
Reports
Machine Learning and Inference Laboratory

Progress Report on Learnable Evolution Model

Ryszard S. Michalski
Janusz Wojtusiak

Kenneth A. Kaufman

MLI 07-2
P 07-2

May 15, 2007

MLI 04-1-

George Mason University

PROGRESS REPORT ON LEARNABLE EVOLUTION MODEL

Ryszard S. Michalski, Janusz Wojtusiak and Kenneth A. Kaufman
 Machine Learning and Inference Laboratory

George Mason University

Fairfax, VA 22030-4444, USA

{michalski,jwojt,kaufman}@mli.gmu.edu
http://www.mli.gmu.edu

Abstract

This report reviews recent research on Learnable Evolution Model (LEM), and presents selected results
from its application to the optimization of complex functions and engineering designs. Among the most
significant new contributions is a multi operator methodology for generating individuals (candidate
solutions) and the employment of a more advanced learning program, AQ21, as the learning module. The
new features have been implemented in the LEM3 program. To evaluate LEM3’s performance, it was
experimentally compared to other evolutionary computation programs, such as, EA--a conventional,
Darwinian-type evolutionary computation program, CA--a cultural evolution algorithm, and EDA--an
estimation of distribution algorithm on selected function optimization problems. To determine the
scalability of LEM3 and compared programs, the number of variables in the optimized functions was
varied from 2 up to 1000. In every experiment, LEM3 outperformed the other programs in terms of the
evolution length, sometimes more than an order of magnitude. Another recent research result is the
development of early versions of two LEM-based systems, ISHED and ISCOD, for the optimization of
heat exchangers evaporators and condensers, respectively. This work was done in collaboration with
scientists from the National Institute of Science and Technology. In experimental testing, the systems
produced designs that matched or were superior to human designs, particularly, in the cases of non-
uniform air flows. This collaboration continues, and may ultimately produce systems that NIST will use
to develop better designs of heat exchangers and have them implemented by the industry.

Keywords: Evolutionary Computation, Function Optimization, Learnable Evolution Model,
Guided Evolutionary Computation

Acknowledgments

This report is a significantly extended and modified version of a paper presented at the 18th IEEE
International Conference on Tools with Artificial Intelligence, ICTAI’06 (Michalski, Wojtusiak and
Kaufman, 2006)

This research has been conducted in the Machine Learning and Inference Laboratory at George Mason
University. The Laboratory’s research has been supported in part by the National Science Foundation
under Grants No. IIS-0097476 and IIS-9906858, and in part by the UMBC/LUCITE #32 grant. The
findings and opinions expressed here are those of the authors, and do not necessarily reflect those of the
above sponsoring organizations.

 1

1 INTRODUCTION

An attractive approach to solving very complex optimization problems is to employ evolutionary
computation. In a conventional, Darwinian-type methods of such computation, innovation to the
population of solutions is introduced through mutations and/or recombinations. Because these
are semi-random operators, conventional evolutionary computation is a form of a trial and error
search method, and thus not very efficient.

Another approach to evolutionary computation is to employ an “intelligent agent” to guide the
process of introducing innovation. Such an approach has been implemented in Learnable
Evolution Model (LEM) in which the role of an intelligent agent is performed by a machine
learning program (Michalski, 2000). In LEM, innovation is introduced by a new type of
operators—hypothesis generation and hypothesis instantiation—that apply a learning and
reasoning process.

To generate new solutions, these operators exploit the differences between groups of high and
low performance solutions. First, the hypothesis generation operator induces general rules
delineating subareas in the space likely to contain the optimum, and then the hypothesis
instantiation operator populates these subspaces with proposed new solutions. Multiple
experiments have confirmed that an application of these operators can significantly shorten the
evolution length, as measured by the number of fitness evaluations needed to achieve a desired
solution.

Hypothesis generation and instantiation operators are, however, computationally more complex
than conventional mutations and recombinations, or operators used in standard gradient methods
of optimization, because they require an execution of non-trivial inductive and deductive
inferences. This means that there is a trade-off between advantage of applying the new operators
and computational simplicity of executing conventional operators. To take advantage of this
trade-off, LEM integrates both types of operators—new and conventional ones—and tries to
apply them in a way that maximizes the effectiveness of the optimization process.

The rest of this paper is organized as follows. Section 2 briefly describes the LEM3
implementation of learnable evolution. Section 3 explains different operators for generating new
candidate solutions in LEM3. Section 4 describes LEM3’s Control Module that selects the
operator to be applied at any given step. Newly generated individuals (solutions) are then
selected for a new population. This process is described in Section 5. Section 6, briefly describes
ISHED (version 2), a LEM-based a system specialized for the optimization of heat exchanger
designs, and Section 7 reports selected results obtained by it. Section 8 relates LEM research to
other methods of evolutionary optimization. The final Section 9 concludes the paper with
suggestions of desirable directions of further research.

2 AN OVERVIEW OF LEM3

Figure 1 presents a flow diagram of LEM3. The process starts with a generation of an initial
population of candidate solutions. This can be done in three different ways, by a random process,
by loading an existing population from an external source, or by a combination of these two
methods.

 2

Figure 1: The LEM3 top level algorithm.

In the next step, candidate solutions in the population, either those in the initial population or
those resulting from a previous run of program are evaluated according to a user-defined fitness
function (a.k.a. objective function). Based on the results of the evaluation, a new population of
solutions is created by one of the standard selection methods developed in the field of
evolutionary computation. The current version of LEM3 implemented rank, tournament, and
proportional methods of selection. Details on this step are presented in Section 3.5.

The subsequent steps perform the most elaborated part of LEM3, namely, introduce innovation
to the current population. This is done in LEM3 in several ways, depending on what action or
actions are selected by the Control Module. One important novelty of LEM3 is that it can
execute different actions (alternatively called modes of operation) each employing a different
type of innovation operators. Another novelty is that it can execute two or more actions in
parallel. Possible actions include: Learn and Instantiate, Probe, Search Locally, Adjust
Representation, and Randomize. These actions are described in detail in Section 3. Section 4
describes the method used for determining which action or actions to apply at any given step.

3 A DESCRIPTION OF LEM3 ACTIONS

3.1 Learn and Instantiate

The “Learn and Instantiate” action is the original and central component of the Learnable
Evolution Model. This action creates new candidate solutions by performing three steps:

(1) Selecting a training set of solutions from a precursor population for the learning
program,

 3

(2) Learning a general hypothesis characterizing subspaces likely containing the optimum,
and

(3) Instantiating the hypothesis in different ways to create new candidate solutions.

The precursor population is the current population, or a union of the current and some previous
populations, specified by the lookback parameter (Michalski, 2000)1. Step (2) starts by
determining the training set, which consists of a group of high-performing (H-group) and a
group of low-performing (L-group) candidate solutions selected from the precursor population
according to the fitness function. Details on methods of creating H- and L- groups are described
in (Michalski, 2000) and (Wojtusiak and Michalski, 2005). The H- and L-group serve as positive
and negative examples, respectively, for a learning program, which in LEM3 is AQ21. This
program is the newest member in the AQ learning programs family (Wojtusiak, 2004a;
Wojtusiak et al., 2006).

In principle, there is no restriction on which learning program is used in LEM, provided that an
effective method has been developed for instantiating hypotheses induced by it. The AQ-type
learner has shown to be highly suitable for LEM, because the classifiers it learns are both, easy
to instantiate and more expressive than those learned by other programs, because they employ a
more expressive representation language, namely attributional calculus (Michalski, 2004).

Specifically, classifiers learned by AQ21 are sets of attributional rules, whose simplest form is:

 CONSEQUENT <= PREMISE (1)

where CONSEQUENT and PREMISE are conjunctions of attributional conditions (a.k.a.
selectors). An attributional condition defines a relation between an attribute, or a group of
attributes, and the values satisfying that relation. Here is an example of an attributional rule:

[refrigerator-design = modern]
 <= [energy use = 130..150] & [style = french_door] &
 [surface material= aluminum v titanium] &
 [dimensions: height < 6 & width = 36 &
 depth = cabinet-depth v countertop-depth]

This rule states that a design is classified as modern, if its energy use is between 130 and 150
kW/year (units are defined in the attribute domain), its style is “French door”, its surface material
is aluminum or titanium (these are values of the structured2 attribute “material”), its dimensions
are: the height is smaller than 6’, the width is equal 36”, and the depth is either cabinet depth or
countertop-depth. The attribute “dimensions” is a compound attribute whose constituent
attributes are height, width, and depth. As one can see, the rule is easy to interpret, which makes
it possible for experts to develop an insight into the problem being optimized. For more
information about attributional rules and compound attributes, see (Michalski, 2004).

For the purpose of understanding LEM, it is sufficient to know that its learning module learns a
classifier that consists of attributional rules whose set-theoretical union is a generalization of the

—————
1 All references in this paper by one or more of the authors refer to papers downloadable from http://www.mli.gmu.edu/mpubs.html

2 The domain of a structured attribute is a partially ordered set. The most common structured attribute is a hierarchical attribute whose domain is
a hierarchy of concepts (Kaufman and Michalski, 1996).

 4

H-group solutions, but does not include any solutions from the L-group. Rules in the classifier
delineate segments of the search space that is worth to explore further, as there is a likelihood
that one of them may contain the optimal solution. If there is more than one optimal solution,
they may be located in different segments. By instantiating rules in the classifier in different
ways (which is equivalent to sampling these segments), new candidate solutions are created.
Details of this process are presented in Section 3. Because each rule can be separately
instantiated, the generation of new solutions may be conducted in parallel. If there are several
optimal solutions, the program may find them all or a subset of them simultaneously.

To instantiate a rule, for each condition of the rule, the program randomly assigns an attribute
value that satisfies that condition. For attributes not included in the rule, the program selects a
value that the attribute takes in a randomly selected individual from the H-group. Because rule
conditions can usually be satisfied by several different values, many different individuals can be
created by instantiating one rule. For details of this process, see e.g., (Wojtusiak and Michalski,
2005; 2006).

There are several modifications to the above basic instantiation algorithm, one of which is a
flexible interpretation of selectors in a rule. For example, if a rule states that a design is high-
performing if its energy use is between 130 and 150, its may advantageous to generate designs
with energy use 129 or 151 as instances of the high-performing class, although their energy use
does not strictly match the condition. A flexible interpretation of a selector assigns a degree of
match to it that diminishes with the distance of the attribute value in an entity matched to the
attribute value/s stated in the selector. This degree affects the probability of generating solutions
with an attribute value outside of the strict range.

As mentioned earlier, learned rules are used to generate new solutions, not to match given
solutions against the rules in order to classify them, as in classification problems. Therefore, a
flexible interpretation of attributional rules in LEM3 is done differently than in classification
problems. The method for flexibly instantiating rules, implemented in LEM3, generates s%
individuals with attribute values strictly satisfying rule conditions, and f% individuals with
attribute values whose probabilities linearly decrease with distance from the condition border.
where, s% and f% are control parameters (s% = 100% – f%).. In experiments, such a flexible
rule interpretation gave better results than strict interpretation for some problems, e.g., for
optimizing the Rosenbrock function in which the solution is located on a narrow ridge and
therefore may be missed by strictly interpreted rules.

3.2 Probe Action

The probe action generates new individuals by guided Darwinian-type operators. These operators
are akin to mutations and crossover but are designed to represent types of changes in the
solutions that according to an expert may plausibly lead to their improvement, and satisfy
constraints imposed on the attributes describing solutions by attribute types and domain sizes. In
order to be applicable to a wide range of problems, these operators are defined to LEM3 by the
user.

To make LEM3 applicable to wider range of problems, it allows the user to describe solutions in
terms of several different types of attributes, such as nominal, structured (hierarchical), ordinal,
cyclic, interval, ratio, absolute, and compound (Michalski and Wojtusiak, 2007). These types are

 5

taken into consideration during both hypothesis generation and instantiation, and probing as they
represent problem background knowledge that is used to guide these operators. For example,
mutations of metric attributes (interval, ratio and absolute) involve making small modifications
to their values within the scope of the attribute domain. Mutations of symbolic attributes
(nominal, ordinal, cyclic and structured) are done appropriately for each attribute type. Nominal
attributes are mutated by randomly taking another value from the attribute domain. Ordinal
attributes are mutated by taking a neighboring value. Mutations of hierarchical attributes involve
making small steps in climbing up and down the attribute hierarchies. For more details on
probing operators implemented in LEM3, see (Wojtusiak and Michalski, 2005; 2006).

A crossover operator in probing action is done by randomly selecting two parent individuals
from the population, and creating two new individuals by exchanging values of the first k
attributes, where k is selected randomly. Results are accepted only when they do not contradict
the constraints that reflecting relationships among different attributes and any other problem
knowledge introduced to the program.

3.3 Search Locally

A local search employs user-defined methods. It is used when at least some solutions in the
current populations are expected to be close to the global optimum and only in searching for
optimal values of the metric attributes. Because local search methods have been studied for many
years and are well-known, LEM3 has been designed to allow the user to attach an external
program to run a method of the user’s choice. A full implementation of this feature is still under
development. Currently, the local search is executed by applying the user-defined method (an
external program) to the best candidate solution whenever the “Probe” action is executed.

3.4 Adjust Representation Space

This action applies operators that modify the representation space of solutions in order to make it
more suitable for a successful application of the learn and instantiate action. The representation
space can be modified by such operators as modifying domains of metric variables (through
different ways of discretizing them), removing variables considered irrelevant to the optimization
problem, and/or creating new, more relevant variables as functions of the original variables.

So far, we developed of an operator that seeks an optimal discretization of metric attributes. It
employs the method for Adaptive Anchoring Discretization, called ANCHOR (Michalski and
Cervone, 2001) that discretizes continuous attributes with a granularity size dynamically
increasing in the subranges of the variable domain that appear to require such an increase. The
method starts with an initial, very rough discretization of the variable domain. Once it starts
converging toward a possible solution, the precision of metric attributes is increased in the
subranges of the entire domain suggested by the best known individuals. Conditions under
which LEM3 invokes ANCHOR are specified in Section 3.6.

3.5 Select Population

The survival-of-the-fittest principle that underlies Darwinian-type algorithms is applied using
one of the selection methods developed in the field of evolutionary computation. LEM3
implements several methods: the rank selection (that selects solutions that have the highest rank,

 6

as determined by the fitness function), probabilistic selection (a.k.a. proportional or roulette-
wheel selection that selects solutions with probability proportional to their fitness), and
tournament selection (that selects solutions that “win” when compared with other randomly
drawn solutions). Note that these selection methods are based on the fitness (a measure of
quality) of individual solutions, and do not take into consideration other factors, such as the need
to maintain diversity of population, that is, to keeping representative solutions from different
parts of the space.

3.6 Action Selection Module

The Action Selection Module uses an Action Profiling Function (APF) to control which actions
are applied at any given step of the computation. Initially, by default, the Control Module selects
the “Learn and Instantiate” action. If an unsatisfactory progress is observed after a number of
iterations defined by the learn-probe and learn-threshold parameters, the program switches to
the “Probe” action. The learn-probe parameter defines the minimum number of iterations for
which the Learn and Instantiate action is to be performed, even if the progress is unsatisfactory.
The learn-threshold parameter specifies the minimal improvement of the fitness value of the best
individual in the population in order to evaluate progress as satisfactory. After applying the
Probe operator, LEM3 attempts “Learn and Instantiate” again.

LEM3 counts how many times the “Probe” action was applied after “Learn and Instantiate” and
failed. If this number reaches mutation-probe, control switches to the “Adjust Representation”
action. The representation-probe parameter defines the maximum number of times the
representation is adjusted before switching to the “Randomize” action, which randomly
generates new individuals.

One way to apply above actions is to execute them in the sequence listed above. After the Learn
and Instantiate action stops improving the population, the Probe operator applies mutation to
introduce diversity. This is particularly important when the population becomes uniform, and it
is not possible to determine different H- and L-groups.

If the Probe action does not lead to a sufficient improvement after a defined number of
repetitions, the next action is to increase the representation precision, which is done by
discretizing selected ranges of values into smaller units according to the ANCHOR method.
Again, if this action does not bring sufficient improvement after a certain number of steps, the
Control Module executes a start-over action that generates a number of solutions randomly and
introduces them into the population. This step seeks to explore parts of the search space that may
have been previously missed.

Another way to execute the above actions is to apply some of them in parallel. This is an
important novelty of LEM3. For example, the program may generate 100 individuals in each
generation, 80 of which are created by learning and instantiation, 10 by applying crossover, 5 by
applying mutation, and 5 by random generation. Numbers of individuals created by different
actions can be adjusted based on the program’s performance. This is the newest feature of LEM3
that is being currently tested, and obtained results will be presented in another report.

 7

4 APPLYING LEM3 TO FUNCTION OPTIMIZATION

To test the performance and scalability of LEM3, it was applied to selected benchmark problems
that involve optimizing Rastrigin, Griewangk and Rosenbrock functions with numbers of
variables ranging between 2 and 1000. Results were compared with those obtained by applying
EA, a conventional Darwinian-type program, implemented using Evolutionary Objects Library,
to the same problems. We also compared LEM3 results with the published results by Estimation
of Distribution Algorithms (EDAs), and a Cultural Algorithm (CAs).

Results from comparing LEM3 with EA are presented in Table 1. The relative performance of
LEM3 and EA is measured by the speedup LEM3/EA, defined as the ratio of the evolution
length of EA to the evolution length of LEM3 needed to achieve the same result. The
evolutionary length is the number of fitness evaluations required by a program to reach a desired
result. The speedup LEM/EA thus states how many times the number of fitness of evaluations
done by EA is greater than the number of fitness evaluations done by LEM3. The stopping
criterion for EA and LEM3 was finding a

δ
-close solution, that is, a solution that is better than

the best solution in the starting population by a factor 1/
δ
, where

δ
 is a user-defined parameter

(Wojtusiak and Michalski, 2005; 2006). For example, if δ =0.1, the best solution in the final
population must be at least 10 times better that the best solution in the original population.

Table 1: Average speedups of LEM3 over EA in optimizing the Rosenbrock, Griewangk and

Rastrigin functions with the number of variables ranging from 100 to 1000 for δ =0.1 and δ =0.01.

Number of variables 100 200 300 400 500 600 700 800 900 1000

Speedup LEM3/EA 10.7 15 16.8 17.8 17.2 16.7 19 16.6 17.2 18

The table presents the speedup averaged for the three functions and two different values of δ .
Each experiment was repeated 10 times with a different starting population, which was the same
for LEM3 and EA.

As one can see, the speedup of LEM3 over EA ranged between 10 and 18, and has a tendency to
increase with the number of function variables. There was not a single case when speedup was 1
or smaller than one. It should be noted that LEM3 was executed with default parameters, without
tuning it to these particular functions.

A comparison of LEM3 results with the best results from the Cultural Algorithm program (CA)
was done by applying LEM3 to optimize the same functions and with the same number of
variables as CA, as reported in (Reynolds and Zhu, 2001); specifically, to the optimization of the
Rastrigin, Griewangk, and Rosenbrock functions of 5, 3, and 2 variables. For these numbers of
variables, LEM3 required on the average times fewer fitness evaluations on the Rastrigin
function, 53 times fewer fitness evaluations on the Griewangk function, and 243 times fewer
fitness evaluations on the Rosenbrock function. Details are presented in Table 2. The stopping
criterion for LEM3 was finding an individual with fitness at least as good as reported for the CA.
Each experiment was repeated 40 times, and the above numbers are averages.

 8

Table 2: Comparison of LEM3 with CA on the Rastrigin, Griewangk, and Rosenbrock functions
(reproduced from Wojtusiak and Michalski, 2006).

Function and
variables

Method Best fitness
Value

Evolution
Length

LEM3/CA
Speedup

LEM3 0 687 Rastrigin 5
variables CA 5.4532e-05 ~500,000 ~728

LEM3 0 1,521 Griewangk 3
variables CA 1.0E-10 ~79,900 ~53

LEM3 0 219 Rosenbrock 2
variables CA 1.0e-10 ~53,200 ~243

Comparing LEM3’s results with the best results from the several EDA implementations on
Griewangk and Rosenbrock functions of 10 and 50 variables reported in (Bengeoxtea et al.,
2002) also indicated its significant advantage. Specifically, LEM3 required on the average 142
and 66 times fewer fitness evaluations for optimizing the Griewangk and Rosenbrock function,
respectively. The LEM3 stopping criterion was finding a solution with fitness at least as good as
the one found by the EDA program. Each experiment was repeated 10 times, and reported
numbers are averages. The averages for functions of 10 and 50 variables are reported in Table 3.

As Table 3 shows, greatest speedup was achieved in optimizing the Griewangk function of 10
variables, which was about 231. Note also that while LEM3 found the optimum (0), EDA result
was very close (0.0511), but not the exact optimum.

Table 3: Comparison of LEM3 with EDA on the Rastrigin, Griewangk, and Rosenbrock

functions (reproduced from Wojtusiak and Michalski, 2006).

Function and
variables

Method Best fitness
Value

Evolution
Length

LEM3/EDA
Speedup

LEM3 0 1,305 Griewangk 10
variables. EDA 0.051166 301,850 ~ 231

LEM3 0 4,005 Griewangk 50
variables EDA 8.7673E-6 216,292 ~ 54

LEM3 1.2 1,389 Rosenbrock 10
variables EDA 8.6807 164,519 ~ 118

LEM3 46.74 7,875 Rosenbrock 50
variables EDS 48.8234 275,663 ~ 15

5 LEM-BASED SYSTEMS FOR OPTIMIZING HEAT EXCHANGERS

Because LEM shortens the evolution length, this suggests that it may be particularly suitable for
solving optimization problems in which fitness evaluation is time consuming or costly. Problems
of optimizing complex engineering designs are of this type.

Using LEM methodology, we developed two specialized systems for optimizing designs of
engineering systems, one, ISHED, for optimizing evaporators in heat exchangers (Kaufman and
Michalski, 2000; Domanski et al., 2004; Michalski and Kaufman, 2006), and the other, ISCOD,
for optimizing condensers. The evaluation of such design requires running a complex simulator
and is time consuming. Heat exchangers are subject to a variety of physical and environmental

 9

constraints, resulting in a very large number of different feasible designs, scattered throughout
intractably large representation spaces. In both systems, the objective is to arrange the
connections among the tubes that maximize the heat transfer. This problem is very important,
because due to the ubiquity of heat exchangers in a modern society, improving efficiency of heat
exchangers can bring significant economic, as well as environmental benefits.

ISHED and ISCOD were equipped with two modes of operation: learning and probing. When
after a specified number of trials one of the modes makes insufficient progress, the program
switches to the other mode. The learning operator learns rules expressed in terms of attributes
that abstracted the heat exchanger design, and returns a hypothesis specifying parts of the
abstracted representation space. The program then instantiates the rules, linking the tubes in the
heat exchanger in ways that given the domain knowledge are plausibly feasible. More recent
versions of the programs have enhanced the flexibility by which such an instantiation is made, so
that the same rule can now generate more distinct heat exchangers.

Probing action utilizes eight operators akin to mutation and crossover, but tailored to the heat
exchanger optimization domain. One operator, for example, swaps the position of two adjacent
tubes in a refrigerant path, while another operator moves a fork point in a path up or down the
path.

Experiments have consistently shown that both systems are able to adapt to varying
environmental conditions, and evolve heat exchanger designs that perform on a par with, or
better than the best human designs. In problems with highly uneven airflows, the ISHED
designs were evaluated by experts as superior to the best human designs.

6 RELATED RESEARCH

The LEM3 program follows earlier implementations, LEM2 and LEM1, that used earlier
versions of AQ learning programs and had fewer features. An implementation of Learnable
Evolution Model for multi-objective optimization, LEMMO, developed by another research
group, is described in (Jourdan et al., 2005). LEMMO is based on rules derived from decision
trees learned by the C4.5 program, and was applied to a water quality optimization problem. The
decision tree representation of the hypotheses is more limited than the attributional rule
representation used in LEM3.

The evolutionary methods that seem to be closest in spirit to LEM are cultural algorithms (e.g.
Reynolds and Zhu, 2001) that perform a constrained optimization process in which constraints
are learned during the evolutionary computation. The constraints, called beliefs, reside in a
belief space that is updated during the evolution process. Individuals that are stored in an
optimization space are modified so that they satisfy the beliefs. The belief space is being built
based on statistical information about individuals, which usually consists of intervals containing
the fittest individuals.

Estimation of Distribution Algorithms (EDAs) use statistical inference, usually Bayesian or
Gaussian networks, to estimate distributions of high-performing individuals selected from one
population (Larranaga and Lozano, 2002). LEM significantly differs from EDAs in that it seeks
rules for distinguishing between high- and low-performing individuals, and employs symbolic
learning, rather than statistical. It also uses the fitness function not only for selecting individuals

 10

for learning, but also during the learning process itself, while EDA uses it solely for selecting
individuals. LEM does this by learning significance-based descriptions.

Another form of non-Darwinian evolutionary computation is performed by memetic algorithms
that combine conventional evolutionary computations with local search methods (Hart,
Krasnogor and Smith, 2004). LEM3 takes an advantage of this idea by including local search as
one of its actions.

7 CONCLUSION

This paper reported recent results from research on Learnable Evolution Model (LEM). The most
important result is the development of LEM3, the most complete and advanced implementation
of the model so far. It includes some elements that go beyond the features described in
(Michalski, 2000), such as the introduction of the Action Profiling Function and new
instantiation algorithms. LEM3 is more advanced than LEM2 also due to the employment AQ21,
the recent and most advanced version of AQ learning. In experimental applications of LEM3 to
complex function optimization problems (with up to 1000 continuous variables) it outperformed
EA, a standard Darwinian-type method. Comparisons with published results on Estimation of
Distribution Algorithms and Cultural Algorithms also show the superiority of LEM3 in terms of
evolution length.

LEM3 is highly scalable in comparison to the previous implementations. Extensive experiments
have confirmed that LEM3 can serve as a powerful optimization system and that it outperforms
other evolutionary computation systems in terms of evolution length. It was also applied to
problems in which in addition to numeric attributes solutions are described in terms of different
types of attributes, such as nominal, structured, and ordinal. The usefulness of this feature is not
demonstrated in this paper, because in the first stage we wanted to compare LEM3 to other
evolutionary computation programs, but these programs do not have this feature. There are,
however, applications in which this feature may be very useful, such as the optimization of very
complex engineering systems.

Early results from applying LEM-based ISHED and ISCOD systems to optimizing heat
exchangers were evaluated by experts from the National Institute for Standards and Technology
as superior to human designs in the cases of non-uniform air flows.

Summarizing, presented results confirm those published in previous papers that guided
evolutionary computation represented by the LEM approach can be highly advantageous for very
complex optimization problems in which the fitness evaluation is time-consuming or costly. It is
especially recommended for problems for which standard evolutionary computation methods
require long evolutionary processes. Our current research concerns several unresolved aspects of
the LEM methodology, such as its computational complexity, convergence speed for different
types of functions, and the areas of applicability to which it is the most suitable.

 11

REFERENCES
Bengoextea, E., Miquelez, T., Larranaga, P., and Lozano, J.A., “Experimental Results in
Function Optimization with EDAs in Continuous Domain,” in Larranaga, P. and Lozano J.A.,
Estimation of Distribution Algorithms, Kluwer Academic Publishers, 2002.

Domanski, P.A., Yashar, D., Kaufman K. and Michalski R.S., “An Optimized Design of Finned-
Tube Evaporators Using the Learnable Evolution Model,” International Journal of Heating,
Ventilating, Air-Conditioning and Refrigerating Research, 10, pp 201-211, April, 2004.

Evolutionary Objects Library, downloadable from the website: http://eodev.sourceforge.net

Hart, W.E., Krasnogor, N. and Smith, J.E. (eds.), Recent Advances in Memetic Algorithms,
Springer, 2004.

Jourdan, L., Corne, D., Savic, D. and Walters, G., “Preliminary Investigation of the ‘Learnable
Evolution Model’ for Faster/Better Multiobjective Water Systems Design,” Proceedings of The
Third International Conference on Evolutionary Multi-Criterion Optimization, EMO’05, 2005.

Kaufman, K. and Michalski, R.S., “A Method for Reasoning with Structured and Continuous
Attributes in the INLEN-2 Multistrategy Knowledge Discovery System,” Proceedings of the
Second International Conference on Knowledge Discovery and Data Mining (KDD-96),
Portland, OR, pp. 232-237, August, 1996.

Kaufman, K. and Michalski, R.S., “Applying Learnable Evolution Model to Heat Exchanger
Design,” Proceedings of the Seventeenth National Conference on Artificial Intelligence (AAAI-
2000) and Twelfth Annual Conference on Innovative Applications of Artificial Intelligence
(IAAI-2000), Austin, TX, pp. 1014-1019, 2000.

Larrañaga, P. and Lozano, J. (eds.), Estimation of Distribution Algorithms: A New Tool for
Evolutionary Computation, Kluwer Academic Publishers, 2002.

Michalski, R.S. “LEARNABLE EVOLUTION MODEL Evolutionary Processes Guided by
Machine Learning,” Machine Learning, 38, pp. 9-40, 2000.

Michalski, R.S., “ATTRIBUTIONAL CALCULUS: A Logic and Representation Language for
Natural Induction,” Reports of the Machine Learning and Inference Laboratory, MLI 04-2,
George Mason University, Fairfax, VA, April, 2004.

Michalski, R.S. and Cervone, G., “Adaptive Anchoring Discretization for Learnable Evolution
Model,” Reports of the Machine Learning and Inference Laboratory, MLI 01-3, George Mason
University, Fairfax, VA, 2001.

Michalski, R.S., Wojtusiak, J. and Kaufman, K., "Intelligent Optimization via Learnable
Evolution Model," Proceedings of The 18th IEEE International Conference on Tools with
Artificial Intelligence, Washington D.C., November 13-15, 2006.

Michalski, R.S. and Kaufman, K., “Intelligent Evolutionary Design: A New Approach to
Optimizing Complex Engineering Systems and its Application to Designing Heat Exchangers,”
International Journal of Intelligent Systems, 21, 2006.

Reynolds, R.G. and Zhu, S., “Knowledge-Based Function Optimization Using Fuzzy Cultural
Algorithms with Evolutionary Programming,” IEEE Transactions on Systems, Man, and
Cybernetics, 31, 2001.

Wojtusiak, J., “AQ21 User’s Guide,” Reports of the Machine Learning and Inference
Laboratory, George Mason University, MLI 04-3, Fairfax, VA, 2004a.

 12

Wojtusiak, J., “The LEM3 Implementation of Learnable Evolution Model: User’s Guide,”
Reports of the Machine Learning and Inference Laboratory, George Mason University, MLI 04-
5, Fairfax, VA, 2004b.

Wojtusiak, J. and Michalski, R.S., “The LEM3 System for Non-Darwinian Evolutionary
Computation and Its Application to Complex Function Optimization,” Reports of the Machine
Learning and Inference Laboratory, MLI 05-2, George Mason University, Fairfax, VA, October,
2005.

Wojtusiak, J., Michalski, R.S., Kaufman, K. and Pietrzykowski, J., “Multitype Pattern Discovery
Via AQ21: A Brief Description of the Method and Its Novel Features,” Reports of the Machine
Learning and Inference Laboratory, MLI 06-2, George Mason University, Fairfax, VA, June,
2006.

Wojtusiak, J. and Michalski, R.S., “The LEM3 Implementation of Learnable Evolution Model
and Its Testing on Complex Function Optimization Problems,” Proceedings of Genetic and
Evolutionary Computation Conference, GECCO 2006, Seattle, WA, July 8-12, 2006.

A publication of the Machine Learning and Inference Laboratory
George Mason University
Fairfax, VA 22030-4444 U.S.A.
http://www.mli.gmu.edu

Editor: R. S. Michalski
Assistant Editor: Janusz Wojtusiak

The Machine Learning and Inference (MLI) Laboratory Reports are an official publication of the Machine Learning
and Inference Laboratory, which has been published continuously since 1971 by R.S. Michalski’s research group
(until 1987, while the group was at the University of Illinois, they were called ISG (Intelligent Systems Group)
Reports, or were part of the Department of Computer Science Reports).

Copyright © 2007 by the Machine Learning and Inference Laboratory

