 —f gauss —descr char

2.3 Experiment Parameters

-i <input file name>

Default: no input file is used

This option is used to define the input file from which program |l@adgitial population.

The input file consists of comma-separated values of attributegwddiduals, each
individual on a separate line. There should be no comma at the end of each line (afser the la
value for an individual). The number of individuals need not agree withapelation size,

as the program will generate/truncate individuals if needetie @rogram also permits
comments in the input file. All lines starting with™ are ignored, and all sections between
“(# and #)” are ignored (thus, comments can be more than one line in length).

11

Example:

Jlem3 —att 10 —p 100 —c 100 —f rosenbrock —i input.lem

An example of an input file is presented below.

-4.5837, -0.455076, 3.34817, -1.64014, O0.654894, -4.98233, -3.1241, 4.90434
2.50497, -1.33726

-1.48791, 0.733451, -3.67446, -4.35834, 4.50854, -3.4644, 0.846494, -2.83412
3. 06502, -3.59527

1.22059, -2.89107, -4.93422, 0.732986, 4.32664, -1.59673, 3.91081, 0.938726,
-1.07104, 3.99323

1.94994, -2.71397, 4.62459, -4.87946, -3.89043, 3.84096, -3.83244, 2.50923
-2.03066, 1.46692

-0.734201, 0.00941012, -1.85423, -0.632157, 1.60036, 2.02546, 2.74809,
3.13267, -1.80185, 4.82327

1.79633, -3.49025, 3.76027, 1.96759, -1.22634, 0.648352, -0.250078, -2.27509
4.39328, -2.40939

0.401839, 1.4778, 0.697754, 0.0956528, -2.96702, -4.11424, -2.19132, 2.04665
2.59929, 1.7062

Note that in the shown example input file, there are seven indigidaach having ten
attributes.

-runs <number of runs>

Default: 1

This parameter sets the number of experiments to be run forrtteepagram settings, but
with different random seeds. The random seeds are generatech&agivén (or default)

random seed by adding 1 to the value. Such operations are usefuheheser wants to run
the program with different random seeds and compare the results (e.g.jfigrgagboses).

Example:

J/lem3 —p 100 —c 100 —f rosenbrock —runs 10

-sr <number of significant runs>

Default: 1

This parameter defines the number of significant runs. In oneeabutput tables, LEM3
displays the average of thebest runs (where is specified by this parameter).

12

Example:

Jlem3 —p 100 —c 100 —att 100 —runs 10 —sr7

-r <random seed>
Default: 1

This parameter defines a random seed that is used to initialize the random gendvetor.

Example:

Jlem3 —p 100 —c 100 —f rosenbrock —r 12345

2.4 LEM3 Output Parameters

-0 <output file name>

Default: no output is generated

LEM3 generates an output file, whose name is specifiedibyp#tameter. The file contains
summaries that are also displayed to the screen. For d#ttiks contents of the output file,
please refer to Section 3.

Example:

Jlem3 —p 100 —c 100 —att 100 —f gauss —0 test.res

_aq

This parameter instructs LEM3 to generate the AQ21 input dis&sg the current settings
and the current H- and L-groups as examples. This makes it pdssibleeat the learning
process using the standalone AQ21 program, possibly using diffegening parameters.
For details of the file format please refer to the AQ21 User’s Guide.

Example:

Jlem3 —p 100 —c 100 —att 100 —f gauss —otest -aq

13

-kv

This option is used to generate input files for Knowledge Viseial{KV) program that
presents in graphical form populations and learned rules using Geeériatigic Diagrams
(GLDs). The files are in AQ19 format. LEMS3 will generate fites for all iterations, and
their names are defined by the following key:

<random seed><iteration>.kv

whererandom seeds the random seed currently being used for the program exe¢sée
the—r option), andteration is the number of the iteration in which the file was generated.

Example:

Jlem3 —p 100 —c 100 —att 100 —f gauss —otest —kv

-Pp

This option enables output of the population in all iterations of LEM8uan. Please note
that for large population sizes and large numbers of attributes, drdput EM3 under this

option will be very large. For a description of the format in whioh individuals are

displayed, please refer to section 3.2 of this document.

Example:

Jlem3 —p 100 —c 100 —att 100 —f gauss —pp

-pni

This option enables the output of all new individuals instantiated imegdtions of LEM3
execution. Please note that for large population sizes and lardeersuof attributes, this
will cause the output from LEM3 to be very large.

Example:

Jlem3 —p 100 —c 10 —att 10 —f gauss —pni

_ph

This option enables printing of hypotheses (rules) learned by AQ21gdinenoptimization
process. For description of the format in which rules are printegselefer to the output
section of this document (Section 3.2).

Example:

Jlem3 —p 100 —c 100 —att 100 —f gauss —ph

14

3 OUTPUT FROM LEM3

During execution LEM3 generates output that contains results of ination and statistical
summaries. The information is printed to default output, and depending gravided
parameters may be also included in output files.

This section presents in detail the output generated by the LEM3 program.

3.1 Default Output

The standard output starts with information about parameters used éxperiment. This
includes the time at which the program was started, informabontahe function being
optimized and LEM3 algorithm parameters. Example of this paoutgut is presented in
Figure 4. The rest of this section is based on an example ofizgdion of the Rosenbrock
function with 10 variables.

Starting at: Tue Aug 24 13:44:29 2004

Functi on Paraneters:

Functi on

r osenbr ock

Nunmber of Attributes = 10
Lower Bound = -5
Upper Bound =5
Di screti ze = true
Al gorithm Paranet ers:
Popul ation Size = 100
Nunber of Children = 100
Nunber of GCenerations = 100
H gh Threshol d =0.3
Low Threshol d =0.3
Lear ni ng Probe =4
Mut at i on Pr obe = 10
Di screti zation Probe =2
St art over Probe = 10
Mut ati on Ratio =0.1
Sel ecti on Mode = popul ati on- based
Survi val Sel ection = rank- based
Distribution = uni form

Descri ptions

Run par anet ers:

Nunber of Runs

Nunmber of Significant Runs
Random Seed

Di spl ay Paraneters:

di scri m nant

TR
e

Print Popul ati on = fal se
Print New | ndividual s = fal se
Print Hypot heses = fal se

Figure 4LEMS3 parameters displayed in the output

15

During the optimization process, LEM3 displays the best value of the fitnesefuakteady
found and other important information, such as “NO PROGRESS DETECTEBM
example of this part of the output is presented below in Figure 5.

runni ng LEM ...

Initializing discretization

test 0, iteration: O

Best result (iteration O): 0.000140449

féét_o, iteration: 4
Best result (iteration 4): 0.000620347
NO PROGRESS DETECTED!

test 0, iteration: 16

Best result (iteration 16): 1

NO PROGRESS DETECTED

Total nunmber of births: 1848

Results found: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

Figure 5 Example of information displayed during the optimization process

After the optimization process is complete, LEM3 displays sunamasf the performed
experiments. It starts with a list of results obtained fedimuns of LEM3. The displayed
numbers show values of variables in the best individuals (Figureh®re Tan be more than
one individual output per run, for instance when the program has found a nomber
equivalent solutions, or the startover operation has been used). Theafirsof each
individual consists of a list of attribute values. These are fetbwy three numbers
internally used by AQ21 learninfrequencyvalue of fithesgin AQ21 calledsignificancg,
and key of the individual. Therequencyand key are not used by LEM3 and should be
ignored (they are always equal to 1 in LEM3).

Solutions for O run
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

Sol utions for 1 run
o, ob0 0,0 Oh0 O, O, O, O, 0O, O, 1, 0.1, 1

Solutions for 2 run
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

Figure G List of the best solutions found

In the example above, the program found correct solution in runs 0 and @& amd1 it
stopped optimization in point O, ..., 0 (for the Rosenbrock function, the optimaiosols
1, ..., 1.

After the list of solutions, LEM3 displays a list of the beishefss values achieved by
program for all iterations and for all runs. The example ptegen Figure 7 shows this part
of the LEM3 output.

16

1 0. 0001404 0. 0001084 0. 0002072
2 0. 0001404 0. 0002313 0. 0005498
3 0. 0006203 0. 0002313 0. 0005498
4 0. 0006203 0. 0003667 0. 0005498
5 0. 0006203 0. 0007616 0. 001238
6 0. 001653 0. 001086 0. 004926
7 0. 002451 0. 001408 0. 004926
8 0. 003289 0. 002445 0. 004926
9 0. 009709 0. 003226 0. 004926
10 0. 009709 0. 009174 0. 00495
11 0. 009804 0. 009615 0. 009804
12 0.1 0.1 1

13 0.1 0.1 1

14 0.1 0.1 1

15 0.1 0.1 1

16 0.1 0.1 1

17 1 0.1 1

Figure 7 Values of fitness function for each iteration

The next three tables displayed in the program output show the fitalessof the best run,
the average fitness for all runs, and values from the n bestwhiese(n is controlled by the
—sr parameter). For each run value of the fitness for the rimgidual is used. The first
column in the tables represents the number of fithess evaluatieradad over all runs),
and the associated best fitness value is shown in the second column.

births best fitness
0 0. 0002072
92 0. 0002072
184 0. 0002072
277 0. 0005498
369 0. 0006203
462 0. 0006203
554 0. 001238
646 0. 004926
739 0. 004926
831 0. 004926
924 0. 009709
1016 0. 009709
1108 0. 009804
1201 1

1293 1

1386 1

1478 1

1570 1

1663 1

1755 1

1848 1

births average fitness
0 0. 000152
92 0. 000152
184 0. 000152
277 0. 0003072
369 0. 0004671
462 0. 0005123

17

Figure 8 Summary of results displayed by program

At the end of the standard output, LEM3 displays the time of theoeegecution and the
total execution time, as shown in Figure 9.

Figure 9 End of LEM3 output

18

3.2 Optional Output

Optional output from LEM3 is selected through parameters spedifiauser. As described
in Section 2.4, the user can define what is printed into LEM3 output. imbligdes
populations, newly created individuals and hypotheses learned by AQ2hophiation is a
set of individuals, so it is printed in the same format as thdtsedescribed in Section 3.1.
The format in which rules generated by AQ21 program are output in3LEWhen $ph
parameter is used) is described below.

The AQ21 program learns attributional decision rules as presented in examgjera 1.

Rul es:

<-- [x3=-0.500000..0.499900 : 17, 10]

[x7=-0.500000. . 0. 499900 : 26, 19]

[x8=-0.500000. . 0. 499900 : 26, 20]

: p=17, np=17, u=15, cx=21, c=1, s=1. 52 # 14031
<-- [x0=0.500000..1.499900 : 11, 6]

[x8=-0.500000. . 0.499900 : 26, 20]

[x9=- 0. 500000. . 0. 499900 : 26, 17]

: p=11, np=9, u=9, cx=21, c=1, s=0. 104 # 14032
<-- [x0=-0.500000..0.499900 : 19, 18]

[x2=0. 500000. . 1. 499900 : 15, 21]

[x9=0. 500000. . 1. 499900 : 4,12]

p=4, np=4, u=4, cx=21, c=1, s=0. 0391 # 14030

Figure 1Q Examples of rules learned by AQ21 during the optimization process
preformed by LEM3

The consequent part of learned rules can be ignored becauskvays the same in LEM3,
specifically, [group=H], denoting that the rules describe high-performingichdils (i.e., the
H-group). Because of that, each rule starts with “<--* smjtoded by a conjunction of
attributional conditions (a.k.a. selectors). For instance, the dilssin the example above is
a conjunction of three selectors. The first condition covers 17 postn 10 negative
examples (individuals) and it says that x3 is between -0.5 (incjuaine 0.5 (exclusive).
The summary after each rule consists of the following infoonafp — number of positive
examples covered, np — number of positive examples newly covered, u — rafrpbsitive
examples uniquely covered (covered by this rule and no others), complexity, s —
significance of the rule. Although the information is printed, the cae ignore it since it is
mostly irrelevant to the evolution process. A detailed explanati@il parameters printed
with hypotheses and details about AQ learning can be found in the AQ&ls Buide
(Wojtusiak, 2004a).

19

4 DEFINING THE FITNESS FUNCTION

This section describes two different ways that LEM3 users céinedtheir own fitness
functions. Both methods require basic programming skills, and onleeof tequires an
installed C++ compiler. The first method uses an external progwacompute the fitness
function and communicates with LEM3 through text files. In the secoathod, the
function that computes the fitness function is linked with LEM3 into one executable file

4.1 Simulator

LEM3 allows an external program to evaluate individuals. The readtgarogram, called
simulator, reads one individual at time and returns its fitness value. Comrtianibatween
LEM3 and the simulator is done through text files. The simulatputifile is called
“simulator.inp” and contains a comma-separated list of attribute values€Hidjur

3.12, -4.01, -2.0004, -4.243, -4, 2, 0.12

Figure 11 Example of the simulator.inp file

Output from the simulator consists of the value of the fithess famctind is written into
“simulator.out” file. An example of this output is presented in Figure 12.

2. 345607

Figure 12 Example of the simulator.out file

Executable simulator, input, and output files are stored in the daswory as the LEM3
executable. Figure 13 presents an example of a simulatornwintt€++. This simulator
computes the value of the Rastrigin function.

20

#i ncl ude <stdi o. h>
#i ncl ude <mat h. h>

mai n()

/1 open the input file

FILE *fin = NULL;

fin = fopen("simulator.inp", "r");

if(fin == NULL) // input file not opened
return 1,

fl oat val

float re = 0; // returned val ue

int n=0;

/!l read the input file
while(feof(fin) ==0)
{

val = 0;
fscanf(fin, "% ,", &val)
re += val *val - 10*cos(2*3. 14*val);
n++;
}

re += 10*n;
fclose(fin);

FI LE *fout = NULL;

fout = fopen("sinmulator.out", "w');
fprintf(fout, "%", re);

fclose(fout);

Figure 13 Source code of the simulator program that computes the Rastrigin function

4.2 Definition of Fithess Function in the LEM3 Source @de

Usoffing the simulator, as described in the previous section, hastions due to the
inefficiency of the input/output operations. It may therefore be deseréalihk the function

that computes fithess with LEM3 into one executable file. Sudahaiion should be written
in the sigfunct.cpp file that can be linked with LEM3. Data streeg used for the definition
are described below. LEM3 was compiled and tested using the GNU2®6 compiler

under Linux OS and using Borland C++ Builder 5.0 under Windows OS.

4.2.1 Class compute_significance

Every fitness function is represented in LEM3 by a class thatlerived from class
compute_significanceThe definition of the class is presented in Figure 14.

cl ass conput e_si gni ficance
{
publi c:
vi rtual doubl e conpute(Event const &);
1

Figure 14 Definition of class compute_significance in the LEM3 source code

The class contains only one virtual function that computes the significancefuncti

21

The following code presents examples of significance functionsatteatdefined in the
system.

Examplel — sphere
cl ass sphere_significance : public conmpute_significance

doubl e conput e(Event const &);

}i

doubl e sphere_si gnificance:: conpute(Event const & event)

{

int i;
doubl e re;
doubl e val ;
re = 0;
for(i =0; i < event.positions()->size(); i++)
i f(event.check value(i, val) == true)
{
re += (val) * (val);
}
el se

cout << "error conputing significance" << endl;

return 1/ (1 + re);

Figure 15 Definition of the Sphere function in LEM3 source code

Example 2 — Rosenbrock’s function
cl ass rosenbrock_significance : public conpute_significance

doubl e conput e(Event const &);

}i

doubl e rosenbrock_significance::conpute(Event const & event)

{

int i;
doubl e re;
doubl e val ;
doubl e val 1;
re = 0;
event. check _value(0, vall);
for(i =0; i < event.positions()->size() - 1; i++)
if(event.check_value(i + 1, val) == true)
{
re += 100 * (val - val1) * (val - vall)
+ (vall - 1) * (vall - 1);
val 1 = val;
}
el se

cout << "error conputing significance" << endl;

return 1/ (re +1);

Figure 18 Definition of the Rosenbrock function in LEM3 source code

22

Example 3 — step function
cl ass step_significance : public conpute_significance

doubl e conput e(Event const &);

};

doubl e step_significance::conpute(Event const & event)

{

int i;
doubl e re;
doubl e val
re = 0;
for(i =0; i < event.positions()->size(); i++)
i f(event.check value(i, val) == true)
{
re += (int)val
}
el se
cout << "error conputing significance" << endl
return re;

}i

Figure 17 Definition of the Step function in LEM3 source code

4.2.2 Defining Your Own Fitness Function

To define a fitness function, the user needs to completecdhgutefunction in class
user_significancdocated in sigfunct.cpp file analogically to the definitions oésented
functions. Compiling the file and linking with LEM3 are done autonadltiafter typing the
“make” command (all makefiles are prepared) when using the Giwtpiler, or by selecting

option “make” from the Project menu in Borland C++ Builder.

In the AQ21 data structures used in LEM3, an individual is repraséytéevent” whose

most important function isheck valueas shown in Figure 17. The first parameter of the
function is an integer representing the number of the attributethargecond parameter is a

double, to which the value of the attribute is assigned. The funatomnstrue if the

operation is successful.

23

5 CONCLUSIONS AND FUTURE EXTENSIONS OF LEM3

The LEM3 system is a powerful optimization tool that offersidewariety of parameters to
control the Learnable Evolution, performs experiments and displaysesiits of those
experiments. It makes it possible for the user to define hieloown fitness function, in
order to apply LEM3 to real world problems.

LEMS3 has several limitations, due mostly to the fact thgpalameters must be specified in
the command line. This makes it impossible to use different gppeéslomains of attributes
used in the problem specification, even though such operation is tiplyoded by the
algorithm. Only the interface limitations make it unavailable.

Future work on LEM will include enhancements of the interface lmwalg the user to
specify all LEM3 options in input files, instead of using commane parameters. It will
also allow the user to specify simple fitness functions akenatical formulas that will be
parsed in the input files.

A second proposed extension to the LEM system involves the improventaetmbgram’s
evolution algorithm, in particular the AQ21 learning module.

REFERENCES

Michalski R.S., “LEARNABLE EVOLUTION MODEL Evolutionary Process Guided by
Machine Learning,Machine LearningVol. 38, pp. 9-40, 2000.

Michalski R.S. and Cervone G., “Adaptive Anchoring DiscretizatiorL&arnable Evolution
Model: The ANCHOR Method,”Reports of the Machine Learning and Inference
Laboratory, MLI 01-3, George Mason University, Fairfax, VA, 2001.

Wojtusiak J., “AQ21 User's Guide,Reports of the Machine Learning and Inference
Laboratory, MLI 04-3, George Mason University, Fairfax, VA, September, 2004a.

Wojtusiak J., “LEM3 System for Non-Darwinian EvolutionReports of the Machine
Learning and Inference LaboratqryGeorge Mason University, Fairfax, VA, 2004b (to
appear).

A publication of theMachine Learning and Inference Laboratory
School of Computational Sciences

George Mason University

Fairfax, VA 22030-4444 U.S.A.

http://www.mli.gmu.edu

Editor: R. S. Michalski
Assistant Editor: K. A. Kaufman

The MachineLearning and Inference (MLI) Laboratory Repoat® an official publication of the Machine Leargin
and Inference Laboratory, which has been publigt@dinuously since 1971 by R.S. Michalski’s reshagcoup
(until 1987, while the group was at the Univergitylllinois, they were called ISG (Intelligent Sgahs Group)
Reports, or were part of the Department of Comp8téence Reports).

Copyright © 2004 by the Machine Learning and Infexe Laboratory.

