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  Abstract 
LEM3 is the newest implementation of Learnable Evolution Model (LEM), a non-Darwinian 
evolutionary computation methodology that employs machine learning to guide evolutionary 
processes.  Due to a deep integration of different modes of operation and the use of the advanced 
machine learning system AQ21, the LEM3 system is a highly efficient and effective implementation 
of the methodology.  LEM3 supports different attribute types for describing individuals in the 
population, such as nominal, rank, structured, interval and ratio, which makes it applicable to a wide 
range of practical problems.  It also implements very efficient methods for switching between 
different modes of operation and operators controlling the generation of new individuals.  This paper 
describes the underlying LEM3 algorithm, results from LEM3 testing on selected benchmark function 
optimization problems (with the number of variables varying from 10 to 1000), and its comparison 
with EA, a conventional, Darwinian-type evolutionary computation program. In every experiment, 
without exception, LEM3 outperformed EA in terms of the evolution length (the number of fitness 
evaluations needed to achieved a desired solution), sometimes very significantly. It also outperformed 
the previous LEM2 implementation.    

 

Keywords:  Function Optimization, Learnable Evolution Model, Machine Learning, Non-
Darwinian Evolutionary Computation 
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1 INTRODUCTION 

Research on non-Darwinian evolutionary computation is concerned with developing 
algorithms in which the creation of new individuals in the population is guided, at least 
partially, by an “intelligent agent,” rather than done solely by random or semi-random 
change operators, such as the mutations and/or crossovers employed in “Darwinian-type” 
evolutionary methods. Each new generation is selected from the generated individuals by 
some selection method, as in Darwinian evolution. The Learnable Evolution Model 
(LEM), described in (Michalski, 2000; Michalski and Zhang, 1999), employs an AQ-type 
learning program for creating hypotheses for guiding the evolutionary process. 

Experiments with initial implementations of LEM have demonstrated that it may very 
significantly speed up the evolutionary process over Darwinian-style evolutionary 
algorithms in terms of the evolution length, defined as the number of generations (or 
fitness evaluations) needed to achieve a desired solution.  Most importantly, these 
experiments also have indicated that the LEM advantage grows with the complexity of 
the problem, as measured by the number of variables to optimize. These findings indicate 
that LEM may be particularly attractive for solving very complex optimization problems 
in which the fitness evaluation is time-consuming or costly. 

The first implementation of Learnable Evolution Model, LEM1, employed the AQ15 
learning program, and included a relatively small subset of the LEM methodology 
(Michalski and Zhang, 1999). Its experimental testing produced, however, very 
promising results.  A more advanced implementation, LEM2 used the AQ18 learning 
program and was tested on several benchmark problems (Cervone, Kaufman and 
Michalski, 2003).  Domain-oriented LEM implementations, called ISHED and ISCOD, 
were tailored to problems of optimizing heat exchanger designs, and also produced 
highly promising results (Kaufman and Michalski, 2000a; Domanski et al., 2004). 

The latest implementation, LEM3, described in this paper, employs the newest 
implementation of AQ learning, AQ21 (Wojtusiak, 2004a; Wojtusiak, 2004b).  In 
contrast to previous implementations, LEM3 deeply integrates different modes of LEM 
operation, that is, it integrates them at the level of data structures. 

Due to the integration with AQ21 and use of its data structures, LEM3 allows one to 
describe individuals in a population in terms of a wide range of attribute types, such as 
nominal, rank, structured, absolute, and ratio.  In guiding evolution, it can control the 
generality of the hypotheses generated at different stages of evolution, and also adapt 
learning parameters, such as description type, to the problem.  LEM3 also implements a 
new method for executing the end-phase of the evolutionary computation, and adds 
various extensions to the original LEM methodology, such as new hypothesis 
instantiation algorithms, and an Action Profiling Function (APF) that allows switching 
between modes of execution or applying them in parallel.  As in the previous version, 
continuous attributes are handled by a very efficient method, ANCHOR, that 
incrementally discretizes them into variable-length intervals appropriate to the progress 
of evolution (Michalski and Cervone, 2001). 
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Section 2 describes the LEM3 algorithm, including an overview of specific methods 
described in detail in later sections.  Sections 3 to 8 present descriptions of, respectively, 
the AQ21 learning program, hypothesis instantiation methods that create new individuals 
(candidate solutions), action selection, probing mode that applies conventional operators 
for generating new solutions, the ANCHOR method for adaptively discretizing  
continuous variables, and the randomization and start-over operators.  Section 9 describes 
the most important implementation issues and the integration of AQ21 within LEM3.  An 
example of LEM3 execution in presented in Section 10.  Section 11 describes 
experimental results from applying LEM3 and, for comparison, a Darwinian-type 
method, EA, and the previous implementation, LEM2, to selected benchmark function 
optimization problems.  Related research and future plans are presented in Sections 12 
and 13, respectively. 

2 DESCRIPTION OF THE LEM3 ALGORITHM 

This section presents in detail the LEM3 algorithm, the most recent implementation of 
the Learnable Evolution Model. 

The LEM3 algorithm contains several components also found in traditional evolutionary 
algorithms, such as generation of an initial population, selection of individuals for a new 
population, and evaluation of individuals. Other LEM3 components are concerned with 
guiding evolutionary computation through machine learning. This is done by selecting at 
each step of evolution the highest and lowest performing individuals in the population, 
the H- group and L-group, respectively, and then employing the AQ21 program to 
generate a hypothesis that differentiates between the two groups. The hypothesis is then 
instantiated in various ways to generate new individuals,  

The LEM3 algorithm is presented in pseudocode in Figure 1 and in flowchart form in 
Figure 2. 

 
Generate  initial population 
Loop until the Stop Condition is satisfied 
 Evaluate individuals 
 Select parent population 
 Select one or more of the following actions: 
  Learn and instantiate hypothesis that discriminate high and low performing  
   individuals in the parent population (Learning Mode) 
  Generate new individuals through Darwinian-type operators (Probing Mode) 
  Change the representation of individuals 
  Randomize the  population (either partially or via a start-over evolution process) 
Compute statistics and display results 
End LEM3 

Figure 1: LEM3 Algorithm in pseudocode. 

2.1 Generate Initial Population 

The first step of the algorithm generates an initial population of individuals, which LEM3 
can do in three ways. It can generate an initial population randomly, create it according to 
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constraints defined by the user, or import it from an external source.  The latter capability 
is especially useful when there is a need to run LEM3 with a preexisting population, e.g., 
developed by experts in the domain of application.  An initial population can be also 
assembled through a combination of the above methods. 

 

Start

Evaluate Individuals

Stop LEM3

Generate Initial Population

Select Parent Population

Select One or More Actions

Adjust

Representation

Learn & 

Instantiatiate
RandomizeProbe

 

Figure 2:  Flowchart of the LEM3 algorithm. 

2.2 Evaluate Individuals 

This step determines the value of the fitness function for every individual in the 
population. This may be a simple operation if the fitness is defined by a mathematical 
formula. In many applications, however, fitness evaluation may require a time consuming 
or costly process of running a simulator, solving a set of complex equations, or even 
performing an experiment. For example, such situations occur in the case of designing 
heat exchangers (Kaufman and Michalski, 2000a; Domanski et al. 2004), optimal non-
linear filters (Coletti et al., 1999), aircraft wing shapes (Oyama, 2000), and some 
applications described in (Bentley and Corne, 2002; Gen and Cheng, 2000). 

Due to the use of the AQ21 machine learning program, LEM3 allows a user to define the 
fitness function in terms not only of numeric attributes, as is usually done in conventional 
evolutionary algorithms, but also in terms of other attribute types, such as nominal, rank, 
cyclic (for example days of the week), structured (representing hierarchies; Larson and 
Michalski, 1977), interval, and ratio (Michalski, 2004; Michalski and Wojtusiak, 2005b).  
This feature extends LEM3 applicability to domains in which fitness is measured not 
only by some numerical score, but also by a combination of qualitative and qualitative 
properties. 
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2.3 Generate New Population 

After a successful instantiation process, new individuals need to be incorporated into the 
new population.  This is done by copying new individuals directly into the new 
population, or by combining new individuals and individuals from the old population.  In 
general, the creation of new population works in two steps: (1) creation of a (possibly 
large) temporary population and (2) selection of individuals into the new population. 

The temporary population consists of all newly instantiated individuals and also, 
depending on parameters, individuals from the old population.  If the number of 
instantiated individuals is smaller than the desired population size, the program needs to 
take some or all individuals from the previous population in order to meet the target 
population size.  It is usually desirable regardless to always add all individuals from the 
previous population into the temporary group.  There is no need to keep track of past 
populations from more than one iteration, because they were already used in previous 
steps, and are reflected in the old population. 

Selection of individuals into the new population is done using methods known from 
evolutionary computation.  Three methods used in LEM3 are: select the best individuals, 
also known as rank-based selection; tournament selection; and proportional selection also 
known as roulette wheel selection described, for example in (Bäck, Fogel and 
Michalewicz, 2000).  As a result of selection the final new population is created. 

2.4 Select One or More Actions 

LEM3 works in different modes of operation.  Each action presented in Figure 2 
represents one mode of operation that may consist of a number of different operations 
(e.g., in learning mode three operations are executed, namely example selection, 
hypothesis creation, and hypothesis instantiation).  The program can select one action 
(mode of operation), or actions can be executed in parallel (e.g. Learning Mode and 
Probing Mode).  Selection of actions is controlled by the Action Profile Function (APF).  
A detailed description of methods for selecting actions is presented in Section 5. 

2.5 Execute Learning Mode 

In learning mode, the most important part of the Learnable Evolution Model, new 
individuals are created through hypothesis formulation and instantiation.  Individual 
creation is a three step process: (1) selection of example individuals, (2) hypothesis 
formulation, and (3) hypothesis instantiation. 

Based on the fitness of the individuals, step (1) selects high-performing (H-group) and 
low-performing (L-group) individuals from the population.  These groups serve as 
positive and negative examples, respectively, for the AQ21 learning program.  

There are two methods of creating these groups (Michalski, 2000).  The first one, Fitness-
Based Selection, defines high and low fitness thresholds in the range from the highest to 
the lowest fitness value observed in the current population.  For example, if High and 
Low Fitness Thresholds are both 25%, then individuals whose fitnesses are in the highest 
25% of the range and the lowest 25% of the range are included in the H-group and L-
group, respectively 
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The second method, Population-Based Selection, selects a specified percentage of 
individuals from the population for each group, regardless of the distribution of fitness 
values.  These percentages are defined by the High Population Threshold (HPT) and Low 
Population Threshold (LPT).  For example, if HPT and LPT are both 30%, then the 30% 
of the individuals with the highest fitness and the 30% with the lowest fitness are 
included in the H- and L-group, respectively.  This issue is discussed in more detail in 
(Michalski, 2000). 

The central component of the LEM3 algorithm is a learning module (step 2) that induces 
general descriptions discriminating H-group from L-group individuals. In LEM3, this 
function is performed by AQ21 whose learning module generates hypotheses in the form 
of attributional rules (Michalski, 2004).  Such a representation of hypotheses is beneficial 
to LEM because of the rules’ high expressive power, the ease of instantiation of learned 
hypotheses, and the understandability of the hypotheses by experts.  Previous LEM 
implementations employed earlier versions of AQ learning programs; LEM1 used 
AQ15c, (Wnek et al., 1996) and LEM2 used AQ18 (Kaufman and Michalski, 2000b).  
AQ21 and its use in LEM3 are described in Section 3 of this paper. 

Instantiation (step 3) is a process of generating new individuals that satisfy a given 
hypothesis.  The instantiation process is the main way to create new individuals in 
Learnable Evolution Model, and correct instantiation of learned hypotheses is therefore 
crucial for evolution.  A detailed description of the methods of instantiating attributional 
rules used in LEM3 is presented in Section 4. 

2.6 Execute Probing Mode 

The probing mode executes Darwinian-type operators in order to generate new 
individuals.  The two operators implemented in LEM3 are crossover and mutation, 
described in detail in Section 6. 

2.7 Change Representation 

Continuous variables in LEM3 can be automatically discretized using Adaptive 
Anchoring Discretization (Michalski and Cervone, 2001), or can be represented in their 
original continuous form.  Adaptive anchoring increases the precision of the discretized 
variables in the most promising areas, neighborhoods of the fittest individuals.  Execution 
of this operator is controlled by the Action Profile Function mentioned above.  A 
description of the discretization method used is presented in Section 7. 

2.8 Randomizing 

This action adds randomly generated individuals to a population in order to introduce 
diversity, or replaces the entire population in a start-over process.  A description of the 
randomizing action is presented in Section 8. 

3 AQ21 MACHINE LEARNING SYSTEM 

In this section we describe AQ21, the machine learning system used in hypothesis 
generation in LEM3.  It also describes how AQ21 is used within the LEM3 algorithm. 



 

 8 

Programs from the AQ family learn hypotheses in the form of Attributional Rules 
(Wojtusiak, 2004a, Michalski, 2004, Michalski and Kaufman, 2001).  The simplest form 
of attributional rules is: 

CONSEQUENT � PREMISE 

where consequent and premise are complexes -- conjunctions of attributional conditions 
(a.k.a. selectors).  Here is an example of such a rule: 

[part = acceptable] �  [weight = 2..5] &  
[color = red v yellow] &  
[height <  3 ] 

which means that a part is acceptable if its weight is between 2 and 5 (units are 
presumably defined in the attribute domain), its color is red or yellow, and its height is 
less than 3. 

Hypotheses learned by AQ are in the form of attributional rulesets, defined as sets of 
rules with the same consequent.  The main operator used in the AQ algorithm is 
extension-against.  Provided with a positive example and a negative example, this 
operator generates a partial star defined as the set of maximal generalizations of the 
positive example that do not cover the negative example.  The intersection of all partial 
stars from one positive example against the different negative examples is called a star -- 
a set of maximal generalizations of the positive example that do not cover any negative 
example.  In order to prevent an exponential growth to the size of the star, AQ employs a 
beam search that limits the number of rules to be retained from each iteration.  The 
positive example that was used to generate the star is called a seed.  AQ selects the best 
rule from a generated star, selects a new seed from the uncovered positive examples, and 
similarly generates stars until all positive examples are covered.  Such an algorithm 
guarantees that the learned ruleset will be complete and consistent, provided that 
examples of different classes are always distinct in the representation space.  Figure 3 
presents the basic AQ algorithm in pseudocode. 
HYPOTHESIS = <null> 
While not all H-group examples are covered by HYPOTHESIS 
 Select an uncovered positive example e+ and use it as a seed 
 Generate star G(e+, L-group) 
 Select the best rule R from the star, and add it to HYPOTHESIS  

Figure 3:  Pseudocode of the AQ algorithm as used in LEM3. 

Selection of the best rules is done using a Lexicographical Evaluation Function (LEF) 
that specifies user-defined criteria for rule preference (e.g. Michalski, 2004a; Wojtusiak, 
2004a).  

In LEM3, the consequent part of rules takes the form [group = H], indicating that the 
rules are describing high performing individuals (positive examples).  The negative 
examples are in the L-group that consists of lowest performing individuals.  The 
following example shows a rule learned by AQ21 during optimization of the Rosenbrock 
function of 10 variables. 
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[group=H]  � [x0=-0.5..1.5: 28,19] & 
       [x4=-0.5..2.0: 15,16] &  
      [x5=-1.5..1.5: 18,12] & 

  [x8=-0.5..1.5: 30,28] & 
[x9=-0.5..1.5: 27,22]: p=12,n=0 

Figure 4: An example of an attributional rule learned by AQ211 in LEM3 

The rule says that attribute x0 may have a value between -0.5 and 1.5, x4 may have a 
value between -0.5 and 2.0, and so forth.  The pair of numbers after “:” in each condition 
indicates the positive and negative support (coverage) for this condition.  For example, 
the condition specifying the value of x0 was itself satisfied by 28 of the positive training 
examples (H-group) and 19 of the negative training examples (L-group.)  Attributes x1, 
x2, x3, x6 and x7 are not included in the rule.  The numbers p and n indicate the coverage 
of the entire rule (12 positive and 0 negative examples). 

In some situations, especially at the end of the evolutionary process, the diversity of the 
individuals may be very low in a population, and the learning module (AQ21) will not be 
able to learn any rules. Such a situation occurs, for example, when the entire population 
converges to a set of identical individuals.  Usually, this means that the program has 
found an optimum, either local or global.  To see if this is a local or global optimum, 
LEM3 performs special exploratory steps controlled by the Action Profile Function. 

4 INSTANTIATION OF LEARNED HYPOTHESES 

The learned hypotheses are used to generate new individuals by a process of rule 
instantiation. Because basic attributional rules are conjunctions of conditions that define 
ranges (or sets) of attributes values, the instantiation of such rules is a relatively easy 
process. 

When instantiating a rule for a member of the new population, the program faces two 
problems, what values to assign to attributes that are in the rule, and what values to assign 
to attributes not present in the rule. The latter case is exemplified by the rule in Figure 4, 
which does not include attributes x1, x2, x3, x6 and x7.  

Three algorithms for instantiating attributional rules are used in LEM3 

4.1 Instantiation Algorithm 1 

This is the simplest algorithm for generating new individuals by instantiating the 
attributional rules.  It takes all rules from the ruleset learned by AQ21, and for each rule 
computes the number of individuals to be generated.  The total number of individuals that 
are created can be either constant during the run or vary over time; it is defined by the 
user as a parameter.  The number of individuals to be created can be the same for all 
rules, or can be computed proportionally according to a measure of the rules’ significance 
that is defined as the sum of the fitness values of the high performing individuals covered 
by the rule. 

————— 
1 AQ21 displays more information describing rules, see (Wojtusiak, 2004a). 
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For each rule in a ruleset (hypothesis) to be instantiated  
 Compute the number of individuals to be created 
 For each individual to be created 
  Create the individual 
  For each attribute 
   If the attribute is specified in the rule 
    Select a random value satisfying the rule 
   Else Select a random individual from the previous population and use its  
    value 

Figure 5: Instantiation Algorithm 1 

For each newly created individual, the program has to assign values for all attributes, 
both those included in the rule being applied and those not included in the rule.  
Depending on the attribute type and user defined parameters, different distributions can 
be used to select random values for the attributes specified in the rule; it can be done 
uniformly, using normal distribution for numerical attributes with mean equal to the 
middle of the range and user-defined variance, using maximum distance from negative 
examples, or using projections of positive and negative examples. 

Selection of values of attributes not specified in the rule is a more intricate problem with 
many potential solutions.  One way is to select a random value from the entire attribute 
domain.  This will result in individuals consistent with the rule; however, it is easy to 
show cases in which this will result in poor performance.  For instance let us assume that 
we are optimizing a function with two attributes x and y.  Both attributes are continuous 
and defined on the range -5 to 5, and the function optimum is at the point (0, 0). Let us 
further assume that AQ21 has found the rule [x = 0]. The program will then generate 
individuals with x = 0 in all cases, and with y distributed over the range [-5, 5]. In the 
next iteration, AQ21 will learn rules containing only the attribute y, since there is no 
longer any differentiation among the x-values.  During the instantiation phase, the 
program will assign values of the attribute x randomly, which means that the information 
from the previous iteration is lost.  Thus, the rules may not converge to the solution. 

Another method of value selection is to select the value from a randomly selected 
existing individual.  The individual can be selected from the entire population, the H-
group, or non-L-group individuals.  Experiments have shown that when selecting values 
from the H-group, the program tends to lose diversity of individuals, and may converge 
very quickly to a point that is not the target solution.  The method that LEM3 uses by 
default selects individuals from the whole population probabilistically in proportion to 
their fitness levels. 

The presented instantiation algorithm has a very severe weakness.  It does not work well 
for multimodal functions.  Events selected to provide values of attributes that are not 
specified in a rule may be located in different parts of the event space, thus causing new 
individuals to be generated in the wrong parts of the space. As an extension to the 
algorithm, a constraint may be added to ensure that generated events must match the rule 
that is instantiated, but this also may not keep the evolution process from straying in all 
cases.  The second instantiation algorithm was designed to deal with the described 
problems. 
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4.2 Hypothesis Instantiation Algorithm 2 

This algorithm selects parent individuals and then modifies them according to learned 
rules.  As mentioned before, the second instantiation algorithm is designed to deal with 
problems that appear using the first instantiation algorithm.  The difference between this 
and the previous algorithm is in the way an individual from the old population is selected. 
This algorithm is especially good for multimodal functions. 

Compute the fitness of all individuals (see below) 
Loop while more individuals remain to be created 
 Select probabilistically an individual (parent) based on its fitness 
 Create a list of rules satisfied by the selected individual 
 Select a rule from this list probabilistically in proportion to its significance 
 Create a new individual: 
  For all attributes 
   If the attribute is specified in the selected rule 
    Select a random value satisfying the rule 
   Else Select the value from the parent 

Figure 6: Instantiation Algorithm 2 

The typical quality measure of individuals is simply their fitness.  This is not, however, 
the only possibility; for example, a quality measure may take also into consideration the 
number of rules that match the individual.  When AQ21 is working in Theory Formation 
(TF) mode (i.e., learning covers that are complete and consistent with respect to the 
training data), it is guaranteed that all individuals from the H-group will satisfy some 
rules.  Although LEM uses by default the TF mode, it is also possible to learn rules in 
Pattern Discovery (PD) mode, in which stronger patterns may be favored over a complete 
and consistent ruleset.  In such a case, some individuals from the H-group may not be 
covered completely by any rules, and it is thereby important to select only individuals 
that are covered by at least one rule. Values of attributes that are specified in the rule are 
selected according to Algorithm 1. 

4.3 Hypothesis Instantiation Algorithm 3 

Regardless of the learning mode, AQ21 guarantees that each rule will cover at least one 
high-performing individual.  Using that information, it is possible to combine the two 
algorithms presented above. 

For all rules 
 Compute the number of individuals to be created 
 For all individuals to be created 
  Select probabilistically an individual covered by the rule 
  For all selectors in the rule 
   Modify value of the individual within the selector 

Figure 7: Instantiation Algorithm 3 

The third instantiation algorithm, similarly to Algorithm 1, computes the number of 
individuals to be instantiated for each rule.  A significant difference from the first 
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algorithm is that the program does not select random values according to the rules, but 
instead modifies an existing individual that is covered by the rule.  This guarantees that 
all rules will be instantiated, and multimodal fitness functions will be treated 
appropriately 

4.4 Instantiation of Alternative Hypotheses 

The AQ21 program has the unique feature that it can learn not only one ruleset per class, 
but also a number of alternative descriptions/rulesets for the same class (Michalski 
2004b; Wojtusiak, 2004a).  In LEM, when the number of attributes may be much larger 
than the number of examples, it is highly probable that the program can generalize the 
positive examples in different ways.  LEM3 handles alternative covers learned by AQ21 
in two ways: (1) the intersection of the covers can be instantiated, or (2) the union of the 
covers can be instantiated.  Once the program computes either the intersection or union, 
one of the three algorithms described above is used to instantiate. 

By using the intersection method (1), we instantiate in an area covered by at least one 
rule from each alternative ruleset.  Suppose that RS1, RS2, …, RSn are alternative 
rulesets describing the high performing individuals.  Ruleset RS1 consists of k1 rules: 
RS1 = { R1,1, R1,2, … R1,k1 }, ruleset RS2 consists of k2 rules RS2 = { R2,1, R2,2, … R2,k2 
}, and so on.  A ruleset is defined as a disjunction or rules that are conjunctions of 
selectors, so the intersection of rulesets is equivalent to a conjunction of rulesets and is 
given by the following formula: Λ

 i=1..N RSi = 
Λ

 i=1..N (Ri,1 v Ri,2 v … v Ri,ki) 

Using De Morgan’s and absorption laws the intersection RS can be easily computed.  In 
fact, computation of such an intersection is one of the most common operations in the AQ 
algorithm applied during the star generation phase.  In LEM3 we use this feature of 
AQ21 to compute the intersection.  Intersection of alternative rulesets for a given class is 
also a ruleset.  Moreover if AQ21 works in TF mode and all rulesets are complete and 
consistent, the intersection is also a complete and consistent ruleset.  To prove this, it is 
sufficient to mention two facts: by our assumption, none of the rules in the rulesets cover 
any negative examples, so their intersection cannot cover any such examples; and each 
positive example is covered by at least one rule from in each ruleset. , so they will be 
covered in the intersection.  Let E be a positive event that is covered by rules R1,m1, R2,m2, 
… Rn,mn.  It follows that 

Λ
1..n Ri,mi covers the example E.  Instantiation of the intersection 

of alternative rulesets speeds up the evolution process by limiting the area covered by 
learned rules.  It is however dangerous, since intersected rulesets may be too specialized 
and the program may converge to a point that is not necessarily an optimal solution. 

The second method is to take the union of alternative rulesets.  The union is defined using 
the following formula:  V

i=1..N RSi = 
V

i=1..N (Ri,1 v Ri,2 v … v Ri,ki) 

In this case computation of RS is trivial and requires only the use of absorption laws in 
order to remove unnecessary rules.  Similarly to the case of intersection, it can be proven 
that the union of complete and consistent covers is also a complete and consistent cover.  
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Unlike intersection, the union expands the area in which new individuals are instantiated.  
This slows down the evolution process, but increases the chance that the target solution is 
covered. 

5 ACTION SELECTION 

Execution of different modes of operation is a unique feature of LEM3 that distinguishes 
it from other implementations of the Learnable Evolution Model and from many other 
evolutionary computation methods.  As mentioned above, the two basic modes that guide 
the evolution process are learning mode, which uses hypothesis creation and 
instantiation, and probing mode, which employs Darwinian-type operators such as 
mutation and crossover.  In addition to the two modes of operation, LEM3 employs 
additional actions such as adjusting discretization and randomizing (start-over) to help 
the evolution process. 

An important question to be answered is how to switch between the modes of operation 
and when each action should be executed.  The two modes of operation can be executed 
in parallel, or the program can switch between them as defined in duoLEM.  Other 
operations such as changing representation need to be executed separately.  To control 
the application of different actions, LEM3 defines an Action Profiling Function (APC) 
that based on the performance of different types of operators decides which operators to 
apply in the next step.  It also decides how many new individuals to create by each mode.  
For example if the total number of new individuals to be created is 100, the APC may 
decide to generate 70 by learning mode, 25 by probing mode and 5 by randomizing.  The 
APC should adapt during the evolution process to reflect which operators are the most 
relevant for the optimization problem.  Assigning individuals to learning and probing 
mode can be done by two simple rules: 

 If average-learning-fitness >> average-probing-fitness then 
  Increase number of individuals in learning mode 
 If average-learning-fitness << average-probing-fitness then 
  Increase number of individuals in probing mode 

where averages are computed over individuals created  in one or more iterations of the 
respective modes. 

During the evolution process, it may happen that over a number of iterations, the program 
makes no progress in terms of value of the fitness function.  This situation can be 
identified through the use of two program parameters, learn-probe and learn-threshold.  
Learn-probe defines the maximum number of iterations that are performed even if there 
is unsatisfactory progress, as defined by learn-threshold, the minimal acceptable increase 
of fitness of the best individual.  In such a situation, we say that the no-progress condition 
is met, and several possible operations need to be applied. 

If the no-progress condition is met, operations mutation, adjust discretization, and/or 
start-over are invoked.  LEM3 tries to apply mutation for mutation-probe iterations.  If 
there is still no progress, the program then tries to adjust discretization for discretization-
probe iterations.  If there is still no progress, LEM3 tries to run the start-over operation 
for up to start-over-probe times. 
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If no progress 
 Increment learn-probe-counter 
  If learn-probe-counter >= learn-probe 
   Learn-probe-counter = 0 
   If mutation-probe-counter < mutation-probe 
    Increment mutation-probe-counter 
    Mutate individuals 
    Evaluate modified individuals 
   Else if discretization-probe-counter < discretization-probe 
    Increase discretization-probe-counter 
    Mutation-probe-counter = 0 
    Adjust discretization 
    Mutate individuals 
    Evaluate modified individuals 
   Else if start-over-probe-counter < start-over-Probe 
    Increment start-over-probe-counter 
    Discretization-probe-counter = 0 
    Mutation-probe-counter = 0 
    Rollback discretization 
    Add the best individuals to a list of local optima 
    Start-over 
    Evaluate individuals 
   Else 
    Stop LEM3 

Figure 8: No-progress condition pseudocode 

The order of mutation, adjust discretization, and start-over operations is not accidental. 
Mutation is performed in order to introduce diversity into a population, and to be sure 
that the program did not get stuck “close” to the optimal value (this could be local or 
global optimum).  It is usually the case that AQ21 is unable to learn hypotheses because 
of a lack of diverse examples.  The next step increases the precision of the search by 
adjusting discretization.  If the change of precision does not make any difference, it may 
mean that the program has found an optimum.  However the optimum may be local and it 
may be desirable to start over with a new random population, and to explore different 
parts of the space.  All three operations are explained in detail in next Sections. 

6 PROBING MODE 

In Probing Mode LEM3 executes Darwinian-type operators to create new individuals.  It 
can be executed in parallel with learning mode, or LEM3 can switch between the two as 
controlled by the Action Profile Function (APF) described earlier.  The APF decides not 
only when probing mode is to be executed, but also which Darwinian-type operators are 
to be invoked.  In addition to two operators, crossover and mutation, described below, the 
APF allows the user to define specialized operators based on expert knowledge in the 
optimization domain. 
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6.1 Crossover operator 

LEM3 implements a single point crossover operator that selects two parent individuals 
and creates a new individual using the parents’ values of attributes.  The algorithm is 
executed in three steps: 

1. Select parent individuals 
2. Define a split point 
2. Create a new individual 

Selection of parents is done probabilistically, proportionally to their fitness.  The split 
point defines how many variables’ values will be taken from the first parent, and how 
many from the second one.  For example if there are 100 variables, and the split point is 
0.3, the first 30 values will be assigned from the first parent, and the last 70 will be 
assigned from the second parent.  The split point is generated randomly with uniform 
distribution. 

A newly created individual thus has assigned values from both parents: the first part from 
the first parent and second part from the second parent. 

6.2 Mutation Operator 

In LEM3 the primary goal of the mutation operation is not to find better individuals, but 
rather to introduce diversity into a population.  It may, however, produce better 
individuals in terms of fitness function value, but the direct goal is to distribute 
individuals in such a way that the AQ21 program will have enough examples to generate 
hypotheses by generalization of the examples.  It is usually the case that individuals 
generated through mutation are included in the L-group of low performing individuals.  
Such individuals provide constraints for learning, and allow the AQ21 program to 
generalize.  It is especially important when the program has already converged to one 
value of an attribute (that may or may not be correct), so the attribute will not be included 
in any rule.  Moreover, during the instantiation process for attributes not included in 
rules, LEM3 uses values from randomly selected existing individuals, implying that 
without introducing diversity LEM3 will not make any progress for the attribute. 

The mutation methodology in LEM3 is more complex than in standard evolutionary 
algorithms or genetic algorithms, due to the need to deal with the different types of 
attributes that are implemented in LEM3 and AQ21, namely nominal, rank, discretized 
continuous, cyclic, structured , ratio, and absolute (Wojtusiak, 2004a; Michalski, 2004). 

The LEM3 program can also use information about the population or evolution history to 
mutate individuals in the “right” direction.  However, in practice it usually happens that 
mutation is invoked when the population has converged to one point and no such 
information can be taken from the current population.  One possibility is to assign higher 
probability to values that are not present, or are present in smaller numbers of individuals. 
This method can be justified because it provides more diversity to the population. 
However, it can be assumed that the population has converged to a point that is close to 
the optimum, and thus only its close neighborhood should be explored via mutation. 
Below we provide a description of the mutation operation for different types of attributes: 
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The domain of a nominal attribute is an unordered set, so the concept of distance between 
its values does not apply (we can assume that a distance between any two values is the 
same).  A reasonable way of changing attributes of this type is to assign a value 
randomly. 

An absolute attribute domain is a totally ordered set, meaning that it is possible to create 
a distribution based on how far a value is from the actual attribute value.  The distance 
between values in the domain is based on the count of values between them plus one.  For 
example in domain “length” having values {very short, short, medium, long, very long} 
the distance between values “short” and “very long” is three.  Mutation can be done using 
the normal distribution with the additional assumption that the distance between 
successive values is equal.  For experimental purposes, one may also want to use a 
uniform distribution. 

A ratio type attribute domain is a special case of continuous linear domain, for example, 
real numbers.  In LEM3, values of this type are stored with double precision.  Values of a 
continuous attribute can be changed in a number of ways.  They can be changed 
uniformly over the entire domain range, or in a range specified as a parameter.  It is also 
natural to use the normal distribution with mean equal to the value taken from the parent 
individual. 

A discretized continuous attribute domain type is a special case of the ratio domain [6].  
Real values are discretized to predefined points (representing specific intervals).  The 
discretized intervals are not necessarily equally distributed, especially when an adaptive 
discretization method such as ANCHOR (Michalski and Cervone, 2001) or ChiMerge 
(Kerber, 1992) is used (the default discretization method in LEM3 is ANCHOR).  
Mutation of the discretized continuous attributes can be done as with either continuous 
attributes or absolute attributes.  In the first method, the middle of an interval is changed 
according to a selected distribution, as a continuous value, and discretized back to one of 
the intervals.  It is important to ensure that the selected distribution will go beyond the 
current interval; otherwise no change will be ever made to the attribute.  The second 
method uses the ordering of intervals, 1, 2, 3, … k, to apply mutation as for absolute 
attributes.  In such a case, information about length of the intervals is ignored. 

A cyclic attribute domain can be treated in the same way as an absolute domain; it 
represents a linear domain whose last value wraps around to its first (e.g., days of the 
week).  The only computational difference between cyclic and linear is that “distance” 
between two points should be computed in both ways -- counting up from the first point 
to the second, and from the second to the first, and the minimum should be used.  
Similarly to linear domains, the distance is computed by counting elements in the list of 
possible values. 

A structured attribute domain represents a generalization hierarchy.  The mutation can be 
done in two ways, as in nominal domains, and using information about the hierarchy.  It 
seems reasonable to take advantage of the structure that is defined in the domain.  To 
compute distances between nodes, a simple distance in the tree can be used, defined as 
the number of edges that need to be followed from one node to another.  Note that in true 
trees, there is only one possible path between two nodes, so such a measure is well 
defined. 
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Two important issues governing the mutation process are which attributes should be 
changed during the mutation and what parameters of mutation should be used.  To solve 
the first problem, LEM3 uses two methods: randomly selecting attributes to be changed; 
and selecting attributes that are currently not specified in the learned rules.  It is also 
possible to use a combination of the methods.  The program can create a list of attributes 
that are not included in the current ruleset, and if the list contains fewer attributes than a 
given threshold, the first method is used. 

In the LEM3 implementation, each attribute has its own mutation parameters.  For many 
applications, attributes are from different domains, and must have separate mutation 
parameters.  This is also desirable when adaptive methods are used, for example, in 
methods that adapt mutation ratio during the evolution process.  Similar techniques are 
known and used in the field self-adaptive genetic algorithms. 

7 ADJUSTING REPRESENTATION SPACE 

In general, adjusting the representation space of solutions may include ignoring irrelevant 
variables, adjusting domains of variables, and creation of new variables that are more 
relevant to the optimization problem.  Although all three types of operations are being 
investigated in the LEM methodology, LEM3 currently implements only adjusting 
discretization of variables described in paragraphs below. 

After the mutation operation, “adjust discretization” is the second operation comprising 
the no-progress condition in LEM3.  The program uses adaptive discretization to change 
the precision of the attributes when it is required.  The method that is used by default is a 
modified version of Adaptive Anchoring Discretization (Michalski and Cervone, 2001), 
which discretizes the continuous variable with a granularity size adapted to the problem.  
It is also possible to employ other methods of discretization in LEM3.  For example, one 
could use ChiMerge (Kerber, 1992).  This method, however, is based on frequencies of 
values, and is not designed for use in evolutionary computation. 

The modified ANCHOR method starts with an initial discretization of the space that is 
denser in areas closer to zero and less dense farther from zero.  For example an attribute 
whose domain is a range [-2000, 300] will be discretized into intervals whose boundaries 
are: {-2000, -1000, -900, ..., -100, -90, ..., -10, -9, … -1, 0, 1, ..., 9, 10, 20, …, 90, 100, 
200, 300}. 

The modified ANCHOR method increases precision in the neighborhood of the best 
individuals in the current population.  The increase is done for all attributes discretized by 
the method.  In many cases when the program reaches the no-progress condition, there is 
only one such point representing a local optimum to which the program converged.  For 
multi-modal functions for which LEM3 seeks simultaneously a number of solutions or, 
more generally, when more than one best individual is selected, precision is increased in 
the neighborhood of all local optima.  Let us suppose that for the attribute from the 
previous example, LEM3 decides to increase precision in the neighborhood of the value 
100.  As a result the following will be boundaries of intervals in the new discretized 
domain: {-2000, -1000, -900, ..., -100, -90, ..., -10, -9, … -1, 0, 1, ..., 9, 10, 20, …80, 90, 
91, …, 99, 100, 110, …, 190, 200, 300}, where the new intervals are shown in italics. 
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After adjusting the discretization, it is necessary to generate randomly new individuals 
within the area in which the discretization was improved.  This will give the AQ program 
examples distributed over the new discretization space after applying the mutation 
operator to individuals that were the basis for the adjust discretization operation. 

8 RANDOMIZATION AND START-OVER 

The Randomize operation can either add new (usually few) randomly generated 
individuals to the current population in order to increase diversity, or restart the evolution 
process by applying the start-over operation. 

LEM3 without the start-over operation can be viewed as a local optimization algorithm 
that cannot get out from local optima if it already converged (unless mutation is applied 
with the uniform distribution). 

The start-over operation generates a new population to restart the evolution process from 
the beginning.  This operation is designed for when the program finds a local optimum 
and needs to search other parts of the optimization space.  Such a situation is detected by 
the no-progress condition given that neither mutation, which locally modifies the best 
individuals, nor adjust discretization, which increases search precision, improves global 
solution.  New individuals are created (1) randomly in the entire space, (2) randomly in 
the parts of space that were not explored so far, and (3) randomly by maximizing distance 
from the local optima found so far.  The first method is the simplest one, and is 
equivalent to a full restart of the LEM3 algorithm.  The second method requires keeping 
track of all values of attributes that appeared in past individuals.  The information is used 
to distribute individuals over the not explored yet parts of the space.  The third method 
builds distributions based on a list of local optima found so far.  The farther from a found 
solution, the higher the probability that an example is used. 

9 THE LEM3 IMPLEMENTATION 

The basis for LEM3 implementation is the learning module of the AQ21 program.  Our 
goal was to fully integrate AQ21’s learning module with the evolution module in LEM.  
The full integration not only reduces learning time, but also provides access to all 
functions implemented in AQ21, and reuses its data structures.  The integration is based 
on the simple fact that an individual can be represented in the same way as an event in 
AQ learning.  Moreover, these individuals are used as examples when LEM applies 
machine learning to generate hypotheses that describe high-performing individuals. 

The following sections describe the main AQ21 data structures that are shared with 
LEM3 to store individuals and learned hypotheses.  Details of attribute types in AQ 
learning and their representation are presented in (Michalski and Wojtusiak, 2005b). 

9.1 Representation of Individuals in LEM3 

It was mentioned above that LEM3 uses AQ21 data structures to store individuals.  This 
can be done because an individual is nothing else than list of values of attributes that 
describe a point in an optimization space.  The point can represent a design, an argument 
of a multidimensional function, a set of parameters, or any object in the optimization 
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space.  Moreover individuals are used as examples for learning when determining 
hypotheses that distinguish between high and low performing individuals.  In Learnable 
Evolution Model, the optimization space and event space for learning are the same.  In 
the following paragraphs we briefly present the representation of events in AQ learning 
that is also used to represent individuals in LEM. 

To represent an event, it is necessary to store both discrete and continuous attributes.  The 
discrete attributes are stored in bitstrings, where each value of the discrete domain is 
represented by exactly one bit.  The concatenation of bits for all domains represents the 
discrete part of the event.  Continuous attributes are represented directly as numeric 
values.  A vector of real values is used to represent all numeric attributes. 

Because LEM3 uses Adaptive Anchoring Discretization, attributes to which the 
discretization is applied are stored using bits even if they were originally continuous.  
LEM3 can represent numeric attributes both ways – discretized and not discretized. 

9.2 Representation of learned hypotheses in LEM3 

AQ’s learning module outputs learned hypotheses in the form of attributional rulesets.  A 
ruleset, a collection of rules with the same consequent, is represented using an ordered set 
of rules.  Each rule is represented using data structures similar to these used to represent 
individuals (events in AQ learning) – vectors of bits and vectors of real values.  For 
discrete attributes, each value from the domain of the attribute is assigned exactly one bit 
that is set to 1 when the value is present and 0 when it is not.  An extra bit is added to 
each attribute, and is used to help represent meta-values (Michalski and Wojtusiak, 
2005a), although LEM3 does not use this feature of AQ21.  For continuous values, each 
attribute is assigned two real values – for lower and upper bounds.  Thus, an individual 
can be viewed as a special case of a rule condition in which exactly one value per 
attribute is present.  The following example demonstrates the representation used in 
LEM3 and AQ21. 

Let x1, x2 and x3 be attributes that define the optimization space.  Attributes x1 and x2 
are of nominal type with domains {r, g, b, w} and attribute x3 is a continuous (ratio) 
attribute.  Suppose that [group = high] � [x1=r,g] & [x2=b] &[x3=5..7] is a rule learned 
during the optimization process.  The consequent part of the rule is represented by a 
complex (conjunction of attributional conditions) that has all three attributes active, two 
of them represented by bitstrings (x1 and x2) and one represented by a range (x3).  The 
following is a representation of the consequent of the presented rule: 

Bits: 1100000100    Ranges: (5, 7) 

The domain size of both nominal attributes is 4, so 5 bits are used to represent each of the 
attributes (an extra bit is used to represent meta-values, as mentioned above).  Bits 1 to 5 
are used to store values for the first selector (attribute x1) and bits 6 to 10 are used to 
store values for the second selector (attribute x2).  There is only one continuous attribute 
(x3); therefore only one range is used. 

It should be mentioned that even if not all attributes are used in a rule, bits or ranges are 
assigned to all attributes.  This means that the size of a complex in a given representation 
space is constant, even if it has only one selector.  Inactive discrete selectors have all 
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value bits switched to 1 and inactive continuous selectors are represented by special 
ranges equivalent to (-∞, +∞). 

10 AN APPLICATION OF LEM3 AND EA TO A SIMPLE PROBLEM 

This section presents an example of applying LEM3 and a conventional, Darwinian-type 
algorithm, Evolutionary Algorithm (EA) to a simple function optimization problem.  The 
problem is simple enough to be illustrated graphically using Generalized Logic Diagrams 
(e.g. Michalski, 1978) but sufficiently complex to show some important aspects of the 
LEM3 algorithm.  The optimization problem is to find all global maxima of the sample 
function: 
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Domains of all attributes are ranges [-2, 2].  The cosine part was added to the function in 
order to make two equal global optimal solutions to the problem.  A two dimensional 
version of the function, given by the formula )*2cos(*48),( 1

2
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illustrated in Figure 9.  The factors 4*n and 2*n (values 16, 8 and 8, 4 in expressions 
above), where n is the number of attributes, are used the function for scalability and to 
guarantee that its value is not negative. 

 
Figure 9: A plot of the function f(x0, x1). 

The following figures demonstrate consecutive steps of executing LEM3.  The figures are 
Generalized Logic Diagrams (GLDs) representing four dimensional spaces spanned over 
discretized variables x0,…,x4.  For each generation, two diagrams are presented for 
LEM3, one with the current population and one with selected solutions in the H-group 
and L-group) and the learned rules.  For comparison, steps of executing EA for this 
problem are also illustrated.  
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Generation 1: 

In the first iteration, the population is randomly initialized over the entire space as shown 
on Figure 10.  LEM3 selects examples for the H- and L-groups indicated as respectively 
“1” and “2” on the same figure.  Provided with the examples AQ21 learns rules presented 
as shaded areas in Figure 12.  Initial populations in LEM3 and EA are the same. 

LEM3 EA 

 
Figure 10: Randomly generated initial 

population (the same for both programs). 

 
Figure 11: Randomly generated initial 

population (the same for both programs). 

 
Figure 12: Learned hypothesis and H- and L-

group individuals in LEM3. 

 

 

 

EA applies mutation and crossover to 
generate new individuals. 

 

EA probability of mutation is 0.1 

EA probability of crossover is 0.1 

EA selection method is tournament. 
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Generation 2:  

Instantiated individuals are combined with the old individuals and a new population is 
selected (Figure 13).  In the instantiated individuals both solutions of the function have 
already been found – individuals (2, 2, 0, 2) and (2, 2, 4, 2), which represent the values of 
real solutions (0, 0, -2, 0) and (0, 0, 2, 0).  Although the program has found the solutions, 
it still needs for all individuals to converge to the solutions in order to satisfy the LEM3 
stop condition (the only individuals are solutions). Figure 15 shows high and low 
performing individuals selected from population and learned rules (shaded areas).  
Evolutionary algorithm slowly converges toward the solutions as shown in Figure 14. 

LEM3 EA 

 
Figure 13: LEM3 Population in the second 

generation (100 fitness evaluations). 

 
Figure 14: EA Population in the second 

generation (85 fitness evaluations). 

 
Figure 15: Learned hypothesis and H- and L-

group individuals in LEM3. 

 

 

EA applies mutation and crossover to 
generate new individuals. 

 

EA probability of mutation is 0.1 

EA probability of crossover is 0.1 

EA selection method is tournament. 
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Generation 3: 

In the third generation, LEM3 individuals converge closer to the solutions as shown on 
Figure 16.  After selecting L- and H-groups from the population, one rule is learned as 
shown on Figure 18.   

EA also found the solutions, but the population is much more distributed over the space 
(Figure 17). 

LEM3 EA 

 
Figure 16: LEM3 Population in the third 

generation (150 fitness evaluations). 

 
Figure 17: EA Population in the third generation 

(130 fitness evaluations). 

 
Figure 18: Learned hypothesis and H- and L-

group individuals in LEM3. 

 

 

EA applies mutation and crossover to 
generate new individuals. 

 

EA probability of mutation is 0.1 

EA probability of crossover is 0.1 

EA selection method is tournament. 
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Generation 4: 

The fourth generation in LEM3 consists of individuals that converged to the two 
solutions and one individual that is not a solution (Figure 19).  The only individual that is 
not a solution is used as the L-group, and all other individuals are included in the H-
group.  One simple rule describes the H-group against the L-group (Figure 21).  EA 
slowly converges towards solutions (Figure 20). 

LEM3 EA 

 
Figure 19: LEM3 population in the fourth 

generation (200 fitness evaluations). 

 
Figure 20: EA Population in the fourth 

generation (168 fitness evaluations). 

 
Figure 21: Learned hypothesis and H- and L-

group individuals in LEM3. 

 

 

EA applies mutation and crossover to 
generate new individuals. 

 

EA probability of mutation is 0.1 

EA probability of crossover is 0.1 

EA selection method is tournament. 
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Generation 5: 

Finally, in the fifth generation (250 fitness evaluations) all individuals generated by 
LEM3 converged to the two solutions (Figure 22).  This ends the evolution process in 
LEM3.  EA did not converge to the solutions yet (Figure 23). 

LEM3 EA 

 
Figure 22: Two global optima found by LEM3 in 
the last, fifth generation (250 fitness evaluations). 

 
Figure 23: EA population in the fifth generation 

(214 fitness evaluations). 

Generation 8: 

In the eighth generation, EA converged to one of the two solutions shown in Figure 24.  
The total number of fitness function evaluations needed by LEM3 was 250, and by EA 
was 346.  Also, LEM3 found both optima, and EA only one of the two. 

LEM3 EA 

 

 

LEM3 already converged to both optimal 
solutions after fifth generation, as shown in 
Figure 22. 

 

 
Figure 24:  One of the two optima found by EA 

in the eighth generation (346 fitness evaluations). 
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While the advantage of LEM3 over EA in solving this simple problem (only 4 variables 
describe the individuals) is relatively large (EA needs about 100 more fitness evaluations 
than LEM3), a more impressive advantage of LEM3 is seen in problems with larger 
number of variables, where LEM3 is on average over 16 times faster than EA (see 
Section 11 for details).  This is so because LEM3’s advantage grows with the number of 
variables. 

In real-world and more complex applications LEM3 will start applying methods 
described in the no-progress condition to ensure that program is not stuck close to the 
solutions, the discretization level is correct, and there are no other solutions in unexplored 
areas of the optimization space.  The presented simple example was chosen for 
demonstration of LEM3 and its comparison with EA because of ease of the visualization 
that because of the complexity of GLDs can grow exponentially worse with a larger 
number of attributes. 

11 COMPARATIVE RESULTS FROM APPLYING LEM3, EA AND LEM2  

The goal of these experiments was to compare the performance of LEM3, LEM2, and 
EA, representing a conventional, Darwinian type evolutionary computation algorithm on 
a range of function optimization problems.  The problems involved optimization of the 
Rastrigin, Griewangk, and Rosenbrock functions of different numbers of variables, 
ranging from 10 to 1000. These functions were chosen because they are often used for 
testing evolutionary algorithms and are described, for example, in (Whitley et al., 1996).  
EA is an implementation of Evolutionary Algorithm taken from library EO (Evolutionary 
Objects) 0.9.3a that can be downloaded from URL: http://eodev.sourceforge.net.  The EO 
library was selected because it is an advanced implementation of Darwinian-type 
evolutionary algorithm, it supports large numbers of variables (we tried other programs 
that support far fewer variables), it is well described in available tutorials, and it is easily 
downloadable from the internet. 

LEM3 and EA were applied to optimizing functions of 10, 100, 200, 300, …, 1000 
variables. LEM2 was applied to optimizing functions of 10 and 100 variables (its limit is 
fewer than 200 variables).  Each experiment involving optimizing a function of a given 
number of variables was repeated 10 times with a different starting population.  To make 
a fair comparison, the same starting population was used in each program. 

The results are reported for δ -close solutions that are characterized by a normalized 
distance from the optimal solution. The δ-close solution, s, is a solution for which 
function δ (s), defined as: 

initopt

svopt
s

−
−

=
)(

)(δ  

reaches an assumed δ-target value, where init is the evaluation (“fitness value”) of the 
best solution in the initial population, opt is the optimal value, and v(s) is the evaluation 
of the solution s.  Such a measure works for both maximization and minimization 
problems, that is, for problems in which the optimal solution has maximal or minimal 
evaluation.   
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This definition of δ-close solution suggests into two possible ways of analyzing 
performance of evolutionary computation methods.  First, one may consider the problem 
of how many fitness function evaluations are needed to achieve a given δ=k by the best 
individual in the population, denoted as FE(δ =k), where k is a number between 0 and 1.  
The measure is the main way of reporting results in this paper.  Secondly, one may 
consider the problem of finding δ (v) after given number of fitness evaluations, where v is 
the fitness value of the best individual after a given number of fitness function 
evaluations.  Figure 25 illustrates concept of the δ-close solution.  

 
Figure 25: Illustration of a δ -close solution. 

For example if the fitness value of the best individual in the initial population is 100 and 
during the process of minimization the program achieved value 0.1, and the optimal value 
is 0 then δ=0.001, indicating that program found a solution within 0.1% distance from the 
optimal solution, normalized by the fitness value of the best individual in the initial 
population. 

In the presented experiments, LEM3 was executed using all default parameters.  Most 
importantly, high and low population thresholds were both 0.3, learning probe was 4, 
mutation probe was 10, discretization probe was 2, discretization method was ANCHOR, 
and survival selection was rank-based. 

In the presented experiments, LEM2 was executed with the following parameters:  high 
and low thresholds were both 0.3, discretization method was ANCHOR, and mode was 
DUOLEM (utilize both learning and probing modes).  All other LEM2 parameters used 
default values. 

In the presented experiments, EA was executed with the following parameters: 
probability of mutation was 0.1, probability of crossover was 0.6, and selection method 
was tournament.  It used two types of crossover, standard, which creates new individuals 
by taking values form two parents, and hypercube crossover, which uniformly selects a 
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point in the hypercube spanned by the two parent individuals (for details see website 
http://eodev.sourceforge.net). 

On request, the authors will provide actual starting populations, programs, scripts used to 
run experiments, actual result files, and all other information needed to reproduce the 
presented results. 

11.1 Optimizing the Rastrigin Function 

Optimizing (minimizing) the Rastrigin function is a well-known problem used in testing 
evolutionary algorithms.  As shown in Figure 26, the function has a large number of local 
optima, and one global optimum equal to zero.  It is reached when all the variables equal 
zero.  A general expression of the Rastrigin function is: 
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A plot of the two-variable Rastrigin function is presented in Figure 26. 

 
Figure 26: The Rastrigin function of 2 variables. 

The experiments below are examples presented to demonstrate comparison of the 
programs on the Rastrigin function.  A full summary of the experiments is presented in 
Section 11.1.5. 

11.1.1 Experiment 1:  Optimizing the Rastrigin Function of 10 Variables 

Figure 27 and Figure 28 present results from optimizing the Rastrigin function of 10 
variables by LEM3, LEM2 and EA.  Both LEM2 and LEM3 converged relatively fast at 
the early stage of evolution, and then slowed down when approaching the optimum.  
LEM3 reached a δ=0.1-close solution after 415 fitness evaluations, a δ=0.01-close 
solution after 1000 fitness evaluations, and the optimum after 1208 fitness evaluations.  
LEM2 reached a δ=0.1-close solution after 374 fitness evaluations, a δ=0.01-close 
solution after 853 fitness evaluations, and the optimum after 1225 fitness evaluations.  
EA reached a δ=0.1-close solution after 2673 fitness evaluations, and a δ=0.01-close 
solution after 12,419 fitness evaluations. 
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Based on the above numbers, the evolution speedup of LEM3 over EA for δ=0.1 is about 
4 times, and for δ=0.01 is about 10 times. 
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Figure 27: The LEM3, LEM2 and EA evolutionary computation in minimizing the 
Rastrigin function of 10 variables. 

Figure 27 presents graphs representing the average of 10 runs of LEM3, LEM2 and EA 
on minimizing the Rastrigin function of 10 variables.  Both LEM2 and LEM3 found 
δ=0.1-close solution after fewer than 500 fitness function evaluations, and EA converged 
to δ=0.1 close solution after about 2700 fitness evaluations.  The dotted line represents a 
δ=0.1 distance from the solution. 

0

20

40

60

80

100

120

0 2000 4000 6000 8000 10000 12000 14000

The number of fitness evaluations

T
h

e 
va

lu
e 

o
f 

R
as

tr
ig

in
 f

u
n

ct
io

n LEM3 EA

Function            : Rastrigin 

Number of variables : 10

EA
LEM3

LEM3: FE(δ =0.01)=1000

Each line represents average of 10 
runs with different starting popultions.

EA   LEM3

LEM3: FE(δ =0)=1208 EA: FE(δ =0.01)=12,419

speed-up(LEM3/EA, δ =0.01)≈ 12

 

Figure 28: The LEM3 and EA evolutionary computation in minimizing the Rastrigin 
function of 10 variables. 
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Figure 28 presents graphs representing the average of 10 runs of EA and LEM3 on 
minimizing the Rastrigin function of 10 variables on a larger scale up to 14,000 fitness 
evaluations.  LEM3 found a δ=0.01-close solution after 1000 fitness evaluations and the 
exact solution after about 1200 fitness function evaluations. EA converged to a δ=0.01-
close solution after over 12,000 fitness evaluations. 

11.1.2 Experiment 2:  Optimizing the Rastrigin Function of 100 Variables 

Figure 29 and Figure 30 present results from optimizing the Rastrigin function of 100 
variables by LEM3, LEM2 and EA with population 100.  All three programs converged 
relatively quickly in the early stage of evolution, and then slowed down when 
approaching the optimum (EA slowed down much earlier than LEM2 and LEM3).  
LEM3 reached the optimum after 7569 fitness evaluations, and LEM2 converged to an 
approximate solution with δ=0.01 after about 6000 fitness evaluations (in all ten of the 
runs).   LEM2 did not find exact solution in this experiment. 

EA converged continuously toward the solution and reached an approximate solution 
with δ=0.01 after 114,445 fitness evaluations. 
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Figure 29: The LEM3, LEM2 and EA evolutionary computation in minimizing  
the Rastrigin function of 100 variables. 

Figure 29 presents graphs representing the average of 10 runs of LEM3, LEM2 and EA 
on minimizing the Rastrigin function of 100 variables.  Both LEM2 and LEM3 
converged quickly up to δ=0.01, and EA converged much slower.  LEM2 and LEM3 
reached δ=0.1-close solutions after fewer than 2500 fitness evaluations.  After almost 
30,000 fitness evaluations, EA achieved a δ=0.1-close solution.  The dotted line 
represents the δ=0.1 distance from the solution. 

Figure 30 presents graphs representing the average of 10 runs of EA and LEM3 on 
minimizing the Rastrigin function of 100 variables on a larger scale.  As mentioned 
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above, LEM3 reached the optimum after 7569 fitness evaluations, and EA found a 
δ=0.01-close solution after over 114,000 fitness evaluations. 
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Figure 30: The LEM3 and EA evolutionary computation in minimizing  
the Rastrigin function of 100 variables. 
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Figure 31: The end-phase of LEM3 and LEM2 evolutionary computation in minimizing 
the Rastrigin function of 100 variables.   

Figure 31 presents a comparison of the end-phase (after 4000 fitness evaluations) 
performance of LEM3 and LEM2 in minimizing the Rastrigin function of 100 variables.  
All LEM3 runs found the exact solution (δ=0) after between 6000 and 10,000 fitness 
evaluations.  No LEM2 runs found the exact solution; they converged to an approximate 
solution with δ=0.01.  The dotted line represents the δ=0.01 distance from the solution. 
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11.1.3 Experiment 3:  Optimizing the Rastrigin function of 500 Variables 

In this experiment, LEM3 was compared with EA.  LEM2 was been compared because 
its limit on the number of variables.  Figure 32 presents results of the optimization of the 
Rastrigin function of 500 variables by LEM3 and EA.  Both programs converged 
relatively fast in the early stage of evolution, and then slowed down when approaching 
the optimum (EA slowed down much earlier than LEM3).  LEM3 reached a δ=0.1-close 
solution after 5,252 fitness evaluations and a δ=0.01-close solution after 16,195 fitness 
evaluations.  EA reached a δ=0.1-close solution after 128,184 fitness evaluations (in all 
of the 10 runs).  Thus, the evolutionary speedup of LEM3 over EA with δ=0.1 is about 
24.  

0

2000

4000

6000

8000

10000

0 20000 40000 60000 80000 100000 120000 140000

The number of fitness evaluations

T
h

e 
va

lu
e 

o
f 

R
as

tr
ig

in
 f

u
n

ct
io

n LEM3 EA

Function            : Rastrigin 

Number of variables : 500

EA

LEM3

LEM3: FE(δ =0.1)=5252

EA: FE(δ =0.1)=128,184

EA   LEM3

Each line represents average of 10 
runs with different starting popultions.

δ  = 0.1

LEM3: FE(δ =0.01)=16,195

speed-up(LEM3/EA, δ =0.1)≈ 24 

 

Figure 32: The LEM3 and EA evolutionary computation in minimizing  
the Rastrigin function of 500 variables. 

11.1.4 Experiment 4:  Optimizing the Rastrigin Function of 900 Variables 

In this experiment, LEM3 was compared with EA.  Figure 33 presents graphs 
representing results from optimizing the Rastrigin function of 900 variables by LEM3 
and EA.  Both programs converged relatively fast at the early stage of evolution, and then 
slowed down when approaching the optimum (EA slowed down much earlier than 
LEM3). 

LEM3 reached a δ=0.1-close solution after 7,491 fitness evaluations and a δ=0.01-close 
solution after 182,366 fitness evaluations.  This indicates that LEM3 slowed down 
significantly at the end of evolution.  EA reached an approximate solution with δ=0.1 
after 208,246 fitness evaluations and a δ=0.01-close solution after 1,214,476, an order of 
magnitude slower than LEM3. 

Based on the above numbers, the evolution speedup of LEM3 over EA for δ=0.1 is about 
28 times and for δ=0.01 is about 7 times. 
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Figure 33: The LEM3 and EA evolutionary computation in minimizing  
the Rastrigin function of 900 variables. 

11.1.5 Summary of Experimental Results with the Rastrigin Function 

A comparison of LEM3 and EA on the function on terms of evolution length with δ=0.1, 
and δ=0.01 is presented in Tables 1 and 2 below, and graphically presented in Figure 34 
and Figure 35.  In practice, the programs can be applied to functions with even more 
variables, especially LEM3, since it converges very fast for large numbers of variables.  

Table 1 shows that the advantage of LEM3 over EA for the Rastrigin for δ=0.1 grows 
with the number of variables.  For example, for 10 variables, the evolutionary speedup 
(the ratio of the number of fitness evaluations by EA and LEM3) is about 4 and for 1000 
variables, the speedup is about 33. 

Table 1: LEM3 and EA evolution length and evolutionary speedup on optimizing the 
Rastrigin function of different numbers of variables, δ=0.1. 

Number of 
Variables 

Number of Fitness 
Evaluations 

LEM3/EA 
Speedup for 

δ
=0.1 

 EA LEM3  
10 2,673 415 ~4 

100 28,402 2,270 ~13 
200 56,465 3,302 ~17 
300 82,809 4,113 ~20 
400 106,687 4,820 ~22 
500 128,184 5,252 ~24 
600 152,291 5,652 ~27 
700 184,172 6,053 ~28 
800 191,768 6,440 ~30 
900 208,246 7,491 ~28 

1000 244,408 7,481 ~33 
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Figure 34 below presents graphically the results from the above table.  It shows that the 
number of fitness function evaluations for EA grows much faster than for LEM3 with 
increasing numbers of attributes. 
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Figure 34: Evolutionary speedup on minimizing the Rastrigin function of 10 to 1000 
variables for δ =0.1. 

Table 2 below presents the numbers of fitness evaluations needed by LEM3 and EA to 
converge to δ=0.01-close solutions for the Rastrigin function of different numbers of 
variables.  The evolution speedup grows up to 400 variables, where it reaches 46, and 
decreases for more variables.  Despite the decreasing evolution speedup, LEM3 remains 
about an order of magnitude faster than EA in terms of evolution length. 

Table 2: LEM3 and EA evolution length and evolutionary speedup on optimizing the 
Rastrigin function of different numbers of variables, δ=0.01. 

Number of 
Variables 

Number of Fitness 
Evaluations 

LEM3/EA Speedup 
for 

δ
=0.01 

 EA LEM3  
10 12,419 1,000 ~12 

100 114,445 5,298 ~22 
200 283,523  7,705 ~37 
300 409,591 10,471 ~39 
400 584,363 12,708 ~46 
500 631,218 16,195 ~40 
600 727,158 22,173 ~33 
700 1,134,610 26,375 ~43 
800 884,545 30,124 ~29 
900 1,214,476 37,026 ~33 

1000 1,418,323 43,090 ~33 
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Figure 35: Evolutionary speedup on minimizing the Rastrigin function of 10 to 1000 
variables for δ =0.01. 

The number of fitness evaluations needed to δ-optimize the function (that is, to find a 
solution δ-close to the optimum) grows with the number of variables up to a point when 
because of lack of diversity, LEM3 starts behaving similarly to a standard Darwinian-
type method by and has to apply mutation every iteration.  This opens a very important 
and interesting area for future research, namely how to modify LEM3 to improve 
optimization at the end of evolution process. 

It is interesting that for 700 variables, EA requires more fitness function evaluation than 
for 800 variables, but continues following the original tendency for 900 and 1000 
variables.  This shows the high sensitivity of the algorithm on starting populations, even 
if the experiment was repeated 10 times with different starting populations (the same 
starting populations were used in LEM3). 

 

11.2 Optimizing the Griewangk Function 

Optimizing (minimizing) the Griewangk function is a well-known problem used in 
testing evolutionary algorithms.  The function has a large number of local optima and one 
global optimum equal to zero.  It is reached when all the variables equal zero.  The 
domain for all variables in the preformed experiments was [-5.12, 511].   

The general n-dimensional Griewangk function is given by the expression 
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1),...,( .  A plot of its 2 dimensional case is 

presented in Figure 36 (local view near the minimum). 
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Figure 36: The Griewangk function of 2 variables (local view near minimum). 

Experiments presented in this section show comparison LEM3 and EA on the Griewangk 
function of 10, 100, 500, and 100 variables.  A summary of experiments for δ=0.1 and 
δ=0.01-close solutions is presented in Section.  LEM2 was not compared in this set of 
experiments because the Griewangk function is not in its set of testing functions. 

11.2.1 Experiment 5:  Optimizing the Griewangk Function of 10 Variables 

Figure 37 presents graphs representing results from optimizing the Griewangk function of 
10 variables by LEM3 and EA.  Both programs converged relatively quickly at the early 
stage of evolution (LEM3 much faster than EA), and then slowed down when 
approaching the optimum (EA slowed down much earlier than LEM3).   
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Figure 37: The LEM3 and EA evolutionary computation in minimizing the Griewangk 
function of 10 variables. 
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LEM3 reached a δ=0.1-close solution after 268 fitness evaluations, a δ=0.01-close 
solution after 3223 fitness evaluations, and δ=0.001 after 15,309 fitness evaluations.  EA 
reached a δ=0.1-close solution after 2579 and δ=0.01 after 7367 fitness evaluations. 

The above numbers indicate that the speedup of LEM3 over EA for δ=0.1 is about 10 
times, and the speedup of LEM3 over EA for δ=0.01 is about 2 times. 

 

11.2.2 Experiment 6:  Optimizing the Griewangk Function of 100 Variables 

Figure 38 presents graphs representing results from optimizing the Griewangk function of 
100 variables by EA and LEM3 with population 100.  LEM3 converged very fast from 
the beginning of evolution and slowed down when approaching the optimum.  EA 
converged slowly from the beginning of evolution.  LEM3 reached a δ=0.1-close solution 
after 1,797 fitness evaluations, a δ=0.01-close solution after 10,486 fitness evaluations, 
and a δ=0.001-close solution after 26,366 fitness evaluations.  EA reached a δ=0.1-close 
solution after 24,611 fitness evaluations, a δ=0.01-close solution after 52,632 fitness 
evaluations, and a δ=0.001-close solution after 89,258 fitness evaluations. 

The above numbers indicate that the speedup of LEM3 over EA for δ=0.1 is about 14 
times, the speedup of LEM3 over EA for δ=0.01 is about 5 times, and the speedup of 
LEM3 over EA for δ=0.001 is about 3 times. 
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Figure 38: The LEM3 and EA evolutionary computation in minimizing the Griewangk 
function of 100 variables. 
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11.2.3 Experiment 7:  Optimizing the Griewangk Function of 500 Variables 

Figure 39 presents graphs representing results from optimizing the Griewangk function of 
500 variables by EA and LEM3.  LEM3 converged very fast from the beginning of 
evolution and slowed down when approaching the optimum.  EA converged slowly from 
the beginning of evolution.  LEM3 reached a δ=0.1-close solution after 6547 fitness 
evaluations and a δ=0.01-close solution after 51,564 fitness evaluations.  EA reached a 
δ=0.1-close solution after 126,057 fitness evaluations and a δ=0.01-close solution after 
263,801 fitness evaluations. 

The above numbers indicate that the speedup of LEM3 over EA for δ=0.1 is about 19 
times and the speedup of LEM3 over EA for δ=0.01 is about 5 times. 
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Figure 39: The LEM3 and EA evolutionary computation in minimizing the Griewangk 
function of 500 variables. 

 

11.2.4 Experiment 8:  Optimizing the Griewangk Function of 1000 Variables 

Figure 40 presents graphs representing results from optimizing the Griewangk function of 
1000 variables by EA and LEM3.  LEM3 converged very fast from the beginning of 
evolution and slowed down when approaching the optimum.  EA converged slowly from 
the beginning of evolution.  LEM3 reached a δ=0.1-close solution after 10,780 fitness 
evaluations and a δ=0.01-close solution after 112,600 fitness evaluations.  EA reached a 
δ=0.1-close solution after 251,233 fitness evaluations and a δ=0.01-close solution after 
525,096 fitness evaluations. 

The above numbers indicate that the speedup of LEM3 over EA for δ=0.1 is about 23 
times and the speedup of LEM3 over EA for δ=0.01 is about 5 times. 
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Figure 40: The LEM3 and EA evolutionary computation in minimizing the Griewangk 
function of 1000 variables. 

 

11.2.5 Summary of Experimental Results with the Griewangk Function 

Results from applying LEM3 and EA to optimizing this function in terms of the evolution 
length for δ=0.1-close solutions are presented in Table 3 and for δ=0.01-close solutions 
are presented in Table 4. 

Table 3: LEM3 and EA evolution length and evolutionary speedup on optimizing the 
Griewangk function of different numbers of variables, δ=0.1. 

Number of 
Variables 

Number  of fitness 
evaluations 

EA/LEM3 
Speedup 

 EA LEM3  
10 2,579 268 ~10 

100 24,611 1,797 ~14 
200 50,145 2,985 ~17 
300 75,345 4,370 ~17 
400 101,810 5,401 ~19 
500 126,057 6,547 ~19 
600 151,382 7,227 ~21 
700 177,221 8,161 ~22 
800 202,317 9,001 ~22 
900 226,499 9,959 ~23 

1000 251,233 10,780 ~23 
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Figure 41: Evolutionary speedup on minimizing the Griewangk function of 10 to 1000 
variables for δ =0.1. 

Table 4: LEM3 and EA evolution length and evolutionary speedup on optimizing the 
Griewangk function of different numbers of variables, δ=0.01. 

Number of 
Variables 

Number  of fitness 
evaluations 

EA/LEM3 
Speedup 

 EA LEM3  
10 7,367 3,223 ~2 

100 52,632 10,486 ~5 
200 105,453 20,003 ~5 
300 157,320 29,799 ~5 
400 211,341 40,215 ~5 
500 263,801 51,564 ~5 
600 314,888 59,881 ~5 
700 369,915 72,437 ~5 
800 422,357 86,017 ~5 
900 473,310 97,606 ~5 

1000 525,096 112,600 ~5 

 

When optimizing the Griewangk function for δ=0.1-close solutions, LEM3’s advantage 
over EA grew from about 10 times for the function of 10 variables to about 23 times for 
the function with 1000 variables.  For the same function for δ=0.01-close solutions, the 
speed up of LEM3 was about 5 times when the number of variables was at least 100.  
This is because of the fact that at the end of evolution LEM3 needs to apply its mutation 
operator to introduce diversity in a population, and therefore it behaves like the 
Darwinian-type method.  Without sufficient diversity in the population, it is impossible to 
apply the learning process in LEM.  This problem is addressed in the description of 
current research issues in the Learnable Evolution Model in Section 13. 
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Figure 42: Evolutionary speedup on minimizing the Griewangk function of 10 to 1000 
variables for δ =0.01. 

11.3 Optimizing the Rosenbrock Function 

Optimizing (minimizing) the Rosenbrock function is a well-known problem used in 
testing evolutionary algorithms.  The function has one global optimum reached when 
values of all attributes equal one.  The Rosenbrock function is a hard optimization 
problem due to the high correlation of variables and the almost flat ridge on which the 
optimum is located. 

 

Figure 43: The Rosenbrock function of 2 variables.  

The function is given by equation ∑
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its 2-dimensional case is presented in Figure 43.  The Rosenbrock function reaches a 
minimum equal to 0 at the point (1, 1, …1).  Please note that in the figure, domains of 
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both variables are [-10, 10] for better visualization, but in the presented experiments, we 
used domains [-2, 10]. 

11.3.1 Experiment 9:  Optimizing the Rosenbrock Function of 10 Variables 

In this experiment LEM3 was compared with EA and LEM2.  Figure 44 presents graphs 
representing results from optimizing the Rosenbrock function of 10 variables by LEM3, 
LEM2, and EA.  LEM3 reached a δ=0.1-close solution after 325 fitness evaluations, a 
δ=0.01-close solution after 682 fitness evaluations, and a δ=0.001-close solution after 
1365 fitness evaluations.  LEM2 reached a δ=0.1-close solution after 275 fitness 
evaluations, a δ=0.01-close solution after 492 fitness evaluations, and a δ=0.001-close 
solution after 1180 fitness evaluations.  EA reached a δ=0.1-close solution after 541 
fitness evaluations, a δ=0.01-close solution after 2027 fitness evaluations, and a δ=0.001-
close solution after 8602 fitness evaluations. 

The above numbers indicate that the speedup of LEM3 over EA is about 2 times for 
δ=0.1, about 3 times for δ=0.01 is, and about 6 times for δ=0.001.  All presented numbers 
are averaged over 10 executions of each program. 
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Figure 44: The LEM3, LEM2, and EA evolutionary computation in minimizing  

the Rosenbrock function of 10 variables. 

11.3.2 Experiment 10:  Optimizing the Rosenbrock Function of 100 Variables 

In this experiment, LEM3 is compared with LEM2 and EA.  Figure 45 presents graphs 
representing results from optimizing the Rosenbrock function of 100 variables by LEM3, 
LEM2, and EA.  LEM2 and EA converged similarly at the beginning of evolution, and 
after about 600 fitness evaluations started slowing down.  LEM3 reached a δ=0.1-close 
solution after 1906 fitness evaluations, a δ=0.01-close solution after 3495 fitness 
evaluations, and a δ=0.001-close solution after 7039 fitness evaluations.  LEM2 reached a 
δ=0.1-close solution after 918 fitness evaluations, a δ=0.01-close solution after 2348 
fitness evaluations, and a δ=0.001-close solution after 44,087 fitness evaluations.  EA 
reached a δ=0.1-close solution after 3067 fitness evaluations, a δ=0.01-close solution 
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after 26,944 fitness evaluations, and a δ=0.001-close solution after 151,839 fitness 
evaluations. 

The above numbers indicate that the speedup of LEM3 over EA is about 2 times for 
δ=0.1, about 8 times for δ=0.01, and about 22 times for δ=0.001.  All presented numbers 
are averaged over 10 executions of each program. 
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Figure 45: The LEM3, LEM2, and EA evolutionary computation in minimizing  

the Rosenbrock function of 100 variables. 

Figure 46 shows LEM3 is more precise than LEM2 during the end-phase of evolution.  
LEM3 stops execution after converging to a δ=0.000075-close solution after fewer than 
35,000 fitness evaluations, while LEM2 converges to a δ=0.0001-close solution after 
over 44,000 fitness evaluations. 
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Figure 46: The end-phase of LEM3 and LEM2 evolutionary computation in minimizing 

the Rosenbrock function of 100 variables. 
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11.3.3 Experiment 11:  Optimizing the Rosenbrock Function of 500 Variables 

In this experiment LEM3 was compared with EA.  LEM2 was not used in this experiment 
because of its limit on number of variables.  Figure 47 presents graphs representing 
results from optimizing the Rosenbrock function of 500 variables by EA and LEM3 with 
population 100.  EA converged very fast at the beginning of evolution, and after about 
500 fitness evaluations significantly slowed down.  LEM3 converged slower in the 
beginning of evolution, but after about 4000 fitness evaluations it outperformed EA.  
After 10,000 fitness evaluations LEM3 reached a δ=0.01-close solution and EA reached a 
δ=0.11-close solution, which is 11 times worse than LEM3.  After about 40,000 fitness 
evaluations LEM3 reached a 0.001-close solution and EA reached a δ=0.068-close 
solution, which represents a 68-fold advantage of LEM3 over EA. 
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Figure 47: The LEM3 and EA evolutionary computation in minimizing  

the Rosenbrock function of 500 variables. 

 

11.3.4 Experiment 12:  Optimizing the Rosenbrock Function of 1000 Variables 

In this experiment LEM3 was compared with EA.  Figure 48 presents graphs representing 
results from optimizing the Rosenbrock function of 1000 variables by LEM3 and EA.  
Both programs converged very fast in the beginning of evolution.  LEM3 reached a 
δ=0.1-close solution after 6851 fitness evaluations, a δ=0.01-close solution after 29,691 
fitness evaluations, and a δ=0.001-close solution after 101,635 fitness evaluations.  EA 
reached a δ=0.1-close solution after 28,468 fitness evaluations and a δ=0.01-close 
solution after 296,897 fitness evaluations.  EA did not reach a δ=0.001-close solution; it 
stopped after about 380,000 fitness evaluations with δ=0074. 

The above numbers indicate that speedup of LEM3 over EA for δ=0.1 is about 4 times 
and the speedup of LEM3 over EA for δ=0.01 is about 10 times.  All presented numbers 
are averaged over 10 executions of each program. 
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Figure 48: The LEM3 and EA evolutionary computation in minimizing  

the Rosenbrock function of 1000 variables. 
 

11.3.5 Summary of experimental results with the Rosenbrock Function 

Table 5 below presents a comparison of the performance of EA and LEM3 on optimizing 
the Rosenbrock function of 10 to 1000 variables with δ=0.1-close solutions.  It can be 
seen that the advantage of LEM3 over EA, is small, but grows with the complexity of the 
problem.  Finding more precise, δ=0.01-close, solutions shows a clear advantage for 
LEM3, up to 18 times.  These results are presented in Table 6. 

Table 5: LEM3 and EA evolution length and evolutionary speedup on optimizing the 
Rosenbrock function of different numbers of variables, δ=0.1. 

 
Number of 
Variables 

Number  of fitness 
evaluations 

EA/LEM3 
Speedup 

 EA LEM3  
10 541 325 ~2 

100 3,367 1,906 ~2 
200 5,699 2,625 ~2 
300 8,547 3,518 ~2 
400 11,690 4,038 ~3 
500 14,960 4,519 ~3 
600 15,606 5,013 ~3 
700 19,448 5,491 ~4 
800 22,731 5,710 ~4 
900 25,216 6,835 ~4 

1000 28,468 6,851 ~4 
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Figure 49: Evolutionary speedup on minimizing the Rosenbrock function of 10 to 1000 
variables for δ =0.1. 

Table 6: LEM3 and EA evolution length and evolutionary speedup on optimizing the 
Rosenbrock function of different numbers of variables, δ=0.01. 

Number of 
Variables 

Number  of fitness 
evaluations 

EA/LEM3 
Speedup 

 EA LEM3  
10 2,027 682 ~3 

100 26,944 3,495 ~8 
200 57,588 4,922 ~12 
300 89,280 6,158 ~18 
400 120,056 9,872 ~12 
500 145,984 12,655 ~12 
600 178,358 15,951 ~11 
700 209,274 16,931 ~12 
800 234,348 22,843 ~10 
900 259,168 25,065 ~10 

1000 296,879 29,691 ~10 

The evolution speedup of LEM3 over EA grows up to about 12 times (with one exception 
that is about 18 times for 300 variables) and stabilizes with a small decreasing tendency.  
The tendency of smaller speedup at the end of evolution is due to fact that at the end of 
evolution, LEM3 has to apply its mutation operator in order to increase diversity in the 
population and therefore starts behaving more like a Darwinian-type method.  The lack of 
diversity makes it impossible to apply learning mode.  This matter is discussed below. 
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Figure 50: Evolutionary speedup on minimizing the Rosenbrock function of 10 to 1000 
variables for δ =0.01. 

11.4 Time of Evolution 

Operators of hypothesis generation and instantiation are much more computationally 
complex than mutation and/or recombination operators. Consequently, the computation 
time needed by LEM3 to execute the hypothesis generation and instantiation operators is 
much longer than the time needed by EA to apply.  However, whenever the evaluation of 
the fitness function is computationally non-trivial, LEM3 clearly wins not only in the 
evolution length but also evolution time. 

For example, suppose that EA and LEM3 are applied to an optimization problem with 
complexity similar to the Rastrigin function of, say, 500 variables.  To get a δ=0.1 close 
solution, EA requires about 128,000 fitness evaluations (optimization time is about 180 
seconds) and LEM3 requires about 5,200 fitness evaluations (optimization time is about 
400 seconds). 

By simple calculation we find that if the programs were applied to a real world problem 
in which evaluation of its fitness  function took only 0.1 second, which is not unusual, 
EA would require about 35.5 hours to find a δ=0.1 close solution, and LEM3 would 
require no more than about 15 minutes to find the solution.  Even if the evolutionary 
speedup is only on the order of 5, as for example for the Griewangk function for δ=0.01, 
the LEM3 execution time is less than the execution time of EA. 

For completeness of this discussion, it is important to mention that the AQ21 execution 
time grows with the number of variables.  This growth, however, is compensated by the 
significantly smaller number of fitness function evaluations.  It is also important to point 
out that that the time of evaluation of the fitness function also grows with the number of 
variables. It should also be mentioned that AQ21 was not optimized for the execution 
time. To speedup LEM3, one could optimize AQ21 for the execution time, for example, 
by implementing it in hardware or by removing its features that are not used in LEM3.  
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11.5 Summary of Experimental Results 

In the presented experiments we compared the LEM3 system described in this paper with 
the EA program, representing a standard Darwinian-type evolutionary method, and 
LEM2, the previous implementation of the Learnable Evolution Model, on three well-
known optimization problems.  Because of the limitations of LEM2, it was compared 
only in a few cases.  It is important to note that in none of the presented experiments, 
program parameters were fine-tuned to achieve better results; all default settings were 
used.  In real world problems, especially in solving hard problems, there is only one run 
of a method due to the high complexity of fitness evaluations.  Such a run may take hours 
of even days before optimal results are returned; thus, users cannot usually cannot change 
parameters and try again. 

The presented results show the superiority of LEM3 over EA in terms of evolution 
length, measured as the number of fitness function evaluations needed to achieve a δ-
close solution.  LEM3 outperforms LEM2 not only in terms of the evolution length and 
precision of solutions, but also in terms of the limitations of LEM2, such as maximum 
number of variables allowed. 

In all tested cases, LEM3 gave the best results, outperforming EA by up to about 46 times 
in case of the Rastrigin function and on average by about 16.5 times for functions of at 
least 100 variables.  Table 7 below presents average speedups of LEM3 over EA for 
different numbers of variables in the experiments shown above. 

Table 7: Average evolutionary speedup of LEM3 over EA for Rastrigin, Griewangk, and 
Rosenbrock functions of different numbers of variables. 

Number of 
Variables 

10 100 200 300 400 500 600 700 800 900 1000 

~Speedup 4.3 10.7 15 16.8 17.8 17.2 16.7 19 16.6 17.2 18 

In the presented experiments, the evolutionary speedup of LEM3 over the Darwinian-
type method, EA, grew with the complexity of problem up to 700 variables, and then 
tapered of  stabilized.  This can be explained by the fact that with the growth of the 
number of variables the role of hypothesis generation operators decreases because fewer 
and fewer variables are needed to diffentiate between H- and L-groups, and thus more 
and more variables are instantiated more or less randomly, that is, the method starts 
behaving like a Darwinian-type algorithm.  

In the presented comparison, we used a standard evolutionary computation method, to 
which any other method can be easily compared. 

12 RELATED RESEARCH 

LEM3 is the newest system, continuing the progression of LEM implementations towards 
more complete and advanced embodiments of the LEM methodology. Previous programs 
employed older learning systems from the AQ family: LEM1 (Michalski and Zhang, 
1999) used AQ15c (Wnek et al., 1996) and LEM2 (Cervone, Kaufman and Michalski, 
2001) used AQ18 (Kaufman and Michalski, 2000b). 
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An implementation of Learnable Evolution Model for Multi-objective Optimization 
(LEMMO; Jourdan et al., 2005) is based on rules generated from trees by the C4.5 
learning program (Quinlan, 1993).  LEMMO was recently applied to a water quality 
optimization problem (Jourdan et al., 2005).  Because of its use of the C4.5 learning 
program, LEMMO learns not only rules that describe the H-group, but also rules that 
describe the L-group.  Newly generated individuals are required to match the H-group 
descriptions and to not match the L-group description. The decision tree representation of 
the hypotheses is, however, significantly more limited than the attributional rule 
representation in LEM3, and is also more difficult to instantiate. 

Most research in the field of evolutionary computation has been exploring various 
variants of the Darwinian-type of evolution that employs semi-random mutation and 
recombination operators to generate new individuals.  Numerous papers, conference 
proceedings and books have been published in this very active field (e.g. Bäck, Fogel, 
Michalewicz, 2000; Michalewicz, 1992; Gen and Cheng, 2000; Schaefer, 2002; Bayer et 
al., 2005).  Non-Darwinian evolutionary computation methods use techniques that differ 
from the Darwinian model. In particular, LEM employs hypothesis formation and 
instantiation operators. 

The closest evolutionary methods in spirit to LEM are cultural algorithms (e.g. Reynolds, 
1994; Peng and Reynolds, 2001; Reynolds and Peng, 2004) that use additional 
information about solutions to guide mutation and recombination operators.  The cultural 
algorithms perform a constrained optimization process in which constraints are created 
during the evolutionary computation.  The constraints, called beliefs, are stored in a belief 
space that is updated during the evolution process.  Individuals that are stored in an 
optimization space are modified so that they satisfy the beliefs.  The belief space is being 
built based on statistical information about individuals, which usually consists of 
intervals containing the fittest individuals. 

Estimation of Distribution Algorithms (EDAs) use statistical inference and learning to 
generate distributions of high-performing individuals selected from one population (e.g. 
Mühlenbein and Paaß, 1996; Larrañaga and Lozano, 2002) without use of contrast set of 
low-performing individuals.  Among the most popular methods for estimating 
distributions EDAs use Bayesian and Gaussian networks.  The approach is significantly 
different from Learnable Evolution Model, which uses symbolic learning to distinguish 
between high- and low-performing individuals.  EDAs also use values of fitness 
functions only for selecting individuals for learning, while LEM can effectively use the 
values during learning process (e.g. by learning significance-based descriptions; 
Wojtusiak, 2004b). 

13 CONCLUSIONS AND PLANNED RESEARCH 

The presented LEM3 system is the most advanced implementation of the Learnable 
Evolution Model.  In many aspects, the algorithms implemented in LEM3 go beyond the 
methodology described in (Michalski, 2000).  LEM3 has been shown to be a powerful 
optimization tool that wins in comparison with other evolutionary computation tools in 
terms of evolution length (number of fitness evaluations) and in terms of the versatility of 
methods for describing individuals in a population  (due to the use of a wide range of 
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attribute types supported by LEM3).  An experimental application of LEM3 to very 
complex function optimization problems (with up to 1000 variables) achieved a superior 
performance over the EA method used in the experiments.  It also showed high 
scalability that could not be achieved with previous implementations. 

Our research also revealed a weakness of the current implementation of LEM3 for very 
large number of variables.  As mentioned earlier, when the number of variables reached 
about 700, the advantage of LEM3 started to diminish, because in this case  only few 
variables are needed to differentiate between the H- and L-groups. Consequently, the 
learning process has an increasingly lower influence on the evolutionary computation, 
because most of the variables are instantiated semi-randomly. Thus, the LEM process at 
that stage works like a variant of the Darwinian evolutionary computation. 

Overcoming the problem of decreasing influence of learning at the end-phase of 
evolution for very large numbers of variables is therefore a major challenge for further 
research on the LEM methodology.  While this problem is important to solve, it is worth 
mentioning that most practical problems have fewer than variables, thus the current 
method is applicable with a full advantage of learning. 

Other research topics for investigation in LEM include handling complex constraints, 
self-adaptation in setting the LEM3 and AQ21 parameters during evolution process, 
multi-objective optimization, and automatic improvements of representation of 
individuals. 

Our current research also focuses on investigation of theoretical aspects of Learnable 
Evolution Model, such as its complexity, convergence speed, and classification of 
optimization problems for which it is the most suitable. 

Applications of LEM can be especially advantageous in areas in which standard 
evolutionary computation methods are too slow in terms of number of fitness function 
evaluations, particularly those in which fitness evaluation is time consuming or costly.  
Such areas include engineering design applications in which the computation of fitness 
function involves simulation or other computationally extensive processes. 
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