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Abstract

LEM3 is the newest implementation of Learnable Evolution Mod#IM), a non-Darwinian
evolutionary computation methodology that employs machine learninguide evolutionary
processes. Due to a deep integration of different modes of opesatd the use of the advanced
machine learning system AQ21, the LEM3 system is a highigiefit and effective implementation
of the methodology. LEM3 supports different attribute types facrlgng individuals in the
population, such as nominal, rank, structured, interval and ratichwiiakes it applicable to a wide
range of practical problems. It also implements very iefiic methods for switching between
different modes of operation and operators controlling the gémei@tnew individuals. This paper
describes the underlying LEM3 algorithm, results from LEM3 testing ontedl®enchmark function
optimization problems (with the number of variables varying fidinto 1000), and its comparison
with EA, a conventional, Darwinian-type evolutionary computation progia every experiment,
without exception, LEM3 outperformed EA in terms of the evolution ferftite number of fithess
evaluations needed to achieved a desired solution), sometimesigrficantly. It also outperformed
the previous LEM2 implementation.

Keywords: Function Optimization, Learnable Evolution Model, Machine Learnkhgn-
Darwinian Evolutionary Computation
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1 INTRODUCTION

Research on non-Darwinian evolutionary computation is concerned withopengl
algorithms in which the creation of new individuals in the populaticqguided, at least
partially, by an “intelligent agent,” rather than done solelyréwydom or semi-random
change operators, such as the mutations and/or crossovers empldyadainian-type”
evolutionary methods. Each new generation is selected from the geheidividuals by
some selection method, as in Darwinian evolution. The Learnable Ewolhtodel
(LEM), described in (Michalski, 2000; Michalski and Zhang, 1999), em@ay&Q-type
learning program for creating hypotheses for guiding the evolutionarygstoce

Experiments with initial implementations of LEM have demonstréted it may very
significantly speed up the evolutionary process over Darwinian-syl@utionary
algorithms in terms of thevolution length defined as the number of generations (or
fitness evaluations) needed to achieve a desired solution. Most ampgrtthese
experiments also have indicated that the LEM advantage growshgitbomplexity of
the problem, as measured by the number of variables to optimize.firti#sgs indicate
that LEM may be particularly attractive for solving very gdex optimization problems
in which the fitness evaluation is time-consuming or costly.

The first implementation of Learnable Evolution Model, LEM1, emplotfesl AQ15
learning program, and included a relatively small subset of thel bkethodology
(Michalski and Zhang, 1999). Its experimental testing produced, howexsy
promising results. A more advanced implementation, LEM2 used the8 A€arning
program and was tested on several benchmark problems (Cervone, Kaufman and
Michalski, 2003). Domain-oriented LEM implementations, called ISH&EDQ ISCOD,

were tailored to problems of optimizing heat exchanger desigmb,abso produced
highly promising results (Kaufman and Michalski, 2000a; Domanski et al., 2004).

The latest implementation, LEM3, described in this paper, emptbgs newest
implementation of AQ learning, AQ21 (Wojtusiak, 2004a; Wojtusiak, 2004b). In
contrast to previous implementations, LEM3 deeply integrates diffenedes of LEM
operation, that is, it integrates them at the level of data structures.

Due to the integration with AQ21 and use of its data structures,3L&lMws one to
describe individuals in a population in terms of a wide range obatttritypes, such as
nominal, rank, structured, absolute, and ratio. In guiding evolution, it carolctmer
generality of the hypotheses generated at different stdgegotution, and also adapt
learning parameters, such as description type, to the proll&M3 also implements a
new method for executing the end-phase of the evolutionary computatiorgddad
various extensions to the original LEM methodology, such as new hypothesi
instantiation algorithms, and akction Profiling Function(APF) that allows switching
between modes of execution or applying them in parallel. nAfie previous version,
continuous attributes are handled by a very efficient method, ANCHOD&,
incrementally discretizes them into variable-length interegigropriate to the progress
of evolution (Michalski and Cervone, 2001).



Section 2 describes the LEM3 algorithm, including an overview of fspenethods
described in detail in later sections. Sections 3 to 8 pressttijgteons of, respectively,
the AQ21 learning program, hypothesis instantiation methods #wteanew individuals
(candidate solutions), action selection, probing mode that applies conveoj@nators
for generating new solutions, the ANCHOR method for adaptively etizorg
continuous variables, and the randomization and start-over operatotmnSedescribes
the most important implementation issues and the integration of A@aih WEM3. An
example of LEM3 execution in presented in Section 10. Section 11 ilssscr
experimental results from applying LEM3 and, for comparison, awiDam-type
method, EA, and the previous implementation, LEM2, to selected benchmatioriunc
optimization problems. Related research and future plans arenfectse Sections 12
and 13, respectively.

2 DESCRIPTION OF THELEM3ALGORITHM

This section presents in detail the LEM3 algorithm, the mosinteéenplementation of
the Learnable Evolution Model.

The LEMS3 algorithm contains several components also found in tnagitevolutionary
algorithms, such as generation of an initial population, selectiordividuals for a new
population, and evaluation of individuals. Other LEM3 components are concertied wi
guiding evolutionary computation through machine learning. This is doselbgting at
each step of evolution the highest and lowest performing individnélsei population,
the H- group and L-group, respectively, and then employing the AQ21 progra
generate a hypothesis that differentiates between theroupg The hypothesis is then
instantiated in various ways to generate new individuals,

The LEMS3 algorithm is presented in pseudocode in Figure 1 and inH&twtorm in
Figure 2.

Generate initial population
Loop until the Stop Condition is satisfied
Evaluate individuals
Select parent population
Select one or more of the following actions:
Learn and instantiate hypothesis that discriminate high and low performing
individuals in the parent population (Learning Mode)
Generate new individuals through Darwinian-type operators (Probing Mode)
Change the representation of individuals
Randomize the population (either partially or via a start-over evolution process)
Compute statistics and display results
End LEM3
Figure 1: LEM3 Algorithm in pseudocode.

2.1 Generatelnitial Population

The first step of the algorithm generates an initial populationddfiduals, which LEM3
can do in three ways. It can generate an initial population randorebte it according to
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constraints defined by the user, or import it from an extexmaice. The latter capability
is especially useful when there is a need to run LEM3 with exjgting population, e.qg.,
developed by experts in the domain of application. An initial populat@mbe also

assembled through a combination of the above methods.

Generate Initial Population

»O <
L &

A

Evaluate Individuals

Select Parent Population
Select One or More Actions
A 4 A 4 A\ 4 A 4
Leamgf Probe Adjust . Randomize
Instantiatiate Representation

l

A\ 4

C  Stop LEM3 D

Figure 2: Flowchart of the LEM3 algorithm.

2.2 Evaluatelndividuals

This step determines the value of the fithess function for everyido@l in the
population. This may be a simple operation if the fitness is dkfityea mathematical
formula. In many applications, however, fitness evaluation may regjtiinge consuming
or costly process of running a simulator, solving a set of comgigations, or even
performing an experiment. For example, such situations occur icasee of designing
heat exchangers (Kaufman and Michalski, 2000a; Domanski et al. 2004nalopbn-
linear filters (Coletti et al., 1999), aircraft wing shap&ydma, 2000), and some
applications described in (Bentley and Corne, 2002; Gen and Cheng, 2000).

Due to the use of the AQ21 machine learning program, LEM3 abiouser to define the
fitness function in terms not only of numeric attributes, as is lystahe in conventional
evolutionary algorithms, but also in terms of other attributestypach as nominal, rank,
cyclic (for example days of the week), structured (represgtterarchies; Larson and
Michalski, 1977), interval, and ratio (Michalski, 2004; Michalski and Watys2005b).
This feature extends LEMS3 applicability to domains in which fitnesmeasured not
only by some numerical score, but also by a combination of quaditahd qualitative
properties.



2.3 Generate New Population

After a successful instantiation process, new individuals need itcbgorated into the
new population. This is done by copying new individuals directly in® niew
population, or by combining new individuals and individuals from the old popnlatn
general, the creation of new population works in two steps: (1)iameat a (possibly
large) temporary population and (2) selection of individuals into the new population.

The temporary population consists of all newly instantiated individaal$ also,
depending on parameters, individuals from the old population. If the nuafber
instantiated individuals is smaller than the desired populationteezgrogram needs to
take some or all individuals from the previous population in order tet e target
population size. It is usually desirable regardless to alwdgsat individuals from the
previous population into the temporary group. There is no need to keep trpaktof
populations from more than one iteration, because they were alusadyin previous
steps, and are reflected in the old population.

Selection of individuals into the new population is done using methods known fr
evolutionary computation. Three methods used in LEM3 are: seleceshendividuals,
also known as rank-based selection; tournament selection; and propogientibs also
known as roulette wheel selection described, for example in (B&ogel and
Michalewicz, 2000). As a result of selection the final new population is created.

24 Sdlect Oneor MoreActions

LEM3 works in different modes of operation. Each action presented gard=i2
represents one mode of operation that may consist of a number oérdifégrerations
(e.g., in learning mode three operations are executed, namelyplexamlection,
hypothesis creation, and hypothesis instantiation). The prograrsetact one action
(mode of operation), or actions can be executed in parallel (eaynibg Mode and
Probing Mode). Selection of actions is controlled by the Action lBrBfinction (APF).
A detailed description of methods for selecting actions is presented in Section 5.

2.5 ExecuteLearning Mode

In learning mode, the most important part of the Learnable EvolutiodeM new
individuals are created through hypothesis formulation and instantiatindividual

creation is a three step process: (1) selection of exampleidudis, (2) hypothesis
formulation, and (3) hypothesis instantiation.

Based on the fitness of the individuals, step (1) selects high-penfpr(H-group) and
low-performing (L-group) individuals from the population. These groups sasve
positive and negative examples, respectively, for the AQ21 learning program.

There are two methods of creating these groups (Michalski, 2000). The firsitorss-

Based Selection, defines high and low fitness thresholds in the rangehie highest to
the lowest fitness value observed in the current population. For exaimdigh and

Low Fitness Thresholds are both 25%, then individuals whose fithegesesthe highest
25% of the range and the lowest 25% of the range are included khghgup and L-
group, respectively



The second method, Population-Based Selection, selects a specifeahtpge of
individuals from the population for each group, regardless of the distrbat fitness
values. These percentages are defined by the High Populatiohdidré4PT) and Low
Population Threshold (LPT). For example, if HPT and LPT are both 3@,the 30%
of the individuals with the highest fithess and the 30% with the lofegess are
included in the H- and L-group, respectively. This issue is discusseubrie detail in
(Michalski, 2000).

The central component of the LEMS3 algorithm is a learning modtgg @) that induces
general descriptions discriminating H-group from L-group individuldsLEM3, this
function is performed by AQ21 whose learning module generates hgpstirethe form

of attributional rules (Michalski, 2004). Such a representation pdthgses is beneficial

to LEM because of the rules’ high expressive power, the easstahtiation of learned
hypotheses, and the understandability of the hypotheses by expedsiou®rLEM
implementations employed earlier versions of AQ learning progranEM1 used
AQ15c, (Wnek et al., 1996) and LEM2 used AQ18 (Kaufman and Michalski, 2000b).
AQ21 and its use in LEM3 are described in Section 3 of this paper.

Instantiation (step 3) is a process of generating new individhalssatisfy a given
hypothesis. The instantiation process is the main way to cneateindividuals in
Learnable Evolution Model, and correct instantiation of learned hypesghis therefore
crucial for evolution. A detailed description of the methods of insiamg attributional
rules used in LEMS3 is presented in Section 4.

2.6 ExecuteProbing Mode

The probing mode executes Darwinian-type operators in order to tEneev
individuals. The two operators implemented in LEM3 are crossover andtiom,t
described in detail in Section 6.

2.7 Change Representation

Continuous variables in LEM3 can be automatically discretized usidgptive
Anchoring Discretization (Michalski and Cervone, 2001), or can begepted in their
original continuous form. Adaptive anchoring increases the precisitredfiscretized
variables in the most promising areas, neighborhoods of the ifiitiegtduals. Execution
of this operator is controlled by the Action Profile Function mentoabove. A
description of the discretization method used is presented in Section 7.

2.8 Randomizing

This action adds randomly generated individuals to a population in trdetroduce
diversity, or replaces the entire population in a start-over proc&ssescription of the
randomizing action is presented in Section 8.

3 AQ21 MACHINE LEARNING SYSTEM

In this section we describe AQ21, the machine learning systsd in hypothesis
generation in LEM3. It also describes how AQ21 is used within the LEM3 dgorit



Programs from the AQ family learn hypotheses in the formAtbfibutional Rules
(Woijtusiak, 2004a, Michalski, 2004, Michalski and Kaufman, 2001). The simplest for
of attributional rules is:

CONSEQUENT¢ PREMISE

where consequent and premise are complexes -- conjunctiatisiladtional conditions
(a.k.a.selectory. Here is an example of such a rule:

[part = acceptable§ [weight = 2..5] &
[color = red v yellow] &
[height < 3]

which means that a part is acceptable if its weight is twz and 5 (units are
presumably defined in the attribute domain), its color is red koweand its height is
less than 3.

Hypotheses learned by AQ are in the formatifibutional rulesets defined as sets of
rules with the same consequent. The main operator used in the gb@thah is
extension-against Provided with a positive example and a negative example, this
operator generates partial star defined as the set of maximal generalizations of the
positive example that do not cover the negative example. Theeictiers of all partial
stars from one positive example against the different negatarep@gs is called star --
a set of maximal generalizations of the positive exampledibatot cover any negative
example. In order to prevent an exponential growth to the size sfaheAQ employs a
beam searchhat limits the number of rules to be retained from eacltiter. The
positive example that was used to generate the star id eaked AQ selects the best
rule from a generated star, selects a new seed from the ved@asitive examples, and
similarly generates stars until all positive examples aneered. Such an algorithm
guarantees that the learned ruleset will be complete and conhsiptevided that
examples of different classes are always distinct in theesentation space. Figure 3
presents the basic AQ algorithm in pseudocode.
HYPOTHESIS = <null>
While not all H-group examples are covered by HYPOTHESIS

Select an uncovered positive examplard use it as a seed

Generate star G{e L-group)

Select the best rule R from the star, and add it to HYPOTHESIS

Figure 3: Pseudocode of the AQ algorithm as used in LEM3.

Selection of the best rules is done usingeaicographical Evaluation Functio(LEF)
that specifies user-defined criteria for rule preferenag (dichalski, 2004a; Wojtusiak,
2004a).

In LEM3, the consequent part of rules takes the form [group = H]¢atidg that the
rules are describing high performing individuals (positive exampleéE)e negative
examples are in the L-group that consists of lowest perfornmdiyiduals. The
following example shows a rule learned by AQ21 during optimizaifahe Rosenbrock
function of 10 variables.



[group=H] < [x0=-0.5..1.528,19 &
[x4=-0.5..2.015,1 &
[x5=-1.5..1.51810 &
[x8=-0.5..1.53024 &
[x9=-0.5..1.527,24: p=12,n=0
Figure 4: An example of an attributional rule learned by AQ21EM3

The rule says that attribute xO may have a value between -0.5.5ng4 may have a
value between -0.5 and 2.0, and so forth. The pair of numbers aftereatimcondition
indicates the positive and negative support (coverage) for this condEoenexample,
the condition specifying the value of x0 was itself satisfie@® of the positive training
examples (H-group) and 19 of the negative training examples (L-grdtfriputes x1,

X2, X3, x6 and x7 are not included in the rule. The numbers p and n indicaterénage
of the entire rule (12 positive and 0 negative examples).

In some situations, especially at the end of the evolutionary ratesdiversity of the
individuals may be very low in a population, and the learning module (A®#I)ot be
able to learn any rules. Such a situation occurs, for example, Wwhemtire population
converges to a set of identical individuals. Usually, this meaasthe program has
found an optimum, either local or global. To see if this iscallor global optimum,
LEM3 performs special exploratory steps controlled byAtigon Profile Function

4 INSTANTIATION OF LEARNED HYPOTHESES

The learned hypotheses are used to generate new individuals tpycess of rule

instantiation. Because basic attributional rules are conjunctionsnditions that define

ranges (or sets) of attributes values, the instantiation ¢f sues is a relatively easy
process.

When instantiating a rule for a member of the new population, thegmofaces two
problems, what values to assign to attributes that are in the rule, and whatvassgn
to attributes not present in the rule. The latter case m@Ked by the rule in Figure 4,
which does not include attributes x1, x2, X3, x6 and x7.

Three algorithms for instantiating attributional rules are used in LEM3

4.1 Instantiation Algorithm 1

This is the simplest algorithm for generating new individualsinstantiating the
attributional rules. It takes all rules from the rulesetried by AQ21, and for each rule
computes the number of individuals to be generated. The total numbenatuas that
are created can be either constant during the run or vary overitimalefined by the
user as a parameter. The number of individuals to be creatdsbdéwe same for all
rules, or can be computed proportionally according to a measure afdkesignificance
that is defined as the sum of the fitness values of the higbrpeny individuals covered
by the rule.

1 AQ21 displays more information describing rulese §Wojtusiak, 2004a).



For each rule in a ruleset (hypothesis) to be instantiated
Compute the number of individuals to be created
For each individual to be created
Create the individual
For each attribute
If the attribute is specified in the rule
Select a random value satisfying the rule
Else Select a random individual from the previous population and use its
value

Figure 5: Instantiation Algorithm 1

For each newly created individual, the program has to assign Valuedl attributes,
both those included in the rule being applied and those not included in the rul
Depending on the attribute type and user defined parameterseuwliftéstributions can

be used to select random values for the attributes specified miléhet can be done
uniformly, using normal distribution for numerical attributes withameequal to the
middle of the range and user-defined variance, using maximum distie@me negative
examples, or using projections of positive and negative examples.

Selection of values of attributes not specified in the rule i®ie nmtricate problem with
many potential solutions. One way is to select a random valueth®erantire attribute
domain. This will result in individuals consistent with the rule; haaveit is easy to
show cases in which this will result in poor performance. Foamastlet us assume that
we are optimizing a function with two attributes x and y. Bothbatties are continuous
and defined on the range -5 to 5, and the function optimum is at the(@o@)t Let us
further assume that AQ21 has found the rule [x = 0]. The prograntheil generate
individuals with x = 0 in all cases, and with y distributed overrdrge [-5, 5]. In the
next iteration, AQ21 will learn rules containing only the attribytesince there is no
longer any differentiation among the x-values. During the mtstigon phase, the
program will assign values of the attribute x randomly, which mdstghe information
from the previous iteration is lost. Thus, the rules may not converge to the solution.

Another method of value selection is to select the value from domay selected
existing individual. The individual can be selected from the epigulation, the H-
group, or non-L-group individuals. Experiments have shown that whenisglgatues
from the H-group, the program tends to lose diversity of individualspaydconverge
very quickly to a point that is not the target solution. The methddL&&3 uses by
default selects individuals from the whole population probabilistiagallgroportion to
their fitness levels.

The presented instantiation algorithm has a very severe weakhes®s not work well
for multimodal functions. Events selected to provide values abuatitss that are not
specified in a rule may be located in different parts of thatesfgace, thus causing new
individuals to be generated in the wrong parts of the space. Astansiex to the
algorithm, a constraint may be added to ensure that generated enesttmatch the rule
that is instantiated, but this also may not keep the evolution prboesstraying in all
cases. The second instantiation algorithm was designed to déalthsitdescribed
problems.
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4.2 Hypothesis|nstantiation Algorithm 2

This algorithm selects parent individuals and then modifies th@ordiag to learned
rules. As mentioned before, the second instantiation algorithm ignéesto deal with
problems that appear using the first instantiation algorithm. difference between this
and the previous algorithm is in the way an individual from the old population isesklect
This algorithm is especially good for multimodal functions.

Compute the fitness of all individuals (see below)
Loop while more individuals remain to be created
Select probabilistically an individual (parent) based on its fithess
Create a list of rules satisfied by the selected individual
Select a rule from this list probabilistically in proportion to its significance
Create a new individual:
For all attributes
If the attribute is specified in the selected rule
Select a random value satisfying the rule
Else Select the value from the parent

Figure 6: Instantiation Algorithm 2

The typical quality measure of individuals is simply their fimedhis is not, however,
the only possibility; for example, a quality measure may téde iato consideration the
number of rules that match the individual. When AQ21 is workingheory Formation
(TF) mode (i.e., learning covers that are complete and consistdntespect to the
training data), it is guaranteed that all individuals from thgrélsp will satisfy some
rules. Although LEM uses by default the TF mode, it is alsoilplest learn rules in
Pattern DiscoveryfPD) mode, in which stronger patterns may be favored over a complete
and consistent ruleset. In such a case, some individuals from theupldgay not be
covered completely by any rules, and it is thereby importanélectsonly individuals
that are covered by at least one rule. Values of attributearthapecified in the rule are
selected according to Algorithm 1.

4.3 HypothesisInstantiation Algorithm 3

Regardless of the learning mode, AQ21 guarantees that eachillidever at least one
high-performing individual. Using that information, it is possible émnbine the two
algorithms presented above.

For all rules
Compute the number of individuals to be created
For all individuals to be created
Select probabilistically an individual covered by the rule
For all selectors in the rule
Modify value of the individual within the selector

Figure 7: Instantiation Algorithm 3

The third instantiation algorithm, similarly to Algorithm 1, computee number of
individuals to be instantiated for each rule. A significant diffeee from the first
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algorithm is that the program does not select random valuesdaug to the rules, but
instead modifies an existing individual that is covered by the rlilds guarantees that
all rules will be instantiated, and multimodal fitness functionsl Wwe treated
appropriately

4.4 Instantiation of Alternative Hypotheses

The AQ21 program has the unique feature that it can learn not ontuleset per class,
but also a number of alternative descriptions/rulesets for the skme (Michalski

2004b; Wojtusiak, 2004a). In LEM, when the number of attributes may be enger |
than the number of examples, it is highly probable that the prograngeneralize the
positive examples in different ways. LEM3 handles alternatoxeers learned by AQ21
in two ways: (1) the intersection of the covers can be instadtiar (2) the union of the
covers can be instantiated. Once the program computes eitheretisegtion or union,
one of the three algorithms described above is used to instantiate.

By using the intersection method (1), we instantiate in an aresred by at least one
rule from each alternative ruleset. Suppose that RS1, RS2, ..., RSaltemative

rulesets describing the high performing individuals. Ruleset R88ists of k1 rules:
RS1={R, Ry ... Rix1}, ruleset RS2 consists of k2 rules RS2 ={1RR 2, ... Rox2

}, and so on. A ruleset is defined as a disjunction or rules thatamenctions of

selectors, so the intersection of rulesets is equivalent to anabion of rulesets and is
given by the following formula:

NaanRS =Aicin(R1VR2V ... VRK)

Using De Morgan’s and absorption laws the intersection RS caadly computed. In
fact, computation of such an intersection is one of the most common operations in the AQ
algorithm applied during the star generation phase. In LEM3 wehisdeature of
AQ21 to compute the intersection. Intersection of alternative tslésea given class is
also a ruleset. Moreover if AQ21 works in TF mode and all rulesetcomplete and
consistent, the intersection is also a complete and consistesgtrulBo prove this, it is
sufficient to mention two facts: by our assumption, none of the mulée rulesets cover
any negative examples, so their intersection cannot cover any xsaiples; and each
positive example is covered by at least one rule from in eaeketul, so they will be
covered in the intersection. Let E be a positive event thavveyed by rules Rni, Roma,

... Rumn It follows that/\;_, Rimi covers the examplE. Instantiation of the intersection
of alternative rulesets speeds up the evolution process by lintitengrea covered by
learned rules. It is however dangerous, since intersedeskts may be too specialized
and the program may converge to a point that is not necessarily an optimal solution.

The second method is to take the union of alternative rulesets. The union is defiged usin
the following formula:

Vizin RS =Viaan(R1VR2V ... VR)

In this case computation of RS is trivial and requires only teeofigbsorption laws in
order to remove unnecessary rules. Similarly to the casgev$ection, it can be proven
that the union of complete and consistent covers is also a completerastent cover.
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Unlike intersection, the union expands the area in which new individieaisstantiated.
This slows down the evolution process, but increases the chandeethatget solution is
covered.

5 ACTION SELECTION

Execution of different modes of operation is a unique feature M3 _that distinguishes
it from other implementations of the Learnable Evolution Model and framy other
evolutionary computation methods. As mentioned above, the two basic modgpsidiat
the evolution process are learning mode, which uses hypothesis creattn
instantiation, and probing mode, which employs Darwinian-type operatots asic
mutation and crossover. In addition to the two modes of operation, LEM3snpl
additional actions such as adjusting discretization and randomizamtrdger) to help
the evolution process.

An important question to be answered is how to switch between the midpsration
and when each action should be executed. The two modes of operatlm evegcuted
in parallel, or the program can switch between them as defmeldldLEM Other
operations such as changing representation need to be exeqasatedg. To control
the application of different actions, LEM3 defines Action Profiling Function(APC)
that based on the performance of different types of operatadedeghich operators to
apply in the next step. It also decides how many new individuale&abe by each mode.
For example if the total number of new individuals to be creatdé@Qs the APC may
decide to generate 70 by learning mode, 25 by probing mode andhbdpmizing. The
APC should adapt during the evolution process to reflect which opei@®rthe most
relevant for the optimization problem. Assigning individuals to lear@nd probing
mode can be done by two simple rules:

If average-learning-fithess >> average-probing-fitness then
Increase number of individuals in learning mode

If average-learning-fithess << average-probing-fitness then
Increase number of individuals in probing mode

where averages are computed over individuals created in one ortenatens of the
respective modes.

During the evolution process, it may happen that over a number of iterations, trerprogr
makes no progress in terms of value of the fithess function.s Jituation can be
identified through the use of two program parameleesn-probeandlearn-threshold
Learn-probedefines the maximum number of iterations that are performediktlere

is unsatisfactory progress, as defineddayn-threshold the minimal acceptable increase
of fitness of the best individual. In such a situation, we say that the no-ssagmdition

is met, and several possible operations need to be applied.

If the no-progress condition is met, operationatation adjust discretizationand/or
start-overare invoked. LEMS tries to apphutationfor mutation-probeiterations. If
there is still no progress, the program then tries to adjusetization fordiscretization-
probeiterations. If there is still no progress, LEM3 tries to e $tart-over operation
for up tostart-over-probdimes.
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If no progress
Increment learn-probe-counter
If learn-probe-counter >= learn-probe

Learn-probe-counter =0

If mutation-probe-counter < mutation-probe
Increment mutation-probe-counter
Mutate individuals
Evaluate modified individuals

Else if discretization-probe-counter < discretization-probe
Increase discretization-probe-counter
Mutation-probe-counter = 0
Adjust discretization
Mutate individuals
Evaluate modified individuals

Else if start-over-probe-counter < start-over-Probe
Increment start-over-probe-counter
Discretization-probe-counter = 0
Mutation-probe-counter = 0
Rollback discretization
Add the best individuals to a list of local optima
Start-over
Evaluate individuals

Else
Stop LEMS3

Figure 8: No-progress condition pseudocode

The order ofmutation adjust discretizationandstart-overoperations is not accidental.
Mutation is performed in order to introduce diversity into a populatiod,ta be sure
that the program did not get stuck “close” to the optimal value ¢inigd be local or
global optimum). It is usually the case that AQ21 is unableamlhypotheses because
of a lack of diverse examples. The next step increases thisigmeof the search by
adjusting discretization. If the change of precision does not nrgkditierence, it may
mean that the program has found an optimum. However the optimum raaband it
may be desirable to start over with a new random population, and trexjitferent
parts of the space. All three operations are explained in detail in next Sections.

6 PROBING MODE

In Probing ModeLEM3 executes Darwinian-type operators to create new individuials.
can be executed in parallel wigsarning modeor LEM3 can switch between the two as
controlled by theéAction Profile FunctionAPF) described earlier. The APF decides not
only when probing mode is to be executed, but also which Darwiniarmepgrators are
to be invoked. In addition to two operators, crossover and mutation, descHibedthe
APF allows the user to define specialized operators based on &rperedge in the
optimization domain.
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6.1 Crossover operator

LEM3 implements a single point crossover operator that sel@otparent individuals
and creates a new individual using the parents’ values of attriblies.algorithm is
executed in three steps:

1. Select parent individuals
2. Define a split point
2. Create a new individual

Selection of parents is done probabilistically, proportionally &rtfitness. The split
point defines how many variables’ values will be taken from tls¢ fiarent, and how
many from the second one. For example if there are 100 variahteshe split point is
0.3, the first 30 values will be assigned from the first parent, lamdasst 70 will be
assigned from the second parent. The split point is generated rgnaddmluniform
distribution.

A newly created individual thus has assigned values from both patieatfirst part from
the first parent and second part from the second parent.

6.2 Mutation Operator

In LEMS3 the primary goal of the mutation operation is not to findebendividuals, but
rather to introduce diversity into a population. It may, however, produtter be
individuals in terms of fitness function value, but the direct goatoisdistribute
individuals in such a way that the AQ21 program will have enougimgebes to generate
hypotheses by generalization of the examples. It is usuadlycase that individuals
generated through mutation are included in the L-group of low performéigduals.
Such individuals provide constraints for learning, and allow the AQ21 progoa
generalize. It is especially important when the program leady converged to one
value of an attribute (that may or may not be correct), so thieustt will not be included
in any rule. Moreover, during the instantiation process for attsbotd included in
rules, LEM3 uses values from randomly selected existing individuralglying that
without introducing diversity LEM3 will not make any progress for the atteibut

The mutation methodology in LEM3 is more complex than in standard evolgtiona
algorithms or genetic algorithms, due to the need to deal with ffexedit types of
attributes that are implemented in LEM3 and AQ21, namelyinal rank, discretized
continuouscyclic, structured, ratio, andabsolute(Wojtusiak, 2004a; Michalski, 2004).

The LEMS3 program can also use information about the population or evdhigiony to
mutate individuals in the “right” direction. However, in practicaestally happens that
mutation is invoked when the population has converged to one point and no such
information can be taken from the current population. One possibilibydassign higher
probability to values that are not present, or are present in smaller numbehyidiials.

This method can be justified because it provides more diversitheaopopulation.
However, it can be assumed that the population has converged to ehpbistdiose to

the optimum, and thus only its close neighborhood should be explored viaomutat
Below we provide a description of the mutation operation for different types blutisi
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The domain of mominalattribute is an unordered set, so the concept of distance between
its values does not apply (we can assume that a distance betwedvoavalues is the
same). A reasonable way of changing attributes of thie fgpto assign a value
randomly.

An absoluteattribute domain is a totally ordered set, meaning thatpbssible to create

a distribution based on how far a value is from the actual attrialte. The distance
between values in the domain is based on the count of values between them plus one. For
example in domain “length” having values {very short, short, medium, legry long}

the distance between values “short” and “very long” is three. Mutation can beisiowgy

the normal distribution with the additional assumption that the distd@teeen
successive values is equal. For experimental purposes, one soawalt to use a
uniform distribution.

A ratio type attribute domain is a special case of continuous lineaaidpfor example,
real numbers. In LEM3, values of this type are stored with doubtéespme. Values of a
continuous attribute can be changed in a number of ways. Theyecammanged
uniformly over the entire domain range, or in a range specified@arameter. It is also
natural to use the normal distribution with mean equal to the value taka the parent
individual.

A discretized continuouattribute domain type is a special case ofrdi® domain [6].
Real values are discretized to predefined points (representingicsp@ervals). The
discretized intervals are not necessarily equally distribusgzkogally when an adaptive
discretization method such &NCHOR (Michalski and Cervone, 2001) or ChiMerge
(Kerber, 1992) is used (the default discretization method in LEM3ANECHOR).
Mutation of the discretized continuous attributes can be done as wiér eontinuous
attributes or absolute attributes. In the first method, the mafde interval is changed
according to a selected distribution, as a continuous value, andtidisdrback to one of
the intervals. It is important to ensure that the selectedbdistm will go beyond the
current interval; otherwise no change will be ever made to theutétr The second
method uses the ordering of intervals, 1, 2, 3, ... k, to apply mutation abdolute
attributes. In such a case, information about length of the intervals is ignored.

A cyclic attribute domain can be treated in the same way as an absoluénddm
represents a linear domain whose last value wraps around tcstit¢efy., days of the
week). The only computational difference between cyclic ané@iireethat “distance”
between two points should be computed in both ways -- counting uptliefirst point

to the second, and from the second to the first, and the minimum shoulcede us
Similarly to linear domains, the distance is computed by countargests in the list of
possible values.

A structuredattribute domain represents a generalization hierarchy.mit&ion can be
done in two ways, as inominaldomains, and using information about the hierarchy. It
seems reasonable to take advantage of the structure thatnisddefithe domain. To
compute distances between nodes, a simple distance in the tree usadbdefined as
the number of edges that need to be followed from one node to anotherth@otetrue
trees, there is only one possible path between two nodes, so sudsa@arans well
defined.
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Two important issues governing the mutation process are which atrisbteild be
changed during the mutation and what parameters of mutation shouldde s solve
the first problem, LEM3 uses two methods: randomly selectindpatits to be changed;
and selecting attributes that are currently not specifiedangarned rules. It is also
possible to use a combination of the methods. The program caa arésttof attributes
that are not included in the current ruleset, and if the list cenfaiver attributes than a
given threshold, the first method is used.

In the LEM3 implementation, each attribute has its own mutationmedess. For many
applications, attributes are from different domains, and must hgarase mutation
parameters. This is also desirable when adaptive methods arefarsedample, in
methods that adapt mutation ratio during the evolution process.laStethniques are
known and used in the field self-adaptive genetic algorithms.

7 ADJUSTING REPRESENTATION SPACE

In general, adjusting the representation space of solutions may inghatang irrelevant
variables, adjusting domains of variables, and creation of newblesi that are more
relevant to the optimization problem. Although all three types ofatipeis are being
investigated in the LEM methodology, LEM3 currently implements ordjusting
discretization of variables described in paragraphs below.

After the mutation operation, “adjust discretization” is the seapetation comprising

the no-progress condition in LEM3. The program uses adaptive diatistizo change

the precision of the attributes when it is required. The methodsthaed by default is a
modified version ofAdaptive Anchoring Discretizatio(Michalski and Cervone, 2001),
which discretizes the continuous variable with a granularity aitegted to the problem.
It is also possible to employ other methods of discretizatdrEMM3. For example, one
could use ChiMerge (Kerber, 1992). This method, however, is basedgoericges of

values, and is not designed for use in evolutionary computation.

The modified ANCHOR method starts with an initial discretmatof the space that is
denser in areas closer to zero and less dense farther fromFmrexample an attribute
whose domain is a range [-2000, 300] will be discretized into intemwadse boundaries

are: {-2000, -1000, -900, ..., -100, -90, .., -10, -9, ... -1, 0, 1, ..., 9, 10, 20, ..., 90, 100,
200, 300}.

The modified ANCHOR method increases precision in the neighborhookleobdst
individuals in the current population. The increase is done for all attributestidsd ey
the method. In many cases when the program reaches the nesgrogndition, there is
only one such point representing a local optimum to which the program gedveFor
multi-modal functions for which LEM3 seeks simultaneously a numbeolafisns or,
more generally, when more than one best individual is selected,igneisisncreased in
the neighborhood of all local optima. Let us suppose that for thbusttrirom the
previous example, LEM3 decides to increase precision in the neighborhtosl \ailue
100. As a result the following will be boundaries of intervalshie mew discretized
domain: {-2000, -1000, -900, ..., -100, -90, ..., -10, -9, ... -1, 0, 1, ..., 9, 10, 20,90,80,
91, ..., 99, 100, 110, ..., 1L9%0Q 300}, where the new intervals are showstatics.
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After adjusting the discretization, it is necessary to geaewmtdomly new individuals
within the area in which the discretization was improved. Thisgié the AQ program
examples distributed over the new discretization space afteyirsgppihe mutation
operator to individuals that were the basis for the adjust discretization operati

8 RANDOMIZATION AND START-OVER

The Randomize operation can either add new (usually few) randomlyratgzhe
individuals to the current population in order to increase diversitgsbart the evolution
process by applying tretart-overoperation.

LEM3 without thestart-overoperation can be viewed as a local optimization algorithm
that cannot get out from local optima if it already converged (smfegation is applied
with the uniform distribution).

The start-overoperation generates a new population to restart the evolution phmrass
the beginning. This operation is designed for when the prograis & local optimum
and needs to search other parts of the optimization space. Stddtiarsis detected by
the no-progress condition given that neither mutation, which locally frapdhe best

individuals, nor adjust discretization, which increases search jprecisiproves global

solution. New individuals are created (1) randomly in the enpiaees (2) randomly in
the parts of space that were not explored so far, and (3) randomly by magidistance

from the local optima found so far. The first method is the sshpd@e, and is
equivalent to a full restart of the LEM3 algorithm. The secondhatktequires keeping
track of all values of attributes that appeared in past individddls. information is used
to distribute individuals over the not explored yet parts of the spéke.third method

builds distributions based on a list of local optima found so far. Ttieefdrom a found

solution, the higher the probability that an example is used.

9 THELEM3IMPLEMENTATION

The basis for LEM3 implementation is the learning module of @2 program. Our
goal was to fully integrate AQ21’s learning module with the evoh module in LEM.

The full integration not only reduces learning time, but also provategss to all
functions implemented in AQ21, and reuses its data structuresinfBlgeation is based
on the simple fact that an individual can be represented in thewgaynas an event in
AQ learning. Moreover, these individuals are used as examples WEMNapplies

machine learning to generate hypotheses that describe high-performing individua

The following sections describe the main AQ21 data structilnvas are shared with
LEMS3 to store individuals and learned hypotheses. Details of adritypes in AQ
learning and their representation are presented in (Michalski and Wojtusiak, 2005b).

9.1 Representation of Individualsin LEM3

It was mentioned above that LEM3 uses AQ21 data structures ¢éoistlividuals. This
can be done because an individual is nothing else than list of valusiloiites that
describe a point in an optimization space. The point can represkesign, an argument
of a multidimensional function, a set of parameters, or any objeitte optimization

18



space. Moreover individuals are used as examples for learning ddtermining
hypotheses that distinguish between high and low performing individliralsearnable
Evolution Model, the optimization space and event space for learrenth@arsame. In
the following paragraphs we briefly present the representafi@vents in AQ learning
that is also used to represent individuals in LEM.

To represent an event, it is necessary to store both discrete and contindnutesittihe
discrete attributes are stored in bitstrings, where each valtige afiscrete domain is
represented by exactly one bit. The concatenation of bitdlfdomains represents the
discrete part of the event. Continuous attributes are represeinéetdly as numeric
values. A vector of real values is used to represent all numeric attributes.

Because LEM3 uses Adaptive Anchoring Discretization, attributeswhich the
discretization is applied are stored using bits even if they weginally continuous.
LEM3 can represent numeric attributes both ways — discretized and not discretize

9.2 Representation of learned hypothesesin LEM3

AQ’s learning module outputs learned hypotheses in the form dfudittmal rulesets. A
ruleset, a collection of rules with the same consequent, is represented usidgrad set
of rules. Each rule is represented using data structungarsto these used to represent
individuals (events in AQ learning) — vectors of bits and vectbrnea values. For
discrete attributes, each value from the domain of the attribassigned exactly one bit
that is set to 1 when the value is present and 0 when it isAtoextra bit is added to
each attribute, and is used to help represent meta-values (8kiclaald Woijtusiak,
2005a), although LEM3 does not use this feature of AQ21. For continuous,\eduhs
attribute is assigned two real values — for lower and upper bounds, arhusdividual
can be viewed as a special case of a rule condition in whichlyexae value per
attribute is present. The following example demonstrates thesesgation used in
LEM3 and AQ21.

Let x1, x2 and x3 be attributes that define the optimization spattebutes x1 and x2
are of nominal type with domains {r, g, b, w} and attribute x3 is a oaotis (ratio)

attribute. Suppose that [group = higk][x1=r,g] & [x2=Db] &[x3=5..7] is a rule learned
during the optimization process. The consequent part of the ruépresented by a
complex (conjunction of attributional conditions) that has all thre@ates active, two
of them represented by bitstrings (x1 and x2) and one represgntedahge (x3). The
following is a representation of the consequent of the presented rule:

Bits: 1100000100 Ranges: (5, 7)

The domain size of both nominal attributes is 4, so 5 bits are usqutégent each of the
attributes (an extra bit is used to represent meta-valuesg@soned above). Bits 1t0 5
are used to store values for the first selector (attributeamd)bits 6 to 10 are used to
store values for the second selector (attribute x2). Thereyisoorl continuous attribute
(x3); therefore only one range is used.

It should be mentioned that even if not all attributes are useduile,abits or ranges are
assigned to all attributes. This means that the size of plernm a given representation
space is constant, even if it has only one selector. Inacticeettisselectors have all
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value bits switched to 1 and inactive continuous selectors areseeped by special
ranges equivalent toof; +o0).

10 AN APPLICATION OF LEM3AND EATO A SSMPLE PROBLEM

This section presents an example of applying LEM3 and a conventi@araljnian-type
algorithm, Evolutionary Algorithm(EA) to a simple function optimization problem. The
problem is simple enough to be illustrated graphically uGeageralized Logic Diagrams
(e.g. Michalski, 1978) but sufficiently complex to show some importape@s of the

LEM3 algorithm. The optimization problem is to find all globalxinaa of the sample
function:

f(Xy, X, X,,X;) =16— X —8* cOsR* x,) — X5 — x?

Domains of all attributes are ranges [-2, 2]. The cosine paradded to the function in
order to make two equal global optimal solutions to the problem. Aditmensional

version of the function, given by the formuléx,,x,) =8-x; —4*cos@* x,) is

illustrated in Figure 9. The factors 4*n and 2*n (values 16, 8 ardi8,expressions

above), where n is the number of attributes, are used the functisnaiability and to
guarantee that its value is not negative.
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Figure 9: A plot of the function fexxy).

The following figures demonstrate consecutive steps of executing LEM3figlines are
Generalized Logic Diagrams (GLDs) representing four dinomasispaces spanned over
discretized variables x0,...,x4. For each generation, two diagrampresented for
LEM3, one with the current population and one with selected solutiore ikl4group

and L-group) and the learned rules. For comparison, steps of exeBEtirigr this
problem are also illustrated.
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Generation 1:

In the first iteration, the population is randomly initialized oVer éntire space as shown
on Figure 10. LEMS3 selects examples for the H- and L-groups tedies respectively
“1” and “2” on the same figure. Provided with the examples AQ2hdeaules presented
as shaded areas in Figure 12. Initial populations in LEM3 and EA are the same.
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Figure 10: Randomly generated initial
population (the same for both programs).
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Figure 11: Randomly generated initial
population (the same for both programs).
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Figure 12: Learned hypothesisand H- and L-
group individualsin LEM 3.

EA applies mutation and crossover
generate new individuals.

EA probability of mutation i.1
EA probability of crossover i8.1

EA selection method i®urnament.
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Generation 2;

Instantiated individuals are combined with the old individuals and a new piopuist

selected (Figure 13). In the instantiated individuals both solsitof the function have
already been found — individuals (2, 2, 0, 2) and (2, 2, 4, 2), which represeniuie ofa

real solutions (0, 0, -2, 0) and (0, 0, 2, 0). Although the program has foeisdlttions,

it still needs for all individuals to converge to the solutions aeoto satisfy the LEM3
stop condition (the only individuals are solutions). Figure 15 shows highlcand

performing individuals selected from population and learned rules (shached).

Evolutionary algorithm slowly converges toward the solutions as shown in Higure
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Figure 13: LEM 3 Population in the second
generation (100 fitness evaluations).
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Figure 14: EA Population in the second
generation (85 fitness evaluations).
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group individualsin LEM 3.

EA applies mutation and crossover
generate new individuals.
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Generation 3;

In the third generation, LEM3 individuals converge closer to the solut®isfi@vn on

Figure 16. After selecting L- and H-groups from the population,roleeis learned as

shown on Figure 18.

EA also found the solutions, but the population is much more distributedhevepace

(Figure 17).
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Figure 16: LEM 3 Population in the third
generation (150 fitness evaluations).

=]

IFIE .
ol R g

Bl

&)

=

il i o = i R

®0

x3
0 1 3 4 ®2

Figure 17: EA Population in the third generation
(130 fitness evaluations).
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Generation 4:

The fourth generation in LEM3 consists of individuals that convergethdotwo
solutions and one individual that is not a solution (Figure 19). Theimdilyidual that is
not a solution is used as the L-group, and all other individuals dred@tcin the H-

group. One simple rule describes the H-group against the L-grogpréF21).

EA

slowly converges towards solutions (Figure 20).
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Figure 19: LEM 3 population in the fourth
generation (200 fitness evaluations).
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Figure 20: EA Population in the fourth
generation (168 fitness evaluations).
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Figure 21: Learned hypothesisand H- and L-
group individualsin LEM 3.

EA applies mutation and crossover
generate new individuals.

EA probability of mutation i9.1
EA probability of crossover i8.1

EA selection method i®urnament.
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Generation 5;

Finally, in the fifth generation (250 fithess evaluations)imadlividuals generated by
LEM3 converged to the two solutions (Figure 22). This ends the evoluttmess in
LEM3. EA did not converge to the solutions yet (Figure 23).
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Figure 22: Two global optimafound by LEM3in | Figure23: EA population in thefifth generation
thelast, fifth generation (250 fitness evaluations). (214 fitness evaluations).

Generation 8:

In the eighth generation, EA converged to one of the two solutions shokigure 24.
The total number of fitness function evaluations needed by LEM3 &@sahd by EA
was 346. Also, LEM3 found both optima, and EA only one of the two.
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LEM3 already converged to both optim
solutions after fifth generation, as shown
Figure 22.
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Figure 24: One of thetwo optima found by EA
in the eighth gener ation (346 fitness evaluations).
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While the advantage of LEM3 over EA in solving this simple problenty(4 variables
describe the individuals) is relatively large (EA needs about 1@ fiiness evaluations
than LEM3), a more impressive advantage of LEM3 is seen in probietnslarger
number of variables, where LEM3 is on average over 16 times fiésterEA (see
Section 11 for details). This is so because LEM3's advantage gvitkvéhe number of
variables.

In real-world and more complex applications LEM3 will start ajmgly methods
described in the no-progress condition to ensure that program is notckisekto the
solutions, the discretization level is correct, and there are no other solutiorexlored
areas of the optimization space. The presented simple examgdechosen for
demonstration of LEM3 and its comparison with EA because of eabe gfsualization
that because of the complexity of GLDs can grow exponentiallyeveiith a larger
number of attributes.

11 COMPARATIVE RESULTSFROM APPLYING LEM3, EA AND LEM2

The goal of these experiments was to compare the performandeMs, LEM2, and
EA, representing a conventional, Darwinian type evolutionary compntatgorithm on
a range of function optimization problems. The problems involved oatiioiz of the
Rastrigin Griewangk and Rosenbrockfunctions of different numbers of variables,
ranging from 10 to 1000. These functions were chosen because theyeareisad for
testing evolutionary algorithms and are described, for examp(&/hitley et al., 1996).
EA is an implementation of Evolutionary Algorithm taken from ligreO (Evolutionary
Objectg 0.9.3athat can be downloaded from URL: http://eodev.sourceforge.net. The EO
library was selected because it is an advanced implementatiddam¥inian-type
evolutionary algorithm, it supports large numbers of variables I(jee dther programs
that support far fewer variables), it is well describedviailable tutorials, and it is easily
downloadable from the internet.

LEM3 and EA were applied to optimizing functions of 10, 100, 200, 300, ..., 1000
variables. LEM2 was applied to optimizing functions of 10 and 100 vasgdfb limit is
fewer than 200 variables). Each experiment involving optimizing aitumof a given
number of variables was repeated 10 times with a differeningtgudpulation. To make

a fair comparison, the same starting population was used in each program.

The results are reported forclose solutionsthat are characterized by rermalized
distance from the optimal solutiomhe 6-close solution,s, is a solution for which

functiond(s), defined as:
_opt = v(s)|
o(s) = lopt - init |

reaches an assuméearget value, wherait is the evaluation (“fitness value”) of the
best solution in the initial population, opt is thigtimal value, and v(s) is the evaluation
of the solution s. Such a measure works for both maximization ananizeétion
problems, that is, for problems in which the optimal solution hasmaar minimal
evaluation.
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This definition of 6-close solution suggests into two possible ways of analyzing
performance of evolutionary computation methods. First, one may cotistddproblem

of how many fitness function evaluations are needed to achiewemdgik by the best
individual in the population, denoted BE(d=k), where k is a number between 0 and 1.
The measure is the main way of reporting results in this pafgecondly, one may
consider the problem of finding(v) after given number of fithess evaluations, wheie

the fitness value of the best individual after a given number toéss function
evaluations. Figure 25 illustrates concept ofdizéose solution.
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&(s) |:'m‘: apl I
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d=k-close solution

Jinit — opt]

|v = opt|

opt 4
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Figure 25: |llustration of a é-close solution.

For example if the fitness value of the best individual in th@lmbpulation is 100 and
during the process of minimization the program achieved value 0.1, and the optimal value
is 0 thens=0.001, indicating that program found a solution within 0.1% distance from the
optimal solution, normalized by the fitness value of the best indiviolu#he initial
population.

In the presented experiments, LEM3 was executed using all dptralineters. Most
importantly, high and low population thresholds were @) learning probe wad,
mutation probe was0, discretization probe wd discretization method wasNCHOR
and survival selection waank-based

In the presented experiments, LEM2 was executed with the folloparemeters: high
and low thresholds were both3, discretization method waSNCHOR and mode was
DUOLEM (utilize both learning and probing modes). All other LEM2 pararaaised
default values.

In the presented experiments, EA was executed with the followingmesters:
probability of mutation wa$.1, probability of crossover was.6, and selection method
wastournament It used two types of crossover, standard, which createsnu@viduals
by taking values form two parents, and hypercube crossover, whichmilyifeelects a
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point in the hypercube spanned by the two parent individuals (forlsdste website
http://eodev.sourceforge.net).

On request, the authors will provide actual starting populations, progsanms used to
run experiments, actual result files, and all other information detmleeproduce the
presented results.

11.1 Optimizing the Rastrigin Function

Optimizing (minimizing) the Rastrigin function is a well-knowroplem used in testing
evolutionary algorithms. As shown in Figure 26, the function has a targiber of local
optima, and one global optimum equal to zero. It is reached whte alariables equal
zero. A general expression of the Rastrigin function is:

f (X0 X,) =10% N+ Y (%, =10 * cos( 2* 7 *x;))
i=1

A plot of the two-variable Rastrigin function is presented in Figure 26.
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Figure 26: The Rastrigin function of 2 variables.

The experiments below are examples presented to demonstraterisompaf the
programs on the Rastrigin function. A full summary of the experignisnpresented in
Section 11.1.5.

11.1.1 Experiment 1: Optimizing the Rastrigin Function of 10 Variables

Figure 27 and Figure 28 present results from optimizing tretrigis function of 10
variables by LEM3, LEM2 and EA. Both LEM2 and LEM3 converged nethitifast at
the early stage of evolution, and then slowed down when approachkngptimum.
LEM3 reached a5=0.1-close solution after 415 fitness evaluationsy=8.01-close
solution after 1000 fitness evaluations, and the optimum after 1208sfimaluations.
LEM2 reached a3=0.1-close solution after 374 fitness evaluationsy=8.01-close
solution after 853 fitness evaluations, and the optimum after 1225 figvadsations.
EA reached &=0.1-close solution after 2673 fithess evaluations, ame0a01-close
solution after 12,419 fitness evaluations.
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Based on the above numbers, the evolution speedup of LEM3 over BAOidris about
4 times, and fo6=0.01 is about 10 times.
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Figure 27: The LEM3, LEM2 and EA evolutionary computation in minimizing the
Rastrigin function of 10 variables.

Figure 27 presents graphs representing the average of 10 runMaf LEM2 and EA
on minimizing the Rastrigin function of 10 variables. Both LEM2 andMBEound
0=0.1-close solution after fewer than 500 fitness function evaluations,Awcdriverged
to 6=0.1 close solution after about 2700 fitness evaluations. The dotteépiresents a
6=0.1 distance from the solution.
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Figure 28: The LEM3 and EA evolutionary computation in minimizing the Rastrigi
function of 10 variables.
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Figure 28 presents graphs representing the average of 10 runs ahdEREM3 on
minimizing the Rastrigin function of 10 variables on a largatesap to 14,000 fithess
evaluations. LEM3 found &=0.01-close solution after 1000 fitness evaluations and the
exact solution after about 1200 fitness function evaluations. EA corvérges=0.01-
close solution after over 12,000 fitness evaluations.

11.1.2 Experiment 2: Optimizing the Rastrigin Function of 100 Variables

Figure 29 and Figure 30 present results from optimizing thérigiasfunction of 100
variables by LEM3, LEM2 and EA with population 100. All three prograors/erged
relatively quickly in the early stage of evolution, and then slowed dowenw
approaching the optimum (EA slowed down much earlier than LEM2 ard3)LE
LEM3 reached the optimum after 7569 fitness evaluations, and LEM2 codverga
approximate solution witkd=0.01 after about 6000 fitness evaluations (in all ten of the
runs). LEM2 did not find exact solution in this experiment.

EA converged continuously toward the solution and reached an approximaiensol
with 6=0.01 after 114,445 fitness evaluations.
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Figure 29: The LEM3, LEM2 and EA evolutionary computation in minimizing
the Rastrigin function of 100 variables.

Figure 29 presents graphs representing the average of 10 run#Maf LEM2 and EA

on minimizing the Rastrigin function of 100 variables. Both LEM2 d&#M3
converged quickly up t6=0.01, and EA converged much slower. LEM2 and LEM3
reachedd=0.1-close solutions after fewer than 2500 fitness evaluations. &lfteyst
30,000 fitness evaluations, EA achievedd=0.1-close solution. The dotted line
represents thé&=0.1 distance from the solution.

Figure 30 presents graphs representing the average of 10 runs ahcEREM3 on
minimizing the Rastrigin function of 100 variables on a largerescahs mentioned
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above, LEM3 reached the optimum after 7569 fithess evaluations, ancud &
6=0.01-close solution after over 114,000 fithess evaluations.

The value of Rastrigin function
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Figure 30: The LEM3 and EA evolutionary computation in minimizing

the Rastrigin function of 100 variables.
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Figure 31: The end-phase of LEM3 and LEM2 evolutionary computation in minimizing

the Rastrigin function of 100 variables.

Figure 31 presents a comparison of the end-phase (after 4000 fitredaatiens)
performance of LEM3 and LEM2 in minimizing the Rastrigin fuoctof 100 variables.

All LEMS3 runs found the exact solutior®<0) after between 6000 and 10,000 fitness

evaluations. No LEMZ2 runs found the exact solution; they converged to an iapgex
solution withd=0.01. The dotted line represents $+€.01 distance from the solution.
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11.1.3 Experiment 3: Optimizing the Rastrigin function of 500 Variables

In this experiment, LEM3 was compared with EA. LEM2 was beenpared because
its limit on the number of variables. Figure 32 presents resutte optimization of the
Rastrigin function of 500 variables by LEM3 and EA. Both prograconverged
relatively fast in the early stage of evolution, and then sloseed when approaching
the optimum (EA slowed down much earlier than LEM3). LEM3 reaehieD.1-close
solution after 5,252 fitness evaluations ané=8.01-close solution after 16,195 fitness
evaluations. EA reachedd=0.1-close solution after 128,184 fitness evaluations (in all
of the 10 runs). Thus, the evolutionary speedup of LEM3 over EAdsihl is about
24.
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Figure 32: The LEM3 and EA evolutionary computation in minimizing
the Rastrigin function of 500 variables.

11.1.4 Experiment 4: Optimizing the Rastrigin Function of 900 Variables

In this experiment, LEM3 was compared with EA. Figure 33 gmiss graphs
representing results from optimizing the Rastrigin function of S@@akles by LEM3
and EA. Both programs converged relatively fast at the eadye sif evolution, and then
slowed down when approaching the optimum (EA slowed down much earlier tha
LEM3).

LEMS3 reached #=0.1-close solution after 7,491 fithess evaluations adre0z01-close
solution after 182,366 fitness evaluations. This indicates that LEM3edlayown
significantly at the end of evolution. EA reached an approxirsaligtion with 6=0.1
after 208,246 fitness evaluations and=8.01-close solution after 1,214,476, an order of
magnitude slower than LEM3.

Based on the above numbers, the evolution speedup of LEM3 over BAOfdris about
28 times and f08=0.01 is about 7 times.
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Figure 33: The LEM3 and EA evolutionary computation in minimizing
the Rastrigin function of 900 variables.

11.1.5 Summary of Experimental Results with the Rastrigin Function

A comparison of LEM3 and EA on the function on terms of evolution lengtind={.1,

ando=0.01 is presented in Tables 1 and 2 below, and graphically preseriapiie 34
and Figure 35. In practice, the programs can be applied to functidmsewvah more
variables, especially LEM3, since it converges very fast for large nsrobgariables.

Table 1 shows that the advantage of LEM3 over EA for the Rastfiogio=0.1 grows
with the number of variables. For example, for 10 variables, the ety speedup
(the ratio of the number of fithess evaluations by EA and LEMa8paut 4 and for 1000
variables, the speedup is about 33.

Table 1: LEM3 and EA evolution length and evolutionary speedup on optintizeng
Rastrigin function of different numbers of variablés).1.

Number of Number of Fitness LEM3/EA
Variables Evaluations Speedup for 6=0.1
EA LEM3
10 2,673 415 ~4
100 28,402 2,270 ~13
200 56,465 3,302 ~17
300 82,809 4,113 ~20
400 106,687 4,820 ~22
500 128,184 5,252 ~24
600 152,291 5,652 ~27
700 184,172 6,053 ~28
800 191,768 6,440 ~30
900 208,246 7,491 ~28
1000| 244,408 7,481 ~33
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Figure 34 below presents graphically the results from the abbiee t& shows that the
number of fitness function evaluations for EA grows much faster thabhHEM3 with
increasing numbers of attributes.
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Figure 34: Evolutionary speedup on minimizing the Rastrigin function of 10 to 1000
variables fo6 =0.1.

Table 2 below presents the numbers of fitness evaluations needed3ydrifl EA to
converge to5=0.01-close solutions for the Rastrigin function of different numbers of
variables. The evolution speedup grows up to 400 variables, where ieseé&hand
decreases for more variables. Despite the decreasing evapgedup, LEM3 remains
about an order of magnitude faster than EA in terms of evolution length.

Table 2: LEM3 and EA evolution length and evolutionary speedup on optimizing the
Rastrigin function of different numbers of variabl&s(.01.

Number of | Number of Fithess | LEM3/EA Speedup

Variables Evaluations for 6=0.01
EA LEM3

10 12,419| 1,000 ~12

100| 114,445 5,298 ~22

200| 283,523 7,705 ~37

300| 409,591| 10,471 ~39

400| 584,363] 12,708 ~46

500| 631,218/ 16,195 ~40

600| 727,158 22,173 ~33

700 1,134,610 26,375 ~43

800| 884,545/ 30,124 ~29

900 1,214,476 37,026 ~33

1000| 1,418,323 43,090 ~33
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Figure 35: Evolutionary speedup on minimizing the Rastrigin function of 10 to 1000
variables fo =0.01.

The number of fithess evaluations neede@-tptimize the function (that is, to find a
solutiond-close to the optimum) grows with the number of variables up to a wbien
because of lack of diversity, LEM3 starts behaving similéolya standard Darwinian-
type method by and has to apply mutation every iteration. This opesry anportant
and interesting area for future research, namely how to modiyid to improve
optimization at the end of evolution process.

It is interesting that for 700 variables, EA requires moree§is function evaluation than

for 800 variables, but continues following the original tendency for 900 and 1000
variables. This shows the high sensitivity of the algorithm onirggapopulations, even

if the experiment was repeated 10 times with differentistppopulations (the same
starting populations were used in LEM3).

11.2 Optimizing the Griewangk Function

Optimizing (minimizing) the Griewangk function is a well-knowmnolplem used in
testing evolutionary algorithms. The function has a large numbecalf dptima and one
global optimum equal to zero. It is reached when all the variageal zero. The
domain for all variables in the preformed experiments was [-5.12, 511].

The general n-dimensional Griewangk function is given by the esipres
- S X A . A plot of its 2 dimensional case is
f(Xgn, X")_l+iZ::1 2000 |:|l cos( x, / /i) p

presented in Figure 36 (local view near the minimum).
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Figure 36: The Griewangk function of 2 variables (local view near minimum).

Experiments presented in this section show comparison LEM3 and EA Gmigveangk
function of 10, 100, 500, and 100 variables. A summary of experimenés-@at and
0=0.01-close solutions is presented in Section. LEM2 was not comparks et of
experiments because the Griewangk function is not in its set of testingpfigcti

11.2.1 Experiment 5: Optimizing the Griewangk Function of 10 Variables

Figure 37 presents graphs representing results from optimizing ithe@aBgk function of

10 variables by LEM3 and EA. Both programs converged relatively quatkhe early
stage of evolution (LEM3 much faster than EA), and then slowed dowm whe
approaching the optimum (EA slowed down much earlier than LEM3).
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Figure 37: The LEM3 and EA evolutionary computation in minimizing the Griekvang
function of 10 variables.
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LEM3 reached a5=0.1-close solution after 268 fithess evaluationsd=8.01-close
solution after 3223 fitness evaluations, ar.001 after 15,309 fitness evaluations. EA
reached @=0.1-close solution after 2579 add0.01 after 7367 fitness evaluations.

The above numbers indicate that the speedup of LEM3 over E&=fbi is about 10
times, and the speedup of LEM3 over EAde0.01 is about 2 times.

11.2.2 Experiment 6: Optimizing the Griewangk Function of 100 Variables

Figure 38 presents graphs representing results from optimizing i&aBgk function of

100 variables by EA and LEM3 with population 100. LEMS3 converged vetyfrias

the beginning of evolution and slowed down when approaching the optimum. EA
converged slowly from the beginning of evolution. LEM3 reaché&d0al-close solution
after 1,797 fitness evaluations$a0.01-close solution after 10,486 fitness evaluations,
and a6=0.001-close solution after 26,366 fitness evaluations. EA reacbred. Bkclose
solution after 24,611 fitness evaluationsp=0.01-close solution after 52,632 fithess
evaluations, and &0.001-close solution after 89,258 fithess evaluations.

The above numbers indicate that the speedup of LEM3 over E8=fbf is about 14
times, the speedup of LEM3 over EA i¢0.01 is about 5 times, and the speedup of
LEMS3 over EA for6=0.001 is about 3 times.
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Figure 38: The LEM3 and EA evolutionary computation in minimizing the Griekvang
function of 100 variables.

37



11.2.3 Experiment 7: Optimizing the Griewangk Function of 500 Variables

Figure 39 presents graphs representing results from optimizing ea@gk function of

500 variables by EA and LEM3. LEM3 converged very fast from thenbeqy of
evolution and slowed down when approaching the optimum. EA converged stomly f
the beginning of evolution. LEM3 reachedsa0.1-close solution after 6547 fitness
evaluations and &=0.01-close solution after 51,564 fitness evaluations. EA reached a
6=0.1-close solution after 126,057 fitness evaluations adel0aD1-close solution after
263,801 fitness evaluations.

The above numbers indicate that the speedup of LEM3 over E&=fbf is about 19
times and the speedup of LEM3 over EA3e0.01 is about 5 times.
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Figure 39: The LEM3 and EA evolutionary computation in minimizing the Griekvang
function of 500 variables.

11.2.4 Experiment 8: Optimizing the Griewangk Function of 1000 Variables

Figure 40 presents graphs representing results from optimizing iwea@gk function of
1000 variables by EA and LEM3. LEM3 converged very fast frombéginning of
evolution and slowed down when approaching the optimum. EA converged siomly f
the beginning of evolution. LEMS3 reached=30.1-close solution after 10,780 fithess
evaluations and &=0.01-close solution after 112,600 fitness evaluations. EA reached a
8=0.1-close solution after 251,233 fitness evaluations adel0aD1-close solution after
525,096 fitness evaluations.

The above numbers indicate that the speedup of LEM3 over E&=fbf is about 23
times and the speedup of LEM3 over EA3e0.01 is about 5 times.
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Figure 40: The LEM3 and EA evolutionary computation in minimizing the Griekvang
function of 1000 variables.

11.2.5 Summary of Experimental Results with the Griewangk Function

Results from applying LEM3 and EA to optimizing this function in terms of the ewaluti
length ford=0.1-close solutions are presented in Table 3 and=f0r101-close solutions
are presented in Table 4.

Table 3: LEM3 and EA evolution length and evolutionary speedup on optinizéeng
Griewangk function of different numbers of variabks0).1.

Number of | Number of fitness EA/LEM3
Variables evaluations Speedup
EA LEM3
10 2,579 268 ~10
100 24,611 1,797 ~14
200 50,145 2,985 ~17
300 75,345 4,370 ~17
400| 101,810 5,401 ~19
500 126,057 6,547 ~19
600| 151,382 7,227 ~21
700 177,221 8,161 ~22
800| 202,317 9,001 ~22
900| 226,499 9,959 ~23
1000| 251,233 10,780 ~23
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Figure 41: Evolutionary speedup on minimizing the Griewangk function of 10 to 1000
variables fo =0.1.

Table 4. LEM3 and EA evolution length and evolutionary speedup on optintizeng
Griewangk function of different numbers of variablés0.01.

Number of | Number of fithess EA/LEM3
Variables evaluations Speedup
EA LEM3
10 7,367 3,223 ~2
100 52,632 10,486 ~5
200| 105,453 20,003 ~5
300| 157,320 29,799 ~5
400| 211,341 40,215 ~5
500| 263,801 51,564 ~5
600| 314,888 59,881 ~5
700| 369,915 72,437 ~5
800| 422,357 86,017 ~5
900| 473,310 97,606 ~5
1000| 525,096/ 112,600 ~5

When optimizing the Griewangk function f6+0.1-close solutions, LEM3’'s advantage
over EA grew from about 10 times for the function of 10 variablesbtut 23 times for
the function with 1000 variables. For the same functiorbf@r.01-close solutions, the
speed up of LEM3 was about 5 times when the number of variables Weessiai 00.
This is because of the fact that at the end of evolution LEM3 neeasply its mutation
operator to introduce diversity in a population, and therefore it behigkesthe
Darwinian-type method. Without sufficient diversity in the populatibis, impossible to
apply the learning process in LEM. This problem is addresseldeirdéscription of
current research issues in the Learnable Evolution Model in Section 13.
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Figure 42: Evolutionary speedup on minimizing the Griewangk function of 10 to 1000
variables fo =0.01.

11.3 Optimizing the Rosenbrock Function

Optimizing (minimizing) the Rosenbrock function is a well-known problesed in
testing evolutionary algorithms. The function has one global optimunhedawhen
values of all attributes equal one. The Rosenbrock function isrch dpimization
problem due to the high correlation of variables and the almostdig¢ on which the
optimum is located.

?" ”””’”’
Ti- i

‘

its 2-dimensional case is presented in Figure 43. The Rosenfoumction reaches a
minimum equal to 0 at the point (1, 1, ...1). Please note that in the fidamains of
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both variables are [-10, 10] for better visualization, but in the presexigeriments, we
used domains [-2, 10].

11.3.1 Experiment 9: Optimizing the Rosenbrock Function of 10 Variables

In this experiment LEM3 was compared with EA and LEM2. Figurprédents graphs
representing results from optimizing the Rosenbrock function of 10blesi®dy LEM3,
LEM2, and EA. LEM3 reached &0.1-close solution after 325 fithess evaluations, a
0=0.01-close solution after 682 fitness evaluations, and0a001-close solution after
1365 fitness evaluations. LEMZ2 reacheds=0.1-close solution after 275 fithess
evaluations, @=0.01-close solution after 492 fitness evaluations, akde0a001-close
solution after 1180 fitness evaluations. EA reacha@1-close solution after 541
fitness evaluations, &0.01-close solution after 2027 fitness evaluations, asxD®01-
close solution after 8602 fithess evaluations.

The above numbers indicate that the speedup of LEM3 over EA is alone2 for
0=0.1, about 3 times fa@=0.01 is, and about 6 times #&+0.001. All presented numbers
are averaged over 10 executions of each program.
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Figure 44: The LEM3, LEM2, and EA evolutionary computation in minimizing
the Rosenbrock function of 10 variables.

11.3.2 Experiment 10: Optimizing the Rosenbrock Function of 100 Variables

In this experiment, LEM3 is compared with LEM2 and EA. Figure 4&sqmts graphs
representing results from optimizing the Rosenbrock function of 100 \esialLEM3,
LEM2, and EA. LEM2 and EA converged similarly at the beginningvofution, and

after about 600 fitness evaluations started slowing down. LEMS3 mache0.1-close
solution after 1906 fitness evaluations, 6a0.01-close solution after 3495 fithess
evaluations, and &0.001-close solution after 7039 fitness evaluations. LEM2 reached a
0=0.1-close solution after 918 fitness evaluation$=8.01-close solution after 2348
fitness evaluations, and &0.001-close solution after 44,087 fitness evaluations. EA
reached &=0.1-close solution after 3067 fithess evaluation$=@.01-close solution
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after 26,944 fitness evaluations, andés0.001-close solution after 151,839 fitness
evaluations.

The above numbers indicate that the speedup of LEM3 over EA is alone< for
6=0.1, about 8 times fai=0.01, and about 22 times fo+0.001. All presented numbers
are averaged over 10 executions of each program.
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Figure 45: The LEM3, LEM2, and EA evolutionary computation in minimizing
the Rosenbrock function of 100 variables.

Figure 46 shows LEMS3 is more precise than LEM2 during the end-mfaselution.
LEMS3 stops execution after converging t@=0.000075-close solution after fewer than
35,000 fitness evaluations, while LEM2 converges t6=8.0001-close solution after
over 44,000 fitness evaluations.
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Figure 46: The end-phase of LEM3 and LEM2 evolutionary computation in minimizing
the Rosenbrock function of 100 variables.
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11.3.3 Experiment 11: Optimizing the Rosenbrock Function of 500 Variables

In this experiment LEM3 was compared with EA. LEM2 was not used in this exqrgrim
because of its limit on number of variables. Figure 47 preseaghgrepresenting
results from optimizing the Rosenbrock function of 500 variables baitALEM3 with
population 100. EA converged very fast at the beginning of evolutionaféedabout
500 fitness evaluations significantly slowed down. LEM3 convergedesl in the
beginning of evolution, but after about 4000 fitness evaluations it outpedoEAe
After 10,000 fitness evaluations LEM3 reachei+8.01-close solution and EA reached a
6=0.11-close solution, which is 11 times worse than LEM3. After about 40,0@3di
evaluations LEM3 reached a 0.001-close solution and EA reachixD.868-close
solution, which represents a 68-fold advantage of LEM3 over EA.
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Figure 47: The LEM3 and EA evolutionary computation in minimizing
the Rosenbrock function of 500 variables.

11.3.4 Experiment 12: Optimizing the Rosenbrock Function of 1000 Variables

In this experiment LEM3 was compared with EA. Figure 48 presents gregplesenting
results from optimizing the Rosenbrock function of 1000 variables by3.BMI EA.
Both programs converged very fast in the beginning of evolution. LEMGhes a
6=0.1-close solution after 6851 fitness evaluationd&:@&01-close solution after 29,691
fitness evaluations, anddx0.001-close solution after 101,635 fithess evaluations. EA
reached ad=0.1-close solution after 28,468 fitness evaluations ang-@O01-close
solution after 296,897 fitness evaluations. EA did not rea&t0201-close solution; it
stopped after about 380,000 fitness evaluations &w@074.

The above numbers indicate that speedup of LEM3 over EA=f0r1 is about 4 times
and the speedup of LEM3 over EA #@&+0.01 is about 10 times. All presented numbers
are averaged over 10 executions of each program.
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Figure 48: The LEM3 and EA evolutionary computation in minimizing
the Rosenbrock function of 1000 variables.

11.3.5 Summary of experimental results with the Rosenbrock Function

Table 5 below presents a comparison of the performance of EA and &MBtimizing

the Rosenbrock function of 10 to 1000 variables wib.1-close solutions.

It can be

seen that the advantage of LEM3 over EA, is small, but grows wittotinglexity of the
problem. Finding more precisé70.01-close, solutions shows a clear advantage for
LEM3, up to 18 times. These results are presented in Table 6.

Table 5: LEM3 and EA evolution length and evolutionary speedup on optintizeng
Rosenbrock function of different numbers of variabie®).1.

Number of | Number of fitness EA/LEM3
Variables evaluations Speedup
EA LEM3
10 541 325 ~2
100 3,367 1,906 ~2
200 5,699 2,625 ~2
300 8,547 3,518 ~2
400 11,690 4,038 ~3
500 14,960 4,519 ~3
600 15,606 5,013 ~3
700 19,448 5,491 ~4
800 22,731 5,710 ~4
900 25,216 6,835 ~4
1000 28,468 6,851 ~4
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Figure 49: Evolutionary speedup on minimizing the Rosenbrock function of 10 to 1000
variables fo =0.1.

Table 6: LEM3 and EA evolution length and evolutionary speedup on optinizéeng
Rosenbrock function of different numbers of variable$).01.

Number of | Number of fitness EA/LEM3
Variables evaluations Speedup
EA LEM3
10 2,027 682 ~3
100 26,944 3,495 ~8
200 57,588 4,922 ~12
300 89,280 6,158 ~18
400| 120,056 9,872 ~12
500| 145,984 12,655 ~12
600| 178,358 15,951 ~11
700| 209,274 16,931 ~12
800| 234,348 22,843 ~10
900| 259,168 25,065 ~10
1000| 296,879 29,691 ~10

The evolution speedup of LEM3 over EA grows up to about 12 times (with one exception
that is about 18 times for 300 variables) and stabilizes withadl slecreasing tendency.
The tendency of smaller speedup at the end of evolution is due thdaeit the end of
evolution, LEM3 has to apply its mutation operator in order to increasesdy in the
population and therefore starts behaving more like a Darwinian-tygideThe lack of
diversity makes it impossible to apply learning mode. This matter is dischskav.
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Figure 50: Evolutionary speedup on minimizing the Rosenbrock function of 10 to 1000
variables fo =0.01.

11.4 Timeof Evolution

Operators of hypothesis generation and instantiation are much more atomaliy
complex than mutation and/or recombination operators. Consequently, the domnputa
time needed by LEM3 to execute the hypothesis generation and istsdanbperators is
much longer than the time needed by EA to apply. However, whetievevaluation of
the fitness function is computationally non-trivial, LEM3 clearlynsvinot only in the
evolution length but also evolution time.

For example, suppose that EA and LEM3 are applied to an optimizaidatem with
complexity similar to the Rastrigin function of, say, 500 variabl€e get a=0.1 close
solution, EA requires about 128,000 fitness evaluations (optimization siraleout 180
seconds) and LEM3 requires about 5,200 fitness evaluations (optimizat@mstabout
400 seconds).

By simple calculation we find that if the programs were apybed real world problem
in which evaluation of its fithess function took only 0.1 second, wisamot unusual,
EA would require about 35.5 hours to findda0.1 close solution, and LEM3 would
require no more than about 15 minutes to find the solution. Even if thetienaly
speedup is only on the order of 5, as for example for the Griewangdiofuihar 6=0.01,
the LEM3 execution time is less than the execution time of EA.

For completeness of this discussion, it is important to mentionheaA®21 execution
time grows with the number of variables. This growth, howegetpmpensated by the
significantly smaller number of fitness function evaluationss &lso important to point
out that that the time of evaluation of the fitness function also gwathksthe number of
variables. It should also be mentioned that AQ21 was not optimized fax#dwaution
time. To speedup LEM3, one could optimize AQ21 for the execution timexample,
by implementing it in hardware or by removing its features that are notrus&d3.
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11.5 Summary of Experimental Results

In the presented experiments we compared the LEM3 system ddsaoriibés paper with
the EA program, representing a standard Darwinian-type evolutianatpod, and
LEM2, the previous implementation of the Learnable Evolution Model, on thede
known optimization problems. Because of the limitations of LEM2, & w@mpared
only in a few cases. It is important to note that in none of tesepted experiments,
program parameters were fine-tuned to achieve better redultefault settings were
used. In real world problems, especially in solving hard problems, iherdy one run
of a method due to the high complexity of fithess evaluations. Suchraay take hours
of even days before optimal results are returned; thus, users aanally cannot change
parameters and try again.

The presented results show the superiority of LEM3 over EA rnmsteof evolution
length, measured as the number of fitness function evaluations neededig¢ve &-
close solution. LEMS3 outperforms LEM2 not only in terms of the ewmiuength and
precision of solutions, but also in terms of the limitations of LEM&h as maximum
number of variables allowed.

In all tested cases, LEM3 gave the best results, outperforming EA byabpub46 times
in case of the Rastrigin function and on average by about 16.5 fomasictions of at
least 100 variables. Table 7 below presents average speedups of deMBA for
different numbers of variables in the experiments shown above.

Table 7: Average evolutionary speedup of LEM3 over EA for Rastrigiew@angk, and
Rosenbrock functions of different numbers of variables.

Numberof 10 | 100| 200 300  40d 500 600 700 8DO 900 1p0O0
Variables

~Speedup| 4.3 10.7| 15| 16.8| 17.8| 17.2| 16.7| 19| 16.6| 17.2 18

In the presented experiments, the evolutionary speedup of LEM3 overathen[an-
type method, EA, grew with the complexity of problem up to 700 variahled then
tapered of stabilized. This can be explained by the factwilitatthe growth of the
number of variables the role of hypothesis generation operators decleamuse fewer
and fewer variables are needed to diffentiate between H- ardups, and thus more
and more variables are instantiated more or less randomly, thieisnethod starts
behaving like a Darwinian-type algorithm.

In the presented comparison, we used a standard evolutionary computatoa, nie
which any other method can be easily compared.

12 RELATED RESEARCH

LEMS3 is the newest system, continuing the progression of LEM implemamtabwards
more complete and advanced embodiments of the LEM methodology. Prevaogtesnms
employed older learning systems from the AQ family: LEMlicfMlIski and Zhang,
1999) used AQ15c (Wnek et al., 1996) and LEM2 (Cervone, Kaufman and Michalski,
2001) used AQ18 (Kaufman and Michalski, 2000b).
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An implementation of Learnable Evolution Model for Multi-objective @ptation

(LEMMO; Jourdan et al., 2005) is based on rules generated from liyedise C4.5
learning program (Quinlan, 1993). LEMMO was recently applied teater quality
optimization problem (Jourdan et al., 2005). Because of its use of thele@ming

program, LEMMO learns not only rules that describe the H-group, Ibatrales that
describe the L-group. Newly generated individuals are required td rttegcH-group
descriptions and to not match the L-group description. The decisioremasentation of
the hypotheses is, however, significantly more limited than thé&bwtonal rule

representation in LEM3, and is also more difficult to instantiate.

Most research in the field of evolutionary computation has been exploarigus

variants of the Darwinian-type of evolution that employs semiloen mutation and
recombination operators to generate new individuals. Numerous papers;enoaf
proceedings and books have been published in this very active field (elg. ®&el,

Michalewicz, 2000; Michalewicz, 1992; Gen and Cheng, 2000; Schaefer, 200%; 8a
al., 2005). Non-Darwinian evolutionary computation methods use techniquekffirat
from the Darwinian model. In particular, LEM employs hypothesisnation and
instantiation operators.

The closest evolutionary methods in spirit to LEM euttural algorithms(e.g. Reynolds,

1994; Peng and Reynolds, 2001; Reynolds and Peng, 2004) that use additional
information about solutions to guide mutation and recombination operatorsculfinel
algorithms perform a constrained optimization process in which reamist are created
during the evolutionary computation. The constraints, called beliefs, are storediéf a be
space that is updated during the evolution process. Individualsardettored in an
optimization space are modified so that they satisfy the belEig belief space is being

built based on statistical information about individuals, which usually istsn®f
intervals containing the fittest individuals.

Estimation of Distribution Algorithm¢EDAS) use statistical inference and learning to
generate distributions of high-performing individuals selected foom population (e.g.
Muhlenbein and Paal3, 1996; Larrafiaga and Lozano, 2002) without use of contrhst set
low-performing individuals. Among the most popular methods for estigati
distributions EDAs use Bayesian and Gaussian networks. The appsaaghificantly
different from Learnable Evolution Model, which uses symbolic leartondistinguish
between high- and low-performing individuals. EDAs also use vabfefitness
functions only for selecting individuals for learning, while LEM cfectively use the
values during learning process (e.g. by learning significance-bdssdriptions;
Wojtusiak, 2004b).

13 CONCLUSIONSAND PLANNED RESEARCH

The presented LEM3 system is the most advanced implementation dedneable
Evolution Model. In many aspects, the algorithms implemented in3.G&beyond the
methodology described in (Michalski, 2000). LEM3 has been shown topbavarful
optimization tool that wins in comparison with other evolutionary contjputdaools in
terms of evolution length (number of fitness evaluations) and irstefrthe versatility of
methods for describing individuals in a population (due to the usenadearange of
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attribute types supported by LEM3). An experimental applicatiohEW3 to very
complex function optimization problems (with up to 1000 variables) achigwgegberior
performance over the EA method used in the experiments. It shiswed high
scalability that could not be achieved with previous implementations.

Our research also revealed a weakness of the current impéioerdaf LEM3 for very
large number of variables. As mentioned earlier, when the numberiables reached
about 700, the advantage of LEMS3 started to diminish, because in thisocdgdew
variables are needed to differentiate between the H- and Lsgyr@&gnsequently, the
learning process has an increasingly lower influence orevb&utionary computation,
because most of the variables are instantiated semi-randomly.tlausM process at
that stage works like a variant of the Darwinian evolutionary computation.

Overcoming the problem of decreasing influence of learning atetigkphase of
evolution for very large numbers of variables is therefore a magplienge for further
research on the LEM methodology. While this problem is importarglte,sit is worth
mentioning that most practical problems have fewer than varialbles, the current
method is applicable with a full advantage of learning.

Other research topics for investigation in LEM include handling compdsstraints,
self-adaptation in setting the LEM3 and AQ21 parameters dumofuteon process,
multi-objective optimization, and automatic improvements of represemtadf
individuals.

Our current research also focuses on investigation of theoresipatta of Learnable
Evolution Model, such as its complexity, convergence speed, and clatssifi of
optimization problems for which it is the most suitable.

Applications of LEM can be especially advantageous in areas in wdtatdard
evolutionary computation methods are too slow in terms of number ofditio@ction
evaluations, particularly those in which fitness evaluation is toresuming or costly.
Such areas include engineering design applications in which theutaton of fithess
function involves simulation or other computationally extensive processes.
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