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Abstract. A brief review of the current research on VINLEN multitask induc-
tive database and decision support system is presented. VINLEN integrates a 
wide range of knowledge generation operators that given input data and/or 
knowledge create new knowledge. The central operator of VINLEN is a natural 
induction module that generates hypotheses from data in the form of attribu-
tional rules. Such rules are easy to understand and interpret because they di-
rectly correspond to equivalent natural language descriptions.  This operator is 
illustrated by an application to discovering relationships between lifestyles and 
diseases in men. The conclusion outlines plans for future research. 

1  Introduction 

This paper briefly reviews our current research on the development of VINLEN, a 
multitask inductive database and decision support system. In VINLEN, inductive in-
ference capabilities are integrated with a database and a knowledge base.  Standard 
relational database operators, implemented through an SQL client, are combined with 
knowledge generation operators (KGOs) using Knowledge Query Language (KQL).  

KGOs operate on knowledge segments, consisting of a combination of one or more 
relational tables linked to relevant knowledge component in the VINLEN knowledge 
base. A KGO takes as input knowledge segments, and generates an output knowledge 
segment. 

Two important capabilities are required from knowledge generation operators:  
(1) that their results are in a form easy to understand and interpret by users, (2) that 
KGO-generated results are in forms that can be accepted as input by compatible KGO 
operators. A compatible operator is the one that can use that knowledge if it is submit-
ted to it. 

The central knowledge generation operator in VINLEN is implemented in the natu-
ral induction module that creates inductive generalizations of or discovers patterns in 
data in forms that appear natural to people, by employing attributional calculus as a 
representation language [8]. Attributional calculus is a logic system that combines 
elements of propositional, predicate, and multiple-valued logics for facilitating induc-



tive inference. It serves both as an inference system and as knowledge representation 
formalism. 

Attributional descriptions, the primary form of knowledge representation in 
VINLEN, are more expressive than conventional decision rules that use only <attrib-
ute-relation-value> conditions. Attributional rules use conditions that may involve 
more than one attribute and relate them to a subset of values or to other attributes. 
Section 3 gives more details on this topic. 

2 An Overview of VINLEN 

Research on the VINLEN system grows out of our previous efforts on the develop-
ment of INLEN, an early system deeply integrating databases and inductive learning 
capabilities for the purpose of multistrategy learning, data mining, and decision sup-
port e.g. [9]. The advantages such integration and of inductive databases are now be-
ing widely recognized, as evidenced by this workshop and earlier efforts e.g. [2, 4, 5]. 

VINLEN represents a step beyond the approach to inductive databases taken by 
some authors, namely, it not only integrates database and a knowledge base contain-
ing selected results of inductive inference (using the capabilities of database), but also 
is a host of inductive and deductive inference operators, as well as various other data 
analysis and pattern discovery capabilities.  It supports inferences resulting from a se-
ries of applications of its operators according to a script in knowledge query language 
(KQL). This way it can automatically conduct experiments that involve creating, stor-
ing and managing of the relevant data and knowledge laying the groundwork for 
higher levels of sophistication in inductive databases functionality based, for example, 
on a meta-learning approach. Therefore, it provides a powerful tool for conducting 
experiments and may avoid some pitfalls resulting from too limited exploration of 
data or from the parameters of the methods [1]. 

An important concept in VINLEN is that of a knowledge system that consists of a 
database, which can be local or distributed, and a knowledge base. The term “knowl-
edge system” signifies a system integrating a database and a relevant knowledge base 
to support knowledge mining and knowledge application to the problem at hand. A 
knowledge base contains handcrafted knowledge and results of applying a range of 
knowledge generation and management operators to data in the database and/or to 
prior knowledge in the knowledge base. 

The prior knowledge contains definitions of the domains and types of attributes in 
the database, data constraints, value hierarchies of structured attributes, known rela-
tionships binding attributes, and any other background knowledge that users may 
have represented in the system. During the operation of an inductive database, the 
knowledge base is populated by newly generated data descriptions, hypothetical pat-
terns, data classifications, statistical information, results from hypothesis testing, etc. 

The data in each VINLEN knowledge system are stored internally in relational ta-
bles, as are other system components.  Most of the entities utilized by the system, 
such as events (a.k.a. examples), datasets, attributes, attribute domains, rule condi-
tions, rules, rulesets, and classifiers, are presented in individual tables in the database, 
and connected via relations.  



Events are stored in an event table, which is populated either from external source, 
manually by the user, or by a VINLEN operator, for example, by an operator that se-
lects most representative events from the training dataset. In addition to regular attrib-
ute values, events may contain meta-values, such as “unknown”, “irrelevant” and 
“not-applicable” which require a special handling during the learning or knowledge 
application processes [10]. The “unknown” values, denoted by a “?”, represent cases 
when a regular attribute value exists, but is unknown for some reason,  the “irrele-
vant” and “non-applicable” values represent domain knowledge provided by the user.  

Each event may carry additional meta-information, such as event significance and 
event frequency.  The event significance is a value assigned to an event by the user or 
by the program to represent some form of importance of the event for problem at 
hand. For different types of problems it may have a different meaning.  For example, 
in concept learning, it may represent the typicality of the event; in optimization via 
evolutionary computation, it represents the value of the fitness function for that event.   
Event frequency is a number of occurrences of the given event in the training or test-
ing data.      

Prior knowledge and knowledge generated by VINLEN are stored in a hierarchy of 
relational tables that can be used by KGOs. Rule-based classifiers learned from the 
data are in the form of families of attributional rulesets. Their components, such as se-
lectors (conditions), complexes (conjunctions of conditions), exceptions, single rules, 
rulesets, and alternative rulesets are considered as individual entities, and as such are 
represented by separate tables connected by relations.  Parameter sets for individual 
operators are stored in method-specific tables.  This storage methodology facilitates 
an efficient access to all components of the classifiers through a standard SQL inter-
face.  

A Target Knowledge Specification is a generalization of a database query; specifi-
cally, it is a user’s request for a knowledge segment to be created by the system, 
based on the data and knowledge already present.  The core of VINLEN consists of 
Inductive Database Operators, which call upon various programs for knowledge gen-
eration (e.g., rule learning, conceptual clustering, target data generation, optimization, 
etc.), as well as data management.  These operators can be invoked by a user directly, 
or through KQL. 

To provide a general overview and easy access to all VINLEN operators, we have 
developed a visual interface that consists of VINLEN views at different abstraction 
levels. Fig. 1 presents the most abstract view of the main panel of VINLEN.  

The central part contains icons for managing database (DB), knowledge base (KB), 
and knowledge systems (KS). By clicking on DB, KB, or KS, the user can select and 
access database, knowledge base, and knowledge system that are available to 
VINLEN. Each of the rectangular buttons allows the user to access a family of 
knowledge generation operators of a given type.  

For example, the button “Learn Rules” allows one to access operators that learn 
ordinary attributional rules, rules with exceptions, multi-head rules, and rule-trees. A 
similar multi-function role have other buttons, such as “Access attributes”, “Improve 
rules”, ”Learn trees”, “Create clusters”, “Access scout”, “Define dataset”, etc.  

All operators are integrated through Knowledge Query Language (KQL) that is an 
extension of the SQL database query language.  In addition to conventional data man-
agement operators, KQL includes operators for conducting inductive and deductive 



inference, statistical analysis, application and visualization of learned knowledge, and 
various supportive functions.  KQL allows a user to define knowledge scouts that are 
KQL scripts for automatically executing a series of knowledge generation operators in 
search for knowledge of interest to the user.  

 

Fig. 1.  The front panel of VINLEN (a black and white version of the original) 

Due to a wide range of capabilities and the types of operators it involves, many of 
which are unique to VINLEN, KQL is very different from other high-level languages 
developed for data exploration, many of which have been Prolog-based.  

Among the non-Prolog-based languages, M-SQL [6] is philosophically somewhat 
similar to KQL in that it builds upon the SQL data query language. It integrates in it, 
only one inductive operator, in contrast to VINLEN that adds to it a wide range of op-
erators.  In [7], the inductive the M-SOL operator is used to analyze users’ internet ac-
tivity.  KQML [3] allows the user to query for specific pieces of knowledge, but it 
does not support multiple discovery operators and the abstract templates that are 
available in KQL.  

A somewhat related to KQL is also a query language presented in [2] that has the 
capability for specifying the type of knowledge to search for, e.g.,  rules with the con-
fidence level above a given threshold. Being a Prolog-based language, it has the capa-
bility for directly expressing relational descriptions, but does not involve such a wide 
range and versatile operators that VINLEN does. While VINLEN can also search for 
rules with a confidence above a certain threshold, it can also seek rules with maxi-
mum confidence. 



3 VINLEN Operators 

As mentioned earlier, VINLEN aims at providing user with an extensive set of differ-
ent knowledge generation and data management operators, and with a language, 
KQL, to develop scouts for executing sequences of these operators.  Such scouts can 
thus automatically perform knowledge discovery experiments.   

Basic functionality of VINLEN allows the user to browse, edit, copy, delete, print, 
define, import and export data and knowledge. More advanced functions support data 
selection, attribute evaluation and selection, attribute discretization, and estimation of 
parameter settings for operators to achieve a desired result, ,and  a range of learning 
and knowledge discovery functions. The rule learning module is based on the AQ21 
program for natural induction [15]. 

As mentioned earlier, VINLEN’s knowledge representation is based on attribu-
tional calculus [8]. The basic unit of knowledge representation is an attributional rule 
in the form: 

Consequent <= Premise |_ Exception, 
 
where Consequent, Premise, and Exception are conjunctive descriptions, or com-
plexes, which are conjunctions of attributional conditions. An attributional condition 
(a.k.a. selector) can be viewed as equivalent to a simple natural language statement. 
Its general form is: 

[L relsym R], 
where: 

 
L (the left side or referent) contains one attribute, or several attributes joined by 

“ &”  or “ v” , called internal conjunction and disjunction, respectively. L can also be 
one of the standard derived attributes: count, max, min, and avg.  

 
R (the right side or reference) is an expression specifying a value or a subset of val-

ues from the domain of the attribute(s) in L. If the subset contains values of a nominal 
(unordered) attribute, they are joined by the symbol “ v”  (called internal disjunction); 
if the subset contains consecutive values of a linear attribute, they are represented by 
joining the extreme values by operator “ ..” , called range. R can also be a single attrib-
ute of the same type as the attribute or attributes in L. 

 
relsym is a relational symbol from the set: {=, 

���
>, � , <, � }. Relational operators 

{=, 
�
} apply to all types of attributes. Relations {>, � , <, � } apply only to linear at-

tributes.  
 
Brackets [ ], may be omitted, if their omission causes no confusion. If brackets are 

used, the conjunction of two selectors is usually written as their concatenation. If an 
attribute, x, is binary, the condition [x = 1] can be written simply as the literal x, and 
[x = 0] as the literal ~x. Thus, if attributes are binary, attributional conditions reduce 
to propositional literals.  



An attributional condition is called basic, if its left side, L, is a single attribute, the 
relational symbol is one of { =, >, � , <, � }, and the right side, R, is a single value; 
otherwise, it is called extended. 
 
Examples of basic conditions: 

[x1 = 1], alternatively, x1      (The value x1 is 1) 
[x1 = 0], alternatively, ~ x1 (The value x1 is 0, the alternative notations assume that 
x1 is binary) 
[color = red]                           (The color is red) 
[length < 5” ]                          (The length is smaller than 5 inches) 
[temperature �  32° C]           (The temperature is greater than or equal to 32° C) 
[tools={mallet, knife}]          (The tools are mallet and knife) 
 

Examples of extended conditions: 
[color = red v blue v green] (The color is red, blue or green) 
[blood-type 

�
 A]         (The blood type is not A) 

[length= 4..12]         (The length is between 4 and 12, inclusive) 
[color 

�
 green]         (The color is not green) 

[height > width]         (The height is greater than the width) 
[height v width < 3 m]         (The height or the width is smaller than 3 m) 
[height & width �  7 cm]       (The height and width are both at least 7 cm) 
[height & width < length]     (Both the height and the width are smaller than the length) 
 
Operators “ v”  and “ &”  when applied to non-binary attributes or to their values are 

called internal disjunction and conjunction, respectively.  
 

A set of attributional rules with the same consequent (e.g., indicating the same 
class) is called an attributional ruleset. A set of attributional rulesets whose conse-
quent spans all values of an output (dependent variable) is called an attributional 
classifier.  
 

The design of VINLEN includes the following learning and inference capabilities: 
�  Learning complete and consistent attributional classifiers 
�  Optimizing attributional classifiers 
�  Discovering strong patterns in data (attributional rules that represent strong regu-

larities but may be partially inconsistent with the data)  
�  Generation of multi-head attributional rules (with more than one attribute in the 

consequent of a rule); 
�  Deriving optimized decision trees from attributional classifiers e.g. [13]; 
�  Applying attributional classifiers to data, and evaluating the results in the case of 

testing data; 
�  Discovering conceptual clusters in data e.g. [11]; 
�  Determining the optimum of a given function using non-Darwinian evolutionary 

computation [14]; 



To facilitate the interpretability and understandability of learned knowledge, 
VINLEN includes operators that visualize knowledge in the form of concept associa-
tion graphs and generalized logic diagrams e.g. [12].  

It should be mentioned that although all the knowledge generation operators de-
scribed above have been developed, implemented, and tested individually, so far only 
some of them have been fully integrated in VINLEN. The process of integration of so 
many operators, and developing an appropriate graphical user interface for each them 
is a very labor-intensive effort, and it will take some time before it is completed.    

4 Knowledge scouts 

As mentioned earlier, VINLEN operators (learning and inference operators, as well as 
data and knowledge management operators) can be arranged into knowledge scouts. 
A knowledge scout is a KQL script that for automatically applying various operators 
in search of target knowledge in the database.  The target knowledge is defined ab-
stractly by specifying properties of pieces of knowledge that are of interest to the 
given user (or a specified group of users). Simple examples of target knowledge 
specification are “ Determine a general classifier from the dataset DS, that maximizes 
the criterion of attributional classifier ACQ” , or “ Determine a conceptual clustering of 
the dataset DS that optimizes the clustering quality criterion CCQ.”   

 
Here is very simple example of a knowledge scout in the form of a one-line KQL 

script: 

CREATE RULES GDP-Classifier TYPE CC FROM TR1 USING AQ21 

WHERE decision is “GDP”, searchscope = 3 

This script instructs VINLEN to apply a rule learning operator to the data set TR1, 
using the AQ21 module with the searchscope parameter set to 3 (the width of the 
beam search used in the learning module). Since settings of other parameters are not 
specified, the default values will be used. The goal of applying the learning operator 
is to learn a consistent and complete (CC) classifier for the output attribute “ GDP”  
The classifier is to be stored in the knowledge base under the name “ GDP-Classifier.”  

In order to synthesize target knowledge, a knowledge scout may consist of many 
lines of KQL code that request an execution of a sequence of KQL operators involv-
ing data, intermediate results, previously learned knowledge and background knowl-
edge. The latter may include the types of attributes, their domains (including hierar-
chies of structured attributes), problem constraints, and rules for constructing derived 
attributes. At every step of running knowledge scout, an application of one operator 
may depend on the results of previous operators. This is possible due to the inclusion 
of tests of properties of data and knowledge components, of the results of their appli-
cation to data, and the use of a branching operator in KQL. For example, a condition 
for repeating a learning operator may be:  

“ If the average consistency of attributional rules in the classifier is smaller that .95 
or the number of rules in the classifier is greater than 10, the accuracy of the classifier 



on the testing data is smaller than .93, and the number of learning runs is smaller than 
50, repeat the run with the searchscope 15, otherwise, return the results.”  

5 An Example of Application to a Medical Domain 

This section illustrates an application of the learning module of VINLEN to a problem 
of determining relationships between lifestyles and diseases of non-smoking males, 
aged 50-65, and displaying results in the form of a concept association graph. The 
study employed a database from the American Cancer Society that contained 73,553 
records of responses of patients to questions regarding their lifestyles and diseases. 
Each patient was described in terms of 32 attributes: 7 lifestyle attributes (2 Boolean, 
2 numeric, and 3 rank), and 25 Boolean attributes denoting diseases. The learning op-
erator determined patterns (approximate attributional rules) characterizing the rela-
tionships between 25 diseases and the lifestyles and other diseases. Fig. 2 shows one 
example of discovered patterns (HBP stands for High Blood Pressure, Rotundity is a 
discretized ratio of the patient’s weight to his height and YinN denotes the years the 
patient lived in the same neighborhood).  

      [Arthritis = Present]  <=  
[HBP=present: 432, 1765] & 
[Education<=college_grad: 940, 4529] & 
[Rotundity>=low: 1070, 5578] & 
[YinN > 0: 1109, 5910]: p = 325, n = 1156; P = 1171, N = 6240 

Fig. 2. A pattern for Arthritis discovered in the medical database. 

The two numbers listed within each condition after the colon denote the numbers 
of positive and negative examples in the training set covered by that condition, re-
spectively; p and n, are the numbers of positive and negative examples in the training 
set covered by the entire rule, respectively; and P and N are the numbers of positive 
and negative examples in the training data for that class (here, Arthritis), respectively. 

The pattern in Fig. 2 defines a set of conditions under which patients had arthritis 
relatively frequently. These conditions include the presence of high blood pressure, no 
education beyond college, more than “ very low”  rotundity, and the patient’s having 
lived in his current neighborhood at least one year.  In the training data, about 16% of 
the patients had arthritis (P / (P + N)), but among patients satisfying the pattern, the 
percentage grows to 22% (p / (p + n)). The most significant factor in the pattern is 
high blood pressure, which by itself has consistency of about 19%. The discovered 
patterns were visualized using a concept association graph. Fig. 3. presents one such 
graph that was automatically generated using the CAG visualization operator. 



 

Fig. 3. Concept Association Graph representing seven patterns in the medical database. 

The thickness of links in CAG reflects the condition’ s consistency, and its annota-
tion (+, –, v, or ^) indicates the type of the relationship between condition and conse-
quent. Specifically, “ +”  and “ -“  represent a positive and negative monotonic relation-
ship, respectively; and “ v”  and “ ^”  indicate that extreme values of the attribute 
indicate higher or lower values of the consequent attribute, respectively. 

While no claim is made as to the medical validity and significance of these results, 
they indicate, however, that the developed methodology is potentially capable of dis-
covering important patterns in the data and representing them in an understandable 
way, either as qualitative relationships in the form of association rules, or graphically 
via a concept association graph. 

6 Summary and Future Work 

The paper described current research on VINLEN, a large-scale system for integrating 
operators for data management, data analysis, knowledge discovery for classification, 
clustering and optimization, for data and knowledge visualization, knowledge testing 
and application, and decision support. The underlying knowledge representation is 
based on attributional calculus that combines features of propositional, predicate, and 
multi-valued logic for the purpose of facilitating knowledge discovery. 
Individual operators can be invoked by the user individually, via graphical user inter-
face, or automatically, via a knowledge scout, which is a script in high level language, 
called knowledge query language (KQL). KQL is an extension of SQL that adds to it 
various knowledge generation, management, visualization and application operators.     

The system is still under development. In this paper, we focused on two central op-
erators already implemented in VINLEN, namely, the operator for learning attribu-
tional classifiers, and the operator for visualizing such classifiers using concept asso-



ciation graphs. These operators have been illustrated by an example in medical 
domain.  

Other operators, such conceptual clustering, intelligent target data and generation, 
function optimization via Learnable Evolution, and database manipulation through an 
SQL client have been partially implemented.  Various statistical operators, modules 
for applying knowledge to data for generating decisions, and a mechanism for creat-
ing knowledge query language scripts to guide data exploration tasks are under devel-
opment. 

The main contribution of the VINLEN project is the development of a general 
methodology for a tight integration of a database, knowledge base, data management 
operators, knowledge generation operators, a knowledge query language, and a user-
oriented visual interface. Research on VINLEN aims at achieving methodological ad-
vances and for developing new tools for knowledge mining in databases, and for the 
decision support based on the knowledge discovered.  
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