Reports

Machine Learning and | nference Laboratory

Progress Report on L ear nable Evolution M odel

Ryszard S. Michalski
Janusz Wojtusiak
Kenneth A. Kaufman

MLI 07-2
P 07-2
May 15, 2007

George Mason University

PROGRESS REPORT ON LEARNABLE EVOLUTION M ODEL

Ryszard S. Michalski, Janusz Wojtusiak and Kenneth A. Kaufman
Machine Learning and Inference Laboratory
George Mason University

Fairfax, VA 22030-4444, USA

{michalski,jwojt,kaufman}@mli.gmu.edu
http://www.mli.gmu.edu

Abstract

This report reviews recent research on Learnable EvolMiael (LEM), and presents selected results
from its application to the optimization of complex functions andrexeging designs. Among the most
significant new contributions is a multi operator methodology dgenerating individuals (candidate
solutions) and the employment of a more advanced learning prog@21, A&s the learning module. The
new features have been implemented in the LEM3 program. dloste LEM3's performance, it was
experimentally compared to other evolutionary computation programsb, &s, EA--a conventional,
Darwinian-type evolutionary computation program, CA--a culturalion algorithm, and EDA--an
estimation of distribution algorithnon selected function optimization problems. To determine the
scalability of LEM3 and compared programs, the number of vasaiol the optimized functions was
varied from 2 up to 1000. In every experiment, LEM3 outperformed tleg ptbgrams in terms of the
evolution length, sometimes more than an order of magnitude. Anottemt reesearch result is the
development of early versions of two LEM-based systems, ISHEDISCOD, for the optimization of
heat exchangers evaporators and condensers, respectively. drkisvas done in collaboration with
scientists from the National Institute of Science and Techyolimgexperimental testing, the systems
produced designs that matched or were superior to human desigiajlardyt in the cases of non-
uniform air flows. This collaboration continues, and may ultéglyaproduce systems that NIST will use
to develop better designs of heat exchangers and have them implementeih@ysing.

Keywords: Evolutionary Computation, Function Optimization, Learnable Evolutiardél|
Guided Evolutionary Computation

Acknowledgments

This report is a significantly extended and modified version @laper presented at the M &EEE
International Conference on Tools with Atrtificial Intelligend€TAI'06 (Michalski, Wojtusiak and
Kaufman, 2006)

This research has been conducted in the Machine Learning anehtréddraboratory at George Mason
University. The Laboratory’s research has been supported irbpahe National Science Foundation
under Grants No. 11S-0097476 and 11S-9906858, and in part by the UMBC/IUEBR grant. The
findings and opinions expressed here are those of the authors, andrnécesdarily reflect those of the
above sponsoring organizations.

1 INTRODUCTION

An attractive approach to solving very complex optimization problsrttsemploy evolutionary
computation. In a conventional, Darwinian-type methods of such computation, ionowathe

population of solutions is introduced through mutations and/or recombinatiocsudgethese
are semi-random operators, conventional evolutionary computation is afarrial and error
search method, and thus not very efficient.

Another approach to evolutionary computation is to employ an “intelliggant” to guide the
process of introducing innovation. Such an approach has been implementeariable

Evolution Model (LEM) in which the role of an intelligent agentpisrformed by a machine
learning program (Michalski, 2000). In LEM, innovation is introduced byew type of

operators—hAypothesis generation and hypothesis instantiation—that apply a learning and
reasoning process.

To generate new solutions, these operators exploit the differert@sen groups of high and
low performance solutions. First, the hypothesis generation operataces general rules
delineating subareas in the space likely to contain the optimum,themdthe hypothesis
instantiation operator populates these subspaces with proposed newnsoliMultiple
experiments have confirmed that an application of these operatossgo#icantly shorten the
evolution length, as measured by the number of fithess evaluations needed to achesiecd
solution.

Hypothesis generation and instantiation operators are, however, caomalbatmore complex
than conventional mutations and recombinations, or operators used in staiadadtgnethods
of optimization, because they require an execution of non-trivial iivduend deductive
inferences. This means that there is a trade-off between ageasftapplying the new operators
and computational simplicity of executing conventional operators. H® advantage of this
trade-off, LEM integrates both types of operators—new and conventoeg—and tries to
apply them in a way that maximizes the effectiveness of the optimizatoags:

The rest of this paper is organized as follows. Section 2 brigégcribes the LEM3
implementation of learnable evolution. Section 3 explains different tperf@r generating new
candidate solutions in LEM3. Section 4 describes LEM3’s Control Mothde selects the
operator to be applied at any given step. Newly generated indwidsalutions) are then
selected for a new population. This process is described in Section 5. Section 6¢ésieflyes

ISHED (version 2), a LEM-based a system specialized for thenigation of heat exchanger
designs, and Section 7 reports selected results obtained by ttonSecelates LEM research to
other methods of evolutionary optimization. The final Section 9 concluuegaper with

suggestions of desirable directions of further research.

2 ANOVERVIEW OF LEM3

Figure 1 presents a flow diagram of LEM3. The process staifisa generation of an initial
population of candidate solutions. This can be done in three different byaggsgandom process,
by loading an existing population from an external source, or byngination of these two
methods.

Genarate initial papulation
-J"--
*
Evaluate candidate solutions

+

Select population

3

COMTROL MODULE:
Select one or more actions

] — Probe —
Instaniiate
N Search
locally [
L Adjust
representation . Randomize |
»

L4 Sop LEM3 J

Figure 1: The LEM3 top level algorithm.

In the next step, candidate solutions in the population, either those imitthlepopulation or
those resulting from a previous run of program are evaluateddangdo a user-defined fitness
function (a.k.a. objective function). Based on the results of the ealyatinew population of
solutions is created by one of the standard selection methods devetopbd field of
evolutionary computation. The current version of LEM3 implemented ranknament, and
proportional methods of selection. Details on this step are presented in Section 3.5.

The subsequent steps perform the most elaborated part of LEM3, nartreljuice innovation

to the current population. This is done in LEM3 in several ways, depeadimnghat action or
actions are selected by the Control Module. One important noveltfNI3 is that it can
execute different actions (alternatively calleddes of operation) each employing a different
type of innovation operators. Another novelty is that it can exeeuteor more actions in
parallel. Possible actions includé:earn and Instantiate, Probe, Search Locally, Adjust
Representation, and Randomize. These actions are described in detail in Section 3. Section 4
describes the method used for determining which action or actions to apply atemgtgp.

3 A DESCRIPTION OF LEM3ACTIONS

3.1 Learn and Instantiate

The “Learn and Instantiate” action is the original and centralpoont of the Learnable
Evolution Model. This action creates new candidate solutions by performing #yee st

(1) Selecting a training set of solutions frompeecursor population for the learning
program,

(2) Learning a general hypothesis characterizing subspaceg @i&ataining the optimum,
and

(3) Instantiating the hypothesis in different ways to create new candidat®sslut

The precursor population is the current population, or a union of the caneérs#some previous
populations, specified by théookback parameter (Michalski, 2000). Step (2) starts by
determining thetraining set, which consists of a group digh-performing (H-group) and a
group oflow-performing (L-group) candidate solutions selected from the precursor population
according to the fitness function. Details on methods of cre&tirend L- groups are described

in (Michalski, 2000) and (Wojtusiak and Michalski, 2005). The H- and L-gremesas positive
and negative examples, respectively, for a learning progranchwhi LEM3 is AQ21. This
program is the newest member in the AQ learning programslyfafWojtusiak, 2004a;
Wojtusiak et al., 2006).

In principle, there is no restriction on which learning program esl s LEM, provided that an
effective method has been developed for instantiating hypothese®dntdyat. The AQ-type
learner has shown to be highly suitable for LEM, because theifdes it learns are both, easy
to instantiate and more expressive than those learned by othempspecause they employ a
more expressive representation language, naatilputional calculus (Michalski, 2004).

Specifically, classifiers learned by AQ21 are setatwfbutional rules, whose simplest form is:
CONSEQUENT <= PREMISE (2)

where CONSEQUENT and PREMISE are conjunctionsatbfibutional conditions (a.k.a.
selectors). An attributional condition defines a relation between arbate, or a group of
attributes, and the values satisfying that relation. Here is an examplatbfilautional rule:

[refrigerator-design = nodern]
<=[energy use = 130..150] & [style = french_door] &
[surface material= alumnumv titaniun] &
[di mensions: height < 6 &wdth = 36 &
depth = cabinet-depth v countertop-depth]

This rule states that a design is classified as moderrs, &niergy use is between 130 and 150
kW/year (units are defined in the attribute domain), its style is “French dsurface material

is aluminum or titanium (these are values of the structattdbute “material”), its dimensions
are: the height is smaller than 6’, the width is equal 36", andépéh is either cabinet depth or
countertop-depth. The attribute “dimensions” iscempound attribute whose constituent
attributes ardeight, width, anddepth. As one can see, the rule is easy to interpret, which makes
it possible for experts to develop an insight into the problem beingniapti. For more
information about attributional rules and compound attributes, see (Michalski, 2004).

For the purpose of understanding LEM, it is sufficient to know tedearning module learns a
classifier that consists of attributional rules whose set-tliear@nion is a generalization of the

1 All references in this paper by one or more efaluthors refer to papers downloadable from htipaf.mli.gmu.edu/mpubs.html

2 The domain of a structured attribute is a pdytiaidered set. The most common structured ateiisit hierarchical attribute whose domain is
a hierarchy of concepts (Kaufman and Michalski,&)99

H-group solutions, but does not include any solutions from the L-group. Rulks classifier
delineate segments of the search space that is worth to ekypitbrer, as there is a likelihood
that one of them may contain the optimal solution. If there is rii@e one optimal solution,
they may be located in different segments. By instantiating raleéhe classifier in different
ways (which is equivalent to sampling these segments), newdegedolutions are created.
Details of this process are presented in Section 3. Becauserwdacltan be separately
instantiated, the generation of new solutions may be conducted itepdfahere are several
optimal solutions, the program may find them all or a subset of them simultaneously.

To instantiate a rule, for each condition of the rule, the progesndomly assigns an attribute
value that satisfies that condition. For attributes not included inutegthe program selects a
value that the attribute takes in a randomly selected individual thieniH-group. Because rule
conditions can usually be satisfied by several different valuasy miifferent individuals can be
created by instantiating one rule. For details of this process.ge (Wojtusiak and Michalski,
2005; 2006).

There are several modifications to the above basic instantidgontlam, one of which is a
flexible interpretation of selectors in a rule. For examjpbla,nule states that a design is high-
performing if its energy use is between 130 and 150, its may advantagegenerate designs
with energy use 129 or 151 as instances of the high-performirgy elésough their energy use
does not strictly match the condition. A flexible interpretatioma gklector assigns a degree of
match to it that diminishes with the distance of the attrivatae in an entity matched to the
attribute value/s stated in the selector. This degree atfextsrobability of generating solutions
with an attribute value outside of the strict range.

As mentioned earlier, learned rules are used to generate neworsgluiot to match given
solutions against the rules in order to classify them, as ssititaation problems. Therefore, a
flexible interpretation of attributional rules in LEM3 is done difatly than in classification
problems. The method for flexibly instantiating rules, implemented EM3, generates%
individuals with attribute values strictly satisfying rule coradis, andf% individuals with
attribute values whose probabilities linearly decrease witlardist from the condition border.
where, s% and % are control parameters (s% = 100% — %).. Imireepés, such a flexible
rule interpretation gave better results than strict interpoetafior some problems, e.g., for
optimizing the Rosenbrock function in which the solution is located on rawardge and
therefore may be missed by strictly interpreted rules.

3.2 ProbeAction

The probe action generates new individualgiged Darwinian-type operators. These operators
are akin to mutations and crossover but are designed to reprepestdfy changes in the
solutions that according to an expert may plausibly lead to thmarovement, and satisfy
constraints imposed on the attributes describing solutions by atttypé#te and domain sizes. In
order to be applicable to a wide range of problems, these opensatsfmed to LEM3 by the
user.

To make LEM3 applicable to wider range of problems, it alldvesuser to describe solutions in
terms of several different types of attributes, such as nonsinattured (hierarchical), ordinal,
cyclic, interval, ratio, absolute, and compound (Michalski and Wojtusiak, 2007). Theseatgpe

taken into consideration during both hypothesis generation and instantiatiggrphirdy as they
represent problem background knowledge that is used to guide thesergpdfat example,
mutations of metric attributes (interval, ratio and absolute) involaking small modifications
to their values within the scope of the attribute domain. Mutationsyofbolic attributes
(nominal, ordinal, cyclic and structured) are done appropriatelyaidr attribute type. Nominal
attributes are mutated by randomly taking another value fromtthbuge domain. Ordinal
attributes are mutated by taking a neighboring value. Mutatiohg&rchical attributes involve
making small steps in climbing up and down the attribute hierarchies. more details on
probing operators implemented in LEM3, see (Wojtusiak and Michalski, 2005; 2006).

A crossover operator in probing action is done by randomly selemtiogoarent individuals
from the population, and creating two new individuals by exchanging valuése firstk
attributes, wheré is selected randomly. Results are accepted only when they do n@tdocint
the constraints that reflecting relationships among differenbuatts and any other problem
knowledge introduced to the program.

3.3 Search Locally

A local search employs user-defined methods. It is used whemasitdome solutions in the
current populations are expected to be close to the global optimum anadh @darching for

optimal values of the metric attributes. Because local search methodseesvstudied for many
years and are well-known, LEM3 has been designed to allow thetausdtach an external
program to run a method of the user’s choice. A full implementatiomiofeature is still under
development. Currently, the local search is executed by apply;gder-defined method (an
external program) to the best candidate solution whenever the “Probe” actiooutedxe

3.4 Adjust Representation Space

This action applies operators that modify the representation spaockibdbns in order to make it
more suitable for a successful application of the learn and irt&aaction. The representation
space can be modified by such operators as modifying domains 0wt metables (through
different ways of discretizing them), removing variables consideredvast to the optimization
problem, and/or creating new, more relevant variables as functions of theloragiahbles.

So far, we developed of an operator that seeks an optimal disioetiab metric attributes. It
employs the method fohAdaptive Anchoring Discretization, called ANCHOR (Michalski and
Cervone, 2001) that discretizes continuous attributes with a granukazgy dynamically
increasing in the subranges of the variable domain that appesguioe such an increase. The
method starts with an initial, very rough discretization of thgable domain. Once it starts
converging toward a possible solution, the precision of metridat®s is increased in the
subranges of the entire domain suggested by the best known individuaigliti€hs under
which LEM3 invokes ANCHOR are specified in Section 3.6.

3.5 Sdect Population

The survival-of-the-fittest principle that underlies Darwinianetygdgorithms is applied using
one of the selection methods developed in the field of evolutionary computdEM3
implements several methods: the rank selection (that setdat®ss that have the highest rank,

as determined by the fitness function), probabilistic selectidna(aproportional or roulette-
wheel selection that selects solutions with probability proportidoakheir fitness), and

tournament selection (that selects solutions that “win” when comhpai other randomly

drawn solutions). Note that these selection methods are based bime¢ks (a measure of
quality) of individual solutions, and do not take into consideration other $actioch as the need
to maintain diversity of population, that is, to keeping representatiigions from different

parts of the space.

3.6 Action Selection Module

The Action Selection Module uses Aation Profiling Function (APF) to control which actions
are applied at any given step of the computation. Initially, by default,ah#dC Module selects
the “Learn and Instantiate” action. If an unsatisfactory pregie®bserved after a number of
iterations defined by theearn-probe andlearn-threshold parameters, the program switches to
the “Probe” action. Théearn-probe parameter defines the minimum number of iterations for
which the Learn and Instantiate action is to be performed, ev¥lke grogress is unsatisfactory.
Thelearn-threshold parameter specifies the minimal improvement of the fithese vl the best
individual in the population in order to evaluate progress as satisfacdfter applying the
Probe operator, LEM3 attempts “Learn and Instantiate” again.

LEM3 counts how many times the “Probe” action was applied dfesarn and Instantiate” and
failed. If this number reachesutation-probe, control switches to the “Adjust Representation”
action. Therepresentation-probe parameter defines the maximum number of times the
representation is adjusted before switching to the “Randomizebnactvhich randomly
generates new individuals.

One way to apply above actions is to execute them in the seqistadeabove. After the Learn
and Instantiate action stops improving the population, the Probe operat@s apptation to
introduce diversity. This is particularly important when the poputabiecomes uniform, and it
is not possible to determine different H- and L-groups.

If the Probe action does not lead to a sufficient improvement aftdefined number of
repetitions, the next action is to increase the representatiamsipre which is done by
discretizing selected ranges of values into smaller uniterding to the ANCHOR method.
Again, if this action does not bring sufficient improvement afteersam number of steps, the
Control Module executes a start-over action that generates a nofrdutions randomly and
introduces them into the population. This step seeks to explore pdressddrch space that may
have been previously missed.

Another way to execute the above actions is to apply some of thgrarallel. This is an
important novelty of LEM3. For example, the program may generatentidduals in each
generation, 80 of which are created by learning and instantiatidoy, 4Pplying crossover, 5 by
applying mutation, and 5 by random generation. Numbers of individusdgedr by different
actions can be adjusted based on the program’s performances ffiasewest feature of LEM3
that is being currently tested, and obtained results will be presented in anothier repo

4 APPLYINGLEM3TO FUNCTION OPTIMIZATION

To test the performance and scalability of LEMS3, it was agpbeselected benchmark problems
that involve optimizing Rastrigin, Griewangk and Rosenbrock functiorte wumbers of
variables ranging between 2 and 1000. Results were compared welotitagied by applying
EA, a conventional Darwinian-type program, implemented using Evolujiddbjects Library,
to the same problems. We also compared LEM3 results with thehmdblissults by Estimation
of Distribution Algorithms (EDAs), and a Cultural Algorithm (CAs).

Results from comparing LEM3 with EA are presented in Tabl@He relative performance of
LEM3 and EA is measured by the speedup LEM3/EA, defined as titeofathe evolution
length of EA to the evolution length of LEM3 needed to achieve the saswdt. The
evolutionary length is the number of fithess evaluations requiredgosggram to reach a desired
result. The speedup LEM/EA thus states how many times the numhigresk of evaluations
done by EA is greater than the number of fithess evaluations don&M@.LThe stopping
criterion for EA and LEM3 was finding &close solution, that is, a solution that is better than
the best solution in the starting population by a factér iheres is a user-defined parameter
(Wojtusiak and Michalski, 2005; 2006). For examplegsD.1, the best solution in the final
population must be at least 10 times better that the best solution in the original population.

Table 1: Average speedups of LEM3 over EA in optimizing the Rosenbrock, Griewangk and
Rastrigin functions with the number of variables ranging from 100 to 10@3@ot and=0.01.

Number of variables | 100 | 200| 300 | 400| 500 600 700800 | 900| 100d

Speedup LEM3/EA | 10.7| 15 | 16.8/17.8|17.2| 16.7| 19 | 16.6| 17.2| 18

The table presents the speedup averaged for the three functions adiffdvemt values ob.
Each experiment was repeated 10 times with a differeningfgropulation, which was the same
for LEM3 and EA.

As one can see, the speedup of LEM3 over EA ranged between 10 and A&s anegndency to
increase with the number of function variables. There was not & siagé when speedup was 1
or smaller than one. It should be noted that LEM3 was executed Vathltdearameters, without
tuning it to these particular functions.

A comparison of LEMS3 results with the best results from the Gall#igorithm program (CA)
was done by applying LEM3 to optimize the same functions and wittsahee number of
variables as CA, as reported in (Reynolds and Zhu, 2001); speciftcathe optimization of the
Rastrigin, Griewangk, and Rosenbrock functions of 5, 3, and 2 variablethdsernumbers of
variables, LEM3 required on the average times fewer fitheskiatians on the Rastrigin
function, 53 times fewer fitness evaluations on the Griewangk funaimh,243 times fewer
fitness evaluations on the Rosenbrock function. Details are presaniadble 2. The stopping
criterion for LEM3 was finding an individual with fitness at leastgood as reported for the CA.
Each experiment was repeated 40 times, and the above numbers are averages.

Table 2: Comparison of LEM3 with CA on the Rastrigin, Griewangk, and Rosenbrock functions
(reproduced from Wojtusiak and Michalski, 2006).

Function and | Method Best fithness| Evolution LEM3/CA
variables Value Length Speedup
Rastrigin 5 | LEM3 0 687 ~728

variables CA 5.4532e-0§ ~500,000

Griewangk 3 [LEM3 0 1521 53

variables CA 1.0E-10 ~79,900

Rosenbrock 2 | LEM3 0 219 243

variables CA 1.0e-10 ~53,200

Comparing LEM3's results with the best results from the sevebi@\ implementations on
Griewangk and Rosenbrock functions of 10 and 50 variables reportecengd&xtea et al.,
2002) also indicated its significant advantage. Specifically, BE&fjuired on the average 142
and 66 times fewer fitness evaluations for optimizing the Griglwamd Rosenbrock function,
respectively. The LEM3 stopping criterion was finding a solutiom fihess at least as good as
the one found by the EDA program. Each experiment was repeattichd€) and reported
numbers are averages. The averages for functions of 10 and 50 variables are repabied3n T

As Table 3 shows, greatest speedup was achieved in optimizingidvea@gk function of 10
variables, which was about 231. Note also that while LEM3 found the wpti(@), EDA result
was very close (0.0511), but not the exact optimum.

Table 3: Comparison of LEM3 with EDA on the Rastri?in, Griewangk, and Rosenbrock
functions (reproduced from Wojtusiak and Michalski, 2006).

Function and | Method Best fitness| Evolution | LEM3/EDA
variables Value Length Speedup
Griewangk 10 | LEM3 0 1,305 ~923]
variables. EDA 0.051166 301,850

Griewangk 50 | LEM3 0 4,005 ~54
variables EDA 8.7673E-6 216,292

Rosenbrock 10| LEM3 1.2 1,389 ~118
variables EDA 8.6807 164,519

Rosenbrock 50| LEM3 46.74 7,875 ~15
variables EDS 48.8234 275,663

5 LEM-BASED SYSTEMSFOR OPTIMIZING HEAT EXCHANGERS

Because LEM shortens the evolution length, this suggests that ibenaarticularly suitable for
solving optimization problems in which fitness evaluation is tigresaming or costly. Problems
of optimizing complex engineering designs are of this type.

Using LEM methodology, we developed two specialized systems fomiaptg designs of
engineering systems, one, ISHED, for optimizing evaporators ineitehangers (Kaufman and
Michalski, 2000; Domanski et al., 2004; Michalski and Kaufman, 2006), and the I86€D,
for optimizing condensers. The evaluation of such design requires runnorg@ex simulator
and is time consuming. Heat exchangers are subject to aywvafriphysical and environmental

constraints, resulting in a very large number of different feasibbkigns, scattered throughout
intractably large representation spaces. In both systemsoljeetive is to arrange the
connections among the tubes that maximize the heat transferpfbhiem is very important,
because due to the ubiquity of heat exchangers in a modern societywimgpefficiency of heat
exchangers can bring significant economic, as well as environmental benefits.

ISHED and ISCOD were equipped with two modes of operation: leaemdgorobing. When

after a specified number of trials one of the modes makes imenff progress, the program
switches to the other mode. The learning operator learns rybesssrd in terms of attributes
that abstracted the heat exchanger design, and returns a hypapesifying parts of the

abstracted representation space. The program then instatiteteses, linking the tubes in the
heat exchanger in ways that given the domain knowledge are pjafesiible. More recent

versions of the programs have enhanced the flexibility by whidh audnstantiation is made, so
that the same rule can now generate more distinct heat exchangers.

Probing action utilizes eight operators akin to mutation and crossautetailored to the heat
exchanger optimization domain. One operator, for example, swaps therpositwo adjacent
tubes in a refrigerant path, while another operator moves a fork pagnpath up or down the
path.

Experiments have consistently shown that both systems are abldapt to varying
environmental conditions, and evolve heat exchanger designs that perfoarpar with, or
better than the best human designs. In problems with highly unevewsjrthe ISHED
designs were evaluated by experts as superior to the best human designs.

6 RELATED RESEARCH

The LEMS3 program follows earlier implementations, LEM2 and LEMiat tused earlier
versions of AQ learning programs and had fewer features. Aremmgitation of Learnable
Evolution Model for multi-objective optimization, LEMMO, developed by aeothesearch
group, is described in (Jourdan et al., 2005). LEMMO is based on rulesdd&om decision
trees learned by the C4.5 program, and was applied to a water quality optim@ablem. The
decision tree representation of the hypotheses is more limited thea attributional rule
representation used in LEM3.

The evolutionary methods that seem to be closest in spirit to &M ultural algorithms (e.g.
Reynolds and Zhu, 2001) that perform a constrained optimization processchn constraints
are learned during the evolutionary computation. The constraintsq dmleefs, reside in a
belief space that is updated during the evolution process. Indivichatlsate stored in an
optimization space are modified so that they satisfy the beli€he belief space is being built
based on statistical information about individuals, which usually cordigtéervals containing
the fittest individuals.

Estimation of Distribution Algorithms (EDAS) use statisticaference, usually Bayesian or
Gaussian networks, to estimate distributions of high-performing theis selected from one
population (Larranaga and Lozano, 2002). LEM significantly differs feidAs in that it seeks
rules for distinguishing between high- and low-performing individuald, employs symbolic
learning, rather than statistical. It also uses the fithesgion not only for selecting individuals

for learning, but also during the learning process itself, WBD& uses it solely for selecting
individuals. LEM does this by learning significance-based descriptions.

Another form of non-Darwinian evolutionary computation is performednéyetic algorithms
that combine conventional evolutionary computations with local searchodset(Hart,
Krasnogor and Smith, 2004). LEM3 takes an advantage of thibydealuding local search as
one of its actions.

7 CONCLUSION

This paper reported recent results from research on Learnable Evolution Molgl The most

important result is the development of LEM3, the most complete and adlivanplementation
of the model so far. It includes some elements that go beyonde#teres described in
(Michalski, 2000), such as the introduction of the Action Profiling Funci@om new

instantiation algorithms. LEM3 is more advanced than LEM2 also dilre temployment AQ21,
the recent and most advanced version of AQ learning. In experimpptedagions of LEM3 to

complex function optimization problems (with up to 1000 continuous variablesdperformed

EA, a standard Darwinian-type method. Comparisons with publishedsresuEstimation of
Distribution Algorithms and Cultural Algorithms also show the sugp#yi of LEM3 in terms of

evolution length.

LEM3 is highly scalable in comparison to the previous implementatiBR&ensive experiments
have confirmed that LEM3 can serve as a powerful optimizationnsyestel that it outperforms
other evolutionary computation systems in terms of evolution lengtlwadtalso applied to
problems in which in addition to numeric attributes solutions areridesicin terms of different
types of attributes, such as nominal, structured, and ordinal. Thenessfudf this feature is not
demonstrated in this paper, because in the first stage wedvemtcompare LEM3 to other
evolutionary computation programs, but these programs do not have this.fddtere are,

however, applications in which this feature may be very useful, sutiheaoptimization of very
complex engineering systems.

Early results from applying LEM-based ISHED and ISCODteys to optimizing heat
exchangers were evaluated by experts from the National lestituStandards and Technology
as superior to human designs in the cases of non-uniform air flows.

Summarizing, presented results confirm those published in previous ptyaersguided
evolutionary computation represented by the LEM approach can be hilylalgtageous for very
complex optimization problems in which the fitness evaluation is-tomsuming or costly. It is
especially recommended for problems for which standard evolutiomemputation methods
require long evolutionary processes. Our current research conceenal smresolved aspects of
the LEM methodology, such as its computational complexity, convezggpeed for different
types of functions, and the areas of applicability to which it is the most suitable

10

REFERENCES

Bengoextea, E., Miquelez, T., Larranaga, P., and Lozano, J.A., “ExgeamResults in
Function Optimization with EDAs in Continuous Domain,” in Larranagaari®l Lozano J.A.,
Estimation of Distribution Algorithms, Kluwer Academic Publishers, 2002.

Domanski, P.A., Yashar, D., Kaufman K. and Michalski R.S., “An Optimi2esign of Finned-
Tube Evaporators Using the Learnable Evolution Modkitérnational Journal of Heating,
Ventilating, Air-Conditioning and Refrigerating Research, 10, pp 201-211, April, 2004.
Evolutionary Objects Library, downloadable from the website: http://eodev.$oigeamet

Hart, W.E., Krasnogor, N. and Smith, J.E. (edBRggent Advances in Memetic Algorithms,
Springer, 2004.

Jourdan, L., Corne, D., Savic, D. and Walters, G., “Preliminary Inagtigof the ‘Learnable
Evolution Model’ for Faster/Better Multiobjective Water SysteDesign,” Proceedings of The
Third International Conference on Evolutionary Multi-Criterion Optimization, EMO’05, 2005.

Kaufman, K. and Michalski, R.S., “A Method for Reasoning with Striectuand Continuous
Attributes in the INLEN-2 Multistrategy Knowledge Discoverys&m,” Proceedings of the
Second International Conference on Knowledge Discovery and Data Mining (KDD-96),
Portland, OR, pp. 232-237, August, 1996.

Kaufman, K. and Michalski, R.S., “Applying Learnable Evolution Model t@atHexchanger
Design,” Proceedings of the Seventeenth National Conference on Artificial Intelligence (AAAI-
2000) and Twelfth Annual Conference on Innovative Applications of Artificial Intelligence
(IAAI-2000), Austin, TX, pp. 1014-1019, 2000.

Larrafiaga, P. and Lozano, J. (ed&timation of Distribution Algorithms. A New Tool for
Evolutionary Computation, Kluwer Academic Publishers, 2002.

Michalski, R.S. “LEARNABLE EVOLUTION MODEL Evolutionary Procsss Guided by
Machine Learning,Machine Learning, 38, pp. 9-40, 2000.

Michalski, R.S., “ATTRIBUTIONAL CALCULUS: A Logic and Repsentation Language for
Natural Induction,”Reports of the Machine Learning and Inference Laboratory, MLI 04-2,
George Mason University, Fairfax, VA, April, 2004.

Michalski, R.S. and Cervone, G., “Adaptive Anchoring Discretization farhable Evolution
Model,” Reports of the Machine Learning and Inference Laboratory, MLI 01-3, George Mason
University, Fairfax, VA, 2001.

Michalski, R.S., Wojtusiak, J. and Kaufman, K., "Intelligent Optim@atvia Learnable
Evolution Model," Proceedings of The 18th IEEE International Conference on Tools with
Artificial Intelligence, Washington D.C., November 13-15, 2006.

Michalski, R.S. and Kaufman, K., “Intelligent Evolutionary Design: AwNApproach to
Optimizing Complex Engineering Systems and its Application tsiging Heat Exchangers,”
International Journal of Intelligent Systems, 21, 2006.

Reynolds, R.G. and Zhu, S., “Knowledge-Based Function Optimization Usingy FCultural
Algorithms with Evolutionary Programming,TEEE Transactions on Systems, Man, and
Cybernetics, 31, 2001.

Wojtusiak, J., “AQ21 User's Guide,’Reports of the Machine Learning and Inference
Laboratory, George Mason University, MLI 04-3, Fairfax, VA, 2004a.

11

Wojtusiak, J., “The LEM3 Implementation of Learnable Evolution ModelerldsGuide,”
Reports of the Machine Learning and Inference Laboratory, George Mason University, MLI 04-
5, Fairfax, VA, 2004b.

Wojtusiak, J. and Michalski, R.S., “The LEM3 System for Non-Darwiniamliionary
Computation and Its Application to Complex Function Optimizatidteforts of the Machine
Learning and Inference Laboratory, MLI 05-2, George Mason University, Fairfax, VA, October,
2005.

Wojtusiak, J., Michalski, R.S., Kaufman, K. and Pietrzykowski, J., “MuydétiPattern Discovery
Via AQ21: A Brief Description of the Method and Its Novel FeesiirReports of the Machine
Learning and Inference Laboratory, MLI 06-2, George Mason University, Fairfax, VA, June,
2006.

Woijtusiak, J. and Michalski, R.S., “The LEM3 Implementation of Leas&holution Model
and Its Testing on Complex Function Optimization Problen?sgceedings of Genetic and
Evolutionary Computation Conference, GECCO 2006, Seattle, WA, July 8-12, 2006.

12

A publication of theMachine Learning and Inference Laboratory
George Mason University

Fairfax, VA 22030-4444 U.S.A.

http://www.mli.gmu.edu

Editor: R. S. Michalski
Assistant Editor: Janusz Wojtusiak

The Machine Learning and Inference (MLI) Laboratory Reports are an official publication of the Machine Leamin
and Inference Laboratory, which has been publistedinuously since 1971 by R.S. Michalski's resbagcoup
(until 1987, while the group was at the Universitylllinois, they were called ISG (Intelligent Sgsis Group)
Reports, or were part of the Department of Comp8téence Reports).

Copyright © 2007 by the Machine Learning and Infexe Laboratory

