
Reports
Machine Learning and Inference Laboratory

Semantic and Syntactic Attribute Types
in AQ Learning

Ryszard S. Michalski and Janusz Wojtusiak

MLI 07-1
P 07-1

March 29, 2007

MLI 04-1-

George Mason University

 2

SEMANTIC AND SYNTACTIC ATTRIBUTE TYPES

IN AQ LEARNING

Ryszard S. Michalski* and Janusz Wojtusiak
Machine Learning and Inference Laboratory

George Mason University
Fairfax, VA 22030-4444, USA

*Also with the Institute of Computer Science,

Polish Academy of Sciences

{michalski, jwojt}@mli.gmu.edu
http://www.mli.gmu.edu

Abstract
AQ learning strives to perform natural induction that aims at deriving general descriptions from specific
data and formulating them in human-oriented forms. Such descriptions are in the forms closely
corresponding to simple natural language statements, or are transformed to such statements in order to
make computer generated knowledge easy to interpret and understand. An important feature of natural
induction is that it employs a wide range of types of attributes to guide the process of generalization.
Attribute types constitute problem domain knowledge, and are provided by the user, or are inferred by the
learning program from the data. This paper makes a distinction between semantic and syntactic attribute
types in AQ learning, explains their relationships and provides their classifications. Semantic types
depend solely on the structure of attribute domains and help to create plausible generalizations, while
syntactic types depend also on physical properties of attribute domains, and are used to efficiently
implement semantic types.

Keywords: Attribute types, Machine learning, AQ learning, Natural induction, Computational

Learning.

Acknowledgments

The authors thank Ken Kaufman and Jarek Pietrzykowski for proofreading and for their comments that
helped to improve this paper.

This research has been conducted in the Machine Learning and Inference Laboratory of George Mason
University, whose research activities have been supported in part by the National Science Foundation
Grants No. IIS 9906858 and IIS 0097476, and in part by the UMBC/LUCITE #32 grant. The findings
and opinions expressed here are those of the authors, and do not necessarily reflect those of the above
sponsoring organization.

 1

1 INTRODUCTION

The AQ learning methodology pioneered the progressive covering, also known as separate and
conquer approach to inductive rule learning. The most distinctive feature of AQ learning in
comparison to other learning methods is that it strives to implement natural induction, by which
we mean an inductive learning process that aims at creating general concept descriptions from
concept examples or discovering patterns in data, and expressing them in human-oriented forms
(Michalski, 1999). Such descriptions are in the forms resembling simple natural language
statements, or are transformed to such statements in order to make computer generated
knowledge easy to interpret and understand. Unlike typical machine learning programs that
emphasize mainly predictive accuracy of the learned knowledge, natural induction gives equal
importance to predictive accuracy and to the interpretability of that knowledge.

Natural induction is implemented in AQ learning by employing attributional calculus as a
representation language and an underlying logic system (Michalski, 2004). To facilitate natural
induction, attributional calculus combines elements of propositional, predicate, and multiple-
valued logic, and includes additional forms that resemble those used in natural language
descriptions. Results form learning are in the form of attributional classifiers, in which each
concept (or decision class) is represented by an attributional ruleset. Such a ruleset is equivalent
to a DNF (disjunctive normal form) whose components (conditions, a.k.a. selectors) directly
correspond to simple natural language statements.

Matching attributional classifiers against concept instances can be done crisply, by treating
individual rules as binary logic expressions that produce a “match” or “no-match”, or flexibly, by
considering them as continuously-valued expressions that produce a degree of match (that varies
between 0 and 1).

Attributional classifiers are more expressive than conventional decision rules (in which
conditions are in the form <attribute-relation-value>), m-of-n rules, decision trees, and k-nearest
neighbors. They are more general because they employ a larger set of operators, and use
different methods of matching expressions with instances than conventional representations. By
employing a more expressive representation, an AQ learning program can hypothesize simpler
concept descriptions (e.g., consisting of a smaller number of rules) than other rule learning
programs. This ability is achieved, however, at the expense of higher complexity of the process
(searching through significantly larger spaces of possible descriptions). In order to streamline
this search, AQ learning distinguishes between many different types of attributes, and uses the
type information in the process of generalization.

This paper makes a distinction between semantic and syntactic attribute types, provides their
classifications, and describes data structures for their efficient implementation in the AQ21
learning program (Wojtusiak et al., 2006). We start by explaining semantic types.

2 SEMANTIC ATTRIBUTE TYPES

Semantic attribute types depend solely on the structure of the attribute domain, and have been
defined in attributional calculus (AC). To make this paper self-explanatory, we briefly review
these types, borrowing their description from (Michalski, 2004).

 2

Most of the attribute types defined in AC correspond to standard measurement scales, such as
nominal, ordinal, interval, ratio, and absolute. In addition to these types, AC includes also cyclic,
structured, set-valued, and compound types (Table 1). During learning, attribute types are used
to guide the process of plausible generalization, according to the rules of inductive generalization
introduced in (Michalski, 1983). Attribute types constitute a form of domain knowledge, and are
specified by the user defining the learning problem to the program.

Table 1: A Brief Explanation of Semantic Attribute Types Defined in AC
and Recognized in AQ Learning (based on Michalski, 2004)

♦ nominal (a.k.a. categorical), if the attribute domain is an unordered set (for example,
“Blood type,” “Person’s name”).

♦ linear, if its domain is a totally ordered set. Linear attributes are in turn classified into
ordinal, interval, ratio, and absolute, corresponding to the common measurement
scales—see Table 2 (for example, a student’s grade is an ordinal attribute, an object’s
temperature in degrees Celsius is an interval attribute, an object’s weight is a ratio
attribute, and the number of atoms in a molecule is an absolute-type attribute).

♦ cyclic, if its domain is a cyclically ordered set (for example, Hours of the day, Days of the
week, Months of the year, Signs of the zodiac, Time zones, etc.).

♦ structured (a.k.a. hierarchical), if its domain is a hierarchically ordered set (for example,
a type- or generalization-hierarchy of geometrical shapes, plants, animals, diseases,
military ranks, airplanes, etc.).

♦ set-valued, if its domain is the power set of a base set, and its values are subsets of the
base set. Set-valued attributes can be represented by a set of binary attributes. It is
advantageous to use set-valued attributes when the base set is very large, but the subsets
constituting their frequent values are small. For example, a value may be the set of
diseases or manifestations recognized in a patient, and the base will be the set of known
diseases, or the value may be a set of items one bought is a department store (an itemset
in data mining).

♦ compound, if its domain is the Cartesian product of the domains of attributes that are non-
compound. A compound attribute is used to characterize an object or parts of an object in
terms of constituent attributes that apply only to this object or to individual parts. Such a
characterization is done by listing values of constituent attributes for this object or for a
specific part, but without stating attribute names. The name of the object or the part is
used as the name of the compound attribute. For example, “Weather” can be used as a
compound attribute whose values are lists of properties typically used to characterize
weather. For example, attributional calculus allows one to create an expression “Weather
= sunny & humid”, where “Weather” is the compound attribute and “sunny” and “humid”
are values of its constituent attributes. As one can see, this expression directly
corresponds to an equivalent natural language statement “The weather is sunny and
humid”, and appears to be more natural to people than a standard logic expression such as
“The weather-type is sunny and the humidity is yes.” Compound attributes thus facilitate
natural induction.

 3

The classification of attributes into nominal, ordinal, interval and ratio was introduced in a
classic paper by Stevens (1946). The “structured” and “cyclic” types were introduced in
(Michalski, 1978) to facilitate processes of generalizing or specializing descriptions using
attributes of these types. The compound attribute was introduced in (Michalski, 2004).

The interval, ratio and absolute attributes are called quantitative (or metric or numeric), and the
nominal, ordinal, cyclic, and structured attributes are called qualitative (or non-metric or
symbolic). Although there has been some criticism of Stevens’ classification of measurement
scales from the statistical viewpoint (e.g. Velleman and Wilkinson, 1993), this criticism does not
apply to AQ learning, because it does not treat all the attributes as numerical, but reasons with
them according to their type. Moreover, Stevens’ scales, which are widely used in psychology,
reflect the way people think and reason with different attributes, and therefore are suitable for
natural induction.

Table 2 provides a characterization of the domain for each attribute type, and corresponding
invariant transformation by which is meant a transformation of the attribute domains that does
not cause any loss of information conveyed by values of the attribute.

Table 2: Domain Structure and Invariant Transformation for Each Attribute Type
(reproduced from Michalski, 2004).

TYPE/SCALE DOMAIN INVARIANT TRANSFORMATION

Nominal/categorical unordered set isomorphic
Structured (or hierarchical) partially ordered set node-type dependent
Set-valued partially ordered set isomorphic
Ordinal totally ordered set monotonic
Cyclic cyclically ordered set monotonic-cyclical
Interval totally ordered set linear: y’= a + by
Ratio totally ordered set ratio: y’= ay
Absolute totally ordered set none
Compound their domains and invariant transformations depend on constituent attributes.

Let us use simple examples to explain the concept of invariant transformation. Suppose that the
domain of a nominal attribute “color” is {red, blue, yellow}. By isomorphically mapping this
domain to a three-element set of names of these colors in another language, for example, in
Polish, which is {czerwony, niebieski, zolty}, we can use the attribute color with the new values
without any loss of information, as long as the mapping is applied consistently. Meaningful
statements involving nominal variables can use operators “equal” and “not-equal”, e.g., color =
red, or color ≠ blue. Using the internal disjunction operator defined in AC, we can also write
color = red v blue, to mean that the color is red or blue.

All the standard logical operators apply to such statements, such as negation, logical disjunction,
logical conjunction, exclusive-or, and equivalence. Although one can map such a domain to a set
of numbers, e.g., {1, 2, 3}, these numbers serve only as labels, and cannot be meaningfully used

 4

in arithmetical operations. For example, adding or multiplying numbers representing values of
the attribute color, as, for example, in a paint-by-numbers set, are not meaningful operations.

In structured (or hierarchical) attributes, the partial order is defined by a generalization hierarchy
(a.k.a. type or is-a hierarchy). In this hierarchy, a parent node represents a more general concept
than its offspring nodes. Examples of such hierarchies include geometric shapes, geographic
names, plants, animals, etc. Figure 1 presents a possible domain of the structured attribute
“Shape.” In addition to operators applicable to nominal attributes that check for attribute-value
equality (attribute = value) or inequality (attribute ≠ value), other operators applicable to
structured attributes include structure-based generalization, specialization, and modification.

The generalization operator, climb-tree(A, V, k), replaces value V in a description involving
attribute A by a more general value located k levels above it in the generalization hierarchy for
this attribute. For example, climb-tree(shape, obtuse, 1) replaces value obtuse triangle by
triangle in a statement involving the attribute shape.

Shape

curved triangle quadrangle polygon

circle ellipse acuteobtuseright rectanglesquare hexagonpentagon

rhombus irregular multilateral
Figure 1: The domain of the structured attribute “shape” (reproduced from Michalski, 2004).

The operator descend(A, V, k) is an inductive specialization operator that replaces value V by one
of the values located k levels down from V. The value is selected among alternatives either
randomly or algorithmically. For example, the operator descend(Shape, triangle, 1) may
randomly generate the value right triangle, as an instance of a triangle. An algorithmic
application would direct the operator to choose, e.g., the first value on the list of descendents of
the node “triangle”, or a value that has some desirable property, e.g., is most frequently present
in positive examples of a given concept.

Finally, the operator select-sibling(A, V) is a generate-alternative operator that replaces value V
of attribute A by one of its sibling values in the hierarchy (again, the value can be selected
randomly or algorithmically). For example, select-sibling(Shape, square) may produce
“rectangle.” As the above examples show, structured attributes facilitate operations of
description generalization, specialization, and modification.

The domain of ordinal (a.k.a. rank) attributes is a totally ordered discrete set. For example, a
course grade with possible values A, B, C, D or F is an ordinal attribute. A discretization of a
continuous attribute creates an ordinal attribute. Because a discretized attribute is more abstract
that the original one, a discretization is an abstraction operation. For example, suppose that the
range of a continuous attribute “systolic blood pressure” has been discretized into {1, 2, 3},
where “1” stands for ”low”, “2” stands for “normal” and “3” stands for “high”. If we perform a
monotonic transformation of this domain into <L, N, H>, where “L” corresponds to “low”, “N”

 5

to “normal”, and “H” to ‘high”, we can use the new domain without any loss of information,
because values of ordinal attributes only convey information about the order of values, not about
their magnitude.

Operators applicable to ordinal attributes include not only those applicable to nominal and
structured attributes, but also relational operators, <, ≤, >, ≥, and the range operator, denoted by
“..”, which defines a range of values. For example, if the domain of an ordinal attribute
“strength” is {very_weak, weak, medium, strong, very_strong, mighty_strong}, we can write,
strength > medium, to say that the value of strength is greater than medium. We can also write
strength = weak..very_strong to say that the value is between weak and very strong, inclusive.

Set-valued attributes are useful for describing situations in which values of interest are small
subsets of a large domain, called the base set. An example of a set-valued attribute is itemset,
whose values are sets of goods customers purchase in a store. Individual customers usually
purchase only a very small subset of goods available in a store (the latter is the base set). The
structure of domains of set-valued attributes is a lattice. A set-valued attribute can be represented
by a set of binary variables whose cardinality equals the cardinality of the base set. A value of
such an attribute would be a characteristic vector identifying the subset of interest in the base set,
in which “1” could indicate the presence, and “0” the absence of a value from the base set. Such
a representation is not practical if the base set is very large. A better representation in such a case
is to directly list values of the set-valued attribute. Values of set-valued attributes can be used as
operands in set-theoretic operations, such as union, intersection, and set-difference, and in set-
theoretic relations A ⊆ B, A ⊂ B, A ⊄ B, A ∩ B = ∅. For example, given statements itemset=A1
and itemset=A2, one can make statements such as itemset=A1∪ A2, itemset=A1 ∩ A2, or
itemset= A1-A2.

Cyclic attributes are like ordinal variables, but with the added assumption that the last value is
followed by the first value in their domain. The operators >, ≥, < and ≤ do not apply to these
attributes, but the range operator “..” does. Cyclic attributes are used to describe cyclically
occurring phenomena, e.g., days of the week, or months of the year. Thus, one can write:
day_of_week = Wed..Mon.

Interval attributes are used to characterize quantities measured on a scale in which “0” is
arbitrary, and values express counts of some arbitrary units from that zero point. For example,
the temperature can measured on the Celsius scale (oC), where “0” denotes the temperature of
freezing water, and “100” denotes the temperature of boiling water, or the Fahrenheit scale (oF),
which is related to the Celsius scale by the linear function: toC = 5/9 (toF - 32), where toC and toF
are temperatures measured on the Celsius scale and the Fahrenheit scale, respectively. Any other
linear transformation of the domain will not change the meaning of the temperature
measurement, as long as it is applied consistently, and units are specified.

All previously mentioned operators that apply to ordinal attributes apply also to interval
attributes, as well as arithmetic operators “+” and “-“. For example, one can say that the
difference between the temperature today, t1, and yesterday, t2, is Δt oC = t1

 oC – t2
 oC, which can

be equivalently expressed as F(Δt oC) = F(t1
 oC) – F(t2

 oC), where F(toC) denotes the Fahrenheit
temperature equivalent to the temperature in oC. Multiplication and division are not invariant
operators for interval attributes. For example, F(3 * toC) ≠ 3 * F(toC)). Thus, temperatures
measured in oC or oF can be meaningfully added or subtracted, but not divided or multiplied. For

 6

example, if the temperature in a room rose from 35oF to 70oF, it does not mean the room is twice
as hot.

Values of ratio attributes represent counts of some predefined units, as in interval attributes, but
zero is not arbitrary; rather, it denotes the absolute minimum value of these attributes. Units can
be, for example, kilograms or pounds for a weight attribute, inches or centimeters for a length
attribute, etc. Different units are related by a multiplication coefficient. In addition to all the
previous operators, ratio attributes can be also used in all arithmetic and algebraic operations.

Absolute variables represent direct counts of some items in a set (e.g., the number of people in a
room). There have no units; and no transformations are allowed. Absolute attributes are
amenable to all operations to which ratio attributes are.

Compound attributes have been introduced to concisely and simply describe objects or their
components by attributes that are applicable specifically to these objects or components
(Michalski, 2004; Wojtusiak and Michalski, 2006). Values of compound attributes are internal
conjunctions of values of their constituent attributes. For example, attributes applicable to
describing a house can be its type and size, the number of bedrooms, the number of baths, the
size of the backyard, etc. To describe individual bedrooms, other attributes are used, e.g., the
dimensions of each bedroom, the number of windows, the closet size, etc. In this case, the
attributes related only to the bedrooms are combined into a compound attribute called
“Bedroom.” Using such an attribute, a bedroom can be described by an attributional calculus
condition: [Bedroom1 = 20’ x 13’ & 3 windows & large closet]. Such a statement closely
corresponds to a natural language description.

Although compound attributes allow one to describe parts of an object by different sets of
attributes, and not the relations between the parts (unless each relation is represented by an
attribute), they are useful and sufficient for many practical problems. Their advantages are that
operations on them are easy to implement and interpret. Learning descriptions with such
attributes is computationally simpler to implement than full-fledged relational descriptions
employed, e.g., in inductive logic programming or in the INDUCE method (e.g., Larson and
Michalski, 1977). Compound attributes increase descriptions’ interpretability because they
facilitate expressing knowledge in forms closely related to those used in natural language.
Compound attributes are also a useful addition to structured attributes in implementing inductive
learning.

In addition to regular values specified in the attribute domain, AC assumes that every domain
also contains three meta-values (Michalski, 2004; Michalski and Wojtusiak, 2005). These values
represent possible responses to questions requesting the attribute value for a given entity,
specifically: “don’t know” (denoted by “?”), “not applicable” (denoted by “NA”), and
“irrelevant” (denoted by “*”). The meta-value “don’t know” is given to an attribute whose value
for a given entity exists but is unknown for whatever reason; for example, it has not been
measured or has not been recorded in the database. The “NA” value is given to an attribute that
is not applicable to a given entity. For example, the attribute “the number of pages” is not
applicable to a chair in the library, but is applicable to a book. Finally, the “*” value is assigned
to an attribute that can be considered irrelevant to the problem at hand. For example, the attribute
“shoe size” can be viewed irrelevant to the problem of learning people’s education level from

 7

their other attributes. While the value “?” represents lack of knowledge, values “NA” and “*”
constitute domain knowledge that is communicated to the system by an expert.

Because attribute type indicates which operators are applicable to the attribute, the type is useful
in conducting inductive inference. Inductive generalization rules applicable to statements with
attributes of different types are described in (Michalski, 1983). By applying generalization rules
according to the attribute type, an inductive generalization process can produce more plausible
and understandable generalizations, avoid implausible generalizations, and can also be more
efficient. As mentioned earlier, the types and attribute domains are parts of the background
knowledge for the given inductive generalization problem. While attribute domains can be
inferred from the data (at least approximately), determining attribute types is a more difficult
problem, to be handled by a domain expert.

3 SYNTACTIC ATTRIBUTE TYPES

To represent and reason with semantic attribute types efficiently, syntactic attribute types have
been introduced to AQ learning. A syntactic type depends not only the semantic type, but also
on the size of attribute domain and its other properties. Syntactic types are specified in the user
definition of the problem to the learning program. Table 3 lists syntactic attribute types defined
in the AQ21 learning program.

Table 3: Syntactic Attribute Types.

♦ discrete nominal, which is used to represent the nominal semantic type.

♦ discrete structured, which is used to represent the structured (hierarchical) attribute type.

♦ structured linear and structured nominal subtypes reflect total ordering and no ordering
of nodes at the same level of the domain hierarchy, respectively.

♦ discrete cyclic, which is equivalent to the cyclic semantic type.

♦ continuous interval, which is equivalent to the interval semantic type.

♦ discretized interval, which is semantically equivalent to the interval type, but discretized
into a finite number of points. Operations applicable to the interval type are executed on
discretized interval attributes in the following way: values in discretized examples are
first undiscretized to get continuous values in the intervals then the operations are
executed. Results are discretized back into the discrete form.

♦ continuous ratio, which is equivalent to the ratio semantic type.

♦ discretized ratio, which is semantically equivalent to the ratio type, but discretized into a
finite number of ranges. As in the case of discretized interval type, an analogous three-
step method is applied to attributes of this type.

♦ compound, which is equivalent to the compound semantic type. In the AQ21 learning
system, compound attributes are projected into constituent attributes for the purpose of
learning. Once rules are learned, they are translated back, and displayed in the rules as
compound attributes (Michalski 2004; Wojtusiak and Michalski, 2006).

♦ set-valued, which is equivalent to the set-valued semantic type.

 8

Because the AQ21 program operates on syntactic types, their appropriate specification is useful
for an effective execution of the program, in particular, for performing such operations as star
generation and post-optimization of the learned rules (e.g., Michalski and Kaufman, 2001).
Because the specification of syntactic types of attributes may be burdensome for a program user,
a method will be developed for their automatic determination, based on the training set.

As described in next section, AQ21 uses a bitstring representation for implementing all discrete
attributes, and ranges (defined by pairs of numbers) for continuous attributes. Reasoning with
so-represented discrete attributes can be implemented very efficiently. However, because the
amount of memory needed to represent discrete attributes (including discretized numerical
attributes) grows linearly with their domain size, it is sometimes more efficient to use purely
continuous attributes instead. For example, directly reasoning with a Continuous Ratio attribute
may be more computationally efficient than with its Discretized Ratio version that has a large
number of discrete values. It may be both more desirable and efficient to use discretized forms
when they consist only of a few ranges; their higher abstraction level (lower precision) leads to a
better generalization and helps avoiding overfitting.

4 PHYSICAL ATTRIBUTE REPRESENTATION

4.1 Bitstring Representation

All discrete attributes, except set-valued, are represented in AQ learning by bitstrings. In such a
representation, each value of an attribute is represented by one bit. An additional bit is used to
represent the meta-value “Don’t know” (“?”). For example, Figure 2 illustrates a bitstring
representation for attribute “Color” with five possible values. The presence of a value is
indicated by a “1” in the position corresponding to this value and its absence by a “0”.

red

greenwhite
blue

black

?

0/1 0/1 0/1 0/1 0/1 0/1

Figure 2: A bitstring representation of attribute “Color” with five possible values.

Using such a representation, single values of discrete attributes in the concept examples, as well
as subsets of values defined in attributional conditions of the rules, can be easily represented.
For example, the attributional condition [color=red] is encoded by a bit vector <010000>, the
condition [color= red v green v blue] is encoded by <011100>, and (color=?) by <000001>.

In the case of nominal attributes (such as “Color”), the order of values is irrelevant. In the case of
attributes with totally ordered domains (e.g., ordinal, cyclic, discretized ratio), bits representing
values are ordered as in the attribute domain. Structured attributes are also represented by
bitstrings, but their representation includes an additional tree structure representing relationships
among values (see Section 4.2). Continuous attributes are represented differently (see Section
4.3).

As one can see, a bitstring representation allows the program to represent both single attribute
values and internal disjunctions of values in the same bitstring. The bitstring representation was
implemented in the very first implementation of AQ learning in the early 1970s, and in most

 9

subsequent versions, including AQ15 (Michalski et al., 1986) and all of its successor AQ
programs.

4.2 Representation of Structured Attributes

Domains of structured (hierarchical) attributes are hierarchies. To represent such domains, AQ21
stores bitstrings representing all of their possible values and hierarchy trees representing
relationships between values. To illustrate this representation, let us consider the hierarchy
presented in Figure 1. The domain of attribute “shape” has sixteen values: curved, circle, ellipse,
triangle, right, obtuse, acute, quadrangle, square, rhombus, rectangle, irregular, polygon,
pentagon, multilateral, and hexagon, organized into a hierarchical structure. All these values are
represented by a bitstring consisting of seventeen bits (again, one additional bit represents the
“Don’t know” meta-value). Relations between values are represented in a double-linked tree, in
which each node keeps one link to its parent and one link to a list of offsprings. Such a
representation facilitates efficient application of generalization and specialization operators to
structured attributes.

4.3 Representation using Ranges of Real Values

Bitstrings are used to represent attributes with finite and small domains. In the real world, there
is often the need to use real-valued numerical attributes with the precision represented in the
training data. In AQ learning, such attributes or attributes derived from them through
constructive induction (e.g. Bloedorn and Michalski, 1998) are encoded using ranges of real
values.

A range of values is specified by its lower and upper bound. For example, let “Length” be a
ratio attribute with possible values ranging from 0 to 1000. The datapoint “Length=23.456” is
encoded in the training data or in a rule as the pair (23.456; 23.456), with both the upper and
lower bounds set to the same value. An attributional condition [Length=2.3..29.11] is encoded
as (2.3; 29.11).

4.4 Representation of Compound Attributes

Domains of compound attributes are defined as the Cartesian product of the domains of their
constituent attributes. Thus, the compound attributes are represented using bitstrings and ranges
defined by those domains. In addition, each compound attribute keeps a list of its constituent
attributes.

4.5 Representation of “Irrelevant” and “Not-applicable” Meta-values

Meta-values “Irrelevant” (“*”) and “Not-applicable” (“N/A”) are represented in bitstrings by
special combinations of bits. The “Irrelevant” meta-value is represented by setting all value bits
to one (essentially signifying that all values are acceptable). The “Not Applicable” meta-value is
represented by setting all bits to zero (essentially signifying an impossible condition).

To encode meta-values in the range representation, special combinations of upper and lower
bound are used: “Don’t know,” is encoded by the range (+∞; +∞), “Irrelevant” by (-∞; +∞), and

 10

“Not applicable” by (+∞; -∞), where ∞ denotes the largest real value representable with a given
precision on the host computer.

For further details of the representation of meta-values, and on the method of reasoning with
them in AQ learning, see (Michalski and Wojtusiak, 2005).

5 MAPPINGS BETWEEN SEMANTIC AND SYTACTIC TYPES

Relationships between semantic and syntactic attributes and their physical representation are
presented graphically in Figure 3. The top two levels in the figure refer to semantic types. These
types are grouped into two categories, symbolic and numeric (or qualitative and quantitative). A
box between them refers to compound attributes. In order to avoid many connections, the
compound attribute type is not connected to other attribute types, because its constituent
attributes may be of any type.

Nominal Ordinal Interval RatioCyclicStructured Absolute

Compound

Bit Vector

(Discrete)
Nominal

Range

(Discrete)
Ordinal

Continuous
Ratio

(Integer)
Absolute

Discretized
Ratio

Hierarchy Tree

(Discrete)
Cyclic

(Discrete)
Structured

Structured
Nominal

Structured
Linear

Structured
Linear

Structured
Nominal

Ph
ys

ic
al

R

ep
re

se
nt

at
io

n
Sy

nt
ac

tic

R
ep

re
se

nt
at

io
n

Se
m

an
tic

R

ep
re

se
nt

at
io

n

Discretized
Interval

Set-valued

Continuous
Interval

(Discrete)
Set-valued

Symbolic Numeric

Figure 3: Mappings between semantic and syntactic attribute types,

and the data structures used for their physical representation.

The middle layer of the diagram represents syntactic types, as used in AQ21 system. They are
used to represent symbolic semantic attribute types. In most cases, there is a one-to-one
correspondence between semantic and syntactic types. For example, a nominal attributes are
always implemented by the discrete nominal syntactic type. In some cases, specifically, in the

 11

case of structured, interval and ratio semantic types, a semantic type may be represented using
one of two different syntactic types. For example interval and ratio semantic types may be
represented by discretized interval and ratio, or continuous interval or continuous ratio syntactic
types, depending on whether the attribute is discretized or not.

The lowest level of the diagram shows three possible physical representations, bitstrings,
hierarchy trees, and ranges. All discrete syntactic attribute types are physically represented by
bitstrings. Structured attributes require an additional physical representation to keep information
about relations between their values. This is done using hierarchy trees. All continuous
attributes are represented by ranges (pairs of values).

6 OTHER ATTRIBUTE TYPES

Attribute types provide the learning program with background knowledge useful for performing
plausible inductive generalization. In addition to the attribute types presented in this paper, to
facilitate induction in specific application domains, it may be useful to introduce additional
attribute types, and define generalization operators appropriate for them. For example, one may
introduce the attribute type “angle” for applications involving geometrical concepts. This would
be a cyclic continuous attribute, whose domain is the set of real numbers between 0 and 360
(degrees), and 360 is equivalent to 0. Operators applicable to attributes of this type include
addition and subtraction, as well as all trigonometric functions.

Examples of other attribute types are “date” (of decision, of receiving an ordered product, etc.),
“birth date”, “age”, and “arithmetic equation”.

7 RELATED RESEARCH

Although Stevens’ attribute types are widely recognized in psychology, most learning programs
do not have mechanisms for appropriately reasoning with all of them, not to mention reasoning
with the larger set of types described in this paper. Many programs, for example, C4.5 (Quinlan,
1993), RIPPER (Cohen, 1995), and CN2 (Clark and Nibblett, 1989), recognize only nominal
(discrete) and continuous (for all numeric types) attributes. The program Weka, which includes
several learning methods (Witten and Frank, 1999) additionally supports the type “date”. To the
authors’ best knowledge, the only integrated multi-operator system that supports a wider set of
attribute types are INLEN (e.g. Michalski et al., 1992), and its successor VINLEN (e.g. Kaufman
and Michalski, 2003; Kaufman et al., 2006).

Structured attributes were first implemented in the INDUCE relational learning program, (e.g.
Larson and Michalski, 1977). A detailed study of their use in AQ learning was presented by
Kaufman and Michalski (1996). In the literature, structured attributes are now commonly used,
and often referred to as hierarchical attributes. They are used in several machine learning and
data mining systems, for example, in SAMUEL (Grefenstette, 1992), and in the commercial
database Oracle. The importance of this attribute type was recognized by workshop on dealing
with structured data in machine learning and statistics at the European Conference on Machine
Learning, ECML-2000.

In data mining, authors often recognize nominal, categorical, ordinal, interval, and ratio attribute
types. The distinction between nominal and categorical types is that the former type serves the

 12

role of a unique identifier, while the later can be, in many cases, used to name groups of objects
(e.g. Pyle, 1999). In Attributional Calculus and in AQ learning, no distinction is made between
nominal and categorical types, because the difference has no influence on the reasoning process.

Compound attributes, introduced in Attributional Calculus, facilitate learning descriptions of
objects whose parts are described by different sets of attributes. Learning descriptions with
compound attributes is related to learning relational descriptions, which characterize objects in
terms of properties of their parts and relations between the parts (e.g., Larson and Michalski,
1977; Dietterich and Michalski, 1981; Lavrac and Dzeroski, 1994). Compound attributes are
also related to the currently very active area of Probabilistic Relational Learning that combines
statistical and relational learning (PRMs; e.g. Dey and Sarkar, 1996; Getoor et. al., 2001). These
methods concern the more general problem of learning relational descriptions, but are less
efficient, and do not address the problems of natural induction that specifically stress the
comprehensibility and human-orientation of the knowledge to be learned.

8 SUMMARY

To increase the interpretability, predictive accuracy, and efficiency of inductive learning, the AQ
methodology for natural induction recognizes a wide range of attribute types, and makes a
distinction between semantic and syntactic types. Semantic types govern the process of plausible
inductive generalization at the conceptual level, while syntactic types take into consideration
physical properties of the attribute domains in order to efficiently implement semantic types. All
attribute types are represented at the physical level using data structures: a bitstring, a pair of
values (defining a range), and a tree structure.

The presented attribute types are frequently used by people in describing real world objects.
This feature therefore reflects the spirit of natural induction implemented in AQ learning.

 13

REFERENCES
Bloedorn, E. and Michalski, R. S., “Data-Driven Constructive Induction,” IEEE Intelligent
Systems, Special issue on Feature Transformation and Subset Selection, pp. 30-37, March/April,
1998.

Clark, P. and Niblett, T., “The CN2 Induction Algorithm,” Machine Learning 3: pp. 261-289.
1989.

Cohen, W., “Fast Effective Rule Induction,” Proceedings of the 12th International Conference
on Machine Learning. 1995.

Dey, D. and Sarkar, S., “A Probabilistic Relational Model and Algebra,” ACM Transactions on
Database Systems (TODS), 21:3, 1996.

Dietterich, T. G. and Michalski, R.S., “Inductive Learning of Structural Descriptions: Evaluation
Criteria and Comparative Review of Selected Methods,” Artificial Intelligence, 16:3, pp. 257-
294, July, 1981.

Grefenstette, J.J., “The Evolution of Strategies for Multiagent Environments,” Adaptive
Behavior, 1, 1, 65-90, 1992.

Getoor, L., Friedman, N., Koller, D., and Taskar, B., “Probabilistic Models of Relational
Structure,” International Conference on Machine Learning, Williamstown, MA, June, 2001.

Kaufman, K. and Michalski, R.S., “A Method for Reasoning with Structured and Continuous
Attributes in the INLEN-2 Multistrategy Knowledge Discovery System,” Proceedings of the
Second International Conference on Knowledge Discovery and Data Mining (KDD-96),
Portland, OR, pp. 232-237, August, 1996.

Kaufman, K. and Michalski, R.S., “The Development of the Inductive Database System
VINLEN: A Review of Current Research,” International Intelligent Information Processing and
Web Mining Conference, Zakopane, Poland, 2003.

Kaufman, K., Michalski, R.S., Pietrzykowski, J. and Wojtusiak, J., “An Integrated Multi-task
Inductive Database and Decision Support System VINLEN: An initial implementation and first
results ,” Fifth International Workshop on Knowledge Discovery in Inductive Databases,
KDID'06, in conjunction with ECML/PKDD, Berlin, Germany, September, 2006.

Larson, J. and Michalski, R.S., “Inductive Inference of VL Decision Rules,” Invited paper for
the Workshop in Pattern-Directed Inference Systems, Hawaii, and published in SIGART
Newsletter, ACM, No. 63, pp. 38-44, June 1977, May 23-27, 1977.

Lavrac, N. and Dzeroski, S., Inductive Logic Programming: Techniques and Applications, Ellis
Horwood, 1994.

Michalski R.S., “Pattern Recognition as Knowledge-Guided Computer Induction,” Report No.
927, Department of Computer Science, University of Illinois, Urbana, IL, May, 1978.

Michalski R.S., “A Theory and Methodology of Inductive Learning,” in Michalski, R.S.,
Mitchell, T. and Carbonell, J. (eds.), Machine Learning: An Artificial Intelligence Approach,
Tioga Publishing Co., Palo Alto, CA, pp. 83-134, 1983.

 14

Michalski, R.S., “Concept Learning and Natural Induction,” Lecture Notes on Machine Learning
and Applications, Advanced Course on Artificial Intelligence, Chania, Greece, July, 1999.

Michalski, R.S., “ATTRIBUTIONAL CALCULUS: A Logic and Representation Language for
Natural Induction,” Reports of the Machine Learning and Inference Laboratory, MLI 04-2,
George Mason University. 2004.

Michalski, R.S., Mozetic, I., Hong, J. and Lavrac, N., “The Multi-Purpose Incremental Learning
System AQ15 and its Testing Application to Three Medical Domains,” Proceedings of the
National Conference on Artificial Intelligence, AAAI, Philadelphia, August 11-15, 1986.

Michalski, R.S., Kerschberg, L., Kaufman, K. and Ribeiro, J., “Mining For Knowledge in
Databases: The INLEN Architecture, Initial Implementation and First Results,” Intelligent
Information Systems: Integrating Artificial Intelligence and Database Technologies, Vol. 1, No.
1, pp. 85-113, August ,1992.

Michalski, R. S. and Kaufman, K., "Learning Patterns in Noisy Data: The AQ Approach,"
Machine Learning and its Applications, G. Paliouras, V. Karkaletsis and C. Spyropoulos (Eds.),
pp. 22-38, Springer-Verlag, 2001.

Michalski, R.S. and Wojtusiak, J., “Reasoning with Meta-values in AQ Learning,” Reports of the
Machine Learning and Inference Laboratory, MLI 05-1, George Mason University, Fairfax, VA,
June, 2005.

Pyle, D., Data Preparation for Data Mining, Morgan Kaufmann, 1999.

Quinlan, J.R. C4.5 Systems for Machine Learning. Morgan Kaufmann Publishers Inc., 1993.

Stevens, S.S., “On the Theory of Scales of Measurement,” Science, 103, pp. 677-680, 1946.

Witten, I.H. and Frank, E., Data Mining: Practical Machine Learning Tools and Techniques
with Java Implementations, Morgan Kaufmann, 1999.

Wojtusiak, J. and Michalski, R.S., “The Use of Compound Attributes in AQ Learning,”
Proceedings of the Intelligent Information Processing and Web Mining Conference, IIPWM’06,
Ustron, June 19-22, 2006.

Wojtusiak, J., Michalski, R.S., Kaufman, K. and Pietrzykowski, J., “The AQ21 Natural Induction
Program for Pattern Discovery: Initial Version and its Novel Features,” Proceedings of the 18th
IEEE International Conference on Tools with Artificial Intelligence, Washington D.C.,
November, 2006.

Vellman, P.F. and Wilkinson, L., “Nominal, Ordinal, Interval, and Ratio Typologies Are
Misleading,” American Statistician, 47:1, pp. 65-72, February, 1993.

A publication of the Machine Learning and Inference Laboratory
George Mason University
Fairfax, VA 22030-4444 U.S.A.
http://www.mli.gmu.edu

Editor: R. S. Michalski
Assistant Editor: Janusz Wojtusiak

The Machine Learning and Inference (MLI) Laboratory Reports are an official publication of the Machine Learning
and Inference Laboratory, which has been published continuously since 1971 by R.S. Michalski’s research group
(until 1987, while the group was at the University of Illinois, they were called ISG (Intelligent Systems Group)
Reports, or were part of the Department of Computer Science Reports).

Copyright © 2007 by the Machine Learning and Inference Laboratory

