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Abstract 
This report presents a User’s Guide for the LEM3 program implementing Learnable Evolution 
Model, a machine learning-guided form of evolutionary computation. In contrast to the previous 
implementations, LEM3 employs the newest AQ21 machine learning program and includes several 
extensions and new features. The new features include a deep integration of machine learning and 
conventional evolution modes, capabilities for defining the fitness evaluation function outside of the 
main program, setting up LEM3 parameters, and deciding what information to be outputted by the 
program.  LEM3 appears to be particularly suitable for solving complex optimization problems in 
which the fitness evaluation function is time-consuming, Another important feature is that it can be 
applied to the optimization of non-numerical problems involving multitype attributes. 
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1 INTRODUCTION 

The Learnable Evolution Model (LEM) is a modern approach to evolutionary computation 
that combines evolutionary algorithms with machine learning.  Instead of applying semi-
random Darwinian operators such as mutation and recombination, LEM applies a machine 
learning program to determine characteristic features of better-performing individuals that do 
not appear in worse-performing individuals.  These features, learned in the form of 
attributional rulesets, are used to generate new individuals in an instantiation process.  

LEM3 is an implementation of the Learnable Evolution Model that uses AQ21 as a learning 
module. A deep integration of AQ21 within the system makes LEM3 more efficient than 
previous implementations, and allows the user to specify a description of individuals in the 
population using a wide range of attribute types available in the learning program. These 
attribute types include nominal, ordinal, interval, ratio and structured.  The ratio (or 
continuous) attributes can be used directly, or after discretization using the ANCHOR 
algorithm (Michalski and Cervone, 2001).  

This manual serves a guide for using the program and it is not intended to provide a 
description of the method or algorithms involved. For the latter, the reader is referred to a 
LEM3 technical report (Wojtusiak, 2004b) available on the website of the Machine Learning 
and Inference Laboratory http://www.mli.gmu.edu, from which the LEM3 program can also 
be downloaded.  Detailed information about the AQ21 machine learning program can also be 
found in the MLI website (Wojtusiak, 2004a). 

2 RUNNING THE LEM3 PROGRAM 
LEM3 is a command-based program that can be executed under Linux or Windows 
environments.  LEM3 does not require any installation, and only the executable binary file is 
needed to run the program and perform experiments.  Computational power required for 
LEM3 depends on the optimization problem.  When computation of the fitness function is 
not time-consuming, LEM3 can be run on a personal computer with hundreds of attributes 
and for thousands of iterations.   

For illustration LEM3 performance, Table 1 presents the execution time and maximum 
memory usage in experiment on optimizing the Rastrigin function with different numbers of 
variables.  In this example, the program was not run with the optimal parameter settings, so 
the presented memory usage and computational time are only rough estimates. The program 
was run on DELL PowerEdge 4600 with Intel Xeon 2 GHz processors running the Linux 
Red Hat 7.3 operating system. 

# of attributes Population size # of iterations 
(generations) 

time of execution Maximum 
memory usage 

10 100 100 <1 s 1.3 MB 
100 100 100 21 s 6.7 MB 
200 150 200 222 s 22 MB 
500 300 500 5130 s 110 MB 

Table 1: Examples of execution time and memory usage of LEM3 in optimizing  
Rastrigin Function with 10, 100, 200, and 500 variables  
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In both Linux and Windows operating systems LEM3 is executed from the shell as shown 
below. 

To run the LEM3 under Windows OS (95 or higher) open the command prompt window and 
type: 

lem3 [parameters] 

To run the LEM3 under Linux OS (Red Hat or other) type in the shell: 

./lem3 [parameters] 

where [parameters] stands for a list of possible options described later in this document.  The 
following example shows command that executes LEM3 with selected parameters.  Other 
parameters are listed later in this document. 
 

Example: 

 

./lem3 –p 100 –c 100 –g 300 –f rastrigin –att 100  
–runs 10 –o myfile -ph 

 

-p indicates that the following number is the population size, so the 
population size is in this case 100. 

-c indicates that the following number is the number of children, so 
the number of children is in this case 100. 

-g indicates that the following number is the maximum number of 
generations, so the maximum number of generations is in this 
case 300. 

-f indicates that the following name specifies the optimization fitness 
function to be used, so the fitness function is in this case the 
predefined Rastrigin function. 

-att indicates that the following number is the number of attributes, 
so the number of attributes 
is in this case 100. 

-runs indicates that the following number is the number of executions 
of program with different random seeds and the same parameters; so the 
number of executions is in this case 10. 

-o indicates that the following name is the name of the output file to 
be generated; so the filename is in this case myfile . 

-ph means that program prints hypotheses learned by AQ21 module in 
all iterations.  

As seen in the example above parameters are passed to the program in form  

-param  val 

 where param is the parameter name and val is the (optional) value of the parameter.  For 
instance, –att 100 or –pp.  The following sections of this manual describe in detail all LEM3 
parameters.  
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2.1 Optimization Problem Definition 

-f  <name of a predefined fitness function> 

Default: Rosenbrock 

This parameter is used to set a fitness function from a collection of predefined functions, or 
to specify a user-defined fitness function.  The predefined functions are rosenbrock, sphere, 
rastrigin, step, gauss, user, and simulator.  

To use a new function, the user has to define it in the sigfunct.cpp file (see the description of 
user “fitness function” in Section 4.2).  

It is also possible to use an external simulator to evaluate individuals (solutions).  Such a 
simulator has to be a computer program, written in any language convenient to the user, 
whose executable is named simulator and placed in the LEM3 directory.  LEM3 writes a text 
file named simulator.inp that contains the definition of one individual to be evaluated, and 
runs the simulator.  The simulator returns an output file named simulator.out containing the 
value of the fitness function.  The input file for the simulator contains a description 
characterizing a single individual to be evaluated, expressed in the form of a comma-
separated list of values of all attributes.  For details about the simulator program, file 
structures and simple simulator program written in C language, please refer to Section 4.1 of 
this guide. 
 

Example: 
 
./lem3 –p 100 –c 100 –g 200 –att 100 –f simulator  
 

 

LEM3 waits for the computation of fitness values for each individual, and the simulator 
cannot be executed in parallel on different individuals. 

The predefined functions, mentioned above, are well-known benchmark functions that can be 
used to illustrate LEM3 operation, and to compare LEM3’s performance with that of other 
programs on the same functions.  There functions are briefly reviewed below. 

A.  Rosenbrock function. This is a widely-used in testing evolutionary algorithms.  It 
presents a difficult optimization problem because its arguments (input variables) are highly 
correlated. The closed-form expression of the function is:   

∑
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A plot of the function for n=2 is presented in Figure 1.  Given a specific value of n, LEM3 
seeks the maximum of the expression 1/(Rosenbrock + 1), which is equivalent to seeking the 
minimum of the Rosenbrock function. 
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Figure 1: Plot of the Rosenbrock function 

 
Figure 2:  Plot of the Sphere function 

 

B.  Sphere function. This function presents a less complex optimization problem than 
Rosenbrock function, and is also widely used in testing evolutionary algorithms.  A closed-
form expression of the function is: 
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A plot of the function for n=2 is presented in Figure 2.  LEM3 seeks for maximum of 
1/(sphere + 1), which  is equivalent to seeking the minimum of the sphere function. 

C.  Rastrigin function. This function is also widely used in testing evolutionary algorithms.  
It has a large number of local optima caused by the cosine factor in the formula shown 
below.  A plot of the Rastrigin function with two variables is presented in Figure 3. 

 

 

 

))**2cos(*10(*10),...,(
1

2
1 i

n

i
in xxnxxf ∑

=

−+= π
 

 
Figure 3: Plot of the Rastrigin function 

D.  Step function. This is the simplest example of a discontinuous function used on testing 
evolutionary algorithms.  
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where round(x) is value of attribute x rounded to the nearest integer value. 
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E.  Gaussian quadratic function. This is an example of a fitness function whose value 
changes over time by a random factor.  It is defined by the formula below. 

()),...,(
1

4

1 * gaussxxf
n

i
in xi +=∑

=
 

where gauss() is function that returns a random number selected using a standard normal 
distribution.  

 

-att  <number of attributes> 

 Default: 10 

This parameter defines the number of attributes of the optimized function.  All parameters 
are defined in the same continuous domain whose upper and lower bounds are defined using 
–ub and –lb parameters. 

 
Example: 
 
./lem3 –p 100 –c 100 –f rosenbrock –att 100 
 

-lb  <lower bound> 

Default: -5 

Sets a lower bound for attribute domains. 
 

Example: 
 
./lem3 –p 100 –c 100 –g 200 –att 100 –lb -3.24  
 

-ub  <upper bound> 

Default: 5 

Sets an upper bound for attribute domains. 
 

Example: 
 
./lem3 –p 100 –c 100 –g 200 –att 100 –ub 7.11  
 

 

Please note that in the case of the –lb and/or –ub parameters being used, domains of all 
attributes must be the same (all continuous with the same upper and lower bounds). 
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2.2 LEM3 Algorithm Parameters 

-p  <population size> 

Default: 100 

This parameter sets the population size – the number of individuals in one generation.  In the 
current implementation of LEM3, this number is constant during the optimization process.  
The value of this parameter must be greater than zero. 
 

Example: 
 
./lem3 –p 200  –c 100 –g 300 –f rosenbrock  
 

-c  <number of children> 

 Default: 100 

This parameter sets the number of individuals generated during the hypothesis instantiation 
process. Instantiation is done just after the AQ21 program creates rules characterizing high-
performing individuals versus those with low fitness function values. The value of this 
parameter must be an integer greater than zero. 
 

Example: 
 
./lem3 –p 100 –c 200  –g 300 –f rosenbrock  
 

-g  <number of generations> 

Default: 100 

Number of generations is equivalent to number of iterations of the LEM3 main loop. 
However this is a maximal value, because the program may stop when the stop condition is 
met (please refer to –lp –mp –dp –sp parameters). The value of the parameter must be greater 
than zero. 

 
Example: 
 
./lem3 –p 100 –c 100 –g 300  –f rosenbrock  
 

-h <high threshold> 

 Default: 0.3 
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-l  <low threshold> 

Default: 0.3 

High threshold and low threshold are parameters that control the selection of individuals into 
the H-group and L-group respectively.  Both parameters must be between zero and one.  It is 
also required that sum of these thresholds does not exceed 1, in order not to introduce 
ambiguity into the AQ21 learning module (the same individuals would be both positive and 
negative examples for learning).  For a detailed description of the selection methods, please 
refer to –sel parameter described below. 
 

Example: 
 
./lem3 –p 100 –c 100 –g 300 –f rosenbrock –h 0.3  

–l 0.2   
 

-lp  <learning probe> 

 Default: 10 

Learning probe is a parameter that defines how many iterations the program can fail to make 
evolutionary progress before additional actions are taken.  The actions (mutation, adjust 
discretization, startover) are defined in the no-progress condition definition, and are 
additionally controlled by the –mp –dp, and –sp parameters.  The value of the –lp parameter 
must be a nonnegative integer. 
 

Example: 
 
./lem3 –p 100 –c 100 –g 300 –f rosenbrock –lp 6  
 

-mp <mutation probe> 

 Default: 10 

This parameter defines the maximum number of consecutive mutation operations with no 
progress before the program switches to next operation defined in the no-progress condition.  
The value of this parameter must be a nonnegative integer (zero means that the mutation is 
disabled).  Please note that in LEM3, the goal of mutation is not to lead the evolution 
process, but rather to introduce diversity into the population and provide the AQ21 learning 
module with a more diverse set of examples. 
 

Example: 
 
./lem3 –p 100 –c 100 –g 300 –f rosenbrock –mp 20  
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-dp  <discretization probe> 

Default: 2 

This parameter defines the maximum number of adjust discretization operations with no 
progress, after which the program switches to next operation defined in the no-progress 
condition.  The value of this parameter must be a nonnegative integer (zero means that the 
operation is disabled). 
 

Example: 
 
./lem3 –p 100 –c 100 –g 300 –f rosenbrock –dt 4  
 

-sp  <startover probe> 

 Default: 10 

This parameter defines the maximum number of startover operations when there is still no 
progress.  It is part of the no-progress condition.  Before running the startover operation, the 
program adds the current result (the best individual in the current population) to its list of 
results, in order not to lose the local optima found so far.  When the number of startover 
operations exceeds the startover probe parameter, the global LEM3 stop condition is met.  
The value of this parameter must be a nonnegative integer. 
 

Example: 
 
./lem3 –p 100 –c 100 –g 300 –f rosenbrock –sp 4  
 

-mr <mutation ratio> 

 Default: 0.1 

The mutation operation changes randomly values of attributes. For each attribute, the 
uniform distribution is used, and the value is changed by no more than  

mutation ratio / domain range 

where domain range is difference between the largest and the smallest possible value in the 
domain, as defined by –ub and –lb parameters respectively. 

 
Example: 
 
./lem3 –p 100 –c 100 –g 300 –f rosenbrock –mr 0.2  
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-sel <selection method> 

Default: pop 

This parameter defines the method used for selecting individuals as members of the H-group 
and L-group.  There are two possible values of the parameter: fit and pop, which represent 
fitness-based and population-based selection respectively. 

The population-based method selects the H-group by taking the fraction of the current 
population defined by high threshold with the best fitness.  Similarly, it takes the low 
threshold fraction of the worst individuals into the L-group.  It should be noted that the 
number of individuals selected into the H- and L-groups under a population-based method 
depends only on the population size and the thresholds. 

The profile of the fitness function on the current population is reflected in the fitness-based 
method, which selects into H-group individuals whose fitness values are within the high 
threshold portion of the range of fitness values in the current population.  Similarly, the L-
group consists of individuals whose fitness values are in the low end of the current 
population’s fitness range, as defined by the low threshold tolerance. 
 

Example: 
 
./lem3 –p 100 –c 100 –g 300 –f rosenbrock –sel pop  
 

-surv <survival selection method> 

Default: rank 

This parameter defines the survival selection method used to create a new population from 
the old population and the new individuals instantiated from learned hypotheses.  Possible 
values are rank and tournament for respectively rank-based and tournament selections.  

The rank-based selection selects the best individuals according to the fitness function.  The 
tournament method randomly selects two individuals and the better of the two is copied into 
the new population.  This operation is repeated until the new population has the desired 
number of individuals (as controlled by the population size parameter). 
 

Example: 
 
./lem3 –p 100 –c 100 –f rosenbrock –sel tournament  
 

-dist <distribution> 

Default: uniform 

This parameter defines the distribution method used in the rule instantiation process.  It is 
used to select randomly values of an attribute within the area covered by a rule.  The possible 
values are uniform and projections representing respectively a uniform distribution and a 
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distribution based on frequencies of individuals projected onto the attribute being 
instantiated. 
 

Example: 
 
./lem3 –p 100 –c 100 –f rosenbrock –dist projections  
 

-nodiscretize 

By default LEM3 uses the ANCHOR algorithm to discretize values of attributes.  It is, 
however, possible to use a continuous representation of attributes and pass undiscretized 
examples into the AQ21 learning module. 
 

Example: 
 
./lem3 –p 100 –c 100 –att 100 –f gauss  –o test –nodiscretize  
 

-descr  <description type> 

 Default: discr 

This parameter controls the type of descriptions learned by the AQ21 program.  Three values 
char, discr, and sim are accepted by program and stand for characteristic descriptions, 
discriminant descriptions, and simplicity-based descriptions, respectively. 
 

Example: 
 
./lem3 –p 100 –c 100 –att 100 –f gauss  –descr char 
 

 

2.3 Experiment Parameters 

-i <input file name> 

Default: no input file is used 

This option is used to define the input file from which program loads an initial population.  
The input file consists of comma-separated values of attributes of individuals, each 
individual on a separate line.  There should be no comma at the end of each line (after the last 
value for an individual).  The number of individuals need not agree with the population size, 
as the program will generate/truncate individuals if needed.  The program also permits 
comments in the input file.  All lines starting with “#”  are ignored, and all sections between 
“ (#”  and “#)”  are ignored (thus, comments can be more than one line in length). 
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Example: 
 
./lem3 –att 10 –p 100 –c 100 –f rosenbrock –i input.lem  
 

An example of an input file is presented below. 
 

-4.5837, -0.455076, 3.34817, -1.64014, 0.654894, -4.98233, -3.1241, 4.90434, 

2.50497, -1.33726 

-1.48791, 0.733451, -3.67446, -4.35834, 4.50854, -3.4644, 0.846494, -2.83412, 

3.06502, -3.59527 

1.22059, -2.89107, -4.93422, 0.732986, 4.32664, -1.59673, 3.91081, 0.938726,  

-1.07104, 3.99323 

1.94994, -2.71397, 4.62459, -4.87946, -3.89043, 3.84096, -3.83244, 2.50923,  

-2.03066, 1.46692 

-0.734201, 0.00941012, -1.85423, -0.632157, 1.60036, 2.02546, 2.74809, 

3.13267, -1.80185, 4.82327 

1.79633, -3.49025, 3.76027, 1.96759, -1.22634, 0.648352, -0.250078, -2.27509, 

4.39328, -2.40939 

0.401839, 1.4778, 0.697754, 0.0956528, -2.96702, -4.11424, -2.19132, 2.04665, 

2.59929, 1.7062 

Note that in the shown example input file, there are seven individuals, each having ten 
attributes.  

-runs <number of runs> 

Default: 1 

This parameter sets the number of experiments to be run for the same program settings, but 
with different random seeds.  The random seeds are generated from the given (or default) 
random seed by adding 1 to the value.  Such operations are useful when the user wants to run 
the program with different random seeds and compare the results (e.g., for testing purposes).  

 
Example: 
 
./lem3 –p 100 –c 100 –f rosenbrock –runs 10  
 

-sr <number of significant runs> 

Default: 1 

This parameter defines the number of significant runs.  In one of the output tables, LEM3 
displays the average of the n best runs (where n is specified by this parameter). 
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Example: 
 
./lem3 –p 100 –c 100 –att 100 –runs 10 –sr 7  
 

 

-r  <random seed> 

Default: 1 

This parameter defines a random seed that is used to initialize the random number generator.  
 

Example: 
 
./lem3 –p 100 –c 100 –f rosenbrock –r 12345  
 

 

 

2.4 LEM3 Output Parameters 

-o  <output file name> 

Default: no output is generated 

LEM3 generates an output file, whose name is specified by this parameter.  The file contains 
summaries that are also displayed to the screen.  For details of the contents of the output file, 
please refer to Section 3. 
 

Example: 
 
./lem3 –p 100 –c 100 –att 100 –f gauss  –o test.res  
 

-aq 

This parameter instructs LEM3 to generate the AQ21 input files using the current settings 
and the current H- and L-groups as examples.  This makes it possible to repeat the learning 
process using the standalone AQ21 program, possibly using different learning parameters. 
For details of the file format please refer to the AQ21 User’s Guide. 
 

Example: 
 
./lem3 –p 100 –c 100 –att 100 –f gauss  –o test –aq  
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-kv 

This option is used to generate input files for Knowledge Visualizer (KV) program that 
presents in graphical form populations and learned rules using Generalized Logic Diagrams 
(GLDs). The files are in AQ19 format.  LEM3 will generate the files for all iterations, and 
their names are defined by the following key: 

 _<random seed>_<iteration>.kv 

where random seed is the random seed currently being used for the program execution (see 
the –r option), and iteration is the number of the iteration in which the file was generated. 
 

Example: 
 
./lem3 –p 100 –c 100 –att 100 –f gauss  –o test –kv  
 

-pp 

This option enables output of the population in all iterations of LEM3 execution.  Please note 
that for large population sizes and large numbers of attributes, output from LEM3 under this 
option will be very large.  For a description of the format in which the individuals are 
displayed, please refer to section 3.2 of this document. 
 

Example: 
 
./lem3 –p 100 –c 100 –att 100 –f gauss  –pp  
 

-pni 

This option enables the output of all new individuals instantiated in all iterations of LEM3 
execution.  Please note that for large population sizes and large numbers of attributes, this 
will cause the output from LEM3 to be very large. 
 

Example: 
 
./lem3 –p 100 –c 10 –att 10 –f gauss  –pni  
 

-ph 

This option enables printing of hypotheses (rules) learned by AQ21 during the optimization 
process.  For description of the format in which rules are printed, please refer to the output 
section of this document (Section 3.2). 
 

Example: 
 
./lem3 –p 100 –c 100 –att 100 –f gauss  –ph  
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3 OUTPUT FROM LEM3 

During execution LEM3 generates output that contains results of optimization and statistical 
summaries.  The information is printed to default output, and depending on the provided 
parameters may be also included in output files. 

This section presents in detail the output generated by the LEM3 program.  

3.1 Default Output 

The standard output starts with information about parameters used to run experiment.  This 
includes the time at which the program was started, information about the function being 
optimized and LEM3 algorithm parameters.  Example of this part of output is presented in 
Figure 4.  The rest of this section is based on an example of optimization of the Rosenbrock 
function with 10 variables. 

 
Starting at: Tue Aug 24 13:44:29 2004 
 
 
Function Parameters: 
 Function              = rosenbrock 
 Number of Attributes  = 10 
 Lower Bound           = -5 
 Upper Bound           = 5 
 Discretize          = true 
 
Algorithm Parameters: 
 Population Size   = 100 
 Number of Children  = 100 
 Number of Generations  = 100 
 High Threshold   = 0.3 
 Low Threshold    = 0.3 
 Learning Probe   = 4 
 Mutation Probe   = 10 
 Discretization Probe  = 2 
 Startover Probe   = 10 
 Mutation Ratio   = 0.1 
 Selection Mode   = population-based 
 Survival Selection  = rank-based 
 Distribution      = uniform 
 Descriptions              = discriminant 
 
Run parameters: 
 Number of Runs              = 1 
 Number of Significant Runs  = 1 
 Random Seed                 = 1 
 
Display Parameters: 
 Print Population  = false 
 Print New Individuals  = false 
 Print Hypotheses  = false 

Figure 4:LEM3 parameters displayed in the output 
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During the optimization process, LEM3 displays the best value of the fitness function already 
found and other important information, such as “NO PROGRESS DETECTED”.  An 
example of this part of the output is presented below in Figure 5. 
 

running LEM ... 
Initializing discretization 
test_0, iteration: 0 
Best result (iteration 0 ): 0.000140449 
... 
test_0, iteration: 4 
Best result (iteration 4 ): 0.000620347 
NO PROGRESS DETECTED! 
... 
test_0, iteration: 16 
Best result (iteration 16 ): 1 
NO PROGRESS DETECTED! 
Total number of births: 1848 
Results found: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,     1, 1, 1 

Figure 5: Example of information displayed during the optimization process 

After the optimization process is complete, LEM3 displays summaries of the performed 
experiments.  It starts with a list of results obtained from all runs of LEM3.  The displayed 
numbers show values of variables in the best individuals (Figure 6).  There can be more than 
one individual output per run, for instance when the program has found a number of 
equivalent solutions, or the startover operation has been used).  The first part of each 
individual consists of a list of attribute values. These are followed by three numbers 
internally used by AQ21 learning: frequency, value of fitness (in AQ21 called significance), 
and key of the individual.  The frequency and key are not used by LEM3 and should be 
ignored (they are always equal to 1 in LEM3). 
 

Solutions for 0 run: 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,     1, 1, 1 
 
Solutions for 1 run: 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,     1, 0.1, 1 
 
Solutions for 2 run: 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,     1, 1, 1 

Figure 6: List of the best solutions found 

In the example above, the program found correct solution in runs 0 and 2, and in run 1 it 
stopped optimization in point 0, …, 0 (for the Rosenbrock function, the optimal solution is 
1, …, 1). 

After the list of solutions, LEM3 displays a list of the best fitness values achieved by 
program for all iterations and for all runs.  The example presented in Figure 7 shows this part 
of the LEM3 output.  
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1  0.0001404  0.0001084  0.0002072   
2  0.0001404  0.0002313  0.0005498   
3  0.0006203  0.0002313  0.0005498   
4  0.0006203  0.0003667  0.0005498   
5  0.0006203  0.0007616  0.001238   
6  0.001653  0.001086  0.004926   
7  0.002451  0.001408  0.004926   
8  0.003289  0.002445  0.004926   
9  0.009709  0.003226  0.004926   
10  0.009709  0.009174  0.00495   
11  0.009804  0.009615  0.009804   
12  0.1   0.1   1   
13  0.1   0.1   1   
14  0.1   0.1   1   
15  0.1   0.1   1   
16  0.1   0.1   1   
17  1   0.1   1   

Figure 7: Values of fitness function for each iteration 

The next three tables displayed in the program output show the fitness value of the best run, 
the average fitness for all runs, and values from the n best runs (where n is controlled by the 
–sr parameter).  For each run value of the fitness for the best individual is used.  The first 
column in the tables represents the number of fitness evaluations (averaged over all runs), 
and the associated best fitness value is shown in the second column. 

 
# births  best fitness 
0   0.0002072 
92   0.0002072 
184   0.0002072 
277   0.0005498 
369   0.0006203 
462   0.0006203 
554   0.001238 
646   0.004926 
739   0.004926 
831   0.004926 
924   0.009709 
1016   0.009709 
1108   0.009804 
1201   1 
1293   1 
1386   1 
1478   1 
1570   1 
1663   1 
1755   1 
1848   1 
 
# births  average fitness 
0   0.000152 
92   0.000152 
184   0.000152 
277   0.0003072 
369   0.0004671 
462   0.0005123 



 

 

17 

554   0.0008732 
646   0.002555 
739   0.002929 
831   0.003554 
924   0.005954 
1016   0.007945 
1108   0.009741 
1201   0.4 
1293   0.4 
1386   0.4 
1478   0.4 
1570   0.4 
1663   0.4 
1755   0.7 
1848   0.7 
 
# births  n of m 
0   0.0001738 
87   0.0001738 
175   0.0001738 
262   0.0003451 
350   0.0005851 
438   0.0005851 
525   0.000929 
613   0.00329 
701   0.003689 
788   0.003689 
876   0.004108 
964   0.007317 
1051   0.00733 
1139   0.009804 
1227   0.55 
1314   0.55 
1402   0.55 
1490   0.55 
1577   0.55 
1665   1 
1753   1 

Figure 8: Summary of results displayed by program 

 

At the end of the standard output, LEM3 displays the time of the end of execution and the 
total execution time, as shown in Figure 9. 
 

Finished at: Tue Jun 29 18:16:13 2004 
Total time : 3 seconds 
BYE! 

Figure 9: End of LEM3 output 
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3.2 Optional Output 

Optional output from LEM3 is selected through parameters specified by user.  As described 
in Section 2.4, the user can define what is printed into LEM3 output.  This includes 
populations, newly created individuals and hypotheses learned by AQ21.  The population is a 
set of individuals, so it is printed in the same format as the results described in Section 3.1.  
The format in which rules generated by AQ21 program are output in LEM3 (when –ph 
parameter is used) is described below. 

The AQ21 program learns attributional decision rules as presented in example in Figure 10.  
 

Rules:  
   <-- [x3=-0.500000..0.499900 : 17,10] 
  [x7=-0.500000..0.499900 : 26,19] 
  [x8=-0.500000..0.499900 : 26,20] 
 : p=17,np=17,u=15,cx=21,c=1,s=1.52 # 14031 
   <-- [x0=0.500000..1.499900 : 11,6] 
  [x8=-0.500000..0.499900 : 26,20] 
  [x9=-0.500000..0.499900 : 26,17] 
 : p=11,np=9,u=9,cx=21,c=1,s=0.104 # 14032 
   <-- [x0=-0.500000..0.499900 : 19,18] 
  [x2=0.500000..1.499900 : 15,21] 
  [x9=0.500000..1.499900 : 4,12] 
 : p=4,np=4,u=4,cx=21,c=1,s=0.0391 # 14030 
 

Figure 10: Examples of rules learned by AQ21 during the optimization process  
preformed by LEM3 

The consequent part of learned rules can be ignored because it is always the same in LEM3, 
specifically, [group=H], denoting that the rules describe high-performing individuals (i.e., the 
H-group).  Because of that, each rule starts with “<--“ sign followed by a conjunction of 
attributional conditions (a.k.a. selectors).  For instance, the first rule in the example above is 
a conjunction of three selectors.  The first condition covers 17 positive and 10 negative 
examples (individuals) and it says that x3 is between -0.5 (inclusive) and 0.5 (exclusive).  
The summary after each rule consists of the following information: p – number of positive 
examples covered, np – number of positive examples newly covered, u – number of positive 
examples uniquely covered (covered by this rule and no others), cx – complexity, s – 
significance of the rule.  Although the information is printed, the user can ignore it since it is 
mostly irrelevant to the evolution process.  A detailed explanation of all parameters printed 
with hypotheses and details about AQ learning can be found in the AQ21 User’s Guide 
(Wojtusiak, 2004a). 
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4 DEFINING THE FITNESS FUNCTION 

This section describes two different ways that LEM3 users can define their own fitness 
functions.  Both methods require basic programming skills, and one of them requires an 
installed C++ compiler. The first method uses an external program to compute the fitness 
function and communicates with LEM3 through text files.  In the second method, the 
function that computes the fitness function is linked with LEM3 into one executable file. 

4.1 Simulator 

LEM3 allows an external program to evaluate individuals.  The external program, called 
simulator, reads one individual at time and returns its fitness value.  Communication between 
LEM3 and the simulator is done through text files.  The simulator input file is called 
“simulator.inp” and contains a comma-separated list of attribute values (Figure 11). 
 

 
   3.12,  -4.01,  -2.0004,  -4.243,  -4,   2, 0.12 
 

Figure 11: Example of the simulator.inp file 

Output from the simulator consists of the value of the fitness function, and is written into 
“simulator.out” file.  An example of this output is presented in Figure 12. 
 

 
2.345607 
 

Figure 12: Example of the simulator.out file 

Executable simulator, input, and output files are stored in the same directory as the LEM3 
executable.  Figure 13 presents an example of a simulator written in C++.  This simulator 
computes the value of the Rastrigin function. 
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#include <stdio.h> 
#include <math.h> 
 
main() 
{ 
  // open the input file 
  FILE *fin = NULL; 
  fin = fopen( "simulator.inp", "r" ); 
  if( fin == NULL ) // input file not opened 
    return 1;  
 
  float val; 
  float re = 0; // returned value 
  int n = 0; 
 
  // read the input file 
  while( feof( fin ) == 0 ) 
    { 
      val = 0; 
      fscanf( fin, "%f,", &val ); 
      re += val*val - 10*cos( 2*3.14*val); 
      n++; 
    } 
 
  re += 10*n; 
  fclose( fin ); 
 
  FILE *fout = NULL; 
  fout = fopen( "simulator.out", "w" ); 
  fprintf( fout, "%f", re ); 
  fclose( fout ); 
} 

Figure 13: Source code of the simulator program that computes the Rastrigin function 

4.2 Definition of Fitness Function in the LEM3 Source Code 

Usoffing the simulator, as described in the previous section, has limitations due to the 
inefficiency of the input/output operations.  It may therefore be desireable to link the function 
that computes fitness with LEM3 into one executable file.  Such a function should be written 
in the sigfunct.cpp file that can be linked with LEM3.  Data strictures used for the definition 
are described below.  LEM3 was compiled and tested using the GNU C++ 2.96 compiler 
under Linux OS and using Borland C++ Builder 5.0 under Windows OS. 

4.2.1 Class compute_significance 

Every fitness function is represented in LEM3 by a class that is derived from class 
compute_significance.  The definition of the class is presented in Figure 14. 

class compute_significance 
{ 
public: 
  virtual double compute( Event const & ); 
}; 

Figure 14:  Definition of class compute_significance in the LEM3 source code 

The class contains only one virtual function that computes the significance function. 
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The following code presents examples of significance functions that are defined in the 
system. 

Example1 – sphere 
 
class sphere_significance : public compute_significance 
{ 
  double compute( Event const & ); 
}; 
 
double sphere_significance::compute( Event const & event ) 
{ 
  int i; 
  double re; 
  double val; 
 
  re = 0; 
  for( i = 0; i < event.positions()->size(); i++ ) 
      if( event.check_value( i, val ) == true ) 
        { 
          re += (val) * (val); 
        } 
      else 
        cout << "error computing significance" << endl; 
 
  return 1 / ( 1 + re); 
}; 

Figure 15: Definition of the Sphere function in LEM3 source code 

Example 2 – Rosenbrock’s function 
 
class rosenbrock_significance : public compute_significance 
{ 
  double compute( Event const & ); 
}; 
 
double rosenbrock_significance::compute( Event const & event ) 
{ 
  int i; 
  double re; 
  double val; 
  double val1; 
  re = 0; 
  event.check_value( 0, val1 ); 
  for( i = 0; i < event.positions()->size() - 1; i++ ) 
    if( event.check_value( i + 1, val ) == true ) 
      { 
        re += 100 * ( val - val1 ) * ( val - val1 ) 
+ ( val1  - 1 ) * ( val1 - 1 ); 
        val1 = val; 
      }   
    else 
      cout << "error computing significance" << endl; 
 
  return 1 / ( re + 1 ); 
}; 

Figure 16: Definition of the Rosenbrock function in LEM3 source code 
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Example 3 – step function 
 
class step_significance : public compute_significance 
{ 
  double compute( Event const & ); 
}; 
 
double step_significance::compute( Event const & event ) 
{ 
  int i; 
  double re; 
  double val; 
 
  re = 0; 
  for( i = 0; i < event.positions()->size(); i++ ) 
      if( event.check_value( i, val ) == true ) 
        { 
          re += (int)val; 
        } 
      else 
        cout << "error computing significance" << endl; 
 
  return re; 
}; 

Figure 17: Definition of the Step function in LEM3 source code 

 

4.2.2 Defining Your Own Fitness Function 

To define a fitness function, the user needs to complete the compute function in class 
user_significance located in sigfunct.cpp file analogically to the definitions of presented 
functions.  Compiling the file and linking with LEM3 are done automatically after typing the 
“make” command (all makefiles are prepared) when using the GNU compiler, or by selecting 
option “make” from the Project menu in Borland C++ Builder.   

In the AQ21 data structures used in LEM3, an individual is represented by “event” whose 
most important function is check_value as shown in Figure 17.  The first parameter of the 
function is an integer representing the number of the attribute, and the second parameter is a 
double, to which the value of the attribute is assigned.  The function returns true if the 
operation is successful. 
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5 CONCLUSIONS AND FUTURE EXTENSIONS OF LEM3 

The LEM3 system is a powerful optimization tool that offers a wide variety of parameters to 
control the Learnable Evolution, performs experiments and displays the results of those 
experiments.  It makes it possible for the user to define his or her own fitness function, in 
order to apply LEM3 to real world problems. 

LEM3 has several limitations, due mostly to the fact that all parameters must be specified in 
the command line.  This makes it impossible to use different types and domains of attributes 
used in the problem specification, even though such operation is fully supported by the 
algorithm.  Only the interface limitations make it unavailable. 

Future work on LEM will include enhancements of the interface by allowing the user to 
specify all LEM3 options in input files, instead of using command line parameters.  It will 
also allow the user to specify simple fitness functions as mathematical formulas that will be 
parsed in the input files. 

A second proposed extension to the LEM system involves the improvement of the program’s 
evolution algorithm, in particular the AQ21 learning module.  
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