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Abstract. Compound attributes are named groups of attributes that have been
introduced in Attributional Calculus (AC) to facilitate learning descriptions of ob-
jects whose components are characterized by different subsets of attributes. The
need for such descriptions appears in many practical applications. A method for
handling compound attributes in AQ learning and testing is described and illus-
trated by examples.

1 Introduction

Attributional Calculus (AC) is a logic system that combines elements of
propositional calculus, predicate calculus, and multi-valued logic for the pur-
pose of facilitating natural induction, a form of machine learning whose goal is
to induce hypotheses from data in the forms close to natural language descrip-
tions [8]. One of the novel concepts introduced in AC is a compound attribute,
which is useful for describing objects whose components are characterized by
different subsets of attributes. Such objects occur in many practical prob-
lems, for example, in medicine and agriculture, where different body organs
or plant parts are characterized by different attributes.

To describe such objects, predicate calculus can be used, as done in Induc-
tive Logic Programming, but this would introduce a substantial complexity to
the learning process. Compound attributes allow one to avoid this complexity
while still enabling simple descriptions of objects consisting of different com-
ponents. The use of compound attributes simplifies learning descriptions of
complex objects, and increases comprehensibility of its results, because such
descriptions correspond more closely to equivalent natural language expres-
sions.

For a simple illustration of a compound attribute, consider a standard
logic-style description of weather: windy=yes & cloudy=yes & humid=yes.
Using a compound attribute, such a description would be equivalently ex-
pressed as: weather: windy & cloudy & humid, which is closer to the equiva-
lent natural language description. In this example, ”weather” is a compound
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attribute, and windy, cloudy, and humid are values of its constituent at-
tributes.

This paper uses the following naming convention. If c is a compound
attribute and x is its constituent attribute, then we express this as c.x . If
a compound attribute, c1, includes a constituent attribute, c2.y , that is
also compound, we write this as c1.c2.y . It is also assumed that learned
descriptions (hypotheses) are represented in form of attributional rulesets
generated by AQ21’s learning module [8,13].

2 Learning and Testing Compound Descriptions

The algorithm for learning concept descriptions with compound attributes
(”compound descriptions” for short) uses operators for learning descriptions
with standard attributes (described in Sections 1 and 2.2), and consists of
the following steps:

L1 Convert compound attributes in the training examples into standard
(non-compound) attributes

L2 Learn descriptions using standard attributes
L3 Convert learned descriptions into forms with compound attributes.

The testing and application of descriptions with compound attributes is
done in two steps:

T1 Convert compound attributes into standard attributes both in testing
data and in rules.

T2 Apply/test converted rules to the converted data.

Testing results are presented in form of summaries used in AQ learning,
such as best match accuracy, correct match and precision [13].

2.1 A Brief Description of AQ Learning

The developed method for learning with compound attributes has been im-
plemented in the newest version of the AQ21 learning program. Before de-
scribing this method, to make the paper self-contained, we start with a brief
description of the AQ learning method implemented the AQ21 program.

Programs from the AQ family learn hypotheses in the form of sets of
attributional rules. One form of an attributional rule is:

CONSEQUENT <= PREMISE| EXCEPTION (1)

where consequent, premise and exception are complexes, which are conjunc-
tions of attributional conditions (a.k.a. selectors), where | is an exception
operator. Here is an example of such a rule: [part = fitting] <= [weight =
2..5]&[color = red v yellow]&[height < 2]| [width > 1] which means that a
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part is acceptable if its weight is between 2 and 5 (units are defined in the
attribute domain), its color is red or yellow, and its height is less than 2,
except for parts whose width is greater than 1.

Concept descriptions learned by AQ are in the form of attributional rule-
sets, defined as sets of attributional rules with the same consequent [10,8,13].
The main operator used in basic form of AQ is star generation, which given
a positive example (a seed) and a set of negative examples, generates the
set of all maximal generalizations of the positive example that do not cover
negative examples (called the star of the seed). In order to prevent an expo-
nential growth of the star size, AQ employs a beam search that at each step
of star generation maintains only a group of generalizations (attributional
rules) that have the highest score on a user-defined rule quality measure. AQ
determines the best rule from the generated star, and stores it. A new seed
is selected from the positive examples uncovered by the stored rules, and the
process repeats until all positive examples are covered. Such an algorithm
creates a ruleset that is complete and consistent with regard to the training
data, providing that examples of different classes are distinct in the repre-
sentation space. To cope with the noise in the data, the rule quality measure
is relaxed to allow for rule inconsistency.

The rule quality measure is in the form of Lexicographical Evaluation
Function (LEF) that combines different elementary criteria for rule prefer-
ence [8,13]. By default, AQ21 uses LEF = {< MaxNewPositives, 0% >,
< MinNumSelectors, 0% >, < MinCost, 0% >}, which means that it seeks
first rules that cover maximal number of new examples, then selects among
them rules with minimum number of selectors, and finally selects the rule
that has the lowest cost (a ”0%” following each precondition indicates the
tolerance with which the criterion is applied). The user can build different
LEFs by choosing different elementary criteria from the predefined list [13].

Fig. 1 presents the basic AQ algorithm in a pseudocode. The input to the
algorithm consists of a set of positive concept examples, P, a set of negative
concept examples, N, and a multi-criterion measure of rule quality LEF.

HYPOTHESIS = NULL
While not all positive examples are covered by HYPOTHESIS
Select an uncovered positive example e+ and use it as a seed
Generate star G(e+, N)
Select the best rule R from the star according to LEF, and add it to HYPOTHESIS

Fig. 1. Pseudocode of the simplest version AQ algorithm.

More advanced versions of AQ include methods for coping with noise,
learning approximate descriptions (patterns), learning rules with exceptions,
constructive induction that improves the original representation space, and
other features.



4 Janusz Wojtusiak and Ryszard S. Michalski

The AQ21 program used in this research works in two basic modes, one is
”Theory Formation” that creates complete and consistent rulesets, and the
second is ”Pattern Discovery” that seeks the strongest patters that repre-
sent the best tradeoff between rule consistency and completeness e.g. [4]. It
also includes multi-seed star generation, learning alternative hypotheses, rea-
soning with meta-values in data, automatic attribute selection, and learning
rules with exceptions [13,9,11].

2.2 Application and Testing Modules

AQ21 implements several variants of two main rule testing programs, ATEST
for event classification and EPIC for temporal episode classification. The
AQ21’s testing module allows a multiple event classification, meaning that
a single event can be classified to several classes, if it matches them with a
degree above a specified threshold. The motivation here is that is better to
provide an imprecise answer than a wrong answer.

In the ATEST module each event can be matches strictly, with degree of
match 0 or 1, or flexibly, where degree of match is a number between 0 and
1. A ruleset-event matching procedure works on three levels: matching of a
single selector with an event, matching of a rule with the event, and matching
of entire ruleset (disjunction of rules) with the event. Several aggregation
methods for all three steps are described in [8,13]. The EPIC module includes
an additional aggregation step, namely, matching of an episode (a temporal
sequence of events) with sequence models.

As mentioned before, matching compound selectors is done by transform-
ing them into conditions involving constituent attributes, and then using
efficient, previously developed matching methods.

2.3 Conversion of Learned Rules into Compound Rules

Conversion of learned descriptions into compound descriptions is done in
a way that maximizes their similarity to the equivalent natural language
expressions, and by that improves their comprehensibility.

Each complex (conjunction of attributional conditions) is converted into a
compound complex by grouping attributes. The grouping is done by putting
together, in one selector, all values of the constituent attributes of the com-
pound attribute. For example, a complex: [head.color = red]&[head.shape =
square] is converted into a compound complex [head : red&square], which
is shorter, and more directly corresponds to an equivalent natural language
expression. Similarly, a complex: [head.color = red v green]&[head.shape =
square] is converted into: [head : (red v blue)&square]. To avoid parentheses
in the last expression, it is rewritten in AQ21 into: [head : red v blue color&
square shape], which facilitates its translation into a non-ambiguous natural
language expression.
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The above use of attribute names in addition to their values in compound
selectors is done in AQ21 in the following situations:

• on the user request
• when values of a constituent attribute are linked by internal disjunction
• when domains of constituent attributes include the same values
• when a constituent attribute is continuous

The use of attribute names in selectors with continuous attributes is par-
ticularly important for their interpretability. For example, it is easier to in-
terpret a selector in the form: [head : 17 size] (”the head is of size 17” than
in the form [head : 17].

2.4 Determining Coverage of Compound Selectors

By default, AQ21 displays different selector coverages when printing learned
hypotheses. These coverages include: support (p), negative support (n), unique
support (u), confidence (p/(p+n)), cumulative support (pc), cumulative neg-
ative support (nc), and cumulative confidence (pc/(pc+nc)), and cumulative
support is defined as the number of positive examples covered by a condi-
tion (selector) and all selectors preceding it in the rule. Cumulative negative
support is defined analogically.

Because compound selectors can be viewed as products of non-compound
selectors (standard complexes), their coverages are computed in the same way
as for standard complexes. The computation of cumulative coverage requires
additional effort by matching all previous selectors. To increase efficiency,
the coverage is computed once and stored in data structures associated with
complexes. Displaying the above coverages can be switched off by setting the
display selectors coverage parameter to ”no” in the input file.

3 Representation of compound attributes

This section briefly describes representation of compound attributes in the
AQ21 learning system. To make the paper self-contained, Sections 3.1 and
3.2 describe methods for representing standard, discrete, and continuous at-
tributes, respectively. Section 3.3 describes representation of compound at-
tributes.

3.1 Bitstring Representation of Discrete Attributes

Because discrete and continuous attributes are represented differently, these
two types of attributes are handled in different ways. Discrete attributes are
represented by bitstrings, and continuous attributes are represented by ranges
of values [12].
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In the bitstring representation, both events and complexes are repre-
sented by equal-length binary strings. Each such bitstring is a concatenation
of the characteristic vectors of the selector references. The length of a bit-
string is thus: #D(x1) + ... + #D(xn) + n, where D(xi) is domain of the
attribute xi, and #D denotes the cardinality of D. The value n in the for-
mula is added to account for the representation of unknown meta-values.
In this representation, each bit indicates the presence (denoted by ”1”) or
absence (denoted ”0”) of the attribute value corresponding to the bit’s po-
sition in the string. For example, if the domain of x, D(x), is {0,1,2,3,4},
then value x = 3 is represented by a string < 000100 >. Thus, in a rep-
resentation of an event only one bit is set to ”1”for each attribute value
in the event. The additional bit at the end of each attribute, a metabit, is
set to 1 when meta-value ”unknown” is assigned to the attribute [11]. For
example, the event e1 = (color = green)(size =?) is represented by the bit-
string < (0100)(0001) >, assuming that the domain D(size) is small, medium,
large. Complexes are represented similarly to events, with one difference -
there is no limitation on number of bits set to ”1.” For example a complex
[color = red v green]&[size = small] is represented as < (1100)(1000) >.

Compound attributes are transformed into basic attributes before learn-
ing. Thus, they are represented as concatenation of bitstrings representing
constituent attributes. Such representation applies to both events and com-
plexes. For example a compound selector [head : (red v green)&small] is
equivalent to the complex [head.color = red v green]&[head.size = small],
and is represented by the bitstring < (1100)(1000) >.

3.2 Range Representation of Continuous Attributes

Selectors with continuous attributes are represented in AQ21 by ranges (pairs
of real values), in which the first number is the lower bound, and the second
number is the upper bound on the values of a given attribute. Both events
and complexes are represented this way which means that a selector with con-
tinuous attribute can consist only of one range. Such constraint is consistent
with human perception and follows the idea of natural induction.

For example, suppose ”distance” (in meters) is a continuous attribute,
whose domain ranges from 0 to 1000. An event e1(distance = 37.25) would be
represented by the pair (37.25, 37.25), in which the lower bound and the upper
bound are the same. If an attributional condition is [distance = 25.3..32.1],
the program would represent it by the pair (25.3, 32.1) associated with the
attribute ”distance.”

3.3 Representation of Compound Selectors

Compound attributes are converted into groups of constituent attributes be-
fore passing them to the AQ learning module. This means that a compound
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selector is represented as a concatenation of bitstrings and/or ranges used to
represent its constituent attributes.

Let a compound attribute ”head” consist of basic attributes ”size,” ”shape,”
and ”color,” where D(size) is a real value in the range 0..100 in given units,
D(shape) = {square, triangle, oval}, and D(color) = {red, green, blue, yellow}.
According to the description in previous section, ”size” is represented by a
single range, ”shape” by four bits, and ”color” by five bits. Thus, the com-
pound attribute head is represented by one range and nine bits. The selector
[head : 12..17.5 inches long&red color] is represented by the range (12, 17.5)
and the bitstring < (1000)(11110) >. Note that the constituent attribute
”shape” (the second attribute in the bitstring) is not present which is repre-
sented by setting all bits but the metabit to one.

4 Example Application

A simple example is used to illustrate AQ21 learning with compound at-
tributes. Suppose that the problem is to learn a ruleset for discriminating
between two types of single-family houses: low-cost and medium-cost. At-
tributes used to describe the houses are defined in AQ21 in the following
form:

Attributes {

location compound {

distance_to_work continuous

shopping_center linear {close, relatively_close, far}

neighborhood nominal {good, bad} }

number_of_bedrooms linear 4

number_of_bathrooms linear 4

master_bedroom compound {

size linear {small, medium, large}

balcony nominal {with, without} }

second_bedroom compound {

size linear {small, medium, large}

balcony nominal {with, without} }

third_bedroom compound {

size linear {small, medium, large}

balcony nominal {with, without} }

yard compound {

size linear {very_small, small, medium, large, very_large}

view nominal {great_view, poor_view} }

garage nominal {yes, no}

house_type nominal {low-cost, medium-cost} }

Suppose that AQ21 is provided with 6 examples of low-cost houses and 7
examples of medium-cost houses. For illustration, the table below presents a
subset of the training examples.
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10, relatively_close, good, 2, 2, medium, with, small, without,

small, N/A, N/A, poor_view, yes, low-cost

10, relatively_close, good, 2, 1, medium, with, small, without,

small, N/A, N/A, poor_view, yes, low-cost

2, relatively_close, good, 2, 2, medium, with, small, without,

small, N/A, N/A, poor_view, yes, medium-cost

10, close, good, 2, 2, medium, with, small, without,

small, N/A, N/A, poor_view, yes, medium-cost

20, relatively_close, good, 2, 2, medium, with, small, without,

small, N/A, N/A, poor_view, yes, medium-cost

10, relatively_close, good, 3, 2, medium, with, small, without,

small, without, small, poor_view, yes, medium-cost

N/A means here that an attribute is not applicable (e.g., there is no third
bedroom). Given the above input, AQ21 generated the following compound
attributional rules:

[house_type = low-cost]

# Rule 1

<-- [number_of_bedrooms=2: 5,5,50%,5,5,50%]

[master_bedroom: small & without balcony: 3,1,75%,3,0,100%]

: p=3,n=0,u=3

# Rule 2

<-- [location: 6..15 miles distance_to_work &

relatively_close_shopping_center: 2,1,66%,2,1,66%]

[number_of_bedrooms= 2: 5,5,50%,2,0,100%]: p=2,n=0,u=2

# Rule 3

<-- [location=far_from_shopping_center: 1,1,50%,1,1,50%]

[number_of_bathrooms=1: 3,2,60%,1,1,50%]

[garage=no : 3,3,50%,1,0,100%]: p=1,n=0,u=1

The first rule above can be paraphrased: ”The house type is low-cost,
if number of bedrooms is 2 and the master bedroom is small and without
balcony.” The corresponding rules in a non-compound form are:

[house_type = low-cost]

# Rule 1

<-- [number_of_bedrooms=2: 5,5,50%,5,5,50%]

[master_bedroom.size=small: 3,2,60%,3,1,75%]

[master_bedroom.balcony=without: 3,2,60%,3,0,100%]

: p=3,n=0,u=3

# Rule 2

<-- [distance_to_work=6..15: 2,2,50%,2,2

[location.shopping_center=relatively_close: 2,3,40%,2,1,66%]

[number_of_bedrooms=2: 5,5,50%,2,0,100%]: p=2,n=0,u=2

# Rule 3

<-- [location.shopping_center=far: 1,1,50%,1,1,50%]

[number_of_bathrooms=1: 3,2,60%,1,1,50%]

[garage=no: 3,3,50%,1,0,100%]: p=1,n=0,u=1
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As one can see, compound rules are simpler and closer to equivalent nat-
ural language expressions. Numerical parameters displayed in selectors were
described in Section 2.4. In addition, each rule is also annotated by para-
meters: p-positive coverage, n-negative coverage, and u-unique coverage (the
number of training examples covered only by the given rule). More details
on these annotations are in [13]. The use of compound attributes is user-
controlled by the setting display compound attributes parameter whose de-
fault value is true.

5 Related Research and Summary

As indicated before, compound attributes, introduced in Attributional Cal-
culus, facilitate learning descriptions of objects whose parts are described by
different sets of attributes. Learning descriptions with compound attributes is
related to learning relational descriptions, which characterize objects in terms
of properties of their parts and relations between the parts [7,2,6]. Although
compound attributes address only the problem of describing parts of an ob-
ject in terms of different attributes, and not the relations between the parts,
they are sufficient and useful for many application domains. Their advan-
tages are that they are easy to interpret and computationally much simpler
to implement than full-fledged relational descriptions. Compound attributes
increase descriptions’ simplicity, and their understandability because they fa-
cilitate expressing knowledge in forms closely related to those used in natural
language. Compound attributes are a useful addition to structured attributes
in implementing inductive learning. Structured attributes, first implemented
in the INDUCE relational learning program, e.g. [5] have hierarchically or-
dered domains.

This research is also related to the currently very active area of Proba-
bilistic Relational Learning that combines statistical and relational learning
(PRMs) e.g. [1,3]. The latter methods concern descriptions of relational data
that are in some sense close to descriptions with compound attributes. These
methods, however, do not address the problems of natural induction that
specifically stresses the comprehensibility and human-orientation of knowl-
edge to be learned.

As shown in the paper, descriptions with compound attributes are sim-
pler than those that do not employ such attributes, and directly correspond
to logically equivalent natural language descriptions. The presented method
of learning descriptions with compound attributes was implemented in the
AQ21 multitask learning, downloadable from www.mli.gmu.edu/software, and
described in [13].
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