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Abstract 
AQ learning strives to perform natural induction that aims at deriving general descriptions from specific 
data and formulating them in human-oriented forms. Such descriptions are in the forms closely 
corresponding to simple natural language statements, or are transformed to such statements in order to 
make computer generated knowledge easy to interpret and understand.  An important feature of natural 
induction is that it employs a wide range of types of attributes to guide the process of generalization. 
Attribute types constitute problem domain knowledge, and are provided by the user, or are inferred by the 
learning program from the data. This paper makes a distinction between semantic and syntactic attribute 
types in AQ learning, explains their relationships and provides their classifications. Semantic types 
depend solely on the structure of attribute domains and help to create plausible generalizations, while 
syntactic types depend also on physical properties of attribute domains, and are used to efficiently 
implement semantic types. 
 
Keywords: Attribute types, Machine learning, AQ learning, Natural induction, Computational 

Learning.  
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1 INTRODUCTION 

The AQ learning methodology pioneered the progressive covering, also known as separate and 
conquer approach to inductive rule learning. The most distinctive feature of AQ learning in 
comparison to other learning methods is that it strives to implement natural induction, by which 
we mean an inductive learning process that aims at creating general concept descriptions from 
concept examples or discovering patterns in data, and expressing them in human-oriented forms 
(Michalski, 1999). Such descriptions are in the forms resembling simple natural language 
statements, or are transformed to such statements in order to make computer generated 
knowledge easy to interpret and understand. Unlike typical machine learning programs that 
emphasize mainly predictive accuracy of the learned knowledge, natural induction gives equal 
importance to predictive accuracy and to the interpretability of that knowledge. 

Natural induction is implemented in AQ learning by employing attributional calculus as a 
representation language and an underlying logic system (Michalski, 2004). To facilitate natural 
induction, attributional calculus combines elements of propositional, predicate, and multiple-
valued logic, and includes additional forms that resemble those used in natural language 
descriptions. Results form learning are in the form of attributional classifiers, in which each 
concept (or decision class) is represented by an attributional ruleset.  Such a ruleset is equivalent 
to a DNF (disjunctive normal form) whose components (conditions, a.k.a. selectors) directly 
correspond to simple natural language statements. 

Matching attributional classifiers against concept instances can be done crisply, by treating 
individual rules as binary logic expressions that produce a “match” or “no-match”, or flexibly, by 
considering them as continuously-valued expressions that produce a degree of match (that varies 
between 0 and 1). 

Attributional classifiers are more expressive than conventional decision rules (in which 
conditions are in the form <attribute-relation-value>), m-of-n rules, decision trees, and k-nearest 
neighbors. They are more general because they employ a larger set of operators, and use 
different methods of matching expressions with instances than conventional representations. By 
employing a more expressive representation, an AQ learning program can hypothesize simpler 
concept descriptions (e.g., consisting of a smaller number of rules) than other rule learning 
programs. This ability is achieved, however, at the expense of higher complexity of the process 
(searching through significantly larger spaces of possible descriptions). In order to streamline 
this search, AQ learning distinguishes between many different types of attributes, and uses the 
type information in the process of generalization. 

This paper makes a distinction between semantic and syntactic attribute types, provides their 
classifications, and describes data structures for their efficient implementation in the AQ21 
learning program (Wojtusiak et al., 2006). We start by explaining semantic types. 

2 SEMANTIC ATTRIBUTE TYPES 

Semantic attribute types depend solely on the structure of the attribute domain, and have been 
defined in attributional calculus (AC). To make this paper self-explanatory, we briefly review 
these types, borrowing their description from (Michalski, 2004). 
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Most of the attribute types defined in AC correspond to standard measurement scales, such as 
nominal, ordinal, interval, ratio, and absolute.  In addition to these types, AC includes also cyclic, 
structured, set-valued, and compound types (Table 1). During learning, attribute types are used 
to guide the process of plausible generalization, according to the rules of inductive generalization 
introduced in (Michalski, 1983). Attribute types constitute a form of domain knowledge, and are 
specified by the user defining the learning problem to the program. 

Table 1:  A Brief Explanation of Semantic Attribute Types Defined in AC  
and Recognized in AQ Learning (based on Michalski, 2004) 

♦ nominal (a.k.a. categorical), if the attribute domain is an unordered set (for example, 
“Blood type,”  “Person’s name”). 

♦ linear, if its domain is a totally ordered set.  Linear attributes are in turn classified into 
ordinal, interval, ratio, and absolute, corresponding to the common measurement 
scales—see Table 2 (for example, a student’s grade is an ordinal attribute, an object’s 
temperature in degrees Celsius is an interval attribute, an object’s weight is a ratio 
attribute, and the number of atoms in a molecule is an absolute-type attribute). 

♦ cyclic, if its domain is a cyclically ordered set (for example, Hours of the day, Days of the 
week, Months of the year, Signs of the zodiac, Time zones, etc.). 

♦ structured (a.k.a. hierarchical), if its domain is a hierarchically ordered set (for example, 
a type- or generalization-hierarchy of geometrical shapes, plants, animals, diseases, 
military ranks, airplanes, etc.). 

♦ set-valued, if its domain is the power set of a base set, and its values are subsets of  the 
base set.  Set-valued attributes can be represented by a set of binary attributes.  It is 
advantageous to use set-valued attributes when the base set is very large, but the subsets 
constituting their frequent values are small. For example, a value may be the set of 
diseases or manifestations recognized in a patient, and the base will be the set of known 
diseases, or the value may be a set of items one bought is a department store (an itemset 
in data mining). 

♦ compound, if its domain is the Cartesian product of the domains of attributes that are non-
compound. A compound attribute is used to characterize an object or parts of an object in 
terms of constituent attributes that apply only to this object or to individual parts. Such a 
characterization is done by listing values of constituent attributes for this object or for a 
specific part, but without stating attribute names.  The name of the object or the part is 
used as the name of the compound attribute. For example, “Weather” can be used as a 
compound attribute whose values are lists of properties typically used to characterize 
weather. For example, attributional calculus allows one to create an expression “Weather 
= sunny & humid”, where “Weather” is the compound attribute and “sunny” and “humid” 
are values of its constituent attributes.  As one can see, this expression directly 
corresponds to an equivalent natural language statement “The weather is sunny and 
humid”, and appears to be more natural to people than a standard logic expression such as 
“The weather-type is sunny and the humidity is yes.” Compound attributes thus facilitate 
natural induction. 
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The classification of attributes into nominal, ordinal, interval and ratio was introduced in a 
classic paper by Stevens (1946). The “structured” and “cyclic” types were introduced in 
(Michalski, 1978) to facilitate processes of generalizing or specializing descriptions using 
attributes of these types. The compound attribute was introduced in (Michalski, 2004). 

The interval, ratio and absolute attributes are called quantitative (or metric or numeric), and the 
nominal, ordinal, cyclic, and structured attributes are called qualitative (or non-metric or 
symbolic). Although there has been some criticism of Stevens’ classification of measurement 
scales from the statistical viewpoint (e.g. Velleman and Wilkinson, 1993), this criticism does not 
apply to AQ learning, because it does not treat all the attributes as numerical, but reasons with 
them according to their type. Moreover, Stevens’ scales, which are widely used in psychology, 
reflect the way people think and reason with different attributes, and therefore are suitable for 
natural induction. 

Table 2 provides a characterization of the domain for each attribute type, and corresponding 
invariant transformation by which is meant a transformation of the attribute domains that does 
not cause any loss of information conveyed by values of the attribute. 
 

Table 2: Domain Structure and Invariant Transformation for Each Attribute Type  
(reproduced from Michalski, 2004). 

TYPE/SCALE                   DOMAIN   INVARIANT TRANSFORMATION 

Nominal/categorical  unordered set    isomorphic 
Structured (or hierarchical) partially ordered set   node-type dependent 
Set-valued   partially ordered set   isomorphic 
Ordinal    totally ordered set   monotonic 
Cyclic    cyclically ordered set   monotonic-cyclical 
Interval    totally ordered set   linear:  y’= a + by 
Ratio    totally ordered set   ratio:  y’= ay 
Absolute   totally ordered set   none 
Compound their domains and invariant transformations depend on constituent attributes. 

Let us use simple examples to explain the concept of invariant transformation.  Suppose that the 
domain of a nominal attribute “color” is {red, blue, yellow}. By isomorphically mapping this 
domain to a three-element set of names of these colors in another language, for example, in 
Polish, which is {czerwony, niebieski, zolty}, we can use the attribute color with the new values 
without any loss of information, as long as the mapping is applied consistently. Meaningful 
statements involving nominal variables can use operators “equal” and “not-equal”, e.g., color = 
red, or color ≠ blue. Using the internal disjunction operator defined in AC, we can also write 
color = red v blue, to mean that the color is red or blue. 

All the standard logical operators apply to such statements, such as negation, logical disjunction, 
logical conjunction, exclusive-or, and equivalence. Although one can map such a domain to a set 
of numbers, e.g., {1, 2, 3}, these numbers serve only as labels, and cannot be meaningfully used 
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in arithmetical operations. For example, adding or multiplying numbers representing values of 
the attribute color, as, for example, in a paint-by-numbers set, are not meaningful operations. 

In structured (or hierarchical) attributes, the partial order is defined by a generalization hierarchy 
(a.k.a. type or is-a hierarchy). In this hierarchy, a parent node represents a more general concept 
than its offspring nodes. Examples of such hierarchies include geometric shapes, geographic 
names, plants, animals, etc.  Figure 1 presents a possible domain of the structured attribute 
“Shape.”  In addition to operators applicable to nominal attributes that check for attribute-value 
equality (attribute = value) or inequality (attribute ≠ value), other operators applicable to 
structured attributes include structure-based generalization, specialization, and modification. 

The generalization operator, climb-tree(A, V, k), replaces value V in a description involving 
attribute A by a more general value located k levels above it in the generalization hierarchy for 
this attribute. For example, climb-tree(shape, obtuse, 1) replaces value obtuse triangle by 
triangle in a statement involving the attribute shape. 

Shape

curved triangle quadrangle polygon

circle ellipse acuteobtuseright rectanglesquare hexagonpentagon

rhombus irregular multilateral  
Figure 1: The domain of the structured attribute “shape” (reproduced from Michalski, 2004). 

The operator descend(A, V, k) is an inductive specialization operator that replaces value V by one 
of the values located k levels down from V.  The value is selected among alternatives either 
randomly or algorithmically.  For example, the operator descend(Shape, triangle, 1) may 
randomly generate the value right triangle, as an instance of a triangle. An algorithmic 
application would direct the operator to choose, e.g., the first value on the list of descendents of 
the node “triangle”, or a value that has some desirable property, e.g., is most frequently present 
in positive examples of a given concept. 

Finally, the operator select-sibling(A, V) is a generate-alternative operator that replaces value V 
of attribute A by one of its sibling values in the hierarchy (again, the value can be selected 
randomly or algorithmically).  For example, select-sibling(Shape, square) may produce 
“rectangle.”  As the above examples show, structured attributes facilitate operations of 
description generalization, specialization, and modification. 

The domain of ordinal (a.k.a. rank) attributes is a totally ordered discrete set.  For example, a 
course grade with possible values A, B, C, D or F is an ordinal attribute. A discretization of a 
continuous attribute creates an ordinal attribute. Because a discretized attribute is more abstract 
that the original one, a discretization is an abstraction operation.  For example, suppose that the 
range of a continuous attribute “systolic blood pressure” has been discretized into {1, 2, 3}, 
where “1” stands for ”low”, “2” stands for “normal” and “3” stands for “high”.  If we perform a 
monotonic transformation of this domain into <L, N, H>, where “L” corresponds to “low”, “N” 
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to “normal”, and “H” to ‘high”, we can use the new domain without any loss of information, 
because values of ordinal attributes only convey information about the order of values, not about 
their magnitude. 

Operators applicable to ordinal attributes include not only those applicable to nominal and 
structured attributes, but also relational operators, <, ≤, >, ≥, and the range operator, denoted by 
“..”, which defines a range of values.  For example, if the domain of an ordinal attribute 
“strength” is {very_weak, weak, medium, strong, very_strong, mighty_strong}, we can write, 
strength > medium, to say that the value of strength is greater than medium. We can also write 
strength = weak..very_strong to say that the value is between weak and very strong, inclusive. 

Set-valued attributes are useful for describing situations in which values of interest are small 
subsets of a large domain, called the base set.  An example of a set-valued attribute is itemset, 
whose values are sets of goods customers purchase in a store. Individual customers usually 
purchase only a very small subset of goods available in a store (the latter is the base set).  The 
structure of domains of set-valued attributes is a lattice. A set-valued attribute can be represented 
by a set of binary variables whose cardinality equals the cardinality of the base set. A value of 
such an attribute would be a characteristic vector identifying the subset of interest in the base set, 
in which “1” could indicate the presence, and “0” the absence of a value from the base set. Such 
a representation is not practical if the base set is very large. A better representation in such a case 
is to directly list values of the set-valued attribute. Values of set-valued attributes can be used as 
operands in set-theoretic operations, such as union, intersection, and set-difference, and in set-
theoretic relations A ⊆ B, A ⊂ B, A ⊄ B, A ∩ B = ∅.  For example, given statements itemset=A1 
and itemset=A2, one can make statements such as itemset=A1∪ A2, itemset=A1 ∩ A2, or 
itemset= A1-A2. 

Cyclic attributes are like ordinal variables, but with the added assumption that the last value is 
followed by the first value in their domain.  The operators >, ≥, < and ≤ do not apply to these 
attributes, but the range operator “..” does. Cyclic attributes are used to describe cyclically 
occurring phenomena, e.g., days of the week, or months of the year. Thus, one can write: 
day_of_week = Wed..Mon. 

Interval attributes are used to characterize quantities measured on a scale in which “0” is 
arbitrary, and values express counts of some arbitrary units from that zero point. For example, 
the temperature can measured on the Celsius scale (oC), where “0” denotes the temperature of 
freezing water, and “100” denotes the temperature of boiling water, or the Fahrenheit scale (oF), 
which is related to the Celsius scale by the linear function: toC = 5/9 (toF - 32), where toC and toF 
are temperatures measured on the Celsius scale and the Fahrenheit scale, respectively. Any other 
linear transformation of the domain will not change the meaning of the temperature 
measurement, as long as it is applied consistently, and units are specified. 

All previously mentioned operators that apply to ordinal attributes apply also to interval 
attributes, as well as arithmetic operators “+” and “-“.  For example, one can say that the 
difference between the temperature today, t1, and yesterday, t2, is Δt oC = t1

 oC – t2
 oC, which can 

be equivalently expressed as F(Δt oC) = F(t1
 oC) –  F(t2

 oC),  where F(toC) denotes the Fahrenheit 
temperature equivalent to the temperature in oC. Multiplication and division are not invariant 
operators for interval attributes.  For example, F(3 * toC)  ≠  3 * F(toC)). Thus, temperatures 
measured in oC or oF can be meaningfully added or subtracted, but not divided or multiplied. For 
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example, if the temperature in a room rose from 35oF to 70oF, it does not mean the room is twice 
as hot. 

Values of ratio attributes represent counts of some predefined units, as in interval attributes, but 
zero is not arbitrary; rather, it denotes the absolute minimum value of these attributes. Units can 
be, for example, kilograms or pounds for a weight attribute, inches or centimeters for a length 
attribute, etc.  Different units are related by a multiplication coefficient.  In addition to all the 
previous operators, ratio attributes can be also used in all arithmetic and algebraic operations. 

Absolute variables represent direct counts of some items in a set (e.g., the number of people in a 
room). There have no units; and no transformations are allowed.  Absolute attributes are 
amenable to all operations to which ratio attributes are. 

Compound attributes have been introduced to concisely and simply describe objects or their 
components by attributes that are applicable specifically to these objects or components 
(Michalski, 2004; Wojtusiak and Michalski, 2006).  Values of compound attributes are internal 
conjunctions of values of their constituent attributes.  For example, attributes applicable to 
describing a house can be its type and size, the number of bedrooms, the number of baths, the 
size of the backyard, etc. To describe individual bedrooms, other attributes are used, e.g., the 
dimensions of each bedroom, the number of windows, the closet size, etc. In this case, the 
attributes related only to the bedrooms are combined into a compound attribute called 
“Bedroom.” Using such an attribute, a bedroom can be described by an attributional calculus 
condition: [Bedroom1 = 20’ x 13’ & 3 windows & large closet]. Such a statement closely 
corresponds to a natural language description. 

Although compound attributes allow one to describe parts of an object by different sets of 
attributes, and not the relations between the parts (unless each relation is represented by an 
attribute), they are useful and sufficient for many practical problems. Their advantages are that 
operations on them are easy to implement and interpret. Learning descriptions with such 
attributes is computationally simpler to implement than full-fledged relational descriptions 
employed, e.g., in inductive logic programming or in the INDUCE method (e.g., Larson and 
Michalski, 1977). Compound attributes increase descriptions’ interpretability because they 
facilitate expressing knowledge in forms closely related to those used in natural language. 
Compound attributes are also a useful addition to structured attributes in implementing inductive 
learning. 

In addition to regular values specified in the attribute domain, AC assumes that every domain 
also contains three meta-values (Michalski, 2004; Michalski and Wojtusiak, 2005). These values 
represent possible responses to questions requesting the attribute value for a given entity, 
specifically: “don’t know” (denoted by “?”), “not applicable” (denoted by “NA”), and 
“irrelevant” (denoted by “*”).  The meta-value “don’t know” is given to an attribute whose value 
for a given entity exists but is unknown for whatever reason; for example, it has not been 
measured or has not been recorded in the database.  The “NA” value is given to an attribute that 
is not applicable to a given entity.  For example, the attribute “the number of pages” is not 
applicable to a chair in the library, but is applicable to a book. Finally, the “*” value is assigned 
to an attribute that can be considered irrelevant to the problem at hand. For example, the attribute 
“shoe size” can be viewed irrelevant to the problem of learning people’s education level from 
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their other attributes.  While the value “?” represents lack of knowledge, values “NA” and “*” 
constitute domain knowledge that is communicated to the system by an expert. 

Because attribute type indicates which operators are applicable to the attribute, the type is useful 
in conducting inductive inference. Inductive generalization rules applicable to statements with 
attributes of different types are described in (Michalski, 1983). By applying generalization rules 
according to the attribute type, an inductive generalization process can produce more plausible 
and understandable generalizations, avoid implausible generalizations, and can also be more 
efficient.  As mentioned earlier, the types and attribute domains are parts of the background 
knowledge for the given inductive generalization problem.  While attribute domains can be 
inferred from the data (at least approximately), determining attribute types is a more difficult 
problem, to be handled by a domain expert. 

3 SYNTACTIC ATTRIBUTE TYPES 

To represent and reason with semantic attribute types efficiently, syntactic attribute types have 
been introduced to AQ learning.  A syntactic type depends not only the semantic type, but also 
on the size of attribute domain and its other properties.  Syntactic types are specified in the user 
definition of the problem to the learning program.  Table 3 lists syntactic attribute types defined 
in the AQ21 learning program. 

Table 3: Syntactic Attribute Types. 

♦ discrete nominal, which is used to represent the nominal semantic type. 

♦ discrete structured, which is used to represent the structured (hierarchical) attribute type. 

♦ structured linear and structured nominal subtypes reflect total ordering and no ordering 
of nodes at the same level of the domain hierarchy, respectively. 

♦ discrete cyclic, which is equivalent to the cyclic semantic type. 

♦ continuous interval, which is equivalent to the interval semantic type. 

♦ discretized interval, which is semantically equivalent to the interval type, but discretized 
into a finite number of points.  Operations applicable to the interval type are executed on 
discretized interval attributes in the following way: values in discretized examples are 
first undiscretized to get continuous values in the intervals then the operations are 
executed.  Results are discretized back into the discrete form. 

♦ continuous ratio, which is equivalent to the ratio semantic type. 

♦ discretized ratio, which is semantically equivalent to the ratio type, but discretized into a 
finite number of ranges. As in the case of discretized interval type, an analogous three-
step method is applied to attributes of this type. 

♦ compound, which is equivalent to the compound semantic type.  In the AQ21 learning 
system, compound attributes are projected into constituent attributes for the purpose of 
learning.  Once rules are learned, they are translated back, and displayed in the rules as 
compound attributes (Michalski 2004; Wojtusiak and Michalski, 2006). 

♦ set-valued, which is equivalent to the set-valued semantic type. 
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Because the AQ21 program operates on syntactic types, their appropriate specification is useful 
for an effective execution of the program, in particular, for performing such operations as star 
generation and post-optimization of the learned rules (e.g., Michalski and Kaufman, 2001).  
Because the specification of syntactic types of attributes may be burdensome for a program user, 
a method will be developed for their automatic determination, based on the training set. 

As described in next section, AQ21 uses a bitstring representation for implementing all discrete 
attributes, and ranges (defined by pairs of numbers) for continuous attributes.  Reasoning with 
so-represented discrete attributes can be implemented very efficiently.  However, because the 
amount of memory needed to represent discrete attributes (including discretized numerical 
attributes) grows linearly with their domain size, it is sometimes more efficient to use purely 
continuous attributes instead.  For example, directly reasoning with a Continuous Ratio attribute 
may be more computationally efficient than with its Discretized Ratio version that has a large 
number of discrete values. It may be both more desirable and efficient to use discretized forms 
when they consist only of a few ranges; their higher abstraction level (lower precision) leads to a 
better generalization and helps avoiding overfitting. 

4 PHYSICAL ATTRIBUTE REPRESENTATION 

4.1 Bitstring Representation 

All discrete attributes, except set-valued, are represented in AQ learning by bitstrings. In such a 
representation, each value of an attribute is represented by one bit.  An additional bit is used to 
represent the meta-value “Don’t know” (“?”).  For example, Figure 2 illustrates a bitstring 
representation for attribute “Color” with five possible values.  The presence of a value is 
indicated by a “1” in the position corresponding to this value and its absence by a “0”. 

red

greenwhite
blue

black

?

0/1 0/1 0/1 0/1 0/1 0/1

 
Figure 2: A bitstring representation of attribute “Color” with five possible values. 

Using such a representation, single values of discrete attributes in the concept examples, as well 
as subsets of values defined in attributional conditions of the rules, can be easily represented.  
For example, the attributional condition [color=red] is encoded by a bit vector <010000>, the 
condition [color= red v green v blue] is encoded by <011100>, and (color=?) by <000001>. 

In the case of nominal attributes (such as “Color”), the order of values is irrelevant. In the case of 
attributes with totally ordered domains (e.g., ordinal, cyclic, discretized ratio), bits representing 
values are ordered as in the attribute domain. Structured attributes are also represented by 
bitstrings, but their representation includes an additional tree structure representing relationships 
among values (see Section 4.2). Continuous attributes are represented differently (see Section 
4.3). 

As one can see, a bitstring representation allows the program to represent both single attribute 
values and internal disjunctions of values in the same bitstring.  The bitstring representation was 
implemented in the very first implementation of AQ learning in the early 1970s, and in most 
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subsequent versions, including AQ15 (Michalski et al., 1986) and all of its successor AQ 
programs. 

4.2 Representation of Structured Attributes 

Domains of structured (hierarchical) attributes are hierarchies. To represent such domains, AQ21 
stores bitstrings representing all of their possible values and hierarchy trees representing 
relationships between values. To illustrate this representation, let us consider the hierarchy 
presented in Figure 1. The domain of attribute “shape” has sixteen values: curved, circle, ellipse, 
triangle, right, obtuse, acute, quadrangle, square, rhombus, rectangle, irregular, polygon, 
pentagon, multilateral, and hexagon, organized into a hierarchical structure. All these values are 
represented by a bitstring consisting of seventeen bits (again, one additional bit represents the 
“Don’t know” meta-value).  Relations between values are represented in a double-linked tree, in 
which each node keeps one link to its parent and one link to a list of offsprings.  Such a 
representation facilitates efficient application of generalization and specialization operators to 
structured attributes. 

4.3 Representation using Ranges of Real Values 

Bitstrings are used to represent attributes with finite and small domains.  In the real world, there 
is often the need to use real-valued numerical attributes with the precision represented in the 
training data.  In AQ learning, such attributes or attributes derived from them through 
constructive induction (e.g. Bloedorn and Michalski, 1998) are encoded using ranges of real 
values. 

A range of values is specified by its lower and upper bound.  For example, let “Length” be a 
ratio attribute with possible values ranging from 0 to 1000.  The datapoint “Length=23.456” is 
encoded in the training data or in a rule as the pair (23.456; 23.456), with both the upper and 
lower bounds set to the same value.  An attributional condition [Length=2.3..29.11] is encoded 
as  (2.3; 29.11). 

4.4 Representation of Compound Attributes 

Domains of compound attributes are defined as the Cartesian product of the domains of their 
constituent attributes.  Thus, the compound attributes are represented using bitstrings and ranges 
defined by those domains.  In addition, each compound attribute keeps a list of its constituent 
attributes. 

4.5 Representation of “Irrelevant” and “Not-applicable” Meta-values 

Meta-values “Irrelevant” (“*”) and “Not-applicable” (“N/A”) are represented in bitstrings by 
special combinations of bits. The “Irrelevant” meta-value is represented by setting all value bits 
to one (essentially signifying that all values are acceptable).  The “Not Applicable” meta-value is 
represented by setting all bits to zero (essentially signifying an impossible condition). 

To encode meta-values in the range representation, special combinations of upper and lower 
bound are used: “Don’t know,” is encoded by the range (+∞; +∞), “Irrelevant” by (-∞; +∞), and 
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“Not applicable” by (+∞; -∞), where ∞ denotes the largest real value representable with a given 
precision on the host computer. 

For further details of the representation of meta-values, and on the method of reasoning with 
them in AQ learning, see (Michalski and Wojtusiak, 2005). 

5 MAPPINGS BETWEEN SEMANTIC AND SYTACTIC TYPES 

Relationships between semantic and syntactic attributes and their physical representation are 
presented graphically in Figure 3. The top two levels in the figure refer to semantic types.  These 
types are grouped into two categories, symbolic and numeric (or qualitative and quantitative). A 
box between them refers to compound attributes.  In order to avoid many connections, the 
compound attribute type is not connected to other attribute types, because its constituent 
attributes may be of any type. 
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Figure 3: Mappings between semantic and syntactic attribute types,  

and the data structures used for their physical representation. 

The middle layer of the diagram represents syntactic types, as used in AQ21 system.  They are 
used to represent symbolic semantic attribute types. In most cases, there is a one-to-one 
correspondence between semantic and syntactic types. For example, a nominal attributes are 
always implemented by the discrete nominal syntactic type. In some cases, specifically, in the 
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case of structured, interval and ratio semantic types, a semantic type may be represented using 
one of two different syntactic types. For example interval and ratio semantic types may be 
represented by discretized interval and ratio, or continuous interval or continuous ratio syntactic 
types, depending on whether the attribute is discretized or not. 

The lowest level of the diagram shows three possible physical representations, bitstrings, 
hierarchy trees, and ranges.  All discrete syntactic attribute types are physically represented by 
bitstrings.  Structured attributes require an additional physical representation to keep information 
about relations between their values.  This is done using hierarchy trees.  All continuous 
attributes are represented by ranges (pairs of values). 

6 OTHER ATTRIBUTE TYPES 

Attribute types provide the learning program with background knowledge useful for performing 
plausible inductive generalization.  In addition to the attribute types presented in this paper, to 
facilitate induction in specific application domains, it may be useful to introduce additional 
attribute types, and define generalization operators appropriate for them. For example, one may 
introduce the attribute type “angle” for applications involving geometrical concepts. This would 
be a cyclic continuous attribute, whose domain is the set of real numbers between 0 and 360 
(degrees), and 360 is equivalent to 0. Operators applicable to attributes of this type include 
addition and subtraction, as well as all trigonometric functions. 

Examples of other attribute types are “date” (of decision, of receiving an ordered product, etc.), 
“birth date”, “age”, and “arithmetic equation”. 

7 RELATED RESEARCH 

Although Stevens’ attribute types are widely recognized in psychology, most learning programs 
do not have mechanisms for appropriately reasoning with all of them, not to mention reasoning 
with the larger set of types described in this paper.  Many programs, for example, C4.5 (Quinlan, 
1993), RIPPER (Cohen, 1995), and CN2 (Clark and Nibblett, 1989), recognize only nominal 
(discrete) and continuous (for all numeric types) attributes.  The program Weka, which includes 
several learning methods (Witten and Frank, 1999) additionally supports the type “date”.  To the 
authors’ best knowledge, the only integrated multi-operator system that supports a wider set of 
attribute types are INLEN (e.g. Michalski et al., 1992), and its successor VINLEN (e.g. Kaufman 
and Michalski, 2003; Kaufman et al., 2006). 

Structured attributes were first implemented in the INDUCE relational learning program, (e.g. 
Larson and Michalski, 1977).  A detailed study of their use in AQ learning was presented by 
Kaufman and Michalski (1996). In the literature, structured attributes are now commonly used, 
and often referred to as hierarchical attributes. They are used in several machine learning and 
data mining systems, for example, in SAMUEL (Grefenstette, 1992), and in the commercial 
database Oracle.  The importance of this attribute type was recognized by workshop on dealing 
with structured data in machine learning and statistics at the European Conference on Machine 
Learning, ECML-2000. 

In data mining, authors often recognize nominal, categorical, ordinal, interval, and ratio attribute 
types.  The distinction between nominal and categorical types is that the former type serves the 
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role of a unique identifier, while the later can be, in many cases, used to name groups of objects 
(e.g. Pyle, 1999). In Attributional Calculus and in AQ learning, no distinction is made between 
nominal and categorical types, because the difference has no influence on the reasoning process. 

Compound attributes, introduced in Attributional Calculus, facilitate learning descriptions of 
objects whose parts are described by different sets of attributes.  Learning descriptions with 
compound attributes is related to learning relational descriptions, which characterize objects in 
terms of properties of their parts and relations between the parts (e.g., Larson and Michalski, 
1977; Dietterich and Michalski, 1981; Lavrac and Dzeroski, 1994).  Compound attributes are 
also related to the currently very active area of Probabilistic Relational Learning that combines 
statistical and relational learning (PRMs; e.g. Dey and Sarkar, 1996; Getoor et. al., 2001).  These 
methods concern the more general problem of learning relational descriptions, but are less 
efficient, and do not address the problems of natural induction that specifically stress the 
comprehensibility and human-orientation of the knowledge to be learned. 

8 SUMMARY 

To increase the interpretability, predictive accuracy, and efficiency of inductive learning, the AQ 
methodology for natural induction recognizes a wide range of attribute types, and makes a 
distinction between semantic and syntactic types. Semantic types govern the process of plausible 
inductive generalization at the conceptual level, while syntactic types take into consideration 
physical properties of the attribute domains in order to efficiently implement semantic types. All 
attribute types are represented at the physical level using data structures: a bitstring, a pair of 
values (defining a range), and a tree structure. 

The presented attribute types are frequently used by people in describing real world objects.  
This feature therefore reflects the spirit of natural induction implemented in AQ learning. 
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