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Abstract

A new method for optimizing complex engineeringiges is presented that is based onliéar nable Evolution
Model (LEM), a recently developed form of non-Darwiniamolutionary computation. Unlike conventional
Darwinian-type methods that execute an unguideduéwoary process, the proposed method, called LEMd
guides the evolutionary design process using a gwtibn of two methods, one involving computational
intelligence and the other involving encoded expewledge. Specifically, LEMd integrates two modsgs
operationLearning Mode andProbing Mode. Learning Mode applies a machine learningyranm to create new
designs througlhypothesis generation andinstantiation, while Probing Mode creates them applying expert-
suggestedlesign modification operatorstailored to the specific design problem.

The LEMd method has been used to implement twéairglstems, ISHED1 and ISCOD1, specialized for the
optimization of evaporators and condensers in ngo$iystems, respectively. The designs producethdse
systems matched or exceeded in performance thedbsgins developed by human experts. These prgnisi
results and the generality of the presented meshigdest that LEMd offers a powerful new tool fotimizing
complex engineering systems.

Keywords: engineering design optimization, evolutionary comagion, function optimization, learnable

evolution model, genetic algorithms, machine laagnintelligent evolution, computational intelligen



1 Introduction

Conventional methods of evolutionary computation employed in complex engmeksign have
been inspired by a Darwinian model of evolution in which new indiN&d(gesigns in this case) are
created by random mutations and/or recombinations, and are selacted hew parent population
through natural selection, according to the principle of the valraf the fittest. In contrast, the
recently introduced Learnable Evolution Mo@deEM), while adopting the principle of the survival of
the fittest, introduces the novel idea of creating new individuater the guidance of computational
intelligence, specifically, through an inferential processygiothesis generation and instantiation
In this process, a machine learning program is used to gerefagpothesis describing differences
between the highest and lowest performing individuals (in tke ch engineering design, between
highest and lowest quality designs). Such a hypothesis demaresesrathe search space that likely
contain promising designs. By sampling these areas through iastantihe hypothesis in different

ways, new, promising designs can be obtdifidd

LEM is thus a form of evolutionary computation radically différérom the Darwinian model of
evolution. It is guided by machine learning, rather than beingeypuial-and-error method. Instead
of modeling biological evolution, it attempts to moddkl lectual evolution, the evolution of human
artifacts, such as automobiles, computers, buildings, drugs, toyigerafors, skis, etc. In such an
evolution, new designs are created as a result of an anafysitvantages and disadvantages of past

designs by human designers, that is, through an intellectual process.

In all experiments with LEM that have been conducted, itahaays outperformed tested Darwinian-
type evolutionary algorithms in terms of tleolution length, defined as the number of fithess
evaluations needed to achieve a target solution. It wasabtatproblem solutions that conventional
Darwinian-type evolutionary methods either found after a much loag@utionary process, or were

unable to find at all. The latter situations have been encouritergptimizing functions of large



numbers of variables (e.g., about 1000 continuous variables), but wemssfutly solved by a

program implementing learnable evolufidn

Executing hypothesis generation and instantiation operators in isEMowever, computationally
more complex and thus more time-consuming than executing standardionsutatnd/or
recombinations. Therefore, the LE®&tolution time, defined as the time needed to reach the target
solution, reflects the tradeoff between LEM’s shorter evolutiontteagd the longer execution time of
its more complex operators. In our experiments, LEM employedhar@epurpose AQ-type rule
learning prografhthat was not optimized for the application to learnable wtiosl. Despite this
limitation, LEM always outperformed the tested conventional waiary methods in terms of the
evolution length, and whenever fithess evaluation required maneatemall fraction of a second, also

in terms of the evolution time.

Because evaluating a design usually requires a non-triviabatmof time, LEM appears to be
particularly suitable for design optimization problems. Our experisnghow that the LEM advantage
in terms of the evolution length grows with the complexity of the prolffeemeasured by the number
of controllable parameters or variables). Thus, the mamplex the engineering design problem, the

more advantageous it may be to use learnable evolution.

The latter point is illustrated below by experiments on the niaition of the Rastrigin function for

different number of variables. The Rastrigin function is defined by:

f(X,....x,) =10* n+i(>g2 —10* cos@* 77*x,)) (1)

i=1

and has been frequently used as a benchmark for testing evolutagaryhms. The function has
multiple local minima, and one global minimum (Figure 1).

Figure 2 compares the performance of the LEM3 program impiémgelearnable evolutidrand the

EA program implementing a conventional, Darwinian-type evolutioadggrithm in optimizing the
Rastrigin function for numbers of variables ranging from 10L@00. In this figure, the-axis

represents the number of fithess evaluations required to detea®i=0.1 solution of the function of



the number of variables indicated on thaxis. Ad =0.1 solution is a solution that is 10 times closer
to the global optimum than the best solution in the initial popufatids one can see, the number of
fitness evaluations required by EA significantly increasith the number of variables, while the

number of fithess evaluations required by LEM3 grows relatively slowly.
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Figure 1. A graph showing the Rastrigin function of two variables.

The above behavior, which was consistently reproduced in expesimétiit different functions,
indicates a high attractiveness of LEM for solving veoynplex optimization problems in which
fitness evaluation is costly or time-consuming. Such problentpidreély occur in the area of
engineering design, where intricate simulators may be requiredrhpute an individual’s fitneSs
This idea has motivated us to develop LEMd, a method thatsdiierLEM methodology to complex

design problems. Among the most important distinguishing featureshl li€that it allows the user



to define problem-oriented change operators and problem cotstrand that it able to use them

effectively in the process of design optimization.
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Figure 2. Performance of LEM3 and EA in minimizing the Rastrigin function of 10 to 1000

continuous variables f@r=0.1 (reprinted fromwith the authors’ permission).

In developing LEMd, we encountered problems characteristic sf @pplication area. Design
problems differ from typical function optimization problems to whi&M.was originally applied not
only in that the design evaluation function (“fitness function'inisch more complex, but also in that
such problems usually have intricate constraints that maleege fraction of the solution space
infeasible. To reduce the evaluation of infeasible designs, the elmgregators should be designed in
such a way that they navigate mainly through the feasibleopertf the search space. Therefore,
when applying LEMd to any particular domain, the domain’s inhe@mitcaints need to be identified

and taken into consideration when implementing the design change operators.

The reduction of the evolution length is achieved in LEM by applgnaghine learning-guided design
change operators for generating new individuals. Such operatoes thmlsearch for the solution
more directed rather than semi-random search implemented in conegntDarwinian-type

evolutionary computational methods. Because LEM'’s “intelligeqérators are computationally

more complex than the random mutations and recombinations, a proldesias to how to exploit



the tradeoff between the complexity of the innovation (change) toperand the evolution length in

order to achieve maximum efficiency of evolutionary design process.

To this end, a general form of LEM integrair®bing Mode, which conducts a conventional type of
evolution utilizing domain-specific knowledge, ahéarning Mode, which uses machine learning to
guide the evolutionary process. In such a general form, chl®dEM, LEM switches back and forth
between Learning Mode and Probing Mode, according téthde Switching Condition that monitors
the progress of the evolutionary computation in a given mode. A\étbion that limits its operation

to only Learning Mode is callaghiLEM.

In LEMd, Probing Mode does not simply apply conventional random mutatiorecombinations, as
in conventional Darwinian-type evolutionary computation, because chariges would hardly bring
improvements in designing complex engineering systems. Insteathakes design changes
(innovations) that may plausibly lead to improved designs based @xpleet knowledge. In LEMd,

expert knowledge is incorporated in plausible change operatdisd dasign modification (DM)

operators.

The following sections present details on the LEMd method and ptecagion to implementing two
initial experimental systems, ISHED1 and ISCOD1 (briefly, EEHand ISCOD), specialized for
optimizing designs of, respectively, evaporators and condenseoslingcsystems. To provide the
reader with sufficient background, we start with a very bragfew of the Learnable Evolution Model,

based on its description®in

2 A Review of the Learnable Evolution M od€

As mentioned earlier, the Learnable Evolution Model (LEM) espnts a fundamentally different
approach to evolutionary computation, compared to conventional Damvtype evolutionary
methods. In Darwinian-type methods, new individuals are genethtedgh mutation and/or

recombination operators. Such operators are easy to execute,rdquict much domain knowledge,



and thus can be directly applied to a wide range of problems.atchstr innovation, these operators
make random or semi-random changes in the individuals (in our casgngjethat take into
consideration neither the traits acquired during the life expeagief the individuals (as postulated in
Lamarckian-type evolution), nor the properties of the entire jpdipal or a collection of populations
(as in LEM’'s Learning Mode; see below). As a consequence, suchidedgDarwinian-type
evolutionary algorithms tend to be inefficient, which may sigaiiily diminish their effectiveness in

optimizing very complex real-world designs.

In LEM, the process of creating new individuals is guided by a madbarning program that creates
hypotheses defining areas in the search space that mogtddahin the sought optimum or optima.
Such hypotheses are learned by the program from examples ofghesthand lowest performing
individuals in the current, and possibly also the past, populatioresigfres. Specifically, in Learning
Mode, at each step of evolution, the current population is dividedtmeée groups of individuals:
those that score high on the fitness function, defined ad-treup, those that score low on the fithess
function, defined as thie-group, and the rest. The partition of the population into thesepgroan be

done using different methods, and is controlled by program parameters setibgfthe

The selected H-group and L-group are then supplied to a learnintgaprdbat induces a general
hypothesis distinguishing between these groups. This hypothesis isstartiated in various ways to
produce new individuals for inclusion in the new population. Theieds is determined by some
evaluation method, which in LEMd will typically involve runningdasign simulator program. In
principle, any inductive learning program could potentially be engaloy the LEM methodology. In
the current implementation, we use the AQ learning method, which produces Bggdththe form of

sets of attributional ruléthat have proven particularly suitable for this application.

The most important feature of the LEM methodology is that inrieg Mode the generation of new
individuals may not only be a function of the properties of indivslulalit of the properties of the

current population, or even of the entire history of the evolutiongs® Initial experiments have



shown that due to guiding evolutionary processes by learning, the mé&klodology can achieve a

dramatic evolution length speedip

The next section describes the LEMd system, which taileesLEM methodology toward design
optimization problems. Sections 4 and 5 describe details apfication to the development of two
systems, ISHED and ISCOD, for heat exchanger design optianizatsection 6 describes related

research, and the Conclusion makes suggestions as to the future work.

3 TheLEMd Method

3.1  General Description

Design optimization problems often involve very large, poortycstired search spaces that are
accompanied by multiple and complex constraints. Because of teasees, such problems
constitute an application domain for which the search capabilif evolutionary computation
algorithms can be particularly uséftilin design problems, variables represent controllable aspfects
the system being designed, such as parameters affecting teen'syperformance, positions or
configurations of system components, the type of the connections atmemg the cost of the

components, controllable operating conditions, etc.

Such variables are typically subject to many constraints; theredmagm changes to them may easily
result in solutions that are either physically infeasible actwally unacceptable. Because the design
search space may be extremely large, the subareas corregptmdnfeasible designs may also be
very large. This means that the fitness evaluator rbebgnizes infeasible solutions by returning
appropriately low fitness scores for them (€'9.will be rejecting a large number of designs. In this
situation, the effectiveness of learnable evolution will heeedy compromised, as its main advantage
is the reduction in the number of fithess evaluations in cosgario a conventional evolutionary

computation method.



Thus, in applications concerning engineering design, problem-orienséghdaodification operators
are needed that produce feasible solutions satisfying probterstraints, as opposed to random
mutations and/or crossovers (eX)), This understanding guided us in developing LEMd’s Probing
Mode and appropriately integrating it with Learning Mode.

Basic features of LEMd are summarized below:

It provides a mechanism for creating an initial design populatiom fpreviously developed
designs, the best known designs, expert-proposed most promising desigosy i@ partially

random designs, or any combination of all these methods.

e It supports problem-oriented representation of variables to be mptinrhese variables control

the performance of the system being designed, and are subject to dorodio-spestraints.

« It employs problem-specifiDesign Modification (DM) operators in Probing Mode that represent

expert knowledge as to what type of changes to the current designs may irhprove t

< It employs domain constraints in Learning Mode, and instantiates delaypetheses in a way that

generates only feasible designs.

A precondition for application of LEMd is that the quality of iditend subsequently generated
candidate designs can be evaluated in some way, for examplelgsjga simulator. A general flow

diagram of the LEMd method is presented in Figure 3.

The initial design population may include user-specified designg, can be generated randomly
using one the methods mentioned in Section 4.2. Details on represediunduals in the population
are given in Section 3.2.

The next task is to choose mode of operation, which can be LearniRrglmng. The initial choice
may be arbitrary, but once a mode is chosen, it is used hulifldde Switching Condition is satisfied,
which occurs when after a given number of iterations, no satisjagirogress in the design
improvement has been achieved. Then, either control switchdse tother mode, or LEMd is

terminated. Learning and Probing Modes are described in detail in Sectionsl 3.3 .a
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Figure 3. A flowchart of the LEMd system.

After utilizing either mode to generate a new populationnthe designs are evaluated to determine

their quality (to compute a fitness score). The evaluation catobe by running a design simulator,



by a subjective judgment of an expert or group of experts, or bg stimer method. After that, the
LEMd termination condition is tested, and if satisfied, the @wgends; otherwise, the population of
designs with their evaluations is passed to the Control Modwdtatbthe next generation (iteration).
The LEMd termination condition is met either when the obtained best design isdisatisfactory, or

the allocated computational resources are exhausted.

If the Mode Switching Condition is set up so that the programrrewviéches to another mode, LEMd
works either as uniLEM (executing only Learning Mode) or asraventional evolutionary algorithm
(executing only domain-oriented Probing Mode). This featurilittdes comparative studies of the

two modes.

To apply LEMd to a specific design domain, one needs to defisaitable representation for
candidate designs, specify and implement design modificatiomatopeisuggested by an expert in the
given application domain, determine the design constraints andtligs for applying them, and

specify parameters for executing Learning and Probing Modes.

3.2  Attributional Representation of Designs

In the application of LEMd to heat exchanger design (Sectiphefrning Mode employed an AQ
type learning method (AQ19) that requires that designs besesyigal as vectors of attribute vafues
The method allows one to use many different attribute types ariliég a design, such as nominal,
structured, rank, cyclic, interval, ratio, and absolute. ditrgbute types are taken into consideration
when generating new candidate designs. Nominal attributes areousgdesent unordered sets, such
as, for example, the type of refrigerant selected for useheatiexchanger. Structured attributes are
used to represent hierarchically ordered domains; an exantllel Wwe the type of material from
which a certain component was made (assuming that material &ypearranged into a hierarchy).
Rank attributes are used to represent ordered lists of diseafies, for example, a qualitative
characterization of a component’s heat conductivity (e.g., low, mediigh). Cyclic attributes are

used to characterize cyclically ordered qualities, for exanpke compass direction that a piece of



equipment faces (e.g., North, Northeast, East, etc.). Interviblutgs represent properties measured
on a scale in which 0 is arbitrary, for example, temperaturegreds Fahrenheit. Ratio attributes are
used to represent measurements of physical quantities, stioch lesgth of an object in predefined

units. Absolute attributes represent counts of distinct eltansuch as the number of outlet tubes in a

heat exchanger.

3.3 Learning Mode

In Learning Mode, the first step is to determine a group of the highestgnodip of the lowest quality
designs in the population, called the H- and L-groups, respectivélg assume that the quality
(“fitness”) is determined by a design simulatohowever, any method can be used for this purpose in
LEMd. The H- and L-groups can be formed solely on the basieafufrent population, or involve
also past populations. Section 4.3 describes how the H- and L-gunoeiselected in ISHED and

ISCOD.

The H- and L-groups, serving as positive and negative exampegctvely, are then supplied to a
learning program that creates a general hypothesis distinggisatween them. The program outputs
a hypothesis, in the studied case in the form of a set of thaeégenerally characterize distinctions
between the H- and L-groups of designs. Each rule defines a salisghe search space that likely
contains a high quality or even the best design. In ISHED and IS@®MRQ19 learning prograiis

used for this purpose, due to its particularly useful featurethi®rtype of application (see Section

4.3).
Here is the procedure for creating new designs in LEMd:

1. Arrange rules in the ruleset representing a hypothesindédrom H- and L-groups in the
descending order of their significance, which is measured bguimeof the fithess values of

the H-group designs satisfying that rule.

2. Instantiate each rule in different ways to produce diffedmsigns. The number of designs

generated from a rule should be roughly proportional to the ritgifisance, but not smaller



than parameterrmin. The total number of new designs generateopulation-size — elite-
size, whereelite-size is a parameter defining the number of the best performing designs”{“elit
found so far that are to be propagated to the next population. Byliimg elite designs in
every new population of designs, the system keeps track of tedbsigns that were

determined during the evolution process.

The reason for parametiemin in step 2 is to enforce parallel exploration in different seduof the
search space. Because each rule carves out a subareass@artie space, this parameter guarantees
that all of these subareas are represented in the populatiorsighsjeregardless of their current

significance. This feature is particularly important in theecaf multi-modal landscapes.

The above procedure has been used for creating new designs BHEPD land ISCOD systems

described in Section 4.

34  Probing Mode

After designs in the current population are evaluated, Probing ederates a set of new designs
that are then selected as parent designs for the next popul&ach design selected to be a parent
design may be used to derive multiple new designs for the next generation. Thenselagtbe done
by applying one of the well-known selection methods developed infighe of evolutionary
computation, for example, a probabilistic selection or tournaméstte®. The designs so selected

join the elite in the parent set.

A new population is then generated through the application of degidification (DM) operators to
the parent designs. These operators represent expertsrassesof meaningful changes in designs
that are may improve the quality of the design while maimtgimlesign feasibility. Section 4.4
presents eight DM operators used in Probing Mode of ISHED and 1S@QBe optimization of heat

exchangers.



4 Case Study: Optimizing Heat Exchanger Designs

4.1  Problem Description

The LEMd method was used to develop two systems for optimizing kefzdregers, one, ISHED, for
optimizing evaporators, and the second, ISCOD, for optimizing condengkes problem of
optimizing heat exchangers is complex and economically very inmaftee to the widespread use of
heat exchangers in air conditioners and refrigerators. Pipiécation was done in consultation with
an expert in the area of cooling systems, Dr. Piotr Domarfiske National Institute of Standards and

Technology.

To explain the optimization problem faced in this applicationysestart by briefly describing how an
air conditioning unit works. An air conditioning unit contains an evaporatotrregfers heat from an
interior space (a room, a refrigerator, an automobile, etc.)titaefrigerant, and a condenser that
transfers heat from the refrigerant into the outside Airrefrigerant is a fluid with a low boiling
temperature that flows in a loop through both of the above componertgels the evaporator in
liquid form but then turns into gas by absorbing the thermal grieyg the warm interior air passing
over the evaporator. Subsequently, in the condenser, it igdglaamntact with cooler outside air,
transfers its thermal energy into the air, and liquefiegtufling to the evaporator, it comes once

again into contact with the warm interior air, and the cycle repeats.

Both evaporators and condensers consist of arrays of parakdl, teibcased in a structure, through
which the refrigerant flows back and forth. For illustaf Figure 4 shows an example of an
evaporator. The tubes are connectedue bends on both sides of the array, as specified in the
design. The figure shows only one side of the array. Tube carmeon this side are indicated by
solid lines, and those on the other side are indicated by dashed linesib&hare numbered from left
to right in each row, starting with the first row (as vieweohf the direction from which the air

flowing over the tubes arrives).
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Figure4. Anillustration of 16 x 3 evaporator circuitry.

In general, in a heat exchanger, tubes are connected so thairtivede a single path or several
independent paths for carrying refrigerant from the input fJinietthe output (outlet). In an
evaporator, some paths may split into two paths on their wHyetoutput, and in a condenser, some
independent paths may merge into one. Such a split or meaghiéved by appropriately connecting
the tubes. For example, in Figure 4, refrigerant entergvhporator at tube 24 and flows through

tubes 40, 39, 23, 7, 8, 9 and 25, at which point the path splits.

The heat exchanger configuration specified by flow paths crbgtatbe connections affects the heat
exchanger'sapacity, defined as the amount of heat that it can transfer per umit tirhe problem of
optimizing a heat exchanger (e.g., an evaporator) is to determine a tube ctiofighed for the given
technical and environmental conditions maximizes its capadityese conditions include the number
of tubes, their length and diameter, the type of refrigerant, the distrimftielocity of the air passing
over the heat exchanger (see graph in Figure 4), and the exmriagde and inside temperatures. The

technical and environmental conditions are given as assumjptiotig&e problem because they affect



the capacity of the heat exchanger, and thus for different ammgjidifferent configurations of tubes

will be optimal.

To get a feel for the complexity of the problem, consider thatrimoderate-sized evaporator, such as
the one shown in Figure 4, each of the 48 tubes can in theoryedtserefrigerant from any of the
other 47 tubes, or from the flow of refrigerant into the evaporarhus, a naive search of the design
space would have to consider*#@otential designs. Of course, the vast majority of thase
infeasible because of the problem constraints, which acestisd in more detail below, but even if a
method could be designed that searches only the feasible phe spdce, this part would still be

orders of magnitude too large to permit any sort of exhaustive search.

To solve this problem, we reduce the search space by definingpaippe constraints, and apply
learnable evolution to search for an optimal design in the spaéeasible solutions. Based on
discussions with a domain expert, we identified six basic @ntrand built them into the ISHED
and ISCOD programs. The constraints are numbered and orderedréagiieg order of their

importance. A controllable threshold number splits them striot constraints that must be satisfied
and flexible ones that are recommended to be satisfied, if possible. Acaseset the threshold

according to the needs of a given problem, so that all, some, or ntine adnstraints are viewed as

strict. Here are the six constraints:

1. There can be no looping in the refrigerant flow. Refrigeraay mot leave a tube and
return to the same tube without exiting the exchanger unit anthgabksough the rest of

the refrigerant circuitry.

2. All inlets and outlets (i.e., locations where the refrigerargrsrdnd leaves the exchanger,
respectively) must be on the same side of the heat exchaag#old. This means that all
possible flow paths from inlets to outlets must pass throughemmnber of tubes. As a

corollary, if the heat exchanger contains an odd number of tutreex@mple, three rows



of 15 tubes each), at least one path must fork. In Figure 4nltHeat tube 24 and the

outlets at tubes 1 and 16 are all on the same (foreground) side of the manifold.

3. There can be only one split in an independent path through an evapordtonlhamne
merge in an independent path through a condenser. This constraias doom an

empirical observation that more than one split or merge leads to a lapaaity

4. Inlet and outlet tubes should not be adjacent to one another. By ththéimedrigerant has
reached the outlet, it has undergone a full phase change, andevali a temperature
substantially different from that in most of the rest of the heat exchaltfgeis adjacent to
inlet refrigerant, that increases the amount of heat #ansétween the inlet and

neighboring tubes, causing a decrease in capacity.

5. The exit tubes should be in the first depth row (the first thes air flows over). In
condensers, the inlet tubes should be in the last depth row. Hua reea this is that in a
condenser (evaporator), the air passing over the first deptfs roooler (warmer) than the
air passing over the last one, and the refrigerant at theismwarmer (cooler) than the
refrigerant at the outlet. (It has been determined that meartettamsfer is achieved overall
when the cooler air passes over the cooler refrigerant andatimeer air over the warmer

refrigerant.)

6. The tube from which an exit tube receives its refrigerant shaultifacent to the exit tube.
The reason for this is similar to that in (4): The refdgerin the exit tube’s predecessor
will have a temperature significantly closer to that ineke tube than the temperature of
most of the rest of the heat exchanger will. Thus, thisredllice the amount of inter-tube

heat transfer.

These constraints are applied in developing the initial populafidesigns, and in instantiating rules
learned in Learning Mode. In Probing Mode, they are used to test each new desigteddiyea DM

operator. Only those that satisfy the strict constraints are addedpgoptiation for evaluation.



4.2  Overview of ISHED and | SCOD Systems

This section describes how the LEMd method is implemented anspecific systems, ISHED for
optimizing evaporator designs, and ISCOD for optimizing condensegrde Their basic design
closely follows the flowchart in Figure 3.

The first task for these programs is to determine an lipbaulation of designs. Both ISHED and
ISCOD allow the user to specify designs with which to seedhitial population. If there is a need
for the system to generate any initial designs, they anergeed by a random process that is
constrained by a required distribution of different types of designs. Theseagussdre specified in a
table, developed on the basis of expert advice, that defines the persaiftddierent types of designs
to be generated. For example, the table may require 20% getieeated designs to have one inlet
and one outlet, 35% to have one inlet and two outlets, etc. Thesniages are dependent on the
total number of tubes in the heat exchanger being optimized. Fandestsmaller exchangers usually
function better with fewer inlets and outlets. Heuristic pdures are used to build designs according

to these specifications.

In ISHED and ISCOD, designs are internally represented bysaofantegers, one integer per tube in
the heat exchanger being optimized. In an array representingaporator design, each integer
represents each tube’s source of refrigerant, and in an r@pagsenting a condenser design, each

integer represents the refrigerant destination after leaviigtahe.

Both Learning and Probing Modes use elitist strategies, th#ieis keep track of the best-performing
designs at each step of computation. These designs constitlitee,avhich is included in every new
population of designs. In Probing Mode, the elite consistglitd-size best performing designs
determined thus far, whestite-size is a parameter of the program (in our experimesiite-size was

1). In Learning Mode, the full H-group comprises the elite.

Which mode to use is determined by a control module that exemaeawnode until &ode Swnitching

Condition is satisfied, which in ISHED and ISCOD is defined by two pataraespecified in the input



file to these programs. One parameter tells how many gemeratith no progress in both the best
and the average value of the fithess function triggersitatsivom Probing Mode to Learning Mode,
and the other tells how many generations without progreggetsd switch in the opposite direction.
Sections 4.3 and 4.4 provide details about Learning Mode and Probing Mspectieely, in the

ISHED and ISCOD systems.

Designs are evaluated by a numerical simulator developedSatthat determines their capacity.
Running the simulator is the most time-consuming part of the éwolgrocess. Given that an
evaluation of a single design may take on the order of half a enorua standard PC, and a typical
LEMd run in our experiments required over a thousand fithess evaluatianglearsn may take about
six hours. Without the LEM-provided reduction in evolution length (whian be an order of
magnitude or mor, a conventional evolutionary method could then take about sixty hours
complete a run that achieves a similar result. This observatidicates a significant practical

advantage of learnable evolution.

4.3 LearningModein ISHED and I SCOD

To execute LEMd Learning Mode, ISHED and ISCOD selectthand L-groups from the current
population of designs usingfigness-based method®. The fitness-based method starts by determining
the fithess range, defined as the difference between the highest and the Ifivests values in the
given population. The method has two control parametigh Fitness Threshold (HFT), andLow
Fitness Threshold (LFT). Suppose, for example, that HFT and LFT are both set to 30%. TdredH-
groups will then consist of designs whose fitness values fall within the top 30botiom 30% of the
fitness range, respectively. These parameters arealiedtm Figure 5 usingféness profile function,
which is a mapping of the population of designs ordered by fitndassvéthex-axis) into their

fitnesses (thg-axis).

The designs in the H- and L-groups are then abstracted lagvdolEach tube in the design is

characterized as an inlet tube, an outlet tube, a tube & @admt, or a generic interior tube. Thus,



each tube is described by a four-valued attribute. In addition, fha®e attributes, two other
attributes are derived, the numbers of inlet and outlet tubekeirdesign, For example, in the
evaporator represented in Figure 4, tube 24 would be labeledirastanbe, tubes 1 and 16 as outlet
tubes, tube 25 as a fork point, and the other 44 tubes as interior #ibeisutes would specify that

the design had one inlet and two outlets.

Maximum Fithess

F ;
1 High Fitness Threshald
E HFT)
11
E
. Low Fitness Threshaold
(LFT)
s
binimum Fithess
L-group H-group.
. > «—>

L J

Fitness-ordered designs in the population
Figure5. A fitness profile function and parameters used for selecting H- and L-groups

Each design in the H- and the L-group is thus represented byos g€ettribute values, whose length
is the number of tubes plus two. Thus, in the case of the ewaporaFigure 4, there would be 48
four-valued nominal attributes denoting the role of each tube, and 2 absolutgesttrdpresenting the
number of inlets and outlets in the evaporator. The designs in-thadH_-groups, so encoded, are
then supplied as input to a learning program. They serve as paaitil negative examples of the
concept to be learned, respectively. In this applicationcaheept here can be characterized as “the

set of most promising designs.”

ISHED and ISCOD employ the AQ19 learning progtamwhich given the H- and L-groups,
hypothesizes a set aftributional rules that distinguish all designs in the H-group from all those in the

L-group. The conditions in the rules may include internal disjons of attribute values, ranges of



values, and other constructs, unlike conventional decision rules, whosgarendie all limited to the
<attribute-relation-value> forli  Using such expressive conditions makes the representation
language not only more powerful, but facilitates the instantiatibra single rule into diverse
individuals. This feature makes a learning program partigusalitable for implementing the LEM

evolutionary process.

In ISHED and ISCOD, AQ19 generates hypotheses in the fornchafacteristic concept
descriptions™ that represent a relativelgw degree of generalization of the H-group, that is, they are
relatively specific. The reason for learning low generdbmatiegree descriptions is that they tend to
specify values for a large number of attributes in each rule, which is hgdthd instantiation process

that creates new designs.

To create new designs, the learned rules are orderedtlisomdst significant to least significant, and
their instantiation proceeds in that order. The number of instiams of a given rule is roughly
proportional to its significance (the sum of fitnesses of degigtige population that satisfy that rule).

Such a method is callgmioportional instantiation.

To instantiate a rule, the program assigns values tables in the rule that satisfy the rule. This can
be done either randomly, or according to some algorithm. Varitd@eare not present in the rule are
assigned values from randomly selected members of the H-group.nuhhiger of designs to be
generated by instantiation is the size of the target populatipnsnthe size of the elite (which in

Learning Mode is the size of the H-group).

An instantiated vector of attribute values is an abstr@gcesentation consistent with a set of specific
heat exchanger designs. To arrive at a specific design franset, the program seeks a design that
satisfies the six constraints defined in Section 4.1. Toethis given a set of inlet and outlet points,
ISHED and ISCOD determine the physical relationships among tloéses (e.g., which are to the left
of, to the right of, above, below, in the same column, or in the sameas others), and creates a

specific design from the abstract design.



To create such a specific design, ISHED and ISCOD utilizkvide-and-conquer method, in which
the heat exchanger’s tubes are divided into groups to be conmectezhe path based on physical
location. For the sake of ensuring short connections between tubbstforides), the groups are
made as compact as possible. If there is a split (mergdeqguath of an evaporator (condenser), the
split (merge) point is treated as additional inlet (outiefler both paths have been designed, they are

united at the split (merge) point.

Due to the constraints defined in Section 4.1, the design sqaach s divided into many different
niches of feasible designs. Therefore, the process offigdiiese feasible designs is very complex
and laborious, and in our experiments usually produced only &l set of different designs. As
a result, the newly generated population may have many repetitemigns, and the diversity of
designs in the H- and L-groups will be small, which negativalgaicts Learning Mode. When this

happens, the control switches to Probing Mode that generates a new, racse sgiét of designs.

4.4  Probing Modein ISHED and | SCOD

In ISHED and ISCOD Probing Mode, the parent designs for the new poputae determined by
proportional selection (the number of copies of a design includethé parent population is
probabilistically proportional to the design fitness). Eaclempadesign is then subjected to one design
modification operator. This process is controlled by a table,lcles® on the basis of expert advice,
that defines suggested probabilities of applying different epergdescribed below) for the given
number of inlet and outlet tubes in the design being modified. Theddocat which to apply the

operator is selected randomly from among the applicable sites.

In Figures 6 to 15, individual rectangles represent single tubes. An mpwtta any rectangle and the

outgoing arrow from it connected to other rectangle output are on oppositefdidedeat exchanger.

As mentioned earlier, in an evaporator (ISHED) a path may bpli not merge, and in a condenser
(ISCOD) a path may merge, but not split. Therefore, in an estpreach tube has only one

predecessor tube, and in a condenser, each tube has only one sugbessor arder to define design



modification operators in a way applicable both to ISHED andISChe following convention was
adopted: In ISHED, the operator denoted OP1(Al, A2) indicates hbabgerator OP1 is to be
performed at the tube connections immediately preceding tubes d\JA2an(the nature of OP1
determines what is to happen at those modification points)la8iyniin ISCOD, given OP2(A1,A2),

the modification points are in the connections immediately following tAthesnd A2.
The following eight design modification (DM) operators have been defind@@®D and ISHED:
1) ADD-FORK operator (which is called SPLIT in ISHED, and MERGE in ISCOD)

This operator adds a fork in a path. Two modification pointhersame path are selected (by
the program, as described above), one of which is an attachmentgoairthe other a break
point. The operator breaks a refrigerant path at the break(po@ating a new inlet or outlet)
and grafts one of the halves onto a path at the attachmeht foiamples of these operators
are shown in Figures 6 and 7. In Figure 6, the refrigerahtipa-3-4-5-6 is broken between
tubes 4 and 5, and the tail end of the path is reattached betwmeEn2 and 3. Now the

refrigerant flows through tubes 1 and 2 before going down one of two paths: 3-4 or 5-6.

Eefore:

After:

Figure 6. Application of the SPLIT(3,5) operator.



Before:

After:

Figure7. Application of the MERGE(4,2) operator.

2) A BREAK operator, which breaks a path at a given point, creaingw inlet and a new
outlet location at the tubes following and preceding the brespectively. An example of

this operator is shown in Figure 8. The path 1-2-3-4-5-6 is brioketwo paths: 1-2-3-4 and

5-6.

EBefore:

/

BP

5| e >
SNy NN oy NNy By

After:

Figure 8. Application of the ISHED BREAK(5) or ISCOD BREAK(4) operator.

3) A COMBINE operator, which combines two separate unforked path&isingle, forked one.

An interior attachment point is selected on one of the paths, andl¢h to the second path is



grafted onto it there to create a split in the case of apoeator, or the outlet point of the
second path is grafted onto it there to create a merge ta#eeof a condenser. An example
of the operator for condenser modification is shown in Figure 9, andevfaporator
modification in Figure 10. In both cases, the path 7-8-9 is atlachtéhe path 1-2-3-4-5-6

between tubes 3 and 4.

Before:

Tl o[ 2] [T o p[ ] p[E] »

SN i BNy BNy >

After:
AP

I S e e T

Figure9. Application of the ISCOD COMBINE(9,3) operator.

Before:

BNy BNy BNy >

Path

After:
AP

Figure 10. Application of the ISHED COMBINE(7,4) operator.



4) An INSERT operator, which combines two separate unforked paths isingle one. One of
the paths is broken at a break point, and the paths are concasmdted the tube that had
preceded the break point now feeds the inlet of the secondapathhe outlet of the second
path now passes refrigerant to the tube that had followed thk point. An example of the

operator is shown in Figure 11.

Eefore:

BF'H__%____H_
SNy S oy SNy iy B -y By IS

SNy NNy BNy B

FPath to insert

After:

BP
\-\_\\
o Iy

Figure 11. Application of the ISHED INSERT(7,4) and ISCOD INSERT(9,3) opegator

5) A MOVE-FORK operator, which moves a fork in a path up or down to dierear later point
on the path. Figure 12 shows an example of the operator appliesbtib im an evaporator
path, and Figure 13 to a merge in a condenser path. In bothtbasés® branch beginning is
moved upstream two tubes in the path 1-2-3-4-5-6. The operiatodenoted
MOVE-FORK(FP, Distance). In ISHED, positive distances indieadownstream move, and
in ISCOD, they indicate an upstream move.

6) A SWAP operator, which interchanges the position of two succetgies in the refrigerant
path. An example of the operator’ is shown in Figure 14. Tulmsd34 are exchanged,

making the resulting path 1-2-4-3-5-6.
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Figure 12. Application of the ISHED MOVE-FORK(7,-2) operator.
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Figure 13. Application of the ISCOD MOVE-FORK(9,2) operator.

Before:
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Figure 14. Application of the operator denoted SWAP(2) in ISCOD and SWAP(5) in ISHED



7) An INTERCROSS operator, which given break points on two sepaefigerant paths
exchanges the portions of the paths following the breakpoints (anslog a genetic
crossover). An example of the operator is shown in Figuree$Blting in the two paths 1-2-
11-12 and 7-8-9-10-3-4-5-6.

Before:
BP1

SN g SNy I Ny G ey I o SR
BN W oy Ny B T SN B 7 B

BPZ

After:

—>|1F>I2WH3F>I4F>ISFE—>

N o By B B N B

Figure 15. Application of the operator denoted INTERCROSS(3,11) in ISHED and
INTERCROSS(2,10) in ISCOD.

8) A NEW-CONNECTION operator, which simply assigns a new cotimec¢o the operand tube

— a new source in the case of an evaporator, and a new destination in the caselehaer.

5 Experimental Validation of ISHED and ISCOD

Experiments with ISHED and ISCOD were performed under diffevahites of design parameters,
such as type of refrigerant, evaporator and condenser sizehapessand airflow patterns (uniform
or non-uniform). Industrially available air conditioning systdgmcally perform very efficiently for
uniform airflow patterns. However, if the airflow is not umifotheir efficiency drops off sharply.
This is so because the side of the unit over which morféowmis has a heavier cooling burden. Thus,

for best performance that side needs to carry more and cefdgerant in evaporators, and more and



warmer refrigerant in condensers. Manufacturers gendrallg not been building models adapted to

non-uniform airflow patterns.

This section focuses on a set of experiments with ISHEDdaaheptimizing evaporator designs for
different technical and environmental conditions. Because simelsults were observed with the
application of ISCOD to condenser design, we will focus on resulésnelol from experiments with

ISHED.

The initial experiments with ISHED concentrated on a problenftkmeln in the industry, using a
common heat exchanger size and a fairly uniform airflow pattéSHED designs provided results
comparable to the industry standard. One concern in some of th®i§étterated designs was that
after many generations of Probing Mode evolution, designs would bedwanéccin terms of their
inter-tube connections (and the simulator wasn't fully reflectivgdetrimental effect of this). This
problem was reduced by tightening restrictions on the length of g®htai tube-to-tube connections,
by modifying the simulator to more harshly penalize such designs, and by using atraliaols that
allowed the expert to smooth some of the connections without samtificaffecting the estimated

capacity of the exchanger

In later experiments, the airflow pattern was highly non-uniformddd such conditions, industry-
standard heat exchangers do not perform well. The best ISHEDgad architectures conformed
intuitively to expectations of what a successful architedtugenon-uniform airflow should look like,

and indeed performed far better than the currently-used expert-designegdmneatgers.

Subsequent experiments varied the refrigerant used, and thansizehape of the heat exchanger.
Specifically, they concerned heat exchangers with 40 to 90 talvasged in 2 to 4 rows. Again, in
these experiments, ISHED’s designs matched human designs for uaifiow, and exceeded them

for non-uniform airflow.



The next experiments concerned the optimization of evaporatas the initial populations had pre-
specified members, which were either existing industrial modelsgsults from prior ISHED runs.

Their number varied from 1 to the entire population, whose size varied between 10 and 100.

When a large portion of the initial population (about 60%) waslest with high-quality human or
program designs, ISHED (as well as ISCOD) was often afigrther improve them. This means that

ISHED provides an effective tool for optimizing existing designs.

A counterintuitive result was that when the initial populatiaa a small number of high quality pre-
specified designs and many lower quality random designs, idiffecult for the program to find a
design that would exceed the best design in the initial populationprésence of mostly low quality
designs in the population apparently hindered the ability of thebeduiality designs to evolve into
better ones. It is also possible that low quality designspi@ntially could significantly improve
were prevented from doing so by the presence of a few highygdabigns. Finding a conclusive

explanation of this phenomenon is an interesting topic for further research.

An example of the output from an ISHED run is shown in Figure 16s &mample was obtained in
the program’s verbose mode, which records every design ev@leatry operator applied, and every
rule learned. For the purpose of brevity, the figure only sh@wery small sample of the full output
just to give the reader a flavor of the ISHED optimization @ssc Line numbers on the right side are
cited in the explanations in the text below. In addition to theskmaqons, some comments (in

italics).were added to the log itself.

A candidate design of an evaporator is represented asa wéatteger values. Tubes are numbered
left-to-right starting with the first row, and each valuetlie vector is the number of the tube that
provides refrigerant to the given tube, or is an ‘I’ to indicheg the tube is an inlet. The simulator

evaluates the design represented by this vector, and returns thetes$tiapacity of the design.



Exchanger Size: 16 x 3 1
Population Size: 15 #Generations: 41 2
Operator Persistence: 5 3
Mode Persistence: #ProbingGens=2 #LearningGens=1 4
Initial population (Generation 1): 5
Design #1.3171234567891213291531118 33@RQ33824 4026421127 451447 16 34 35 121339 23 41 25 6
43 44 28 46 30 48 32: Capacity = 5.5376 7
Design #1.8 1712034226 24826102827 1516 3238295387409 42 11 44 13 46 30 48 34 35 3637223 39 25 8
4127 4329 45 31 47: Capacity = 5.2099 9
and 13 others 10
Selected Members: 3,2,3,7,9,3,9, ... 11
Operations: NS(23, 39), SWAP(8), SWAP(28), ..., SN29), SWAP(25), SWAP(1) 12
Below is one of the designs created by the application of a DM operator in Probing Mode (by swapping the two tubes 13
following tube 29 in Design#1.8) 14
Generation 2: 15
Design #2.1317 1203422624 826 1028 27 1516 32 33291838 7 40 9 42 11 4 13 45 30 48 34 35 36 122339 25 16
4127 43 46 29 31 47: Capacity=5.2093 17
and 14 others. 18
Selected Members: 6, 15, 11, 3,13, 1, ... 19
...... 20
The program soon shiftsinto Learning Mode: 21
Generation 6: L earning mode 22
Learned rule: 23
[x1.x2.x3.X4.x5.X6.X7.x8.X9.x11.x12.x13.X14.x15.x4178.X19.X20.X21.X22.X23.X24.x25.X26.X27.x28.x29.x31.X32. 24
%33.x34.x35.x36.X37.x38.X39.x40.x41.x42.x43.x44 X456 .x47 .x48=regular] & [x10=outlet]&[x16=inlet]:#,u:7,9:1) 25
An example of a generated design: 26
Design #6.1:17 1234567891229 45 30 31118 33 22388 24 40 26 42 11 27 13 15 47 48 34 35 19 339243 41 25 27
43 44 28 46 14 32 16: Capacity=5.5377 28
......... 29
Below is a design from the 22st generation: 30
Generation 22: L earning mode 31
Design #22.152184 1635789121345 1531 133 17 33389 24 40 42 25 11 44 30 46 32 47 34 19 20 373238 41 32
26 43 28 27 29 14 48 16: Capacity=5.5387 33
and 14 others. 34
Selected Members: 11, 4, 4, 13, 15, 10, 12, 13189512, 2, 3, 5, 10. 35
......... 36
ISHED1 continues to evolve designs, and finally achieves: 37
Generation 41. 38
Design #41.1533 1724145697 8122946 4547 11 34 20888 24 342 43 44 27 131532 16 18 11 19 332243 25 39
40 26 28 35 30 14 48 31: Capacity=6.3686 40

Figure 16. An annotated excerpt from the log of an ISHED run.

The first part of the log, lines 1-grovides the user with a summary of the parameters under which the
program was run. Here we see that ISHED was creating designs of émepooasisting of 3 rows of

16 tubes. The population size was 15, and the program was set t® 4Yqopulations. In Probing
Mode, the Operator Persistence parameter instructed ISKHE8eduentially apply each Design

Modification operator to the design being modified up to five tineesletermine a feasible new



design. If none was found, a different DM operator would be appi¢his design. The two Mode
Persistence parameters, #Probing and #Learning, instructed I®HEDt from Probing to Learning
Mode when two consecutive Probing Mode generations failed to pravislyement in either the
highest fitness design or the average fitness in the papulaind to shift back to Probing Mode after

one Learning Mode generation did not provide such improvement.

The second part, lines 5-10, shows two of the fifteen designs tgohésathe program for the initial
population, along with their evaluated capacities. The firsthote, Design #1.3, was selected
according to the elitism principle (it was the best desigmegated so far). The log shows (i)
that the first seven of the fifteen members of the newé@ion 2) population would be built from

Designs 1.3, 1.2,1.3,1.7, 1.9, 1.3, and 1.9, respectively.

Each seed for the new population then had a design modifying opapgiaed to it as specified in
line 12: Design #2.1 was created by applying operator NS(23,39) (ctlengeurce of refrigerant for
tube 23 from whatever it was to tube 39) to Design #1.3; Design #2.2 was created/mgayg@rator

SWAP(8) (swap the positions of the two tubes preceding tube 8)digrD#1.2; etc. It is shown in
lines 16 and 17 that Design #2.13, generated by applying operator SWA®(283ign #1.8, had a

capacity of 5.2093.

Because after two consecutive generations there was no impove either the best capacity or the
population’s average capacity, ISHED switched to Learning Maaig discovered a rule (lines 23-25)
that indicated a pattern in which high-performing designs codsigtan outlet at position 10, an inlet
at position 16, and interior tubes at all other positions. Thieddaules were instantiated to become

members of the new population, such as Design #6.1 (lines 27-28).

The run continued in this manner, and at its halfway point (lines 31u8%) progress in evolving
better designs had not emerged. But by the run’s end (lines 38-df@,whs a significant leap in

design quality. While the best design in the initial populatich daapacity of 5.5376 kW, the best



design after 40 generations in running ISHED had a capacity of 6.368&Hidh represents a 15%

increase. This result clearly demonstrates the LEMd capalilitynproving evaporator designs.

Similarly, Figure 17 shows a short excerpt from the log of arOI3@ondenser optimization run.
This log reads similarly to the one shown in Figure 16, and for brevity only inalel®ents from the
first and last generations. In this run, performance improved fromi@a best of 2.0395 kW to

2.90202 kW, an improvement of 42% in 50 generations.

Condenser Size: 15 x 3

Population Size: 25 Number of Generations: 50
Operator Persistence: 5 Structure Probe: 5 00
Mode Probe Sizes -- #Probing: 2 #Learning: 2

Initial popul ation:

Design #1.1: 217419621 078910111213141183553 6 23 38 25 40 27 42 29 44 15 16
31 32 35 20 37 22 39 24 41 26 43 28 45 30: Capacity=2.0395

Design #1.2: 2318520722924112613280141713343 5637 839 10 41 12 43 30 15
16 31 19 19 36 21 38 23 40 25 42 27 44 45 29 Capacity=0

Design #1.3:  21741962182310250111213141183205 2272494027 42 29 44 15
16 31 32 33 34 35 23 37 38 41 26 43 28 45 30: Capacity=1.86314

Ceneration 50:

Best so far (from Generation 49):

17211852022101080923154512236424 3738113972743302844163132191
34 36 41 25 42 40 26 29 14 13: Capacity=2.90202

Design #50.1, obtained from applying SWAP(37) to th e best so far:

(this becomes the first element of the new generati on):

17211852022101080923154512236424 3738113972743302844163132361
1934 41 2542 40 26 29 14 13: Capacity=2.90203

Structures obtained by applying DM operators to other menbers of the popul ation:

Design #50.2:  3211820434804026711 0281221623 39 37 36 41 25 10 27 43 13 44 14
3216311917 38225 24 42 9 8 29 30 15: Capacity=2.6719

Best perforner:

172118520221010809231545122364 24 3738113972743302844163132361
19 34 41 25 42 40 26 29 14 13: Capacity=2.90203

Figure17. An annotated excerpt from the log of an ISCOD run.

Consecutive LEMd runs building upon one another produced improved deSgnexample, one

experiment initially performed five independent ISHED runs gigemoderately uneven airflow



pattern starting with heuristically generated populations ioé 25. All five runs executed 50
generations of evolution, and the best design from each of theses rsimswn in Figure 18, which
displays them in order of increasing capacity. In this andr&id9, only the connections between
tubes, projected onto one side of the evaporator, are indicagethrihections alternate between sides

of the evaporator.
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Figure 18. Best designs from five separate ISHED runs using the same parameters.
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Figure 19. Best designs from four subsequent ISHED runs, each building upon the previous ones.



Although these five designs have relatively similar capeg;itihe configurations of their tubes differ
significantly from each other. For instance, the first, secamdl fourth design have two inlets
(indicated by inward-pointing arrows) and two outlets (indicatedutward-pointing arrows), and the
third and fifth have a single inlet whose path splits, resultirtgvo outlets. The locations of the inlets

and outlets also differ.

In the four subsequent runs, the population size was doubled (increasgy amdb the number of
generations was raised to 150. The initial population for thedfithese runs was seeded with three
copies of each of the five designs shown in Figure 18, and the othersi@fisdevere generated
heuristically according to the table mentioned in Section 4.2 ur&ig@9a shows the best design
produced by this run. The initial population of the second run of the fduhkasame fifteen designs
as the first run, plus two copies of the best design franfitst run. The best design produced by the
second run is shown in Figure 19b. After adding two copies of dbst design to the initial
population for the third run, ISHED’s next run produced the design iar€ig§9c. And after two
copies of that design were added, the design in Figure 19d, wiitaaityaexceeding 6.65 kW, was
generated during a fourth run. The capacity of this last best design is bettérathaf the best design
(capacity = 6.20 kW) in the five initial populations by over 7%. ®btined design was evaluated as

better than best human designs.

The connections in the designs in Figure 19 appear to be morei@ategbithan those in Figure 18. If
these were to be considered for manufacturing, they could be additifinalyined by hand®, to
make them fully viable. These experiments show that ISHEB atde to produce consecutively

better designs in subsequent runs of evolution.

6 Related Work

LEMd represents to the authors’ best knowledge a novel and ongethbd for optimizing complex
engineering systems through evolutionary computation. It is baseldearnable Evolution Model

(LEM), which strives to model evolution guided by an “intelligemind” rather than evolution that



proceeds without such guidance. The approaches closest to LEM appearcultural evolution
algorithms that execute a process of dual inheritance t&!6Xj. Unlike LEM, cultural evolution
works at a “micro-evolutionary level,” which involves individudisscribed by traits and modified by
conventional evolutionary operators, and a "macro-evolutionargl,lé@v which individuals generate
"mappa” representing generalized beliefs that are used toyntbdiperformance of individuals in the
population. LEM is significantly different from cultural evoluti@gorithms in both the way the
learning process is implemented and in the way its results are used doturtgeary computation.

A system somewhat related to LEMd in its general godBABES'™®, a “generic” evolutionary design
system that aims to serve as a method for application to diverse degitgns, and has been applied
to such problems as furniture, heat sink and building desige.system employs a conventional
Darwinian evolutionary system, but allows the user to speuifyekact nature of the genetic operators
to apply. The system also provides a means for the user téydhecrepresentation of individuals in
the population, and how they translate to real-world objestajedl as to provide a fithess evaluation
function. LEMd also has such capabilities, but it includes alsontirely new form of generating
individuals provided by Learning Mode.

Some research has explored a tight coupling of symbolic leawithgDarwinian operators. Sebag
and Schoenauer applied AQ-type learning to adaptively controtrdesover operation in genetic
algorithmg®. In their system, the rules are used for the selection otribesover operator. Sebag,
Schoneauer and Ravise used inductive learning for determining enustép-size in evolutionary
parameter optimizatidh Ravise and Sebag described a method for using rules to prewvent ne
generations from repeating past erfgrand in a follow-up work, Sebag, Schoenauer and Ravise
proposed keeping track of past evolution failures by using temptdtesfit individuals, called
“virtual losers” and using an evolution operator to createividdals different from thef.
Grefenstette developed a genetic learning system, SAMUtAL implements a form of Lamarckian
evolutiorf®. The system was designed for sequential decision making in a multiesyyinonment. A

strategy, in the form aff-then control rules, is applied to a given world state and cedaiions are



performed. This strategy is then modified either directly, dbage the interaction with the
environment, or indirectly by changing the rules’ strength withingtnategy. The changes in a
strategy are passed to its offspring. This is a Lamardlijge process that takes into consideration the
performance of a single individual when evolving new individuals.

Another approach that extends the traditional Darwinian approanohbe found in the GADO
algorithnf>. GADO is an evolutionary algorithm developed for complex engimgeproblem
optimization. It differs from traditional genetic algorithmpsmarily in the way new individuals are
generated. It uses five different crossover operators, tfreehich, line crossover, double line
crossover andguided crossover, were introduced in GADO. However, unlike LEM, the algorithm
does not create any generalizations of the current population, and thésedfigmificantly different.

Yet another unconventional form of evolutionary computation is implesdentmemetic algorithms,

in which genetic crossover operators are combined with local iagtion via simulated annealiffy
Memetic algorithms can be quite effective for some optititingoroblems; they have been applied to
many optimization problems, among them the optimization of commioricaetwork desigf.
Memetic algorithms differ significantly from LEMd, as thdg not use machine learning to guide the

evolutionary design process.
7 Conclusion

Darwinian-type evolutionary computational methods are frequeaplglied to optimizing very
complex designs when standard optimization methods are inadequaexarmle, these methods
have been used for aircraft wing dedignd drug desigih Many other applications of conventional
evolutionary methods have been catalogued by Béntl®ecause the innovation is done through
random mutations and/or recombinations, rather than by the guidaace“intelligent mind” these
applications usually suffer from low efficiency, and may reqaipohibitively large evolution length
when optimizing complex designs. Thus, they may be particularly isfiagadry for optimization

problems in which fitness function evaluation is time-consuming and/or costly



In contrast to conventional, unguided evolutionary computation, LEMmptte to model an
intellectual evolution that governs the development of humaiactsi As mentioned earlier, in such
evolution, the generation of new populations is based on the restitsnain designers’ analysis of
the advantages and disadvantages of past populations. LEM apgesinis process by generating
new designs through hypothesis formation and instantiation, and has poobervery effective in
reducing the evolution length. Early applications of LEMIude the design of very large neural
network$®, digital signal filter desigii, and energy distribution desfjn

The LEMd method, described herein, tailors the LEM methodology to complex design groflem
specialized LEMd implementations, ISHED and ISCOD, for optimizinge arrangements in
evaporators and condensers in heat exchangers have proven to pp@wenfyl tools for this purpose.
They were able to evolve designs satisfying given technighleavironmental constraints that were

better or comparable to the best human designs used in the cooling industiynaco experts.

In the case of uniform airflow, roughly symmetric designs wereigged, but in the case of uneven
airflow, more elaborately configured designs evolved. Thesalts highlight LEMd’s potential.
ISHED and ISCOD represent, however, only rudimentary implementations loEMé methodology,
and suffer from various limitations. Neither is capable of aterdy instantiation of many of the
possible design specifications consisting of three or more iafetaitlets. The complexity of the
instantiation process makes it sometimes difficult tocingesufficient amount of diversity in the new
population. This makes Probing Mode particularly important in thesguimplementation of the

ISHED and ISCOD systems.

Experiments have also revealed a weakness in these systgarsling an occasional lack of
evolutionary advancement in seeded initial populations. There exist wagsk@anound the problem,
such as short, sequential runs building upon each other’s resultherFresearch will explore more

thoroughly the nature of the experienced problems.



The LEMd method is at an early stage of development, and poarg ahmallenging research
problems. They include the theoretical and experimental investigatairanfie operators in Learning
Mode, testing LEMd in different application domains, and extending ittimization problems under

complex constraints and to dynamic landscapes. The experiendeeadtbxchanger optimization has
indicated another important topic for future research, nantedéyneed for developing methods for

efficiently instantiating learned rules in a search spacedlatristrained in many complex ways.

Another topic involves the automatic encoding of design tasks gpoesentations and design
modification operators that LEMd can utilize. LEMd could als® improved by developing a
language for representing design modification operators and catstrad that arbitrary design

domains can be specified for LEMd application.

Regardless of the current limitations, the experiments dedchieee have demonstrated that LEMd
can already serve as a powerful tool for assisting humanneégesign optimizing complex systems,
especially those in which fithess function evaluation is costlytime-consuming. Because
experimental studies of learnable evolution have demonstrateitsthdivantage over Darwinian-type
evolutionary computation grows with the complexity of the proBlehe LEMd approach appears to
be particularly promising for optimizing very complex enginegrsystems with a large number (on

the order of hundreds or more) of controllable discrete and/or continuousgpars:
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