
Reports
Machine Learning and Inference Laboratory

 The LEM3 System for Non-Darwinian Evolutionary
Computation and Its Application to Complex

Function Optimization

Janusz Wojtusiak

Ryszard S. Michalski

MLI 05-2
P 05-5

October, 2005

MLI 04-1-

School of Computational Sciences

George Mason University

THE LEM3 SYSTEM FOR NON-DARWINIAN EVOLUTIONARY COMPUTATION
AND ITS APPLICATION TO COMPLEX FUNCTION OPTIMIZATION

Janusz Wojtusiak and Ryszard S. Michalski*

 Machine Learning and Inference Laboratory
George Mason University

Fairfax, VA 22030-4444, USA
{jwojt, michalski}@mli.gmu.edu

 http://www.mli.gmu.edu

(*) Also Institute of Computer Science
Polish Academy of Sciences

 Abstract
LEM3 is the newest implementation of Learnable Evolution Model (LEM), a non-Darwinian
evolutionary computation methodology that employs machine learning to guide evolutionary
processes. Due to a deep integration of different modes of operation and the use of the advanced
machine learning system AQ21, the LEM3 system is a highly efficient and effective implementation
of the methodology. LEM3 supports different attribute types for describing individuals in the
population, such as nominal, rank, structured, interval and ratio, which makes it applicable to a wide
range of practical problems. It also implements very efficient methods for switching between
different modes of operation and operators controlling the generation of new individuals. This paper
describes the underlying LEM3 algorithm, results from LEM3 testing on selected benchmark function
optimization problems (with the number of variables varying from 10 to 1000), and its comparison
with EA, a conventional, Darwinian-type evolutionary computation program. In every experiment,
without exception, LEM3 outperformed EA in terms of the evolution length (the number of fitness
evaluations needed to achieved a desired solution), sometimes very significantly. It also outperformed
the previous LEM2 implementation.

Keywords: Function Optimization, Learnable Evolution Model, Machine Learning, Non-
Darwinian Evolutionary Computation

Acknowledgments

The authors express their gratitude to all people who contributed to LEM research and this
paper. Dr. Kenneth Kaufman reviewed this paper and provided valuable suggestions during
the development of LEM3. Jarek Pietrzykowski provided useful comments regarding this
paper and discussed with the authors various aspects of LEM3. John Ashley and Scott
Mitchell, students in the CSI 777 and CSI 873 classes taught by the second author, provided
helpful comments about LEM3 implementation.

The presented research has been conducted in the Machine Learning and Inference
Laboratory of George Mason University, whose research activities are supported in part by
the National Science Foundation Grants No. IIS 9906858 and IIS 0097476, and in part by the
UMBC/LUCITE #32 grant. The findings and opinions expressed here are those of the
authors, and do not necessarily reflect those of the above sponsoring organizations.

 3

1 INTRODUCTION

Research on non-Darwinian evolutionary computation is concerned with developing
algorithms in which the creation of new individuals in the population is guided, at least
partially, by an “intelligent agent,” rather than done solely by random or semi-random
change operators, such as the mutations and/or crossovers employed in “Darwinian-type”
evolutionary methods. Each new generation is selected from the generated individuals by
some selection method, as in Darwinian evolution. The Learnable Evolution Model
(LEM), described in (Michalski, 2000; Michalski and Zhang, 1999), employs an AQ-type
learning program for creating hypotheses for guiding the evolutionary process.

Experiments with initial implementations of LEM have demonstrated that it may very
significantly speed up the evolutionary process over Darwinian-style evolutionary
algorithms in terms of the evolution length, defined as the number of generations (or
fitness evaluations) needed to achieve a desired solution. Most importantly, these
experiments also have indicated that the LEM advantage grows with the complexity of
the problem, as measured by the number of variables to optimize. These findings indicate
that LEM may be particularly attractive for solving very complex optimization problems
in which the fitness evaluation is time-consuming or costly.

The first implementation of Learnable Evolution Model, LEM1, employed the AQ15
learning program, and included a relatively small subset of the LEM methodology
(Michalski and Zhang, 1999). Its experimental testing produced, however, very
promising results. A more advanced implementation, LEM2 used the AQ18 learning
program and was tested on several benchmark problems (Cervone, Kaufman and
Michalski, 2003). Domain-oriented LEM implementations, called ISHED and ISCOD,
were tailored to problems of optimizing heat exchanger designs, and also produced
highly promising results (Kaufman and Michalski, 2000a; Domanski et al., 2004).

The latest implementation, LEM3, described in this paper, employs the newest
implementation of AQ learning, AQ21 (Wojtusiak, 2004a; Wojtusiak, 2004b). In
contrast to previous implementations, LEM3 deeply integrates different modes of LEM
operation, that is, it integrates them at the level of data structures.

Due to the integration with AQ21 and use of its data structures, LEM3 allows one to
describe individuals in a population in terms of a wide range of attribute types, such as
nominal, rank, structured, absolute, and ratio. In guiding evolution, it can control the
generality of the hypotheses generated at different stages of evolution, and also adapt
learning parameters, such as description type, to the problem. LEM3 also implements a
new method for executing the end-phase of the evolutionary computation, and adds
various extensions to the original LEM methodology, such as new hypothesis
instantiation algorithms, and an Action Profiling Function (APF) that allows switching
between modes of execution or applying them in parallel. As in the previous version,
continuous attributes are handled by a very efficient method, ANCHOR, that
incrementally discretizes them into variable-length intervals appropriate to the progress
of evolution (Michalski and Cervone, 2001).

 4

Section 2 describes the LEM3 algorithm, including an overview of specific methods
described in detail in later sections. Sections 3 to 8 present descriptions of, respectively,
the AQ21 learning program, hypothesis instantiation methods that create new individuals
(candidate solutions), action selection, probing mode that applies conventional operators
for generating new solutions, the ANCHOR method for adaptively discretizing
continuous variables, and the randomization and start-over operators. Section 9 describes
the most important implementation issues and the integration of AQ21 within LEM3. An
example of LEM3 execution in presented in Section 10. Section 11 describes
experimental results from applying LEM3 and, for comparison, a Darwinian-type
method, EA, and the previous implementation, LEM2, to selected benchmark function
optimization problems. Related research and future plans are presented in Sections 12
and 13, respectively.

2 DESCRIPTION OF THE LEM3 ALGORITHM

This section presents in detail the LEM3 algorithm, the most recent implementation of
the Learnable Evolution Model.

The LEM3 algorithm contains several components also found in traditional evolutionary
algorithms, such as generation of an initial population, selection of individuals for a new
population, and evaluation of individuals. Other LEM3 components are concerned with
guiding evolutionary computation through machine learning. This is done by selecting at
each step of evolution the highest and lowest performing individuals in the population,
the H- group and L-group, respectively, and then employing the AQ21 program to
generate a hypothesis that differentiates between the two groups. The hypothesis is then
instantiated in various ways to generate new individuals,

The LEM3 algorithm is presented in pseudocode in Figure 1 and in flowchart form in
Figure 2.

Generate initial population
Loop until the Stop Condition is satisfied
 Evaluate individuals
 Select parent population
 Select one or more of the following actions:
 Learn and instantiate hypothesis that discriminate high and low performing
 individuals in the parent population (Learning Mode)
 Generate new individuals through Darwinian-type operators (Probing Mode)
 Change the representation of individuals
 Randomize the population (either partially or via a start-over evolution process)
Compute statistics and display results
End LEM3

Figure 1: LEM3 Algorithm in pseudocode.

2.1 Generate Initial Population

The first step of the algorithm generates an initial population of individuals, which LEM3
can do in three ways. It can generate an initial population randomly, create it according to

 5

constraints defined by the user, or import it from an external source. The latter capability
is especially useful when there is a need to run LEM3 with a preexisting population, e.g.,
developed by experts in the domain of application. An initial population can be also
assembled through a combination of the above methods.

Start

Evaluate Individuals

Stop LEM3

Generate Initial Population

Select Parent Population

Select One or More Actions

Adjust

Representation

Learn &

Instantiatiate
RandomizeProbe

Figure 2: Flowchart of the LEM3 algorithm.

2.2 Evaluate Individuals

This step determines the value of the fitness function for every individual in the
population. This may be a simple operation if the fitness is defined by a mathematical
formula. In many applications, however, fitness evaluation may require a time consuming
or costly process of running a simulator, solving a set of complex equations, or even
performing an experiment. For example, such situations occur in the case of designing
heat exchangers (Kaufman and Michalski, 2000a; Domanski et al. 2004), optimal non-
linear filters (Coletti et al., 1999), aircraft wing shapes (Oyama, 2000), and some
applications described in (Bentley and Corne, 2002; Gen and Cheng, 2000).

Due to the use of the AQ21 machine learning program, LEM3 allows a user to define the
fitness function in terms not only of numeric attributes, as is usually done in conventional
evolutionary algorithms, but also in terms of other attribute types, such as nominal, rank,
cyclic (for example days of the week), structured (representing hierarchies; Larson and
Michalski, 1977), interval, and ratio (Michalski, 2004; Michalski and Wojtusiak, 2005b).
This feature extends LEM3 applicability to domains in which fitness is measured not
only by some numerical score, but also by a combination of qualitative and qualitative
properties.

 6

2.3 Generate New Population

After a successful instantiation process, new individuals need to be incorporated into the
new population. This is done by copying new individuals directly into the new
population, or by combining new individuals and individuals from the old population. In
general, the creation of new population works in two steps: (1) creation of a (possibly
large) temporary population and (2) selection of individuals into the new population.

The temporary population consists of all newly instantiated individuals and also,
depending on parameters, individuals from the old population. If the number of
instantiated individuals is smaller than the desired population size, the program needs to
take some or all individuals from the previous population in order to meet the target
population size. It is usually desirable regardless to always add all individuals from the
previous population into the temporary group. There is no need to keep track of past
populations from more than one iteration, because they were already used in previous
steps, and are reflected in the old population.

Selection of individuals into the new population is done using methods known from
evolutionary computation. Three methods used in LEM3 are: select the best individuals,
also known as rank-based selection; tournament selection; and proportional selection also
known as roulette wheel selection described, for example in (Bäck, Fogel and
Michalewicz, 2000). As a result of selection the final new population is created.

2.4 Select One or More Actions

LEM3 works in different modes of operation. Each action presented in Figure 2
represents one mode of operation that may consist of a number of different operations
(e.g., in learning mode three operations are executed, namely example selection,
hypothesis creation, and hypothesis instantiation). The program can select one action
(mode of operation), or actions can be executed in parallel (e.g. Learning Mode and
Probing Mode). Selection of actions is controlled by the Action Profile Function (APF).
A detailed description of methods for selecting actions is presented in Section 5.

2.5 Execute Learning Mode

In learning mode, the most important part of the Learnable Evolution Model, new
individuals are created through hypothesis formulation and instantiation. Individual
creation is a three step process: (1) selection of example individuals, (2) hypothesis
formulation, and (3) hypothesis instantiation.

Based on the fitness of the individuals, step (1) selects high-performing (H-group) and
low-performing (L-group) individuals from the population. These groups serve as
positive and negative examples, respectively, for the AQ21 learning program.

There are two methods of creating these groups (Michalski, 2000). The first one, Fitness-
Based Selection, defines high and low fitness thresholds in the range from the highest to
the lowest fitness value observed in the current population. For example, if High and
Low Fitness Thresholds are both 25%, then individuals whose fitnesses are in the highest
25% of the range and the lowest 25% of the range are included in the H-group and L-
group, respectively

 7

The second method, Population-Based Selection, selects a specified percentage of
individuals from the population for each group, regardless of the distribution of fitness
values. These percentages are defined by the High Population Threshold (HPT) and Low
Population Threshold (LPT). For example, if HPT and LPT are both 30%, then the 30%
of the individuals with the highest fitness and the 30% with the lowest fitness are
included in the H- and L-group, respectively. This issue is discussed in more detail in
(Michalski, 2000).

The central component of the LEM3 algorithm is a learning module (step 2) that induces
general descriptions discriminating H-group from L-group individuals. In LEM3, this
function is performed by AQ21 whose learning module generates hypotheses in the form
of attributional rules (Michalski, 2004). Such a representation of hypotheses is beneficial
to LEM because of the rules’ high expressive power, the ease of instantiation of learned
hypotheses, and the understandability of the hypotheses by experts. Previous LEM
implementations employed earlier versions of AQ learning programs; LEM1 used
AQ15c, (Wnek et al., 1996) and LEM2 used AQ18 (Kaufman and Michalski, 2000b).
AQ21 and its use in LEM3 are described in Section 3 of this paper.

Instantiation (step 3) is a process of generating new individuals that satisfy a given
hypothesis. The instantiation process is the main way to create new individuals in
Learnable Evolution Model, and correct instantiation of learned hypotheses is therefore
crucial for evolution. A detailed description of the methods of instantiating attributional
rules used in LEM3 is presented in Section 4.

2.6 Execute Probing Mode

The probing mode executes Darwinian-type operators in order to generate new
individuals. The two operators implemented in LEM3 are crossover and mutation,
described in detail in Section 6.

2.7 Change Representation

Continuous variables in LEM3 can be automatically discretized using Adaptive
Anchoring Discretization (Michalski and Cervone, 2001), or can be represented in their
original continuous form. Adaptive anchoring increases the precision of the discretized
variables in the most promising areas, neighborhoods of the fittest individuals. Execution
of this operator is controlled by the Action Profile Function mentioned above. A
description of the discretization method used is presented in Section 7.

2.8 Randomizing

This action adds randomly generated individuals to a population in order to introduce
diversity, or replaces the entire population in a start-over process. A description of the
randomizing action is presented in Section 8.

3 AQ21 MACHINE LEARNING SYSTEM

In this section we describe AQ21, the machine learning system used in hypothesis
generation in LEM3. It also describes how AQ21 is used within the LEM3 algorithm.

 8

Programs from the AQ family learn hypotheses in the form of Attributional Rules
(Wojtusiak, 2004a, Michalski, 2004, Michalski and Kaufman, 2001). The simplest form
of attributional rules is:

CONSEQUENT � PREMISE

where consequent and premise are complexes -- conjunctions of attributional conditions
(a.k.a. selectors). Here is an example of such a rule:

[part = acceptable] � [weight = 2..5] &
[color = red v yellow] &
[height < 3]

which means that a part is acceptable if its weight is between 2 and 5 (units are
presumably defined in the attribute domain), its color is red or yellow, and its height is
less than 3.

Hypotheses learned by AQ are in the form of attributional rulesets, defined as sets of
rules with the same consequent. The main operator used in the AQ algorithm is
extension-against. Provided with a positive example and a negative example, this
operator generates a partial star defined as the set of maximal generalizations of the
positive example that do not cover the negative example. The intersection of all partial
stars from one positive example against the different negative examples is called a star --
a set of maximal generalizations of the positive example that do not cover any negative
example. In order to prevent an exponential growth to the size of the star, AQ employs a
beam search that limits the number of rules to be retained from each iteration. The
positive example that was used to generate the star is called a seed. AQ selects the best
rule from a generated star, selects a new seed from the uncovered positive examples, and
similarly generates stars until all positive examples are covered. Such an algorithm
guarantees that the learned ruleset will be complete and consistent, provided that
examples of different classes are always distinct in the representation space. Figure 3
presents the basic AQ algorithm in pseudocode.
HYPOTHESIS = <null>
While not all H-group examples are covered by HYPOTHESIS
 Select an uncovered positive example e+ and use it as a seed
 Generate star G(e+, L-group)
 Select the best rule R from the star, and add it to HYPOTHESIS

Figure 3: Pseudocode of the AQ algorithm as used in LEM3.

Selection of the best rules is done using a Lexicographical Evaluation Function (LEF)
that specifies user-defined criteria for rule preference (e.g. Michalski, 2004a; Wojtusiak,
2004a).

In LEM3, the consequent part of rules takes the form [group = H], indicating that the
rules are describing high performing individuals (positive examples). The negative
examples are in the L-group that consists of lowest performing individuals. The
following example shows a rule learned by AQ21 during optimization of the Rosenbrock
function of 10 variables.

 9

[group=H] � [x0=-0.5..1.5: 28,19] &
 [x4=-0.5..2.0: 15,16] &
 [x5=-1.5..1.5: 18,12] &

 [x8=-0.5..1.5: 30,28] &
[x9=-0.5..1.5: 27,22]: p=12,n=0

Figure 4: An example of an attributional rule learned by AQ211 in LEM3

The rule says that attribute x0 may have a value between -0.5 and 1.5, x4 may have a
value between -0.5 and 2.0, and so forth. The pair of numbers after “:” in each condition
indicates the positive and negative support (coverage) for this condition. For example,
the condition specifying the value of x0 was itself satisfied by 28 of the positive training
examples (H-group) and 19 of the negative training examples (L-group.) Attributes x1,
x2, x3, x6 and x7 are not included in the rule. The numbers p and n indicate the coverage
of the entire rule (12 positive and 0 negative examples).

In some situations, especially at the end of the evolutionary process, the diversity of the
individuals may be very low in a population, and the learning module (AQ21) will not be
able to learn any rules. Such a situation occurs, for example, when the entire population
converges to a set of identical individuals. Usually, this means that the program has
found an optimum, either local or global. To see if this is a local or global optimum,
LEM3 performs special exploratory steps controlled by the Action Profile Function.

4 INSTANTIATION OF LEARNED HYPOTHESES

The learned hypotheses are used to generate new individuals by a process of rule
instantiation. Because basic attributional rules are conjunctions of conditions that define
ranges (or sets) of attributes values, the instantiation of such rules is a relatively easy
process.

When instantiating a rule for a member of the new population, the program faces two
problems, what values to assign to attributes that are in the rule, and what values to assign
to attributes not present in the rule. The latter case is exemplified by the rule in Figure 4,
which does not include attributes x1, x2, x3, x6 and x7.

Three algorithms for instantiating attributional rules are used in LEM3

4.1 Instantiation Algorithm 1

This is the simplest algorithm for generating new individuals by instantiating the
attributional rules. It takes all rules from the ruleset learned by AQ21, and for each rule
computes the number of individuals to be generated. The total number of individuals that
are created can be either constant during the run or vary over time; it is defined by the
user as a parameter. The number of individuals to be created can be the same for all
rules, or can be computed proportionally according to a measure of the rules’ significance
that is defined as the sum of the fitness values of the high performing individuals covered
by the rule.

—————
1 AQ21 displays more information describing rules, see (Wojtusiak, 2004a).

 10

For each rule in a ruleset (hypothesis) to be instantiated
 Compute the number of individuals to be created
 For each individual to be created
 Create the individual
 For each attribute
 If the attribute is specified in the rule
 Select a random value satisfying the rule
 Else Select a random individual from the previous population and use its
 value

Figure 5: Instantiation Algorithm 1

For each newly created individual, the program has to assign values for all attributes,
both those included in the rule being applied and those not included in the rule.
Depending on the attribute type and user defined parameters, different distributions can
be used to select random values for the attributes specified in the rule; it can be done
uniformly, using normal distribution for numerical attributes with mean equal to the
middle of the range and user-defined variance, using maximum distance from negative
examples, or using projections of positive and negative examples.

Selection of values of attributes not specified in the rule is a more intricate problem with
many potential solutions. One way is to select a random value from the entire attribute
domain. This will result in individuals consistent with the rule; however, it is easy to
show cases in which this will result in poor performance. For instance let us assume that
we are optimizing a function with two attributes x and y. Both attributes are continuous
and defined on the range -5 to 5, and the function optimum is at the point (0, 0). Let us
further assume that AQ21 has found the rule [x = 0]. The program will then generate
individuals with x = 0 in all cases, and with y distributed over the range [-5, 5]. In the
next iteration, AQ21 will learn rules containing only the attribute y, since there is no
longer any differentiation among the x-values. During the instantiation phase, the
program will assign values of the attribute x randomly, which means that the information
from the previous iteration is lost. Thus, the rules may not converge to the solution.

Another method of value selection is to select the value from a randomly selected
existing individual. The individual can be selected from the entire population, the H-
group, or non-L-group individuals. Experiments have shown that when selecting values
from the H-group, the program tends to lose diversity of individuals, and may converge
very quickly to a point that is not the target solution. The method that LEM3 uses by
default selects individuals from the whole population probabilistically in proportion to
their fitness levels.

The presented instantiation algorithm has a very severe weakness. It does not work well
for multimodal functions. Events selected to provide values of attributes that are not
specified in a rule may be located in different parts of the event space, thus causing new
individuals to be generated in the wrong parts of the space. As an extension to the
algorithm, a constraint may be added to ensure that generated events must match the rule
that is instantiated, but this also may not keep the evolution process from straying in all
cases. The second instantiation algorithm was designed to deal with the described
problems.

 11

4.2 Hypothesis Instantiation Algorithm 2

This algorithm selects parent individuals and then modifies them according to learned
rules. As mentioned before, the second instantiation algorithm is designed to deal with
problems that appear using the first instantiation algorithm. The difference between this
and the previous algorithm is in the way an individual from the old population is selected.
This algorithm is especially good for multimodal functions.

Compute the fitness of all individuals (see below)
Loop while more individuals remain to be created
 Select probabilistically an individual (parent) based on its fitness
 Create a list of rules satisfied by the selected individual
 Select a rule from this list probabilistically in proportion to its significance
 Create a new individual:
 For all attributes
 If the attribute is specified in the selected rule
 Select a random value satisfying the rule
 Else Select the value from the parent

Figure 6: Instantiation Algorithm 2

The typical quality measure of individuals is simply their fitness. This is not, however,
the only possibility; for example, a quality measure may take also into consideration the
number of rules that match the individual. When AQ21 is working in Theory Formation
(TF) mode (i.e., learning covers that are complete and consistent with respect to the
training data), it is guaranteed that all individuals from the H-group will satisfy some
rules. Although LEM uses by default the TF mode, it is also possible to learn rules in
Pattern Discovery (PD) mode, in which stronger patterns may be favored over a complete
and consistent ruleset. In such a case, some individuals from the H-group may not be
covered completely by any rules, and it is thereby important to select only individuals
that are covered by at least one rule. Values of attributes that are specified in the rule are
selected according to Algorithm 1.

4.3 Hypothesis Instantiation Algorithm 3

Regardless of the learning mode, AQ21 guarantees that each rule will cover at least one
high-performing individual. Using that information, it is possible to combine the two
algorithms presented above.

For all rules
 Compute the number of individuals to be created
 For all individuals to be created
 Select probabilistically an individual covered by the rule
 For all selectors in the rule
 Modify value of the individual within the selector

Figure 7: Instantiation Algorithm 3

The third instantiation algorithm, similarly to Algorithm 1, computes the number of
individuals to be instantiated for each rule. A significant difference from the first

 12

algorithm is that the program does not select random values according to the rules, but
instead modifies an existing individual that is covered by the rule. This guarantees that
all rules will be instantiated, and multimodal fitness functions will be treated
appropriately

4.4 Instantiation of Alternative Hypotheses

The AQ21 program has the unique feature that it can learn not only one ruleset per class,
but also a number of alternative descriptions/rulesets for the same class (Michalski
2004b; Wojtusiak, 2004a). In LEM, when the number of attributes may be much larger
than the number of examples, it is highly probable that the program can generalize the
positive examples in different ways. LEM3 handles alternative covers learned by AQ21
in two ways: (1) the intersection of the covers can be instantiated, or (2) the union of the
covers can be instantiated. Once the program computes either the intersection or union,
one of the three algorithms described above is used to instantiate.

By using the intersection method (1), we instantiate in an area covered by at least one
rule from each alternative ruleset. Suppose that RS1, RS2, …, RSn are alternative
rulesets describing the high performing individuals. Ruleset RS1 consists of k1 rules:
RS1 = { R1,1, R1,2, … R1,k1 }, ruleset RS2 consists of k2 rules RS2 = { R2,1, R2,2, … R2,k2
}, and so on. A ruleset is defined as a disjunction or rules that are conjunctions of
selectors, so the intersection of rulesets is equivalent to a conjunction of rulesets and is
given by the following formula: Λ

 i=1..N RSi =
Λ

 i=1..N (Ri,1 v Ri,2 v … v Ri,ki)

Using De Morgan’s and absorption laws the intersection RS can be easily computed. In
fact, computation of such an intersection is one of the most common operations in the AQ
algorithm applied during the star generation phase. In LEM3 we use this feature of
AQ21 to compute the intersection. Intersection of alternative rulesets for a given class is
also a ruleset. Moreover if AQ21 works in TF mode and all rulesets are complete and
consistent, the intersection is also a complete and consistent ruleset. To prove this, it is
sufficient to mention two facts: by our assumption, none of the rules in the rulesets cover
any negative examples, so their intersection cannot cover any such examples; and each
positive example is covered by at least one rule from in each ruleset. , so they will be
covered in the intersection. Let E be a positive event that is covered by rules R1,m1, R2,m2,
… Rn,mn. It follows that

Λ
1..n Ri,mi covers the example E. Instantiation of the intersection

of alternative rulesets speeds up the evolution process by limiting the area covered by
learned rules. It is however dangerous, since intersected rulesets may be too specialized
and the program may converge to a point that is not necessarily an optimal solution.

The second method is to take the union of alternative rulesets. The union is defined using
the following formula: V

i=1..N RSi =
V

i=1..N (Ri,1 v Ri,2 v … v Ri,ki)

In this case computation of RS is trivial and requires only the use of absorption laws in
order to remove unnecessary rules. Similarly to the case of intersection, it can be proven
that the union of complete and consistent covers is also a complete and consistent cover.

 13

Unlike intersection, the union expands the area in which new individuals are instantiated.
This slows down the evolution process, but increases the chance that the target solution is
covered.

5 ACTION SELECTION

Execution of different modes of operation is a unique feature of LEM3 that distinguishes
it from other implementations of the Learnable Evolution Model and from many other
evolutionary computation methods. As mentioned above, the two basic modes that guide
the evolution process are learning mode, which uses hypothesis creation and
instantiation, and probing mode, which employs Darwinian-type operators such as
mutation and crossover. In addition to the two modes of operation, LEM3 employs
additional actions such as adjusting discretization and randomizing (start-over) to help
the evolution process.

An important question to be answered is how to switch between the modes of operation
and when each action should be executed. The two modes of operation can be executed
in parallel, or the program can switch between them as defined in duoLEM. Other
operations such as changing representation need to be executed separately. To control
the application of different actions, LEM3 defines an Action Profiling Function (APC)
that based on the performance of different types of operators decides which operators to
apply in the next step. It also decides how many new individuals to create by each mode.
For example if the total number of new individuals to be created is 100, the APC may
decide to generate 70 by learning mode, 25 by probing mode and 5 by randomizing. The
APC should adapt during the evolution process to reflect which operators are the most
relevant for the optimization problem. Assigning individuals to learning and probing
mode can be done by two simple rules:

 If average-learning-fitness >> average-probing-fitness then
 Increase number of individuals in learning mode
 If average-learning-fitness << average-probing-fitness then
 Increase number of individuals in probing mode

where averages are computed over individuals created in one or more iterations of the
respective modes.

During the evolution process, it may happen that over a number of iterations, the program
makes no progress in terms of value of the fitness function. This situation can be
identified through the use of two program parameters, learn-probe and learn-threshold.
Learn-probe defines the maximum number of iterations that are performed even if there
is unsatisfactory progress, as defined by learn-threshold, the minimal acceptable increase
of fitness of the best individual. In such a situation, we say that the no-progress condition
is met, and several possible operations need to be applied.

If the no-progress condition is met, operations mutation, adjust discretization, and/or
start-over are invoked. LEM3 tries to apply mutation for mutation-probe iterations. If
there is still no progress, the program then tries to adjust discretization for discretization-
probe iterations. If there is still no progress, LEM3 tries to run the start-over operation
for up to start-over-probe times.

 14

If no progress
 Increment learn-probe-counter
 If learn-probe-counter >= learn-probe
 Learn-probe-counter = 0
 If mutation-probe-counter < mutation-probe
 Increment mutation-probe-counter
 Mutate individuals
 Evaluate modified individuals
 Else if discretization-probe-counter < discretization-probe
 Increase discretization-probe-counter
 Mutation-probe-counter = 0
 Adjust discretization
 Mutate individuals
 Evaluate modified individuals
 Else if start-over-probe-counter < start-over-Probe
 Increment start-over-probe-counter
 Discretization-probe-counter = 0
 Mutation-probe-counter = 0
 Rollback discretization
 Add the best individuals to a list of local optima
 Start-over
 Evaluate individuals
 Else
 Stop LEM3

Figure 8: No-progress condition pseudocode

The order of mutation, adjust discretization, and start-over operations is not accidental.
Mutation is performed in order to introduce diversity into a population, and to be sure
that the program did not get stuck “close” to the optimal value (this could be local or
global optimum). It is usually the case that AQ21 is unable to learn hypotheses because
of a lack of diverse examples. The next step increases the precision of the search by
adjusting discretization. If the change of precision does not make any difference, it may
mean that the program has found an optimum. However the optimum may be local and it
may be desirable to start over with a new random population, and to explore different
parts of the space. All three operations are explained in detail in next Sections.

6 PROBING MODE

In Probing Mode LEM3 executes Darwinian-type operators to create new individuals. It
can be executed in parallel with learning mode, or LEM3 can switch between the two as
controlled by the Action Profile Function (APF) described earlier. The APF decides not
only when probing mode is to be executed, but also which Darwinian-type operators are
to be invoked. In addition to two operators, crossover and mutation, described below, the
APF allows the user to define specialized operators based on expert knowledge in the
optimization domain.

 15

6.1 Crossover operator

LEM3 implements a single point crossover operator that selects two parent individuals
and creates a new individual using the parents’ values of attributes. The algorithm is
executed in three steps:

1. Select parent individuals
2. Define a split point
2. Create a new individual

Selection of parents is done probabilistically, proportionally to their fitness. The split
point defines how many variables’ values will be taken from the first parent, and how
many from the second one. For example if there are 100 variables, and the split point is
0.3, the first 30 values will be assigned from the first parent, and the last 70 will be
assigned from the second parent. The split point is generated randomly with uniform
distribution.

A newly created individual thus has assigned values from both parents: the first part from
the first parent and second part from the second parent.

6.2 Mutation Operator

In LEM3 the primary goal of the mutation operation is not to find better individuals, but
rather to introduce diversity into a population. It may, however, produce better
individuals in terms of fitness function value, but the direct goal is to distribute
individuals in such a way that the AQ21 program will have enough examples to generate
hypotheses by generalization of the examples. It is usually the case that individuals
generated through mutation are included in the L-group of low performing individuals.
Such individuals provide constraints for learning, and allow the AQ21 program to
generalize. It is especially important when the program has already converged to one
value of an attribute (that may or may not be correct), so the attribute will not be included
in any rule. Moreover, during the instantiation process for attributes not included in
rules, LEM3 uses values from randomly selected existing individuals, implying that
without introducing diversity LEM3 will not make any progress for the attribute.

The mutation methodology in LEM3 is more complex than in standard evolutionary
algorithms or genetic algorithms, due to the need to deal with the different types of
attributes that are implemented in LEM3 and AQ21, namely nominal, rank, discretized
continuous, cyclic, structured , ratio, and absolute (Wojtusiak, 2004a; Michalski, 2004).

The LEM3 program can also use information about the population or evolution history to
mutate individuals in the “right” direction. However, in practice it usually happens that
mutation is invoked when the population has converged to one point and no such
information can be taken from the current population. One possibility is to assign higher
probability to values that are not present, or are present in smaller numbers of individuals.
This method can be justified because it provides more diversity to the population.
However, it can be assumed that the population has converged to a point that is close to
the optimum, and thus only its close neighborhood should be explored via mutation.
Below we provide a description of the mutation operation for different types of attributes:

 16

The domain of a nominal attribute is an unordered set, so the concept of distance between
its values does not apply (we can assume that a distance between any two values is the
same). A reasonable way of changing attributes of this type is to assign a value
randomly.

An absolute attribute domain is a totally ordered set, meaning that it is possible to create
a distribution based on how far a value is from the actual attribute value. The distance
between values in the domain is based on the count of values between them plus one. For
example in domain “length” having values {very short, short, medium, long, very long}
the distance between values “short” and “very long” is three. Mutation can be done using
the normal distribution with the additional assumption that the distance between
successive values is equal. For experimental purposes, one may also want to use a
uniform distribution.

A ratio type attribute domain is a special case of continuous linear domain, for example,
real numbers. In LEM3, values of this type are stored with double precision. Values of a
continuous attribute can be changed in a number of ways. They can be changed
uniformly over the entire domain range, or in a range specified as a parameter. It is also
natural to use the normal distribution with mean equal to the value taken from the parent
individual.

A discretized continuous attribute domain type is a special case of the ratio domain [6].
Real values are discretized to predefined points (representing specific intervals). The
discretized intervals are not necessarily equally distributed, especially when an adaptive
discretization method such as ANCHOR (Michalski and Cervone, 2001) or ChiMerge
(Kerber, 1992) is used (the default discretization method in LEM3 is ANCHOR).
Mutation of the discretized continuous attributes can be done as with either continuous
attributes or absolute attributes. In the first method, the middle of an interval is changed
according to a selected distribution, as a continuous value, and discretized back to one of
the intervals. It is important to ensure that the selected distribution will go beyond the
current interval; otherwise no change will be ever made to the attribute. The second
method uses the ordering of intervals, 1, 2, 3, … k, to apply mutation as for absolute
attributes. In such a case, information about length of the intervals is ignored.

A cyclic attribute domain can be treated in the same way as an absolute domain; it
represents a linear domain whose last value wraps around to its first (e.g., days of the
week). The only computational difference between cyclic and linear is that “distance”
between two points should be computed in both ways -- counting up from the first point
to the second, and from the second to the first, and the minimum should be used.
Similarly to linear domains, the distance is computed by counting elements in the list of
possible values.

A structured attribute domain represents a generalization hierarchy. The mutation can be
done in two ways, as in nominal domains, and using information about the hierarchy. It
seems reasonable to take advantage of the structure that is defined in the domain. To
compute distances between nodes, a simple distance in the tree can be used, defined as
the number of edges that need to be followed from one node to another. Note that in true
trees, there is only one possible path between two nodes, so such a measure is well
defined.

 17

Two important issues governing the mutation process are which attributes should be
changed during the mutation and what parameters of mutation should be used. To solve
the first problem, LEM3 uses two methods: randomly selecting attributes to be changed;
and selecting attributes that are currently not specified in the learned rules. It is also
possible to use a combination of the methods. The program can create a list of attributes
that are not included in the current ruleset, and if the list contains fewer attributes than a
given threshold, the first method is used.

In the LEM3 implementation, each attribute has its own mutation parameters. For many
applications, attributes are from different domains, and must have separate mutation
parameters. This is also desirable when adaptive methods are used, for example, in
methods that adapt mutation ratio during the evolution process. Similar techniques are
known and used in the field self-adaptive genetic algorithms.

7 ADJUSTING REPRESENTATION SPACE

In general, adjusting the representation space of solutions may include ignoring irrelevant
variables, adjusting domains of variables, and creation of new variables that are more
relevant to the optimization problem. Although all three types of operations are being
investigated in the LEM methodology, LEM3 currently implements only adjusting
discretization of variables described in paragraphs below.

After the mutation operation, “adjust discretization” is the second operation comprising
the no-progress condition in LEM3. The program uses adaptive discretization to change
the precision of the attributes when it is required. The method that is used by default is a
modified version of Adaptive Anchoring Discretization (Michalski and Cervone, 2001),
which discretizes the continuous variable with a granularity size adapted to the problem.
It is also possible to employ other methods of discretization in LEM3. For example, one
could use ChiMerge (Kerber, 1992). This method, however, is based on frequencies of
values, and is not designed for use in evolutionary computation.

The modified ANCHOR method starts with an initial discretization of the space that is
denser in areas closer to zero and less dense farther from zero. For example an attribute
whose domain is a range [-2000, 300] will be discretized into intervals whose boundaries
are: {-2000, -1000, -900, ..., -100, -90, ..., -10, -9, … -1, 0, 1, ..., 9, 10, 20, …, 90, 100,
200, 300}.

The modified ANCHOR method increases precision in the neighborhood of the best
individuals in the current population. The increase is done for all attributes discretized by
the method. In many cases when the program reaches the no-progress condition, there is
only one such point representing a local optimum to which the program converged. For
multi-modal functions for which LEM3 seeks simultaneously a number of solutions or,
more generally, when more than one best individual is selected, precision is increased in
the neighborhood of all local optima. Let us suppose that for the attribute from the
previous example, LEM3 decides to increase precision in the neighborhood of the value
100. As a result the following will be boundaries of intervals in the new discretized
domain: {-2000, -1000, -900, ..., -100, -90, ..., -10, -9, … -1, 0, 1, ..., 9, 10, 20, …80, 90,
91, …, 99, 100, 110, …, 190, 200, 300}, where the new intervals are shown in italics.

 18

After adjusting the discretization, it is necessary to generate randomly new individuals
within the area in which the discretization was improved. This will give the AQ program
examples distributed over the new discretization space after applying the mutation
operator to individuals that were the basis for the adjust discretization operation.

8 RANDOMIZATION AND START-OVER

The Randomize operation can either add new (usually few) randomly generated
individuals to the current population in order to increase diversity, or restart the evolution
process by applying the start-over operation.

LEM3 without the start-over operation can be viewed as a local optimization algorithm
that cannot get out from local optima if it already converged (unless mutation is applied
with the uniform distribution).

The start-over operation generates a new population to restart the evolution process from
the beginning. This operation is designed for when the program finds a local optimum
and needs to search other parts of the optimization space. Such a situation is detected by
the no-progress condition given that neither mutation, which locally modifies the best
individuals, nor adjust discretization, which increases search precision, improves global
solution. New individuals are created (1) randomly in the entire space, (2) randomly in
the parts of space that were not explored so far, and (3) randomly by maximizing distance
from the local optima found so far. The first method is the simplest one, and is
equivalent to a full restart of the LEM3 algorithm. The second method requires keeping
track of all values of attributes that appeared in past individuals. The information is used
to distribute individuals over the not explored yet parts of the space. The third method
builds distributions based on a list of local optima found so far. The farther from a found
solution, the higher the probability that an example is used.

9 THE LEM3 IMPLEMENTATION

The basis for LEM3 implementation is the learning module of the AQ21 program. Our
goal was to fully integrate AQ21’s learning module with the evolution module in LEM.
The full integration not only reduces learning time, but also provides access to all
functions implemented in AQ21, and reuses its data structures. The integration is based
on the simple fact that an individual can be represented in the same way as an event in
AQ learning. Moreover, these individuals are used as examples when LEM applies
machine learning to generate hypotheses that describe high-performing individuals.

The following sections describe the main AQ21 data structures that are shared with
LEM3 to store individuals and learned hypotheses. Details of attribute types in AQ
learning and their representation are presented in (Michalski and Wojtusiak, 2005b).

9.1 Representation of Individuals in LEM3

It was mentioned above that LEM3 uses AQ21 data structures to store individuals. This
can be done because an individual is nothing else than list of values of attributes that
describe a point in an optimization space. The point can represent a design, an argument
of a multidimensional function, a set of parameters, or any object in the optimization

 19

space. Moreover individuals are used as examples for learning when determining
hypotheses that distinguish between high and low performing individuals. In Learnable
Evolution Model, the optimization space and event space for learning are the same. In
the following paragraphs we briefly present the representation of events in AQ learning
that is also used to represent individuals in LEM.

To represent an event, it is necessary to store both discrete and continuous attributes. The
discrete attributes are stored in bitstrings, where each value of the discrete domain is
represented by exactly one bit. The concatenation of bits for all domains represents the
discrete part of the event. Continuous attributes are represented directly as numeric
values. A vector of real values is used to represent all numeric attributes.

Because LEM3 uses Adaptive Anchoring Discretization, attributes to which the
discretization is applied are stored using bits even if they were originally continuous.
LEM3 can represent numeric attributes both ways – discretized and not discretized.

9.2 Representation of learned hypotheses in LEM3

AQ’s learning module outputs learned hypotheses in the form of attributional rulesets. A
ruleset, a collection of rules with the same consequent, is represented using an ordered set
of rules. Each rule is represented using data structures similar to these used to represent
individuals (events in AQ learning) – vectors of bits and vectors of real values. For
discrete attributes, each value from the domain of the attribute is assigned exactly one bit
that is set to 1 when the value is present and 0 when it is not. An extra bit is added to
each attribute, and is used to help represent meta-values (Michalski and Wojtusiak,
2005a), although LEM3 does not use this feature of AQ21. For continuous values, each
attribute is assigned two real values – for lower and upper bounds. Thus, an individual
can be viewed as a special case of a rule condition in which exactly one value per
attribute is present. The following example demonstrates the representation used in
LEM3 and AQ21.

Let x1, x2 and x3 be attributes that define the optimization space. Attributes x1 and x2
are of nominal type with domains {r, g, b, w} and attribute x3 is a continuous (ratio)
attribute. Suppose that [group = high] � [x1=r,g] & [x2=b] &[x3=5..7] is a rule learned
during the optimization process. The consequent part of the rule is represented by a
complex (conjunction of attributional conditions) that has all three attributes active, two
of them represented by bitstrings (x1 and x2) and one represented by a range (x3). The
following is a representation of the consequent of the presented rule:

Bits: 1100000100 Ranges: (5, 7)

The domain size of both nominal attributes is 4, so 5 bits are used to represent each of the
attributes (an extra bit is used to represent meta-values, as mentioned above). Bits 1 to 5
are used to store values for the first selector (attribute x1) and bits 6 to 10 are used to
store values for the second selector (attribute x2). There is only one continuous attribute
(x3); therefore only one range is used.

It should be mentioned that even if not all attributes are used in a rule, bits or ranges are
assigned to all attributes. This means that the size of a complex in a given representation
space is constant, even if it has only one selector. Inactive discrete selectors have all

 20

value bits switched to 1 and inactive continuous selectors are represented by special
ranges equivalent to (-∞, +∞).

10 AN APPLICATION OF LEM3 AND EA TO A SIMPLE PROBLEM

This section presents an example of applying LEM3 and a conventional, Darwinian-type
algorithm, Evolutionary Algorithm (EA) to a simple function optimization problem. The
problem is simple enough to be illustrated graphically using Generalized Logic Diagrams
(e.g. Michalski, 1978) but sufficiently complex to show some important aspects of the
LEM3 algorithm. The optimization problem is to find all global maxima of the sample
function:

2
3

2
21

2
03210)*2cos(*816),,,(xxxxxxxxf −−−−=

Domains of all attributes are ranges [-2, 2]. The cosine part was added to the function in
order to make two equal global optimal solutions to the problem. A two dimensional
version of the function, given by the formula)*2cos(*48),(1

2
010 xxxxf −−= is

illustrated in Figure 9. The factors 4*n and 2*n (values 16, 8 and 8, 4 in expressions
above), where n is the number of attributes, are used the function for scalability and to
guarantee that its value is not negative.

Figure 9: A plot of the function f(x0, x1).

The following figures demonstrate consecutive steps of executing LEM3. The figures are
Generalized Logic Diagrams (GLDs) representing four dimensional spaces spanned over
discretized variables x0,…,x4. For each generation, two diagrams are presented for
LEM3, one with the current population and one with selected solutions in the H-group
and L-group) and the learned rules. For comparison, steps of executing EA for this
problem are also illustrated.

 21

Generation 1:

In the first iteration, the population is randomly initialized over the entire space as shown
on Figure 10. LEM3 selects examples for the H- and L-groups indicated as respectively
“1” and “2” on the same figure. Provided with the examples AQ21 learns rules presented
as shaded areas in Figure 12. Initial populations in LEM3 and EA are the same.

LEM3 EA

Figure 10: Randomly generated initial

population (the same for both programs).

Figure 11: Randomly generated initial

population (the same for both programs).

Figure 12: Learned hypothesis and H- and L-

group individuals in LEM3.

EA applies mutation and crossover to
generate new individuals.

EA probability of mutation is 0.1

EA probability of crossover is 0.1

EA selection method is tournament.

 22

Generation 2:

Instantiated individuals are combined with the old individuals and a new population is
selected (Figure 13). In the instantiated individuals both solutions of the function have
already been found – individuals (2, 2, 0, 2) and (2, 2, 4, 2), which represent the values of
real solutions (0, 0, -2, 0) and (0, 0, 2, 0). Although the program has found the solutions,
it still needs for all individuals to converge to the solutions in order to satisfy the LEM3
stop condition (the only individuals are solutions). Figure 15 shows high and low
performing individuals selected from population and learned rules (shaded areas).
Evolutionary algorithm slowly converges toward the solutions as shown in Figure 14.

LEM3 EA

Figure 13: LEM3 Population in the second

generation (100 fitness evaluations).

Figure 14: EA Population in the second

generation (85 fitness evaluations).

Figure 15: Learned hypothesis and H- and L-

group individuals in LEM3.

EA applies mutation and crossover to
generate new individuals.

EA probability of mutation is 0.1

EA probability of crossover is 0.1

EA selection method is tournament.

 23

Generation 3:

In the third generation, LEM3 individuals converge closer to the solutions as shown on
Figure 16. After selecting L- and H-groups from the population, one rule is learned as
shown on Figure 18.

EA also found the solutions, but the population is much more distributed over the space
(Figure 17).

LEM3 EA

Figure 16: LEM3 Population in the third

generation (150 fitness evaluations).

Figure 17: EA Population in the third generation

(130 fitness evaluations).

Figure 18: Learned hypothesis and H- and L-

group individuals in LEM3.

EA applies mutation and crossover to
generate new individuals.

EA probability of mutation is 0.1

EA probability of crossover is 0.1

EA selection method is tournament.

 24

Generation 4:

The fourth generation in LEM3 consists of individuals that converged to the two
solutions and one individual that is not a solution (Figure 19). The only individual that is
not a solution is used as the L-group, and all other individuals are included in the H-
group. One simple rule describes the H-group against the L-group (Figure 21). EA
slowly converges towards solutions (Figure 20).

LEM3 EA

Figure 19: LEM3 population in the fourth

generation (200 fitness evaluations).

Figure 20: EA Population in the fourth

generation (168 fitness evaluations).

Figure 21: Learned hypothesis and H- and L-

group individuals in LEM3.

EA applies mutation and crossover to
generate new individuals.

EA probability of mutation is 0.1

EA probability of crossover is 0.1

EA selection method is tournament.

 25

Generation 5:

Finally, in the fifth generation (250 fitness evaluations) all individuals generated by
LEM3 converged to the two solutions (Figure 22). This ends the evolution process in
LEM3. EA did not converge to the solutions yet (Figure 23).

LEM3 EA

Figure 22: Two global optima found by LEM3 in
the last, fifth generation (250 fitness evaluations).

Figure 23: EA population in the fifth generation

(214 fitness evaluations).

Generation 8:

In the eighth generation, EA converged to one of the two solutions shown in Figure 24.
The total number of fitness function evaluations needed by LEM3 was 250, and by EA
was 346. Also, LEM3 found both optima, and EA only one of the two.

LEM3 EA

LEM3 already converged to both optimal
solutions after fifth generation, as shown in
Figure 22.

Figure 24: One of the two optima found by EA

in the eighth generation (346 fitness evaluations).

 26

While the advantage of LEM3 over EA in solving this simple problem (only 4 variables
describe the individuals) is relatively large (EA needs about 100 more fitness evaluations
than LEM3), a more impressive advantage of LEM3 is seen in problems with larger
number of variables, where LEM3 is on average over 16 times faster than EA (see
Section 11 for details). This is so because LEM3’s advantage grows with the number of
variables.

In real-world and more complex applications LEM3 will start applying methods
described in the no-progress condition to ensure that program is not stuck close to the
solutions, the discretization level is correct, and there are no other solutions in unexplored
areas of the optimization space. The presented simple example was chosen for
demonstration of LEM3 and its comparison with EA because of ease of the visualization
that because of the complexity of GLDs can grow exponentially worse with a larger
number of attributes.

11 COMPARATIVE RESULTS FROM APPLYING LEM3, EA AND LEM2

The goal of these experiments was to compare the performance of LEM3, LEM2, and
EA, representing a conventional, Darwinian type evolutionary computation algorithm on
a range of function optimization problems. The problems involved optimization of the
Rastrigin, Griewangk, and Rosenbrock functions of different numbers of variables,
ranging from 10 to 1000. These functions were chosen because they are often used for
testing evolutionary algorithms and are described, for example, in (Whitley et al., 1996).
EA is an implementation of Evolutionary Algorithm taken from library EO (Evolutionary
Objects) 0.9.3a that can be downloaded from URL: http://eodev.sourceforge.net. The EO
library was selected because it is an advanced implementation of Darwinian-type
evolutionary algorithm, it supports large numbers of variables (we tried other programs
that support far fewer variables), it is well described in available tutorials, and it is easily
downloadable from the internet.

LEM3 and EA were applied to optimizing functions of 10, 100, 200, 300, …, 1000
variables. LEM2 was applied to optimizing functions of 10 and 100 variables (its limit is
fewer than 200 variables). Each experiment involving optimizing a function of a given
number of variables was repeated 10 times with a different starting population. To make
a fair comparison, the same starting population was used in each program.

The results are reported for δ -close solutions that are characterized by a normalized
distance from the optimal solution. The δ-close solution, s, is a solution for which
function δ (s), defined as:

initopt

svopt
s

−
−

=
)(

)(δ

reaches an assumed δ-target value, where init is the evaluation (“fitness value”) of the
best solution in the initial population, opt is the optimal value, and v(s) is the evaluation
of the solution s. Such a measure works for both maximization and minimization
problems, that is, for problems in which the optimal solution has maximal or minimal
evaluation.

 27

This definition of δ-close solution suggests into two possible ways of analyzing
performance of evolutionary computation methods. First, one may consider the problem
of how many fitness function evaluations are needed to achieve a given δ=k by the best
individual in the population, denoted as FE(δ =k), where k is a number between 0 and 1.
The measure is the main way of reporting results in this paper. Secondly, one may
consider the problem of finding δ (v) after given number of fitness evaluations, where v is
the fitness value of the best individual after a given number of fitness function
evaluations. Figure 25 illustrates concept of the δ-close solution.

Figure 25: Illustration of a δ -close solution.

For example if the fitness value of the best individual in the initial population is 100 and
during the process of minimization the program achieved value 0.1, and the optimal value
is 0 then δ=0.001, indicating that program found a solution within 0.1% distance from the
optimal solution, normalized by the fitness value of the best individual in the initial
population.

In the presented experiments, LEM3 was executed using all default parameters. Most
importantly, high and low population thresholds were both 0.3, learning probe was 4,
mutation probe was 10, discretization probe was 2, discretization method was ANCHOR,
and survival selection was rank-based.

In the presented experiments, LEM2 was executed with the following parameters: high
and low thresholds were both 0.3, discretization method was ANCHOR, and mode was
DUOLEM (utilize both learning and probing modes). All other LEM2 parameters used
default values.

In the presented experiments, EA was executed with the following parameters:
probability of mutation was 0.1, probability of crossover was 0.6, and selection method
was tournament. It used two types of crossover, standard, which creates new individuals
by taking values form two parents, and hypercube crossover, which uniformly selects a

 28

point in the hypercube spanned by the two parent individuals (for details see website
http://eodev.sourceforge.net).

On request, the authors will provide actual starting populations, programs, scripts used to
run experiments, actual result files, and all other information needed to reproduce the
presented results.

11.1 Optimizing the Rastrigin Function

Optimizing (minimizing) the Rastrigin function is a well-known problem used in testing
evolutionary algorithms. As shown in Figure 26, the function has a large number of local
optima, and one global optimum equal to zero. It is reached when all the variables equal
zero. A general expression of the Rastrigin function is:

))**2cos(*10(*10),...,(
1

2
1 i

n

i
in xxnxxf ∑

=
−+= π

A plot of the two-variable Rastrigin function is presented in Figure 26.

Figure 26: The Rastrigin function of 2 variables.

The experiments below are examples presented to demonstrate comparison of the
programs on the Rastrigin function. A full summary of the experiments is presented in
Section 11.1.5.

11.1.1 Experiment 1: Optimizing the Rastrigin Function of 10 Variables

Figure 27 and Figure 28 present results from optimizing the Rastrigin function of 10
variables by LEM3, LEM2 and EA. Both LEM2 and LEM3 converged relatively fast at
the early stage of evolution, and then slowed down when approaching the optimum.
LEM3 reached a δ=0.1-close solution after 415 fitness evaluations, a δ=0.01-close
solution after 1000 fitness evaluations, and the optimum after 1208 fitness evaluations.
LEM2 reached a δ=0.1-close solution after 374 fitness evaluations, a δ=0.01-close
solution after 853 fitness evaluations, and the optimum after 1225 fitness evaluations.
EA reached a δ=0.1-close solution after 2673 fitness evaluations, and a δ=0.01-close
solution after 12,419 fitness evaluations.

 29

Based on the above numbers, the evolution speedup of LEM3 over EA for δ=0.1 is about
4 times, and for δ=0.01 is about 10 times.

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500 3000

The number of fitness evaluations

T
h

e
va

lu
e

o
f

R
as

tr
ig

in
 f

u
n

ct
io

n LEM2 LEM3 EA

Function : Rastrigin

Number of variables : 10

EA

LEM3

LEM2

Each line represents average of 10
runs with different starting popultions.

EA LEM2 LEM3

δ
 = 0.1

EA: FE(
δ

=0.1)=2673

LEM2: FE(
δ

=0.1)=374

LEM3: FE(
δ

=0.1)=415

speed-up(LEM3/EA,
δ

=0.1)≈ 6

Figure 27: The LEM3, LEM2 and EA evolutionary computation in minimizing the
Rastrigin function of 10 variables.

Figure 27 presents graphs representing the average of 10 runs of LEM3, LEM2 and EA
on minimizing the Rastrigin function of 10 variables. Both LEM2 and LEM3 found
δ=0.1-close solution after fewer than 500 fitness function evaluations, and EA converged
to δ=0.1 close solution after about 2700 fitness evaluations. The dotted line represents a
δ=0.1 distance from the solution.

0

20

40

60

80

100

120

0 2000 4000 6000 8000 10000 12000 14000

The number of fitness evaluations

T
h

e
va

lu
e

o
f

R
as

tr
ig

in
 f

u
n

ct
io

n LEM3 EA

Function : Rastrigin

Number of variables : 10

EA
LEM3

LEM3: FE(δ =0.01)=1000

Each line represents average of 10
runs with different starting popultions.

EA LEM3

LEM3: FE(δ =0)=1208 EA: FE(δ =0.01)=12,419

speed-up(LEM3/EA, δ =0.01)≈ 12

Figure 28: The LEM3 and EA evolutionary computation in minimizing the Rastrigin
function of 10 variables.

 30

Figure 28 presents graphs representing the average of 10 runs of EA and LEM3 on
minimizing the Rastrigin function of 10 variables on a larger scale up to 14,000 fitness
evaluations. LEM3 found a δ=0.01-close solution after 1000 fitness evaluations and the
exact solution after about 1200 fitness function evaluations. EA converged to a δ=0.01-
close solution after over 12,000 fitness evaluations.

11.1.2 Experiment 2: Optimizing the Rastrigin Function of 100 Variables

Figure 29 and Figure 30 present results from optimizing the Rastrigin function of 100
variables by LEM3, LEM2 and EA with population 100. All three programs converged
relatively quickly in the early stage of evolution, and then slowed down when
approaching the optimum (EA slowed down much earlier than LEM2 and LEM3).
LEM3 reached the optimum after 7569 fitness evaluations, and LEM2 converged to an
approximate solution with δ=0.01 after about 6000 fitness evaluations (in all ten of the
runs). LEM2 did not find exact solution in this experiment.

EA converged continuously toward the solution and reached an approximate solution
with δ=0.01 after 114,445 fitness evaluations.

0

400

800

1200

1600

0 5000 10000 15000 20000 25000 30000

The number of fitness evaluations

T
h

e
va

lu
e

o
f

R
as

tr
ig

in
 f

u
n

ct
io

n LEM2 LEM3 EA

Function : Rastrigin

Number of variables : 100

EA

LEM3

LEM2

LEM3: FE(δ =0.1)=2270

LEM2: FE(δ =0.1)=2451δ = 0.1

Each line represents average of 10
runs with different starting popultions.

EA LEM2 LEM3

EA: FE(δ =0.1)=28,402

speed-up(LEM3/EA, δ =0.1)≈ 13

Figure 29: The LEM3, LEM2 and EA evolutionary computation in minimizing
the Rastrigin function of 100 variables.

Figure 29 presents graphs representing the average of 10 runs of LEM3, LEM2 and EA
on minimizing the Rastrigin function of 100 variables. Both LEM2 and LEM3
converged quickly up to δ=0.01, and EA converged much slower. LEM2 and LEM3
reached δ=0.1-close solutions after fewer than 2500 fitness evaluations. After almost
30,000 fitness evaluations, EA achieved a δ=0.1-close solution. The dotted line
represents the δ=0.1 distance from the solution.

Figure 30 presents graphs representing the average of 10 runs of EA and LEM3 on
minimizing the Rastrigin function of 100 variables on a larger scale. As mentioned

 31

above, LEM3 reached the optimum after 7569 fitness evaluations, and EA found a
δ=0.01-close solution after over 114,000 fitness evaluations.

0

500

1000

1500

2000

0 20000 40000 60000 80000 100000 120000

The number of fitness evaluations

T
h

e
va

lu
e

o
f

R
as

tr
ig

in
 f

u
n

ct
io

n LEM3 EA

Function : Rastrigin

Number of variables : 100

EA

LEM3

LEM3: FE(δ =0.01)=5298 EA: FE(δ =0.01)=114,445

Each line represents average of 10
runs with different starting popultions.

EA LEM3

LEM3: FE(δ =0)=7569

speed-up(LEM3/EA, δ =0.01)≈ 22

Figure 30: The LEM3 and EA evolutionary computation in minimizing
the Rastrigin function of 100 variables.

0

10

20

30

40

50

4000 5000 6000 7000 8000 9000 10000

The number of fitness evaluations

T
h

e
va

lu
e

o
f

R
as

tr
ig

in
 f

u
n

ct
io

n LEM2 LEM3

Function : Rastrigin

Number of variables : 100

LEM3

LEM2

LEM3: FE(δ =0.01)=5298

LEM2: FE(δ =0.01)=6723

LEM2 LEM3

LEM3: FE(δ =0)=7569

δ
 = 0.01

Each line represents average of 10
runs with different starting popultions.

Figure 31: The end-phase of LEM3 and LEM2 evolutionary computation in minimizing
the Rastrigin function of 100 variables.

Figure 31 presents a comparison of the end-phase (after 4000 fitness evaluations)
performance of LEM3 and LEM2 in minimizing the Rastrigin function of 100 variables.
All LEM3 runs found the exact solution (δ=0) after between 6000 and 10,000 fitness
evaluations. No LEM2 runs found the exact solution; they converged to an approximate
solution with δ=0.01. The dotted line represents the δ=0.01 distance from the solution.

 32

11.1.3 Experiment 3: Optimizing the Rastrigin function of 500 Variables

In this experiment, LEM3 was compared with EA. LEM2 was been compared because
its limit on the number of variables. Figure 32 presents results of the optimization of the
Rastrigin function of 500 variables by LEM3 and EA. Both programs converged
relatively fast in the early stage of evolution, and then slowed down when approaching
the optimum (EA slowed down much earlier than LEM3). LEM3 reached a δ=0.1-close
solution after 5,252 fitness evaluations and a δ=0.01-close solution after 16,195 fitness
evaluations. EA reached a δ=0.1-close solution after 128,184 fitness evaluations (in all
of the 10 runs). Thus, the evolutionary speedup of LEM3 over EA with δ=0.1 is about
24.

0

2000

4000

6000

8000

10000

0 20000 40000 60000 80000 100000 120000 140000

The number of fitness evaluations

T
h

e
va

lu
e

o
f

R
as

tr
ig

in
 f

u
n

ct
io

n LEM3 EA

Function : Rastrigin

Number of variables : 500

EA

LEM3

LEM3: FE(δ =0.1)=5252

EA: FE(δ =0.1)=128,184

EA LEM3

Each line represents average of 10
runs with different starting popultions.

δ = 0.1

LEM3: FE(δ =0.01)=16,195

speed-up(LEM3/EA, δ =0.1)≈ 24

Figure 32: The LEM3 and EA evolutionary computation in minimizing
the Rastrigin function of 500 variables.

11.1.4 Experiment 4: Optimizing the Rastrigin Function of 900 Variables

In this experiment, LEM3 was compared with EA. Figure 33 presents graphs
representing results from optimizing the Rastrigin function of 900 variables by LEM3
and EA. Both programs converged relatively fast at the early stage of evolution, and then
slowed down when approaching the optimum (EA slowed down much earlier than
LEM3).

LEM3 reached a δ=0.1-close solution after 7,491 fitness evaluations and a δ=0.01-close
solution after 182,366 fitness evaluations. This indicates that LEM3 slowed down
significantly at the end of evolution. EA reached an approximate solution with δ=0.1
after 208,246 fitness evaluations and a δ=0.01-close solution after 1,214,476, an order of
magnitude slower than LEM3.

Based on the above numbers, the evolution speedup of LEM3 over EA for δ=0.1 is about
28 times and for δ=0.01 is about 7 times.

 33

0

2000

4000

6000

8000

10000

12000

14000

16000

0 50000 100000 150000 200000 250000

The number of fitness evaluations

T
h

e
va

lu
e

o
f

R
as

tr
ig

in
 f

u
n

ct
io

n LEM3 EA

Function : Rastrigin

Number of variables : 900

EALEM3

LEM3: FE(δ =0.1)=7491

EA: FE(δ =0.1)=208,246

EA LEM3

Each line represents average of 10
runs with different starting popultions.

δ = 0.1

speed-up(LEM3/EA, δ =0.1)≈ 28

Figure 33: The LEM3 and EA evolutionary computation in minimizing
the Rastrigin function of 900 variables.

11.1.5 Summary of Experimental Results with the Rastrigin Function

A comparison of LEM3 and EA on the function on terms of evolution length with δ=0.1,
and δ=0.01 is presented in Tables 1 and 2 below, and graphically presented in Figure 34
and Figure 35. In practice, the programs can be applied to functions with even more
variables, especially LEM3, since it converges very fast for large numbers of variables.

Table 1 shows that the advantage of LEM3 over EA for the Rastrigin for δ=0.1 grows
with the number of variables. For example, for 10 variables, the evolutionary speedup
(the ratio of the number of fitness evaluations by EA and LEM3) is about 4 and for 1000
variables, the speedup is about 33.

Table 1: LEM3 and EA evolution length and evolutionary speedup on optimizing the
Rastrigin function of different numbers of variables, δ=0.1.

Number of
Variables

Number of Fitness
Evaluations

LEM3/EA
Speedup for

δ
=0.1

 EA LEM3
10 2,673 415 ~4

100 28,402 2,270 ~13
200 56,465 3,302 ~17
300 82,809 4,113 ~20
400 106,687 4,820 ~22
500 128,184 5,252 ~24
600 152,291 5,652 ~27
700 184,172 6,053 ~28
800 191,768 6,440 ~30
900 208,246 7,491 ~28

1000 244,408 7,481 ~33

 34

Figure 34 below presents graphically the results from the above table. It shows that the
number of fitness function evaluations for EA grows much faster than for LEM3 with
increasing numbers of attributes.

0

50

100

150

200

250

0 100 200 300 400 500 600 700 800 900 1000
Number of variables

N
u

m
b

er
 o

f
th

e
R

as
tr

ig
in

fu
n

ct
io

n
 e

va
lu

at
io

n
s

in
 t

h
o

u
sa

n
d

s

EA

LEM3

Figure 34: Evolutionary speedup on minimizing the Rastrigin function of 10 to 1000
variables for δ =0.1.

Table 2 below presents the numbers of fitness evaluations needed by LEM3 and EA to
converge to δ=0.01-close solutions for the Rastrigin function of different numbers of
variables. The evolution speedup grows up to 400 variables, where it reaches 46, and
decreases for more variables. Despite the decreasing evolution speedup, LEM3 remains
about an order of magnitude faster than EA in terms of evolution length.

Table 2: LEM3 and EA evolution length and evolutionary speedup on optimizing the
Rastrigin function of different numbers of variables, δ=0.01.

Number of
Variables

Number of Fitness
Evaluations

LEM3/EA Speedup
for

δ
=0.01

 EA LEM3
10 12,419 1,000 ~12

100 114,445 5,298 ~22
200 283,523 7,705 ~37
300 409,591 10,471 ~39
400 584,363 12,708 ~46
500 631,218 16,195 ~40
600 727,158 22,173 ~33
700 1,134,610 26,375 ~43
800 884,545 30,124 ~29
900 1,214,476 37,026 ~33

1000 1,418,323 43,090 ~33

 35

0

200

400

600

800

1,000

1,200

1,400

1,600

0 100 200 300 400 500 600 700 800 900 1000
Number of variables

N
u

m
b

er
 o

f
R

as
tr

ig
in

fu
n

ct
io

n
 e

va
lu

at
io

n
s

in
 t

h
o

u
sa

n
d

s

EA

LEM3

Figure 35: Evolutionary speedup on minimizing the Rastrigin function of 10 to 1000
variables for δ =0.01.

The number of fitness evaluations needed to δ-optimize the function (that is, to find a
solution δ-close to the optimum) grows with the number of variables up to a point when
because of lack of diversity, LEM3 starts behaving similarly to a standard Darwinian-
type method by and has to apply mutation every iteration. This opens a very important
and interesting area for future research, namely how to modify LEM3 to improve
optimization at the end of evolution process.

It is interesting that for 700 variables, EA requires more fitness function evaluation than
for 800 variables, but continues following the original tendency for 900 and 1000
variables. This shows the high sensitivity of the algorithm on starting populations, even
if the experiment was repeated 10 times with different starting populations (the same
starting populations were used in LEM3).

11.2 Optimizing the Griewangk Function

Optimizing (minimizing) the Griewangk function is a well-known problem used in
testing evolutionary algorithms. The function has a large number of local optima and one
global optimum equal to zero. It is reached when all the variables equal zero. The
domain for all variables in the preformed experiments was [-5.12, 511].

The general n-dimensional Griewangk function is given by the expression

∏∑
==

−+=
n

i

n

i

i
n ix

x
xxf

1
1

1
1)/cos(

4000
1),...,(. A plot of its 2 dimensional case is

presented in Figure 36 (local view near the minimum).

 36

Figure 36: The Griewangk function of 2 variables (local view near minimum).

Experiments presented in this section show comparison LEM3 and EA on the Griewangk
function of 10, 100, 500, and 100 variables. A summary of experiments for δ=0.1 and
δ=0.01-close solutions is presented in Section. LEM2 was not compared in this set of
experiments because the Griewangk function is not in its set of testing functions.

11.2.1 Experiment 5: Optimizing the Griewangk Function of 10 Variables

Figure 37 presents graphs representing results from optimizing the Griewangk function of
10 variables by LEM3 and EA. Both programs converged relatively quickly at the early
stage of evolution (LEM3 much faster than EA), and then slowed down when
approaching the optimum (EA slowed down much earlier than LEM3).

0

20

40

60

80

100

0 2000 4000 6000 8000

The number of fitness evaluations

T
h

e
va

lu
e

o
f

G
ri

ew
an

g
k

fu
n

ct
io

n LEM3 EA

Function : Griewangk

Number of variables : 10

EA

LEM3

LEM3: FE(δ =0.1)=268

EA: FE(δ =0.01)=7367

Each line represents average of 10
runs with different starting popultions.

EA LEM3

δ = 0.1

EA: FE(δ =0.1)=2579
LEM3: FE(δ =0.01)=3223

speed-up(LEM3/EA, δ =0.1)≈ 10

speed-up(LEM3/EA, δ =0.01)≈ 2

Figure 37: The LEM3 and EA evolutionary computation in minimizing the Griewangk
function of 10 variables.

 37

LEM3 reached a δ=0.1-close solution after 268 fitness evaluations, a δ=0.01-close
solution after 3223 fitness evaluations, and δ=0.001 after 15,309 fitness evaluations. EA
reached a δ=0.1-close solution after 2579 and δ=0.01 after 7367 fitness evaluations.

The above numbers indicate that the speedup of LEM3 over EA for δ=0.1 is about 10
times, and the speedup of LEM3 over EA for δ=0.01 is about 2 times.

11.2.2 Experiment 6: Optimizing the Griewangk Function of 100 Variables

Figure 38 presents graphs representing results from optimizing the Griewangk function of
100 variables by EA and LEM3 with population 100. LEM3 converged very fast from
the beginning of evolution and slowed down when approaching the optimum. EA
converged slowly from the beginning of evolution. LEM3 reached a δ=0.1-close solution
after 1,797 fitness evaluations, a δ=0.01-close solution after 10,486 fitness evaluations,
and a δ=0.001-close solution after 26,366 fitness evaluations. EA reached a δ=0.1-close
solution after 24,611 fitness evaluations, a δ=0.01-close solution after 52,632 fitness
evaluations, and a δ=0.001-close solution after 89,258 fitness evaluations.

The above numbers indicate that the speedup of LEM3 over EA for δ=0.1 is about 14
times, the speedup of LEM3 over EA for δ=0.01 is about 5 times, and the speedup of
LEM3 over EA for δ=0.001 is about 3 times.

0

500

1000

1500

2000

0 10000 20000 30000 40000 50000 60000

The number of fitness evaluations

T
h

e
va

lu
e

o
f

G
ri

ew
an

g
k

fu
n

ct
io

n LEM3 EA

Function : Griewangk

Number of variables : 100

EA

LEM3

LEM3: FE(δ =0.1)=1797

Each line represents average of 10
runs with different starting popultions.

EA LEM3

EA: FE(δ =0.1)=24,611

LEM3: FE(δ =0.01)=10,486 EA: FE(δ =0.01)=52,632

speed-up(LEM3/EA, δ =0.1)≈ 14

speed-up(LEM3/EA, δ =0.01)≈ 5

Figure 38: The LEM3 and EA evolutionary computation in minimizing the Griewangk
function of 100 variables.

 38

11.2.3 Experiment 7: Optimizing the Griewangk Function of 500 Variables

Figure 39 presents graphs representing results from optimizing the Griewangk function of
500 variables by EA and LEM3. LEM3 converged very fast from the beginning of
evolution and slowed down when approaching the optimum. EA converged slowly from
the beginning of evolution. LEM3 reached a δ=0.1-close solution after 6547 fitness
evaluations and a δ=0.01-close solution after 51,564 fitness evaluations. EA reached a
δ=0.1-close solution after 126,057 fitness evaluations and a δ=0.01-close solution after
263,801 fitness evaluations.

The above numbers indicate that the speedup of LEM3 over EA for δ=0.1 is about 19
times and the speedup of LEM3 over EA for δ=0.01 is about 5 times.

0

2000

4000

6000

8000

10000

0 20000 40000 60000 80000 100000 120000 140000

The number of fitness evaluations

T
h

e
va

lu
e

o
f

G
ri

ew
an

g
k

fu
n

ct
io

n LEM3 EA

Function : Griewangk

Number of variables : 500

EA

LEM3

LEM3: FE(δ =0.01)=51,564

EA: FE(δ =0.1)=126,057

Each line represents average of 10
runs with different starting popultions.

EA LEM3

δ = 0.1

LEM3: FE(δ =0.1)=6547

speed-up(LEM3/EA, δ =0.1)≈ 19

Figure 39: The LEM3 and EA evolutionary computation in minimizing the Griewangk
function of 500 variables.

11.2.4 Experiment 8: Optimizing the Griewangk Function of 1000 Variables

Figure 40 presents graphs representing results from optimizing the Griewangk function of
1000 variables by EA and LEM3. LEM3 converged very fast from the beginning of
evolution and slowed down when approaching the optimum. EA converged slowly from
the beginning of evolution. LEM3 reached a δ=0.1-close solution after 10,780 fitness
evaluations and a δ=0.01-close solution after 112,600 fitness evaluations. EA reached a
δ=0.1-close solution after 251,233 fitness evaluations and a δ=0.01-close solution after
525,096 fitness evaluations.

The above numbers indicate that the speedup of LEM3 over EA for δ=0.1 is about 23
times and the speedup of LEM3 over EA for δ=0.01 is about 5 times.

 39

0

5000

10000

15000

20000

25000

0 50000 100000 150000 200000 250000 300000

The number of fitness evaluations

T
h

e
va

lu
e

o
f

G
ri

ew
an

g
k

fu
n

ct
io

n LEM3 EA

Function : Griewangk

Number of variables : 1000

EA

LEM3

LEM3: FE(δ =0.1)=10,780

EA: FE(δ =0.1)=251,233

Each line represents average of 10
runs with different starting popultions.

EA LEM3

δ = 0.1

LEM3: FE(δ =0.1)=112,600

speed-up(LEM3/EA, δ =0.1)≈ 23

Figure 40: The LEM3 and EA evolutionary computation in minimizing the Griewangk
function of 1000 variables.

11.2.5 Summary of Experimental Results with the Griewangk Function

Results from applying LEM3 and EA to optimizing this function in terms of the evolution
length for δ=0.1-close solutions are presented in Table 3 and for δ=0.01-close solutions
are presented in Table 4.

Table 3: LEM3 and EA evolution length and evolutionary speedup on optimizing the
Griewangk function of different numbers of variables, δ=0.1.

Number of
Variables

Number of fitness
evaluations

EA/LEM3
Speedup

 EA LEM3
10 2,579 268 ~10

100 24,611 1,797 ~14
200 50,145 2,985 ~17
300 75,345 4,370 ~17
400 101,810 5,401 ~19
500 126,057 6,547 ~19
600 151,382 7,227 ~21
700 177,221 8,161 ~22
800 202,317 9,001 ~22
900 226,499 9,959 ~23

1000 251,233 10,780 ~23

 40

0

50

100

150

200

250

300

0 100 200 300 400 500 600 700 800 900 1000
Number of variables

N
u

m
b

er
 o

f
th

e
G

ri
ew

an
g

k
fu

n
ct

io
n

 e
va

lu
at

io
n

s
in

 t
h

o
u

sa
n

d
s

EA

LEM3

Figure 41: Evolutionary speedup on minimizing the Griewangk function of 10 to 1000
variables for δ =0.1.

Table 4: LEM3 and EA evolution length and evolutionary speedup on optimizing the
Griewangk function of different numbers of variables, δ=0.01.

Number of
Variables

Number of fitness
evaluations

EA/LEM3
Speedup

 EA LEM3
10 7,367 3,223 ~2

100 52,632 10,486 ~5
200 105,453 20,003 ~5
300 157,320 29,799 ~5
400 211,341 40,215 ~5
500 263,801 51,564 ~5
600 314,888 59,881 ~5
700 369,915 72,437 ~5
800 422,357 86,017 ~5
900 473,310 97,606 ~5

1000 525,096 112,600 ~5

When optimizing the Griewangk function for δ=0.1-close solutions, LEM3’s advantage
over EA grew from about 10 times for the function of 10 variables to about 23 times for
the function with 1000 variables. For the same function for δ=0.01-close solutions, the
speed up of LEM3 was about 5 times when the number of variables was at least 100.
This is because of the fact that at the end of evolution LEM3 needs to apply its mutation
operator to introduce diversity in a population, and therefore it behaves like the
Darwinian-type method. Without sufficient diversity in the population, it is impossible to
apply the learning process in LEM. This problem is addressed in the description of
current research issues in the Learnable Evolution Model in Section 13.

 41

0

100

200

300

400

500

600

0 100 200 300 400 500 600 700 800 900 1000
Number of variables

N
u

m
b

er
 o

f
th

e
G

ri
ew

an
g

k
fu

n
ct

io
n

 e
va

lu
at

io
n

s
in

 t
h

o
u

sa
n

d
s

EA

LEM3

Figure 42: Evolutionary speedup on minimizing the Griewangk function of 10 to 1000
variables for δ =0.01.

11.3 Optimizing the Rosenbrock Function

Optimizing (minimizing) the Rosenbrock function is a well-known problem used in
testing evolutionary algorithms. The function has one global optimum reached when
values of all attributes equal one. The Rosenbrock function is a hard optimization
problem due to the high correlation of variables and the almost flat ridge on which the
optimum is located.

Figure 43: The Rosenbrock function of 2 variables.

The function is given by equation ∑
−

=
+ −+−=

1

1

222
11))1()(*100(),...,(

n

i
iiin xxxxxf , and a plot of

its 2-dimensional case is presented in Figure 43. The Rosenbrock function reaches a
minimum equal to 0 at the point (1, 1, …1). Please note that in the figure, domains of

 42

both variables are [-10, 10] for better visualization, but in the presented experiments, we
used domains [-2, 10].

11.3.1 Experiment 9: Optimizing the Rosenbrock Function of 10 Variables

In this experiment LEM3 was compared with EA and LEM2. Figure 44 presents graphs
representing results from optimizing the Rosenbrock function of 10 variables by LEM3,
LEM2, and EA. LEM3 reached a δ=0.1-close solution after 325 fitness evaluations, a
δ=0.01-close solution after 682 fitness evaluations, and a δ=0.001-close solution after
1365 fitness evaluations. LEM2 reached a δ=0.1-close solution after 275 fitness
evaluations, a δ=0.01-close solution after 492 fitness evaluations, and a δ=0.001-close
solution after 1180 fitness evaluations. EA reached a δ=0.1-close solution after 541
fitness evaluations, a δ=0.01-close solution after 2027 fitness evaluations, and a δ=0.001-
close solution after 8602 fitness evaluations.

The above numbers indicate that the speedup of LEM3 over EA is about 2 times for
δ=0.1, about 3 times for δ=0.01 is, and about 6 times for δ=0.001. All presented numbers
are averaged over 10 executions of each program.

0

20000

40000

60000

80000

100000

120000

140000

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

The number of fitness evaluations

T
h

e
va

lu
e

o
f

R
o

se
n

b
ro

ck
 f

u
n

ct
io

n

LEM2 LEM3 EA

Function : Rosenbrock

Number of variables : 10

LEM3: FE(δ =0.1)=325

LEM2: FE(δ =0.1)=275

EA: FE(δ =0.1)=541

Each line represents average of 10
runs with different starting popultions.

EA LEM2 LEM3

δ = 0.1

LEM2: FE(δ =0.01)=492 EA: FE(δ =0.01)=2027

LEM3: FE(δ =0.01)=682

speed-up(LEM3/EA, δ =0.1)≈ 2

speed-up(LEM3/EA, δ =0.01)≈ 3

Figure 44: The LEM3, LEM2, and EA evolutionary computation in minimizing

the Rosenbrock function of 10 variables.

11.3.2 Experiment 10: Optimizing the Rosenbrock Function of 100 Variables

In this experiment, LEM3 is compared with LEM2 and EA. Figure 45 presents graphs
representing results from optimizing the Rosenbrock function of 100 variables by LEM3,
LEM2, and EA. LEM2 and EA converged similarly at the beginning of evolution, and
after about 600 fitness evaluations started slowing down. LEM3 reached a δ=0.1-close
solution after 1906 fitness evaluations, a δ=0.01-close solution after 3495 fitness
evaluations, and a δ=0.001-close solution after 7039 fitness evaluations. LEM2 reached a
δ=0.1-close solution after 918 fitness evaluations, a δ=0.01-close solution after 2348
fitness evaluations, and a δ=0.001-close solution after 44,087 fitness evaluations. EA
reached a δ=0.1-close solution after 3067 fitness evaluations, a δ=0.01-close solution

 43

after 26,944 fitness evaluations, and a δ=0.001-close solution after 151,839 fitness
evaluations.

The above numbers indicate that the speedup of LEM3 over EA is about 2 times for
δ=0.1, about 8 times for δ=0.01, and about 22 times for δ=0.001. All presented numbers
are averaged over 10 executions of each program.

0

2000

4000

6000

8000

10000

0 1000 2000 3000 4000

The number of fitness evaluations

T
h

e
va

lu
e

o
f

R
o

se
n

b
ro

ck
 f

u
n

ct
io

n
 i

n
 t

h
o

u
sa

n
d

s

LEM2 LEM3 EA

Function : Rosenbrock

Number of variables : 100

LEM3: FE(δ =0.1)=1906

LEM2: FE(δ =0.1)=918

EA: FE(δ =0.1)=3067

Each line represents average of 10
runs with different starting popultions.

EA LEM2 LEM3

δ = 0.1

spped-up(LEM3/EA, δ =0.1)≈ 2

Figure 45: The LEM3, LEM2, and EA evolutionary computation in minimizing

the Rosenbrock function of 100 variables.

Figure 46 shows LEM3 is more precise than LEM2 during the end-phase of evolution.
LEM3 stops execution after converging to a δ=0.000075-close solution after fewer than
35,000 fitness evaluations, while LEM2 converges to a δ=0.0001-close solution after
over 44,000 fitness evaluations.

0

5000

10000

15000

20000

25000

30000

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

The number of fitness evaluations

T
h

e
va

lu
e

o
f

R
o

se
n

b
ro

ck
 f

u
n

ct
io

n LEM2 LEM3

Function : Rosenbrock

Number of variables : 100

LEM3

LEM2

LEM2: FE(δ =0.001)=44,087

LEM2 LEM3

δ
 = 0.001

LEM3: FE(δ =0.001)=7309

LEM3 stop condition reached

Figure 46: The end-phase of LEM3 and LEM2 evolutionary computation in minimizing

the Rosenbrock function of 100 variables.

 44

11.3.3 Experiment 11: Optimizing the Rosenbrock Function of 500 Variables

In this experiment LEM3 was compared with EA. LEM2 was not used in this experiment
because of its limit on number of variables. Figure 47 presents graphs representing
results from optimizing the Rosenbrock function of 500 variables by EA and LEM3 with
population 100. EA converged very fast at the beginning of evolution, and after about
500 fitness evaluations significantly slowed down. LEM3 converged slower in the
beginning of evolution, but after about 4000 fitness evaluations it outperformed EA.
After 10,000 fitness evaluations LEM3 reached a δ=0.01-close solution and EA reached a
δ=0.11-close solution, which is 11 times worse than LEM3. After about 40,000 fitness
evaluations LEM3 reached a 0.001-close solution and EA reached a δ=0.068-close
solution, which represents a 68-fold advantage of LEM3 over EA.

0

20000

40000

60000

80000

0 20000 40000 60000 80000 100000 120000 140000 160000

The number of fitness evaluations

T
h

e
va

lu
e

o
f

R
o

se
n

b
ro

ck
 f

u
n

ct
io

n
 i

n
 t

h
o

u
sa

n
d

s

LEM3 EA

Function : Rosenbrock

Number of variables : 500

LEM3: FE(δ =0.1)=4519

Each line represents average of 10
runs with different starting popultions.

EA LEM3

EA: FE(δ =0.1)=14,960δ
 = 0.1

LEM3: FE(δ =0.01)=12,655 EA: FE(δ =0.01)=145,984

LEM3: FE(δ =0.001)=42,486

speed-up(LEM3/EA, δ =0.1)≈ 3

speed-up(LEM3/EA, δ =00.1)≈ 12

Figure 47: The LEM3 and EA evolutionary computation in minimizing

the Rosenbrock function of 500 variables.

11.3.4 Experiment 12: Optimizing the Rosenbrock Function of 1000 Variables

In this experiment LEM3 was compared with EA. Figure 48 presents graphs representing
results from optimizing the Rosenbrock function of 1000 variables by LEM3 and EA.
Both programs converged very fast in the beginning of evolution. LEM3 reached a
δ=0.1-close solution after 6851 fitness evaluations, a δ=0.01-close solution after 29,691
fitness evaluations, and a δ=0.001-close solution after 101,635 fitness evaluations. EA
reached a δ=0.1-close solution after 28,468 fitness evaluations and a δ=0.01-close
solution after 296,897 fitness evaluations. EA did not reach a δ=0.001-close solution; it
stopped after about 380,000 fitness evaluations with δ=0074.

The above numbers indicate that speedup of LEM3 over EA for δ=0.1 is about 4 times
and the speedup of LEM3 over EA for δ=0.01 is about 10 times. All presented numbers
are averaged over 10 executions of each program.

 45

0

20

40

60

80

100

120

140

0 50000 100000 150000 200000 250000 300000

The number of fitness evaluations

T
h

e
va

lu
e

o
f

R
o

se
n

b
ro

ck
 f

u
n

ct
io

n
 i

n
 m

il
li

o
n

s

LEM3 EA

Function : Rosenbrock

Number of variables : 1000

Each line represents average of 10
runs with different starting popultions.

EA LEM3

LEM3: FE(δ =0.1)=6851

LEM3: FE(δ =0.01)=29,691

EA: FE(δ =0.1)=28,468

LEM3: FE(δ =0.001)=101,635

EA: FE(δ =0.01)=296,897

speed-up(LEM3/EA, δ =0.1)≈ 4

speed-up(LEM3/EA, δ =0.01)≈ 10

Figure 48: The LEM3 and EA evolutionary computation in minimizing

the Rosenbrock function of 1000 variables.

11.3.5 Summary of experimental results with the Rosenbrock Function

Table 5 below presents a comparison of the performance of EA and LEM3 on optimizing
the Rosenbrock function of 10 to 1000 variables with δ=0.1-close solutions. It can be
seen that the advantage of LEM3 over EA, is small, but grows with the complexity of the
problem. Finding more precise, δ=0.01-close, solutions shows a clear advantage for
LEM3, up to 18 times. These results are presented in Table 6.

Table 5: LEM3 and EA evolution length and evolutionary speedup on optimizing the
Rosenbrock function of different numbers of variables, δ=0.1.

Number of
Variables

Number of fitness
evaluations

EA/LEM3
Speedup

 EA LEM3
10 541 325 ~2

100 3,367 1,906 ~2
200 5,699 2,625 ~2
300 8,547 3,518 ~2
400 11,690 4,038 ~3
500 14,960 4,519 ~3
600 15,606 5,013 ~3
700 19,448 5,491 ~4
800 22,731 5,710 ~4
900 25,216 6,835 ~4

1000 28,468 6,851 ~4

 46

0

5

10

15

20

25

30

0 100 200 300 400 500 600 700 800 900 1000
Number of variables

N
u

m
b

er
 o

f
th

e
R

o
se

n
b

ro
ck

fu
n

ct
io

n
 e

va
lu

at
io

n
s

in
 t

h
o

u
sa

n
d

s

EA

LEM3

Figure 49: Evolutionary speedup on minimizing the Rosenbrock function of 10 to 1000
variables for δ =0.1.

Table 6: LEM3 and EA evolution length and evolutionary speedup on optimizing the
Rosenbrock function of different numbers of variables, δ=0.01.

Number of
Variables

Number of fitness
evaluations

EA/LEM3
Speedup

 EA LEM3
10 2,027 682 ~3

100 26,944 3,495 ~8
200 57,588 4,922 ~12
300 89,280 6,158 ~18
400 120,056 9,872 ~12
500 145,984 12,655 ~12
600 178,358 15,951 ~11
700 209,274 16,931 ~12
800 234,348 22,843 ~10
900 259,168 25,065 ~10

1000 296,879 29,691 ~10

The evolution speedup of LEM3 over EA grows up to about 12 times (with one exception
that is about 18 times for 300 variables) and stabilizes with a small decreasing tendency.
The tendency of smaller speedup at the end of evolution is due to fact that at the end of
evolution, LEM3 has to apply its mutation operator in order to increase diversity in the
population and therefore starts behaving more like a Darwinian-type method. The lack of
diversity makes it impossible to apply learning mode. This matter is discussed below.

 47

0

50

100

150

200

250

300

0 100 200 300 400 500 600 700 800 900 1000
Number of variables

N
u

m
b

er
 o

f
th

e
R

o
se

n
b

ro
ck

fu
n

ct
io

n
 e

va
lu

at
io

n
s

in
 t

h
o

u
sa

n
d

s

EA

LEM3

Figure 50: Evolutionary speedup on minimizing the Rosenbrock function of 10 to 1000
variables for δ =0.01.

11.4 Time of Evolution

Operators of hypothesis generation and instantiation are much more computationally
complex than mutation and/or recombination operators. Consequently, the computation
time needed by LEM3 to execute the hypothesis generation and instantiation operators is
much longer than the time needed by EA to apply. However, whenever the evaluation of
the fitness function is computationally non-trivial, LEM3 clearly wins not only in the
evolution length but also evolution time.

For example, suppose that EA and LEM3 are applied to an optimization problem with
complexity similar to the Rastrigin function of, say, 500 variables. To get a δ=0.1 close
solution, EA requires about 128,000 fitness evaluations (optimization time is about 180
seconds) and LEM3 requires about 5,200 fitness evaluations (optimization time is about
400 seconds).

By simple calculation we find that if the programs were applied to a real world problem
in which evaluation of its fitness function took only 0.1 second, which is not unusual,
EA would require about 35.5 hours to find a δ=0.1 close solution, and LEM3 would
require no more than about 15 minutes to find the solution. Even if the evolutionary
speedup is only on the order of 5, as for example for the Griewangk function for δ=0.01,
the LEM3 execution time is less than the execution time of EA.

For completeness of this discussion, it is important to mention that the AQ21 execution
time grows with the number of variables. This growth, however, is compensated by the
significantly smaller number of fitness function evaluations. It is also important to point
out that that the time of evaluation of the fitness function also grows with the number of
variables. It should also be mentioned that AQ21 was not optimized for the execution
time. To speedup LEM3, one could optimize AQ21 for the execution time, for example,
by implementing it in hardware or by removing its features that are not used in LEM3.

 48

11.5 Summary of Experimental Results

In the presented experiments we compared the LEM3 system described in this paper with
the EA program, representing a standard Darwinian-type evolutionary method, and
LEM2, the previous implementation of the Learnable Evolution Model, on three well-
known optimization problems. Because of the limitations of LEM2, it was compared
only in a few cases. It is important to note that in none of the presented experiments,
program parameters were fine-tuned to achieve better results; all default settings were
used. In real world problems, especially in solving hard problems, there is only one run
of a method due to the high complexity of fitness evaluations. Such a run may take hours
of even days before optimal results are returned; thus, users cannot usually cannot change
parameters and try again.

The presented results show the superiority of LEM3 over EA in terms of evolution
length, measured as the number of fitness function evaluations needed to achieve a δ-
close solution. LEM3 outperforms LEM2 not only in terms of the evolution length and
precision of solutions, but also in terms of the limitations of LEM2, such as maximum
number of variables allowed.

In all tested cases, LEM3 gave the best results, outperforming EA by up to about 46 times
in case of the Rastrigin function and on average by about 16.5 times for functions of at
least 100 variables. Table 7 below presents average speedups of LEM3 over EA for
different numbers of variables in the experiments shown above.

Table 7: Average evolutionary speedup of LEM3 over EA for Rastrigin, Griewangk, and
Rosenbrock functions of different numbers of variables.

Number of
Variables

10 100 200 300 400 500 600 700 800 900 1000

~Speedup 4.3 10.7 15 16.8 17.8 17.2 16.7 19 16.6 17.2 18

In the presented experiments, the evolutionary speedup of LEM3 over the Darwinian-
type method, EA, grew with the complexity of problem up to 700 variables, and then
tapered of stabilized. This can be explained by the fact that with the growth of the
number of variables the role of hypothesis generation operators decreases because fewer
and fewer variables are needed to diffentiate between H- and L-groups, and thus more
and more variables are instantiated more or less randomly, that is, the method starts
behaving like a Darwinian-type algorithm.

In the presented comparison, we used a standard evolutionary computation method, to
which any other method can be easily compared.

12 RELATED RESEARCH

LEM3 is the newest system, continuing the progression of LEM implementations towards
more complete and advanced embodiments of the LEM methodology. Previous programs
employed older learning systems from the AQ family: LEM1 (Michalski and Zhang,
1999) used AQ15c (Wnek et al., 1996) and LEM2 (Cervone, Kaufman and Michalski,
2001) used AQ18 (Kaufman and Michalski, 2000b).

 49

An implementation of Learnable Evolution Model for Multi-objective Optimization
(LEMMO; Jourdan et al., 2005) is based on rules generated from trees by the C4.5
learning program (Quinlan, 1993). LEMMO was recently applied to a water quality
optimization problem (Jourdan et al., 2005). Because of its use of the C4.5 learning
program, LEMMO learns not only rules that describe the H-group, but also rules that
describe the L-group. Newly generated individuals are required to match the H-group
descriptions and to not match the L-group description. The decision tree representation of
the hypotheses is, however, significantly more limited than the attributional rule
representation in LEM3, and is also more difficult to instantiate.

Most research in the field of evolutionary computation has been exploring various
variants of the Darwinian-type of evolution that employs semi-random mutation and
recombination operators to generate new individuals. Numerous papers, conference
proceedings and books have been published in this very active field (e.g. Bäck, Fogel,
Michalewicz, 2000; Michalewicz, 1992; Gen and Cheng, 2000; Schaefer, 2002; Bayer et
al., 2005). Non-Darwinian evolutionary computation methods use techniques that differ
from the Darwinian model. In particular, LEM employs hypothesis formation and
instantiation operators.

The closest evolutionary methods in spirit to LEM are cultural algorithms (e.g. Reynolds,
1994; Peng and Reynolds, 2001; Reynolds and Peng, 2004) that use additional
information about solutions to guide mutation and recombination operators. The cultural
algorithms perform a constrained optimization process in which constraints are created
during the evolutionary computation. The constraints, called beliefs, are stored in a belief
space that is updated during the evolution process. Individuals that are stored in an
optimization space are modified so that they satisfy the beliefs. The belief space is being
built based on statistical information about individuals, which usually consists of
intervals containing the fittest individuals.

Estimation of Distribution Algorithms (EDAs) use statistical inference and learning to
generate distributions of high-performing individuals selected from one population (e.g.
Mühlenbein and Paaß, 1996; Larrañaga and Lozano, 2002) without use of contrast set of
low-performing individuals. Among the most popular methods for estimating
distributions EDAs use Bayesian and Gaussian networks. The approach is significantly
different from Learnable Evolution Model, which uses symbolic learning to distinguish
between high- and low-performing individuals. EDAs also use values of fitness
functions only for selecting individuals for learning, while LEM can effectively use the
values during learning process (e.g. by learning significance-based descriptions;
Wojtusiak, 2004b).

13 CONCLUSIONS AND PLANNED RESEARCH

The presented LEM3 system is the most advanced implementation of the Learnable
Evolution Model. In many aspects, the algorithms implemented in LEM3 go beyond the
methodology described in (Michalski, 2000). LEM3 has been shown to be a powerful
optimization tool that wins in comparison with other evolutionary computation tools in
terms of evolution length (number of fitness evaluations) and in terms of the versatility of
methods for describing individuals in a population (due to the use of a wide range of

 50

attribute types supported by LEM3). An experimental application of LEM3 to very
complex function optimization problems (with up to 1000 variables) achieved a superior
performance over the EA method used in the experiments. It also showed high
scalability that could not be achieved with previous implementations.

Our research also revealed a weakness of the current implementation of LEM3 for very
large number of variables. As mentioned earlier, when the number of variables reached
about 700, the advantage of LEM3 started to diminish, because in this case only few
variables are needed to differentiate between the H- and L-groups. Consequently, the
learning process has an increasingly lower influence on the evolutionary computation,
because most of the variables are instantiated semi-randomly. Thus, the LEM process at
that stage works like a variant of the Darwinian evolutionary computation.

Overcoming the problem of decreasing influence of learning at the end-phase of
evolution for very large numbers of variables is therefore a major challenge for further
research on the LEM methodology. While this problem is important to solve, it is worth
mentioning that most practical problems have fewer than variables, thus the current
method is applicable with a full advantage of learning.

Other research topics for investigation in LEM include handling complex constraints,
self-adaptation in setting the LEM3 and AQ21 parameters during evolution process,
multi-objective optimization, and automatic improvements of representation of
individuals.

Our current research also focuses on investigation of theoretical aspects of Learnable
Evolution Model, such as its complexity, convergence speed, and classification of
optimization problems for which it is the most suitable.

Applications of LEM can be especially advantageous in areas in which standard
evolutionary computation methods are too slow in terms of number of fitness function
evaluations, particularly those in which fitness evaluation is time consuming or costly.
Such areas include engineering design applications in which the computation of fitness
function involves simulation or other computationally extensive processes.

 51

REFERENCES

Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.), Evolutionary Computation 1 and 2,
Philadelphia Institute of Physics Publishing, 2000.

Beyer, H.G., O'Reilly, U.M., Arnold, D.V., Banzhaf, W., Blum, C., Bonabeau, E.W.,
Cantú Paz, E., Dasgupta, D., Deb, K., Foste r, J.A., de Jong, E.D., Lipson, H., Llora, X.,
Mancoridis, S., Pelikan, M., Raidl, G.R., Soule, T., Tyrrell, A., Watson, J.P., and Zitzler,
E (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, GECCO-
2005, ACM Press, New York, 2005.

Bentley, J.B. and Corne, D.W. (eds.), Creative Evolutionary Systems, Morgan Kaufmann
Publishers, 2002.

Cervone G., Kaufman K. and Michalski R.S., "Validating Learnable Evolution Model on
Selected Optimization and Design Problems," Reports of the Machine Learning and
Inference Laboratory, MLI 03-1, George Mason University, Fairfax, VA, June, 2003.

Coletti, M., Lash, T., Mandsager, C., Michalski, R. S. and Moustafa, R., "Comparing
Performance of the Learnable Evolution Model and Genetic Algorithms on Problems in
Digital Signal Filter Design," Proceedings of the 1999 Genetic and Evolutionary
Computation Conference (GECCO), Orlando, July, 1999.

Domanski, P.A., Yashar, D., Kaufman K. and Michalski R.S., "An Optimized Design of
Finned-Tube Evaporators Using the Learnable Evolution Model," International Journal
of Heating, Ventilating, Air-Conditioning and Refrigerating Research, 10, April, 2004,
pp 201-211.

Gen, M. and Cheng R., Genetic Algorithms & Engineering Optimization, John Wiley &
Sons, 2000.

Jourdan, L.; Corne, D.; Savic, D.; and Walters, G., “Preliminary Investigation of the
‘Learnable Evolution Model’ for Faster/Better Multiobjective Water Systems Design,”
Proceedings of The Third International Conference on Evolutionary Multi-Criterion
Optimization, EMO’05, 2005.

Kaufman, K. and Michalski, R.S., "ISHED1: Applying the LEM Methodology to Heat
Exchanger Design," Reports of the Machine Learning and Inference Laboratory, MLI
00-2, George Mason University, Fairfax, VA, 2000a.

Kaufman, K. and Michalski, R. S., "The AQ18 System for Machine Learning and Data
Mining System: An Implementation and User's Guide," Reports of the Machine Learning
and Inference Laboratory, MLI 00-3, George Mason University, Fairfax, VA, 2000b.

Kerber, R. “Chimerge: Discretization for Numeric Attributes.” Proceedings of the Tenth
National Conference on Artificial Intelligence (AAAI ’92), AAAI Press, 1992, pp. 123-
128.

Larrañaga, P. and Lozano, J. (eds.), Estimation of Distribution Algorithms: A New Tool
for Evolutionary Computation, Kluwer Academic Publishers, 2002.

 52

Larson, J. and Michalski, R. S., "Inductive Inference of VL Decision Rules," Invited
paper for the Workshop in Pattern-Directed Inference Systems, Hawaii, and published in
SIGART Newsletter, ACM, No. 63, May 23-27, 1977, pp. 38-44.

Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution Programs, Springer-
Verlag, 1992.

Michalski, R. S., "A Planar Geometrical Model for Representing Multi-Dimensional
Discrete Spaces and Multiple-Valued Logic Functions," Report No. 897, Department of
Computer Science, University of Illinois, Urbana, January 1978.

Michalski R.S., “ATTRIBUTIONAL CALCULUS: A Logic and Representation
Language for Natural Induction,” Reports of the Machine Learning and Inference
Laboratory, MLI 04-2, George Mason University, Fairfax, VA, April, 2004a.

Michalski, R. S., "Generating Alternative Hypotheses in AQ Learning," Reports of the
Machine Learning and Inference Laboratory, MLI 04-6, George Mason University,
Fairfax, VA, December, 2004b.

Michalski, R.S. and Cervone, G., “Adaptive Anchoring Discretization for Learnable
Evolution Model,” Reports of the Machine Learning and Inference Laboratory, MLI 01-
3, George Mason University, Fairfax, VA, 2001.

Michalski, R. S. and Kaufman, K., "The AQ19 System for Machine Learning and Pattern
Discovery: A General Description and User's Guide," Reports of the Machine Learning
and Inference Laboratory, MLI 01-2, George Mason University, Fairfax, VA, 2001.

Michalski, R.S. and Wojtusiak, J., “Reasoning with Meta-Values in AQ Learning,”
Reports of the Machine Learning and Inference Laboratory, MLI 05-1, George Mason
University, 2005.

Michalski, R.S. and Wojtusiak, J., “Semantic and Syntactic Attribute Types in AQ
Learning,” Reports of the Machine Learning and Inference Laboratory, George Mason
University, 2005, to appear.

Michalski, R.S. and Zhang, Q., "Initial Experiments with the LEM1 Learnable Evolution
Model: An Application to Function Optimization and Evolvable Hardware," Reports of
the Machine Learning and Inference Laboratory, MLI 99-4, George Mason University,
Fairfax, VA, May 1999.

Mühlenbein, H and Paaß, G., “From recombination of genes to the estimation of
distributions I. Binary parameters,” Proceedings of The 4th International Conference on
Parallel Problem Solving from Nature, Berlin, Germany, September 22-26, 1996.

Oyama, A., “Wing Design Using Evolutionary Algorithms,” Ph.D. Thesis, Department of
Aeronautics and Space Engineering of Tohoku University, 2000.

Saleem, S. and Reynolds, R.G., “Function optimization with cultural algorithms in
dynamic environments,” Proceedings of the Workshop on Particle Swarm Optimization
2001. Purdue School of Engineering and Technology, Indianapolis, IN, 2001.

 53

Simionescu, P.A., D.G. Beale and G.V. Dozier (2004) "Constrained Optimization
Problem Solving Using Estimation of Distribution Algorithms," Proceedings of 2004
IEEE Congress on Evolutionary Computation, Portland, OR, June 20-23, 2004.

Quinlan, J. R., C4.5: Systems for Machine Learning, Morgan Kaufmann Publishers Inc.,
1993.

Reynolds, R.G., “An Introduction to Cultural Algorithms,” Proceedings of the Third
Annual Conference on Evolutionary Programming, 1994.

Reynolds, R.G. and Peng, B., “Cultural Algorithms: Modeling of How Cultures Learn to
Solve Problems,” 16th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI'04), Florida, 2004.

Schaefer, R., Podstawy Genetycznej Optymalizacji Globalnej, Wydawnictwo
Uniwersytetu Jagiellonskiego, Krakow, 2002.

Whitley, D., Soraya, R., Dzubera, J., Mathias, K. E., “Evaluating evolutionary
algorithms,” Artificial Intelligence, 85, 1996.

Wnek, J., Kaufman, K., Bloedorn, E. and Michalski, R. S., "Inductive Learning System
AQ15c: The Method and User's Guide," Reports of the Machine Learning and Inference
Laboratory, MLI 96-6, George Mason University, Fairfax, VA, August, 1996.

Wojtusiak, J., “AQ21 User’s Guide, ” Reports of the Machine Learning and Inference
Laboratory, George Mason University, MLI 04-3, Fairfax, VA, 2004a.

Wojtusiak, J., “The LEM3 Implementation of Learnable Evolution Model: User’s
Guide,” Reports of the Machine Learning and Inference Laboratory, George Mason
University, MLI 04-5, Fairfax, VA, 2004b.

A publication of the Machine Learning and Inference Laboratory
School of Computational Sciences
George Mason University
Fairfax, VA 22030-4444 U.S.A.
http://www.mli.gmu.edu

Editor: R. S. Michalski
Assistant Editor: K. A. Kaufman

The Machine Learning and Inference (MLI) Laboratory Reports are an official publication of the Machine
Learning and Inference Laboratory, which has been published continuously since 1971 by R.S. Michalski’s
research group (until 1987, while the group was at the University of Illinois, they were called Intelligent
Systems Group (ISG) Reports).

Copyright © 2005 by the Machine Learning and Inference Laboratory.

