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ABSTRACT 
 

 
 
HANDLING CONSTRAINED OPTIMIZATION PROBLEMS AND USING 
CONSTRUCTIVE INDUCTION TO IMPROVE REPRESENTATION SPACES IN 
LEARNABLE EVOLUTION MODEL 
 
Janusz Wojtusiak, Ph.D. 
 
George Mason University, 2007 
 
Dissertation co-Director: Dr. Ryszard S. Michalski 
Dissertation co-Director: Dr. James E. Gentle 
 
 

This dissertation investigates two closely related problems in the learnable evolution 

model: the automatic improvement of the representation space using constructive 

induction, and the handling of constraints in optimization tasks.  The former includes an 

investigation of the theoretical and implementational aspects of representation space 

transformations in the context of complex optimization problems, the development of 

algorithms that perform these transformations, and algorithms for creating new candidate 

solutions (via instantiation) in the improved representation spaces.  Handling specific 

types of constraints is closely related to the equation instantiation task in the modified 

representation spaces; therefore, the same methods can be used for solving both 

problems.  Moreover, transformations of representation spaces may help in handling 

constraints of other types, that is, constraints that cannot be handled directly during the 

instantiation process. 

   



 

The developed algorithms are implemented in the LEM3 and AQ21 systems and tested 

on a set of constrained and non-constrained benchmark optimization problems. Two 

exemplary applications to optimization of complex systems in the context of selected 

medical datasets are also presented. These applications are the optimization of AQ21 

parameters, and automatic discretization of numeric attributes. 

 
 
 
 

   



 

CHAPTER 1 INTRODUCTION 

This research investigates and extends a novel optimization method, called the learnable 

evolution model (LEM), that applies advanced machine learning to search very complex 

problem solution spaces.  By applying machine learning, LEM hypothesizes why some 

candidate solutions (e.g. designs, complex parameter settings) perform better than others, 

and uses that knowledge to create new candidate solutions (e.g., Michalski, 1998; 2000).  

In particular, this research adds solutions of two interrelated problems to the body of 

work in that area. One is how to handle complex constraints in LEM, and the second is 

how to automatically improve the representation space in which solutions are sought in 

order to improve and speed-up the optimization process. 

 

Most real world optimization problems have constraints which that limit the space of 

feasible solutions.  Such constraints are used to prohibit search space solutions that are 

physically impossible, make no sense based on expert’s knowledge, or imply undesirable 

properties of the optimized systems.  Because many methods of constrained optimization 

have been developed in the past, this research concentrates on novel methods that 

specifically apply to LEM.  The main observation that led to the development of methods 

for handling constraints in LEM is that different types of constraints require different 

methods. A general distinction is made between instantiable constraints that can be 
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handled directly in LEM’s instantiation process and general constraints for which there is 

no simple algorithmic solution.  Different methods for handling both types of constraints 

are presented in Chapter 4 and experimentally evaluated in Chapter 6. 

 

The original representation of candidate solutions may not be adequate for the 

optimization problem, thus its improvement may lead to finding better solutions or 

finding solutions more efficiently.  The process of designing representation spaces is 

often complicated and requires substantial domain knowledge.  Moreover, different 

representation may be needed at different stages of the optimization process.  Because of 

that, there is a need for automated methods that improve the representation of solutions.  

This research adopts selected constructive induction (CI) methods used in machine 

learning for improving representation spaces and applies them in the learnable evolution 

model.  The key issue concerns creating new candidate solutions from hypotheses learned 

in modified representation spaces.  The solution proposed in Chapter 5 of this dissertation 

uses methods for handling constraints to resolve this issue.  Experimental evaluation 

presented in Chapter 6 confirms that for selected types of problems, constructive 

induction consistently improves the program’s performance, as measured by the fitness of 

the best achieved solution after a given number of the fitness evaluations. 

 

This dissertation is organized in the following way: Chapter 2 presents definitions and 

background knowledge from the fields of machine learning and evolutionary computation 

needed for further discussion.  Chapter 3 presents in detail the learnable evolution model 

and its relevant features.  It also introduces LEM3, the newest LEM implementation, 
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which is the basis for development of the research described here.  Chapter 4 presents the 

problem of constrained optimization, proposes a classification of constraints, and presents 

methods of handling constrained optimization problems in LEM.  Chapter 5 discusses 

issues of representation (optimization) space in LEM and methods of its automated 

improvement.  Chapter 6 presents experimental results of the application of LEM to 

several well known test problems, and analysis of its performance.  Chapter 7 presents an 

application of LEM to optimization of complex systems.  In particular, it is applied to 

optimizing parameters of the AQ21 machine learning program for selected medical 

datasets, and finding the best discretizations of numeric attributes in medical datasets.  

Finally, Chapter 8 presents conclusions and discusses future research directions in LEM.  

In addition, each chapter discusses related research.  
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CHAPTER 2 BACKGROUND AND DEFINITIONS 

This chapter presents definitions of basic concepts and background information needed 

for further discussion of the learnable evolution model, methods of handling constraints 

and automated improvement of representation spaces. 

 

2.1 Basic Definitions 

The problem representation space, also known as search space, is the set of all possible 

problem solutions. In this work it is the Cartesian product of the domains of attributes 

used to define candidate solutions or hypotheses.  Formally, E=D1 x D2 x … x Dn, where 

E is the representation space and D1, …, Dn are domains of the attributes used to 

represent possible solutions and hypotheses.  The presented method distinguishes 

between the original representation space provided to the system in which the fitness 

function is defined and a modified representation space in which innovation operators are 

executed.  The original representation space is denoted E and the modified representation 

spaces are denoted EC. 

 

 4



 

The fitness function, also known as the objective function, defines a criterion for 

evaluating candidate solutions.  The goal of the optimization process is to find the 

function’s optima (minima or maxima).  Formally, the fitness function f is given by (2-1). 

 f: E -> R (2-1) 

E is the representation space (search space) and R  is the set of real numbers.   

 

Candidate solutions are members of the set of possible solutions.  Each candidate 

solution is represented by a single point in the representation space.  In evolutionary 

computation, candidate solutions are commonly referred to as individuals. 

 

Concept learning is a specific type of supervised learning that concerns methods of 

learning from labeled data.  Given a set of examples (ei, Ci) belonging to classes C1..Cn, 

where ei are elements of E, the goal of supervised learning is to induce general 

descriptions of classes C1 .. Cn based on the provided examples.  In the case of concept 

learning, there are usually only examples of one class (the concept) and non-examples of 

the concept.  In the presented study, learned hypotheses are represented in form of rules 

in attributional calculus (AC ), and the AQ method is used for learning (see Section 2.4). 

 

Constructive induction is a process of improving the representation space, E, by 

modifying domains of attributes, removing irrelevant attributes, and/or creating new 

attributes.  The original representation space E is transformed into a modified 

representation space EC which is more suitable for the process of learning or 

optimization.  Chapter 5 describes in detail different methods of constructive induction, 
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especially those applicable to improvement of representation spaces in the learnable 

evolution model, and other representation-related issues. 

 

Lexicographical evaluation functional (LEF) is a method of evaluating solutions using 

multiple criteria (e.g., Michalski, 1972).  The concept of LEF is used in all chapters, so its 

understanding is important. Objects such as rules or candidate solutions go through a 

series of tests on predefined criteria, each with a given tolerance (2-2).  For each 

criterion, in sequence, LEF selects for consideration remaining solutions whose 

evaluation is within a given tolerance from the best solution. 

<(Criterion1, τ1); (Criterion2, τ 2); … (Criterionn, τ n)> (2-2)
 

 

Figure 2-1: Illustration of Lexicographical Evaluation Functional. 
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The usage of LEF is illustrated in Figure 2-1, in which six solutions (s1, …,s6) are being 

evaluated by a LEF with four criteria.  The solution s1 scores the best for the first 

criterion and the solutions s2, s3, and s4 are within the given tolerance τ1 of s1, thus s1, 

s2, s3, and s4 are all considered acceptable according to the first criterion.  The solutions 

s5 and s6 are outside the tolerance and are rejected.  Among the solutions that passed 

through the first criterion, s2 scores the best on the second criterion, and s1 and s4 are 

still within the given tolerance for the second criterion.  The solution s3 is rejected.  On 

the third criterion the solution s4 scores the best, with s2 within its tolerance.  Finally, on 

the fourth criterion, the solution s4 scores the best, and is selected according to the LEF.  

Please note that the solution s4 is not the best based on the first and second criteria, but 

because it is close enough to the best solution (within given tolerances), it is considered 

equivalent.  Finally, when all the other solutions are rejected the solution s4 is selected by 

the LEF. 

 

Predictive accuracy of a hypothesis on a testing dataset is defined as a ratio of the 

number of correctly classified examples by the hypothesis to the total number of 

examples in the testing dataset.  It can be expressed either as a number in the range [0, 1] 

or as a percentage.  

 

Precision of a hypothesis H on a testing dataset Ts is given by (2-3).  A testing program 

may assign a testing example to more than one class, thus its answer is imprecise.  

)1|*(|||
||||*||),(

−
−

=
classessassignment

sassignmentclassesTsTsHprecision  (2-3)
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Here |classes| denotes the number of classes, |assignments| denotes the number of 

assignments of training examples to classes, and |Ts| denotes the total number of testing 

examples. 

 

2.2 Evolutionary Computation 

Evolutionary computation (EC) is a class of stochastic optimization methods initially 

inspired by Darwin’s theory of evolution (Darwin, 1859).  Its terminology is also 

borrowed from biology; terms such as population, individual, and selection of the fittest 

are commonly used.  A typical goal of evolutionary computation, also used in this 

dissertation, is optimization, that is, finding the best solution in the representation space 

according to a specified criterion (fitness).  The general schema of evolutionary 

computation is presented in pseudocode in Figure 2-2. 

 

Create an initial population of candidate solutions 
Evaluate candidate solutions in the initial population 
Loop while stopping criteria are not satisfied 
 Create new candidate solutions 
 Evaluate fitness of the new candidate solutions 
 Select a new population 

Figure 2-2: A pseudocode of general schema of evolutionary computation programs. 

 

These methods start with an initial population, which is either generated randomly or is 

provided to the system (for example, designs/individuals known to have high 

performance).  Depending on the application and the particular EC method used, several 

different methods for generating initial populations have been proposed and discussed in 

the literature.  In most cases, researchers agree that initial populations should be 
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distributed uniformly in the search space if no prior knowledge about possible solutions’ 

locations is available. 

 

Evaluation of candidate solutions/designs involves computing their fitness values.  

Evolutionary computation methods require fitness values that can be compared.  Given 

two or more candidate solutions, a program is able to compute their fitnesses and use the 

result to decide which perform better and which perform worse. The evaluation of 

solutions may be a very time consuming and costly operation. It may involve running 

simulators, running various experiments, and sometimes may even require interaction 

with human experts.  The time needed to evaluate fitness of a single candidate solution 

varies from a small fraction of a second (e.g. in function optimization problems) to hours 

of supercomputer CPU time for problems that require advanced simulation. Examples of 

applications that require running simulators to evaluate candidate solutions are designing 

heat exchangers (Kaufman and Michalski, 2000a; Domanski et al. 2004), optimal non-

linear filters (Coletti et al., 1999), aircraft wing shapes (Oyama, 2000), and various other 

applications (see Bentley and Corne, 2002; Gen and Cheng, 2000; Rothlauf et al., 2006; 

Giacobini et al., 2007). 

 

Stopping criteria depend on implementation of an evolutionary computation method, its 

parameters, and a general optimization task.  Example stopping criteria include finding a 

solution whose fitness reached a given value (a satisfactory solution is found), exceeding 

maximum computational resources, such as time of evolution or maximum number of 

fitness evaluations; and attaining insufficient progress for a given number of generations. 
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Creation of new candidate solutions, the so called innovation process, is the most 

important step of evolutionary computation.  Methods for creating new candidate 

solutions vary from purely random generation of points in the search space, through 

semi-random operators such as different types of mutations and recombinations, to 

advanced methods that involve reasoning or machine learning and are guided by an 

“intelligent agent.”  The advanced methods are realized in the form of recently introduced 

non-Darwinian evolutionary computation methods such as cultural algorithms (CAs), 

estimation of distribution algorithms (EDAs), the learnable evolution model (LEM), and 

memetic algorithms (MAs) that are further described in Chapter 3.  

 

Selection of new populations initially followed the Darwinian rule of the selection of the 

fittest.  Although it is generally the case in all selection methods that candidate solutions 

with better fitness have higher chances of survival, recent methods are probabilistic 

and/or include advanced reasoning.  For example, one method is to select a group of 

lower performing candidate solutions in the population in order to maintain diversity and 

allow for better search of the optimization space.   

 

Classifications of evolutionary computation methods take into consideration their 

different aspects, such as representation of candidate solutions, operators used, and 

applications (Back, Fogel and Michalewicz, 2000).  The main subfields of evolutionary 

computation are genetic algorithms (Holland, 1962; 1975) and evolution strategies 

developed independently (Rechenberg, 1965; Schwefel, 1965), evolutionary 

programming (Fogel, Owens, and Walsh, 1966; Fogel, 1999), genetic programming 
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(Koza, 1992), and several new approaches such as estimation of distribution algorithms 

(Mühlenbein and Paaß, 1996; Larrañaga and Lozano, 2002), memetic algorithms 

(Moscato, 1989; Hart, Krasnogor and Smith, 1994), and differential evolution (Storn and 

Price, 1997; Price, Storn and Lampien, 2005). 

 

2.3 Attributional Calculus 

Attributional calculus (AC) is a logic system, introduced by Michalski (2004a), which 

combines elements of first order predicate logic, propositional logic, and multi valued 

logic.  Its purpose is to provide a formal representation language for natural induction, an 

inductive learning process whose goal is to hypothesize knowledge in human oriented 

forms, using easy to interpret rules, graphical representations etc.  The following sections 

present selected aspects of attributional calculus that are important for the learnable 

evolution model and methods discussed in this dissertation. 

 

2.3.1 Attributes and Their Types 

Objects being considered in learning or optimization are described in terms of their 

properties formally represented by attributes.  Attributional calculus recognizes several 

types of attributes that correspond to ways in which humans represent object’s properties.  

These attribute types are employed in the learnable evolution model, in particular in its 

LEM3 implementation, and in AQ learning used for hypothesis formulation in LEM.  An 

attribute is a function that for each entity in the space of possible entities assigns a value 

from the attribute domain.  In this research attributes are denoted using their names with 
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capitalized first letters, e.g., Weather or Color, and symbolic values of their domains are 

usually denoted using all small letters, e.g., windy or red.  Attributional calculus 

recognizes the following attribute types: 

 

nominal – whose domain is an unordered, finite set of values, for example, an attribute 

Color with domain {red, green, blue, yellow} 

 

structured – whose domain is a partially ordered (with a given hierarchy), finite set of 

values, for example, an attribute Vehicle with domain {car, suv, sports car, van, bicycle, 

mountain bicycle, cross country, downhill, sport bicycle, train} where the hierarchy is 

shown in Figure 2-3. 

Vehicle

train bicyclecar

suv van

sports car

mountain bicycle

racing bicycle

downhill cross country
 

Figure 2-3: Example hierarchy of attribute Vehicle. 

 

ordinal – whose domain is an ordered set of values, for example an attribute “grade” 

whose domain is {A, B, C, D, E} where “A” is the highest and “E” is the lowest grade. 
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interval – whose domain is an ordered set of values. The transformations y’ = a + y apply 

to the interval attributes.  For example, Temperature (in degrees Fahrenheit) is an interval 

attribute – it makes sense to say “temperature outside is 20 degrees lower than inside,” 

but it is not correct to say that “temperature outside is twice as low as inside,” because 

zero is not well defined for the attribute (unless it is measured in the Kelvin scale). 

 

ratio – whose domain is an ordered set of values, and ratio transformations y’ = ay apply 

to the attributes.  For example, Length is a ratio attribute, because one may say “that table 

is twice as long as the sofa.” 

 

absolute – whose domain is an ordered set of values, but no transformations apply to the 

attributes.  For example, the Social security number (SSN) is an absolute attribute. 

 

set-valued – whose values are sets, and its domain is a power set (a se of all subsets) of a 

base set.  For example, Items in a customer’s cart is a set-valued attribute. 

 

compound – whose domain is a Cartesian product of  domains of its constituent 

attributes.  For example, an attribute Weather can be built of constituent attributes such as 

Wind, Rain, Temperature, etc. 

 

The ordinal, interval, ratio, and absolute attribute types are commonly referred to as 

linear, because their values are linearly ordered.  A detailed description of attribute types 

and their use in AQ learning are presented by Michalski and Wojtusiak (2007). 
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2.3.2 Attributional Rules 

Natural induction requires that knowledge is learned in forms easy to understand and 

interpret by people who may not be experts in machine learning, knowledge mining, or 

have a technical background.  Thus, medical doctors, engineers, economists, security 

officers, or architects should be able to understand, interpret, modify and apply 

knowledge learned by computer systems.  Such a goal requires that knowledge discovery 

programs use a rich language that can be either automatically translated to natural 

language (e.g. English) or easy to understand itself.  Learned knowledge is represented in 

attributional calculus in the form of attributional rules which consist of attributional 

conditions.  An attributional condition takes the form: 

 [L rel R: A], (2-4) 

where L is an attribute, an internal conjunction or disjunction of attributes, a compound 

attribute, or an expression; rel is one of =, >, <, ≤, ≥, :, or ≠; R is an attribute value, an 

internal disjunction of attribute values, an attribute, an internal conjunction of values of 

attributes that are constituents of a compound attribute, or an expression, and A is an 

optional annotation that may list |p| and |n| values for the condition, defined as the 

numbers of positive and negative examples, respectively, that satisfy the condition, and 

the condition’s consistency defined as |p|/(|p|+|n|).  If the condition is presented in 

conjunction with other conditions, the annotation may also consist of |pc| and |nc| which 

are cumulative numbers of positive and negative examples, respectively (numbers of 

positive and negative examples that satisfy the condition and all previous conditions in 

the conjunction), and cumulative consistency |pc|/(|pc|+|nc|).  Figure 2-4 presents examples 

of attributional conditions and their explanations. 
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Condition Explanation 

[Length>7.3] The length of an entity is greater than 7.3 

units (as defined in the attribute’s domain). 

[Color=red v blue: 40,2] The color of an entity is red or blue. The 

condition is satisfied by forty positive and 

two negative examples. 

[Width=short..medium] The width of an entity is between short and 

medium (inclusive). 

[Head color = Body color] The color of the head and the color of the 

body are the same. 

[Length & Height≤12] An entity’s length and height are both 

smaller or equal to 12 units. The units are 

defined in the attributes’ domains. 

[Weather: sunny & windy] The weather is sunny and windy. This is an 

example of a condition that includes a 

compound attribute Weather. 

[Length + Width≤24 inches] The sum of Length and Width is smaller or 

equal to 24 inches. 

Figure 2-4: Examples of attributional conditions. 
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There are several different forms of attributional rules allowed by attributional calculus.  

Three important forms of attributional rules are presented below (2-5) - (2-7). 

 CONSEQUENT s PREMISE (2-5) 

 CONSEQUENT s PREMISE Ã EXCEPTION (2-6) 

 CONSEQUENT s PREMISE À PRECONDITION (2-7) 

where PREMISE, CONSEQUENT, EXCEPTION, and PRECONDITION are complexes, 

that is, conjunctions of attributional conditions.  An EXCEPTION can also be an explicit 

list of examples that constitute exceptions to the rule.  The rules (2-5) are interpreted that 

the CONSEQUENT is true whenever the PREMISE is true.  The rules (2-6) are 

interpreted that the CONSEQUENT is true whenever the PREMISE is true, except for 

when the EXCEPTION is true.  The rules (2-7) are interpreted that the CONSEQUENT 

is true whenever the PREMISE is true, provided that the PRECONDITION is true.  The 

signs Ã and À are used to denote exception and precondition, respectively.  Each rule may 

be optionally annotated with several parameters such as numbers of covered examples 

(positive and negative), the rule complexity etc.  Examples of attributional rules are 

presented in Figure 2-5. 
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Rule Explanation 

[Part=acceptable] s  [Width=7..12] & 

 [Length<3] & 

  [Material=steel v plastic] 

A part is acceptable if its width is 

between 7 and 12, its length is less 

than 3 and its material is steel or 

plastic. 

[Activity=play v hike] & [Dress=casual] s 

[Weather: sunny & high temperature] & 

[Day of week=weekend] & 

[Homework=completed] 

The activity will be to play or to hike 

and dress will be casual if weather is 

sunny and high-temperature and day 

of week is weekend and homework is 

completed.  This is a multi-head rule 

with two conditions in its consequent.  

The premise consists of three 

conditions. The attribute Weather is 

compound, the attribute Day of week 

is structured (here Saturday and 

Sunday are generalized into a higher 

level concept of weekend), and 

Homework is a nominal attribute. 

[Design=high-performing]  

        s [X1=1..3: 20,10] & 

             [X5=1.5: 7, 3] : p=5, n=1 

A design is high-performing if X1 

takes value between 1 and 3, and X5 

takes value 1.5.  The first condition is 

satisfied by 20 positive and 10 

negative training examples and the 
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second condition is satisfied by 7 

positive and 3 negative raining 

examples.  The entire rule is satisfied 

by 5 positive and 1 negative training 

examples. 

[Activity=play] 

s [Condition=cloudy v sunny: 7,8] & 

      [Temp= medium v high: 7,7] 

  Ã [Condition=cloudy] &  

      [Wind=yes] & [Temp= high] 

   : p=7,n=0,q=1 

 

An activity is play if condition is 

cloudy or sunny and temperature is 

medium or high, except for when 

condition is cloudy, there is wind and 

temperature is high.  The rule covers 

7 positive and no negative examples. 

Its quality measure (see Section 

2.4.2) is 1. 

[User=user3] s [Program=word v excel] & 

[#Open windows=2..5] À [Day=monday] 

The user is user3 if Program is word 

or excel, and the Number of open 

windows is between 2 and 5, 

provided that day is Monday. 

Figure 2-5: Examples of attributional rules. 
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Output attributes (a.k.a. decision attributes or dependent attributes/variables) are 

attributes used in the CONSEQUENT part of rules.  They are used to define classes or 

concepts.  For example the output attribute in the first rule demonstrated in Figure 2-5 is 

“Part.”  In the second rule demonstrated in the same Figure, the output attributes are 

“Activity” and “Dress.” 

 

Input attributes (a.k.a. independent attributes/variables) are those used in the premise, 

exception, and/or precondition, that is, on the right side of rules.  For example in the first 

rule demonstrated in Figure 2-5 the output attributes are “Width,” “Length,” and 

“Material.”  Please note that not all input attributes from the representation space are 

necessarily included in rules.  Some input attributes may not be needed to describe 

positive examples, or are irrelevant to a given learning task. 

 

A ruleset is a set of rules with the same consequent that represents a hypothesis 

describing one particular class.  Rulesets may be complete and consistent, meaning that 

constituent rules cover all examples of a concept and the rules do not cover any examples 

of other concepts (negative examples), or rulesets may be partially incomplete or 

inconsistent. 

 

A formula is in disjunctive normal form (DNF) if it is a disjunction of clauses that are 

either a single attributional condition or a conjunction of attributional conditions.  For 

example (2-8) is in DNF, where A, B, C, D, E, and F are attributional conditions. 

 A & B  V  C  V  D & E & F (2-8) 
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2.3.3 Generalized Logic Diagrams 

Visualization of data and knowledge is a very important aspect of natural induction.  One 

of many methods for visualizing representation spaces, examples and different forms of 

attributional rules is the generalized logic diagram (GLD; Michalski, 1972; Michalski 

1978; Wnek, 1995; Sniezynski, Szymacha and Michalski, 2005). 

 

Generalized Logic Diagrams provide a planar representation of the multidimensional 

representation space spanned over multiple-valued discrete attributes.  Continuous 

attributes need to be discretized prior to being displayed.  By properly ordering attributes 

assigned as axes of the diagram, patterns can be displayed in an easy to understand form.  

In GLDs each cell represents exactly one point in the discrete representation space, thus a 

set of examples can be easily represented as a set of points in the diagram.  Each complex 

(conjunction of conditions) is represented by a rectangle or a set or rectangles. 

 

An example of GLD is presented in Figure 2-6.  The representation space is a Cartesian 

product of four attributes (Condition, Wind, Temperature, and Daytype).  The diagram 

shows 22 examples (6 of Activity Read, 9 of Activity Shop, and 8 of Activity Play), and 

two complexes (shaded areas) belonging to rules describing activity “Play”. 
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[Activity=play]  
s [Condition=cloudy v sunny] & [Temperature=medium] 
s [Condition=sunny] &  [Temperature=medium v high] 
 
 
 

 

C – Condition: r – rain, c – cloudy, s – sunny 
W – Wind: n – no, y – yes 
T – Temperature: v – very low, l – low, m – medium, h – high 
D – Daytype: o – workday, e – weekend, 
P – play, R – read, S - shop 

Figure 2-6: An example of Generalized Logic Diagram. 

 

In practice GLDs are practically applicable to about 5-10 attributes, depending on their 

domain sizes.  For larger numbers of attributes the GLD’s planar representation becomes 

too large, and projections onto smaller spaces are needed. In this dissertation, most 

examples of learned rules and individuals are presented using GLDs. 
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2.4 Concept Learning 

Concept learning, a special case of supervised learning, is one of the most important and 

the best explored type of learning from examples.  It focuses on creating general 

descriptions of concepts given set of labeled examples belonging to these concepts.  

Formally, the task of concept learning is defined as: given a set of examples (ei, Ci) 

belonging to classes C1 .. Cn, where ei are elements of representation space E, the goal is 

to induce general descriptions of classes C1 .. Cn based on the provided examples, using a 

given language L.  Concept learning is often also described as learning a description of 

one class given examples belonging to that class and examples not belonging to it. An 

example of concept learning with an output hypothesis in the form of attributional rules is 

presented in Figure 2-7. 

 

Attributes:  
Shape nominal {square, oval, triangle} 
Color nominal {red, green} 
Class nominal {positive, negative} 
 
Input examples: 
 square, red, positive 
 oval, red, positive 
 square, green, negative 
 triangle, red, negative 
 
Output rule: 
 [Class=positive] s [Shape=square v oval] & [Color=red] 

Figure 2-7: Example of concept learning. 
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The same concept can be learned and represented, for example, by a decision tree, as 

shown in Figure 2-8. 

Shape

Class = negative Class = positiveColor

Class = negative Class = positive

oval
trianglesquare

green red

 
Figure 2-8: Decision tree learned from the input examples. 

 

As shown in the above example, even in the very simple case, the decision tree and the 

attributional rule generalized examples in very different ways, although both 

generalizations are complete and consistent with regard to the provided examples 

(training data).  This issue is investigated by Wnek and Michalski (1994), who show how 

different models (e.g. neural nets, attributional rules, decision trees) generalize. 

 

The following Sections briefly present the AQ learning methodology and its features and 

methods that are used or can be used in the learnable evolution model.  It also presents a 

summary of the most important features of the AQ21 learning system, to date the most 

advanced implementation of AQ learning, which is used for hypothesis formulation in the 

LEM3 system. 
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2.4.1 Basic AQ Algorithm 

The well-known family of AQ programs originated with the Aq algorithm for solving the 

general covering problem (e.g. Michalski, 1969).  Numerous implementations and 

extensions of the method were developed over the years.  Among the best known AQ 

implementations are AQ7 (Michalski and Larson, 1975), AQ11 (Michalski and Larson, 

1983), AQ15c (Wnek et al., 1995), AQ17 (Bloedorn et al., 1993), AQ19 (Michalski and 

Kaufman, 2001a) and most recently AQ21 (Wojtusiak, 2004a; Wojtusiak et al., 2006a,b). 

 

A basic version of the AQ learning algorithm is presented in Figure 2-9.  It takes as input 

a set of positive examples of a concept, P, and set of negative examples, N, belonging to 

all other classes (examples not belonging to the learned concept), and a multicriterion 

quality measure (lexicographical evaluation functional, LEF).  It returns a complete and 

consistent hypothesis in the form of an attributional ruleset optimized according to the 

given lexicographical evaluation functional. 

 

Hypothesis = null 
While P is not empty 
 Select a seed example p from P 
 Generate star G(p, N) 
 Select the best rule R from G according to LEF, and  
   include it in Hypothesis 
 Remove from P all examples covered by the selected rule 
Return learned Hypothesis 

Figure 2-9: Basic AQ algorithm. 

 

The key part of the algorithm is the generation of star G(p, N) given a seed p and set of 

negative examples N.  The star is a set of maximally general rules covering the seed p, 

but not covering any negative example from N.  A star is constructed by intersecting 
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partial stars which are generated using the extension-against operator (e.g. Michalski, 

1983).  The extension-against that takes two data points and creates a set of maximal 

generalizations of one data point (a positive example) that does not cover the second data 

point (a negative example). The result of such an operation is a set of local stars. An 

intersection of local stars creates a star of the given seed.  To narrow down a possibly 

very large number of intermediate generalizations, AQ uses beam search that at each step 

of star generation keeps no more than a predefined number of best rules, as determined 

by the given pattern quality measure.   

 

To select a rule from a star, the algorithm uses a lexicographical evaluation functional 

(LEF), a user-defined multicriterion measure of rules’ quality (see Section 2.1).  The 

default criteria for selecting a rule from a star are to (1) maximize the number of positive 

examples covered by the rule and (2) minimize the number of conditions in the rule. A 

complete list of LEF criteria available in the AQ21 system is presented by Wojtusiak 

(2004a). 

 

2.4.2 Learning Strong Patterns 

The basic AQ algorithm presented in the previous section is designed to learn complete 

and consistent hypotheses with regard to the training data, and is known as theory 

formation (TF) mode.  A modification of the method, called pattern discovery (PD) 

mode, is designed to search for strong patterns that maximize an assumed pattern quality 

measure.  Similarly to the basic AQ algorithm shown in Figure 2-9, the method takes as 

input a set of positive examples P, a set of negative examples N, and a pattern quality 
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measure, called LEF, defined by the user.  It returns a hypotheses consisting of strong 

patterns that characterize examples from the set P.  The method is presented in Figure 

2-10. 

 

Hypothesis = null 
While P is not empty 
 Select a seed p from P 
 Generate approximate star G(p, N) 
 Select the best k rules from G according to LEF, and  
   include in Hypothesis  
 Remove from P all examples covered by the selected rules  
Optimize final rules 
Select the final hypothesis from all selected rules 

Figure 2-10: AQ algorithm for learning strong patterns. 

 

In PD mode the program starts by focusing attention on one data point, called the seed, 

and then creates a set of alternative approximate generalizations of the seed, called an 

approximate star.  The generalizations are approximate, because while they do not have 

to be consistent with the data; they must optimize a pattern quality criterion.  

 

The pattern quality measure, q(w),  is defined by: 

 q(w) = covw * config1-w (2-9) 

where  

 cov=|p| / |P| (2-10) 

and 

 config=((|p| / (|p| + |n|)) – (|P| /(|P| + |N|))) * (|P| + |N|) / |N| (2-11) 

are measures of pattern (here, attributional rule) coverage and confidence gain, 

respectively, and w is a user-defined parameter.  Here, |p| and |n| are the numbers of 
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positive and negative examples covered by the rule, and |P| and |N| are the numbers of 

positive and negative examples in the training dataset, respectively (Michalski and 

Kaufman, 2001b). The q(w) definition (2-9) assumes that config ≥ 0 which means that a 

rule’s prediction is better than a random guess.  I practice the formula implemented in 

AQ21 distinguishes two cases to also incorporate config < 0. 

 

Optimization of rules consists of several possible operations which may lead to 

improvement of rules’ quality.  The operations are: abstraction of conditions, 

specialization of conditions, removing conditions, and removing entire rules. 

 

Well-known rule learning methods, such as RIPPER (Cohen, 1995) or CN2 (Clark and 

Niblett, 1989) also seek strong patterns, but AQ21 can determine both strong patterns and 

complete and consistent theories (hypotheses), depending on the setting of its parameters.  

Also, the patterns learned by AQ21 can be richer and of different types. 

 

2.4.3 AQ21 Implementation of AQ Learning 

Over the past three and half decades, the different versions of AQ programs implemented 

different methods extending the basic AQ algorithm.  These programs were developed in 

different programming languages (PL/1, Lisp, Pascal, C/C++) and on different platforms.  

AQ21, which is the newest implementation of the AQ methodology, is an attempt to 

integrate and implement the most important features of the previous programs along with 

several new additions, which are the result of the newest research in the field.  It also 

implements several features which are unique and not present in any other program.  
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Although AQ21 is still under development and many of the desired features are not yet 

implemented, to the best of author’s knowledge it is the most powerful symbolic machine 

learning program ever developed. This implementation reuses the source code of the 

previous AQ20 system (Cervone, Panait and Michalski, 2001).  AQ21 is described in this 

dissertation because it is used as a learning module in the LEM3 implementation of the 

learnable evolution model that is a basis for implementing presented methods.  The 

following paragraphs briefly describe the most important features of AQ21. 

 

AQ21 induces hypotheses that are represented as rules in attributional calculus.  

Depending on its settings, it learns rules in the forms (2-5) - (2-7) discussed in Section 

2.3.2.  It operates in three modes, namely theory formation (TF), approximate theory 

formation (ATF), and pattern discovery (PD).  In the TF mode, it learns theories that are 

complete and consistent with regard to the training data using a modification of the 

algorithm presented in Section 2.4.1.  In ATF mode, it first learns complete and 

consistent theories and then modifies them in order to improve the rules’ quality.  This 

operation may result in partial inconsistency and/or incompleteness of the learned 

hypotheses.  In PD mode, AQ21 seeks strong patterns in data.  The patterns may be (and 

usually are) neither complete nor consistent with regard to the input data.  To do so, the 

program implements a version of the algorithm briefly presented in Section 2.4.2. 

 

In order to deal with large and/or noisy datasets, AQ21 implements several features such 

as multiple seed selection, ordering of attributes before extension against, evaluation and 

selection of the most relevant attributes, and ordering of negative examples.  AQ21 also 
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implements several unique features such as learning alternative hypotheses (Michalski, 

2004b; Wojtusiak et al., 2006a,b), learning rules with exceptions in the form (2-6), 

improving representation spaces (see Chapter 5), and using meta-values (Michalski and 

Wojtusiak, 2005). 

 

For testing and application of attributional rulesets AQ21 implements two methods: 

ATEST and EPIC.  The ATEST method (e.g., Reinke, 1984) is used for the testing and 

application of attributional rulesets to individual testing/application examples.  EPIC 

(e.g., Wojtusiak, 2004a; Michalski et al., 2005) similarly applies attributional rulesets to 

sequences of examples to be classified as a whole.  For example, in the application to 

computer user profiling, we are not interested in identifying the user responsible for each 

individual command in the database; rather, the program is provided with a sequence of 

commands bundled together, for which it establishes the responsible user.  

 

The general methodology of ATEST and EPIC is as follows: 

1) For each individual testing example, determine a degree of match between it and each 

decision rule. 

2) For each decision class, aggregate the degrees of match determined in step 1, in order 

to determine degrees of match between each testing example and each decision class. 

3) If using EPIC, aggregate the degrees of match determined in step 2 for the examples in 

each sequence, in order to determine degrees of match between the sequence and each 

decision class. 
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4) Based on the calculated degrees of match and threshold and tolerance parameters, 

output a classification for each testing example (ATEST) or sequence (EPIC).  There are 

several matching and aggregation methods available in steps 1-3.  Ones appropriate to the 

task may be selected by the user (Wojtusiak, 2004a). 

 

Both methods, in addition to predictive accuracy (see Section 2.1) based on the best 

match, report also precision, because AQ21 is able to classify an event (sequence) to 

more than one class.  In many applications, it is more appropriate to give an imprecise 

classification rather than to give a wrong answer.  For example, when diagnosing 

diseases, the program may give the answer with list of possible diseases. 
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CHAPTER 3 LEARNABLE EVOLUTION MODEL 

This chapter describes the learnable evolution model (LEM), a novel non-Darwinian 

evolutionary computation method.  It also presents selected features of LEM3, the most 

recent LEM implementation, which is the basis for methods of handling constraints and 

improving representation spaces presented in Chapters 4 and 5, respectively.  This 

chapter concludes with a brief discussion of other non-Darwinian evolutionary 

computation methods and their relation to LEM and LEM3. 

 

3.1 The Basic Idea of the Learnable Evolution 

Research on non-Darwinian evolutionary computation is concerned with developing 

algorithms in which the creation of new candidate solutions in the population is guided 

by an “intelligent agent,” rather than done merely by random or semi-random change 

operators, such as mutation and/or crossover, employed in the “Darwinian-type” 

evolutionary methods.  The selection of candidate solutions for the new generation from 

those generated by the intelligent agent is done according to standard methods of 

selection, or can also be done by employing advanced reasoning. The learnable evolution 

model (LEM) employs a learning program to direct the evolutionary process (e.g., 

Michalski 1998; 2000; Wojtusiak and Michalski, 2006).  Specifically, the program 
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creates general hypotheses indicating regions in the search space that likely contain 

optimal solutions and then instantiates these hypotheses to generate new candidate 

solutions. 

 

The learnable evolution model follows a general evolutionary computation schema 

presented in Figure 2-2.  Specifically, LEM follows the algorithm presented in the Figure 

3-1, and creation of new candidate solutions is done by applying hypothesis learning and 

instantiation as illustrated in Figure 3-2. 

 

Create an initial population of candidate solutions 
Evaluate candidate solutions in the initial population 
Loop while stop criteria are not satisfied 
 Create new candidate solutions by machine learning: 
 Identify groups of high- and low-performing candidate 

solutions 
 Apply machine learning to distinguish between the groups 

 Instantiate the learned hypothesis 
 Evaluate fitness of the new candidate solutions 
 Select a new population 

Figure 3-1: Pseudocode of a general LEM algorithm. 

 

The assignment of high- and low-performing candidate solutions into the H-group and  

L-group allows these sets to be used as examples for a concept learning program.  The 

concept learning program generates a hypothesis determining why candidate solutions in 

the H-group perform better than these in L-group.  Such a hypothesis is then instantiated 

to generate new candidate solutions which are likely to be high-performing because they 

satisfy the hypothesis description.  These three steps for generating new candidate 

solutions by machine learning are depicted in Figure 3-2 and are described in detail in the 

following sections. 
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Select high- and low-performing 
candidate solutions

Learn hypothesis describing
high-performing solutions

Instantiate the hypothesis

Parent population

New candidate solutions
 

Figure 3-2: Generating new candidate solutions by machine learning. 

 

3.2 Selection of Examples for Hypothesis Generation 

Before concept learning is applied, examples of high-performing and low-performing 

candidate solutions need to be selected.  The examples are selected from the current 

population and optionally also from previous populations, depending on the lookback 

parameter.  The set of selected high-performing candidate solutions is called the H-group 

and the set of selected low-performing candidate solutions is called the L-group. 

 

Michalski (2000) proposed two methods of creating the groups of high-performing and 

low-performing candidate solutions from the current population.  One, fitness-based 

selection, defines high and low fitness thresholds in the range from the highest to the 

lowest fitness value observed in the current population.  For example, if high and low 

fitness thresholds (HFT and LFT) are both 25%, then candidate solutions whose fitnesses 

 33



 

are in the highest 25% of the range and the lowest 25% of the range are included in the 

H-group and L-group, respectively.  The second method, population-based selection, 

selects a specified percentage of candidate solutions from the population for each group, 

regardless of the distribution of fitness values.  These percentages are defined by the high 

population threshold (HPT) and low population threshold (LPT).  For example, if HPT 

and LPT are both 30%, then the 30% of the candidate solutions with the highest fitness 

and the 30% with the lowest fitness are included in the H- and L-group, respectively. 

 

Selection of examples provided to a learning program depends not only on the selection 

method and its threshold, but also on a population size.  The larger the population size, 

the more candidate solutions are selected as training examples, assuming the same values 

of the thresholds.  Initial experimental study has shown that LEM is not sensitive to 

population sizes if the sizes are sufficiently large, as results similar in terms of accuracy 

and evolution length were achieved with different population sizes.  Population sizes in 

LEM need to be larger than in Darwinian-type evolutionary computation methods such as 

genetic algorithms, because the learning module in LEM requires a sufficient number of 

examples to perform learning. 

 

3.3 Learning Hypothesis Describing High-Performing Candidate Solutions 

Once the H-group and L-group are selected, they are provided to the learning module in 

order to generate general hypotheses that characterize the high-performing candidate 

solutions in contrast to the low performing ones.  This process reflects the behavior of 

human experts, who compare better and worse candidate solutions in order to understand 
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reasons for differences in their performance.  Equipped with that knowledge, the expert is 

able to design new candidate solutions that are likely to perform well. 

 

The learnable evolution model is a general methodology that allows virtually any concept 

learning program to be employed for hypotheses formulation. The only requirement is the 

existence of a method for instantiating hypotheses learned by that program.  Different 

implementations of LEM used different learning methods, most of which were based on 

AQ rule learning. There are also implementations that use different learning methods, for 

example, the c4.5 decision tree learning method (Quinlan, 1993) is used in the LEMMO 

system (Jourdain et al., 2005).  The reason AQ attributional rule learning is suitable for 

LEM systems is that generated hypotheses are represented using rules in a highly 

expressive language, attributional calculus. Such rules are efficiently instantiable and are 

easy for human experts to understand (see Chapter 2). 

 

Given positive and negative examples of a concept, AQ induces a general concept 

description in the form of an attributional ruleset, a set of rules with the same consequent.  

The simplest form of an attributional rule is (2-5) CONSEQUENT s PREMISE, where 

CONSEQUENT and PREMISE are conjunctions of attributional conditions (Chapter 2). 

In LEM the CONSEQUENT always defines high-performing candidate solutions. 

 

Figure 3-3 shows an example of a rule learned by AQ21 (in LEM3) during the 

optimization of the Rosenbrock function of 10 variables.  The function is described and 

graphically illustrated in Chapter 6. 
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  [Group=H] s [x0=-0.5..1.5: 28,19] & 
               [x4=-0.5..2.0: 15,16] &  
               [x5=-1.5..1.5: 18,12] & 
               [x8=-0.5..1.5: 30,28] & 
               [x9=-0.5..1.5: 27,22]: p=12,n=0 

Figure 3-3: A rule learned during optimization of the Rosenbrock function. 

 

The rule sates that if attribute x0 takes a value between 0.5 and 1.5, x4 takes a value 

between -0.5 and 2.0, and so forth, then the candidate solution belongs to a (generalized) 

H-group.  The pairs of numbers after “:” in each condition indicate the positive and 

negative coverage (support) for this condition.  For example, the condition specifying the 

value of x0 is itself satisfied by 28 candidate solutions in the H-group and 19 candidate 

solutions in the L-group.  The numbers p and n indicate the coverage of the entire rule 

(12 in the H-group and 0 in the L-group). 

 

An important problem is to determine the optimal parameter settings of a learning 

program used in LEM that give the best results.  Learning programs from the AQ family 

provide the ability to control types of learned descriptions.  AQ21 allows control of many 

parameters such as the generality of rules, types of rules (complete and consistent, 

approximate, patterns, with and without exceptions etc.), types of descriptions 

(characteristic, discriminant, simplicity-based), etc.  Although all of these possibilities are 

present, it is unclear for what types of optimization problems they should be used in 

LEM.  Different problems may require different settings, and a detailed study is required 

to find the appropriate AQ21 parameter settings (see Chapter 7).  Although this matter 

requires detailed study, LEM3 uses experimentally found default values and adds the 

possibility of full control of the algorithm by the user (Wojtusiak, 2004b). 
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3.4 Instantiation of Learned Hypotheses 

The learned hypotheses are used to generate new candidate solutions by the instantiation 

process.  The next sections describe methods for instantiating attributional rules learned 

by AQ systems.  Basic attributional rules are conjunctions of conditions that define 

ranges (or sets) of attribute values, thus the instantiation of such rules is a relatively easy 

process. 

 

When instantiating a rule for a member of the new population, the program faces two 

problems: what values to assign to attributes that are cited in the rule, and what values to 

assign to attributes not present in the rule.  The latter is exemplified in the rule illustrated 

in Figure 3-3, which does not include attributes x1, x2, x3, x6 and x7.  Three algorithms 

for instantiating attributional rules used in LEM3 are described in the following sections. 

 

3.4.1 Instantiation Algorithm 1 

This section describes the simplest algorithm for generating new candidate solutions by 

instantiating attributional rules.  In the first step the algorithm takes all rules from a 

learned ruleset and for each rule computes the number of candidate solutions to be 

generated.  The total number of candidate solutions that are created can be either constant 

during the evolution or may vary over time; it is defined as a parameter by the user.  The 

number of candidate solutions can be the same for all rules, or can be computed 

proportionally according to a measure of the rules’ significance that is calculated as the 

sum of the fitness values of the high-performing candidate solutions covered by the rule. 
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For each newly created candidate solution, the program has to assign values for all 

attributes, both to those included in the rule being applied, and to those not included in 

the rule.  Depending on the attribute type and user-defined parameters, different 

distributions can be used to select random values for the attributes specified in the rule; it 

can be done using a uniform distribution, using a normal distribution for numerical 

attributes with mean equal to the middle of the range and user-defined variance, using the 

maximum distance from negative examples, or using projections of positive and negative 

examples. 

 

For each rule in a ruleset (hypothesis) to be instantiated: 
Compute the number of candidate solutions to be created 
For each candidate solution to be created: 
For each attribute: 
If the attribute is specified in the rule 
Select a random value satisfying the rule 

     Else Select a random candidate solution from the previous 
population and use its value 

Figure 3-4: Instantiation algorithm 1. 

 

Selection of values of attributes not specified in the rule is a more intricate problem, for 

which there are many potential solutions.  One possibility is to select a random value 

from the entire attribute domain.  This will result in candidate solutions consistent with 

the rule; however, it is easy to show some cases in which this approach will result in poor 

performance.  For instance, let us assume that the goal is to optimize a function with two 

attributes x and y.  Both attributes are continuous and defined on the range -5 to 5, and 

the function optimum is at the point (0, 0).  Let us further assume that a learning program 

has found the rule with one condition [x = 0]. The program will then generate candidate 

solutions with x = 0 in all cases, and with y distributed over the range [-5, 5].  In the next 
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iteration, the program will learn rules containing only the attribute y, since there is no 

differentiation among the x-values any longer.  During the instantiation phase, the 

program will assign values of the attribute x randomly, which means that the information 

from the previous iteration is lost.  Thus, the rules may not converge to the solution. 

 

Another method of value selection, that solves the above problem, is to select the value 

from a randomly selected existing candidate solution.  The candidate solution can be 

selected from the entire population, the H-group, or non-L-group candidate solutions.  

Experiments have shown that when values are selected from the H-group, the program 

tends to lose diversity of candidate solutions, and may converge very quickly to a point 

that is not the target solution.  The method that LEM3 uses by default selects candidate 

solutions from the whole population probabilistically in proportion to their fitness values. 

 

The presented instantiation algorithm has a very severe weakness.  It does not work well 

for multimodal functions.  Candidate solutions selected to provide values of attributes 

that are not specified in a rule may be located in different parts of the search space, thus 

causing new candidate solutions to be generated in the wrong parts of the space. As an 

extension to the algorithm, a constraint may be added to ensure that generated events 

match the rule that is instantiated.  However, this also may not keep the evolution process 

from straying in all cases.  The second instantiation algorithm was designed to cope with 

the described problems. 
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3.4.2 Instantiation Algorithm 2 

The second instantiation algorithm selects parent candidate solutions and then modifies 

them according to learned rules.  As mentioned before, it is designed to cope with 

problems that appear when using the first instantiation algorithm.  The difference 

between this and the previous algorithm is in the way a candidate solution from the old 

population is selected. This algorithm is appropriate for using with multimodal functions. 

 

Loop while not all candidate solutions have been created: 
Select probabilistically a candidate solution (parent) based on its 

quality 
Create a list of rules satisfied by the selected candidate solution 
Select a matching rule probabilistically in proportion to its 

significance 
Create a new candidate solution: 
 For all attributes: 
   If the attribute is specified in the selected rule 
     Select a random value satisfying the rule 

   Else select the value from the parent 

Figure 3-5: Instantiation algorithm 2. 

 

The typical quality measure of candidate solutions is simply their fitness.  It is not, 

however, the only possibility; for example, a quality measure may also take into 

consideration the number of rules that match the candidate solution.  When AQ21 is 

working in the theory formation (TF) mode (i.e., learning covers that are complete and 

consistent with respect to the training data), it is guaranteed that all candidate solutions 

from the H-group will satisfy some rules.  Although LEM uses the TF mode by default, it 

is also possible to learn rules in the approximate theory formation, or the pattern 

discovery modes. In these modes, stronger rules/patterns may be favored over complete 

and consistent rulesets.  In such a case, some candidate solutions from the H-group may 

not be covered by any rule. Therefore, it is important to select only those candidate 
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solutions that are covered by at least one rule. Values of attributes that are specified in the 

rule are selected in the same way as in the Algorithm 1. 

 

3.4.3 Instantiation Algorithm 3 

Regardless of the learning mode, AQ programs guarantee that each rule will cover at 

least one high-performing candidate solution.  Using that information, it is possible to 

combine the two algorithms presented above.  Similarly to Algorithm 1, the third 

instantiation algorithm computes the number of candidate solutions to be instantiated for 

each rule.  A significant difference from the first algorithm is that the program does not 

select random values according to the rules, but instead modifies an existing candidate 

solution that is covered by the rule.  This guarantees that all the rules will be instantiated, 

and multimodal fitness functions will be treated appropriately. 

 

For all rules: 
Compute the number of candidate solutions to be created 
For all candidate solutions to be created: 
Select probabilistically a candidate solution covered by the rule 
For all selectors in the rule: 

     Modify value of the candidate solution within the selector 

Figure 3-6: Instantiation algorithm 3. 

 

3.4.4 Instantiation of Alternative Hypotheses 

The AQ21 program has the unique feature to learn not only one ruleset per class, but also 

a number of alternative descriptions/rulesets for the same class (Michalski, 2004b; 

Wojtusiak et al., 2006a).  In LEM, when the number of attributes may be much larger 
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than the number of examples, it is highly probable that the program can generalize the 

positive examples in many different ways, creating several alternative hypotheses. 

 
LEM3 handles alternative hypotheses learned by AQ21 in two ways: (1) the intersection 

of the covers can be instantiated, or (2) the union of the covers can be instantiated.  Once 

the program computes either the intersection or union, one of the three algorithms 

described above is then used to instantiate. 

 

By using the intersection method, the program creates candidate solutions in an area 

covered by at least one rule from each alternative ruleset.  Suppose that RS1, RS2, …, RSn 

are alternative rulesets describing the high-performing candidate solutions.  Ruleset RS1 

consists of k1 rules: RS1 = { R1,1, R1,2, … R1,k1 }, ruleset RS2 consist of k2 rules  

RS2 = { R2,1, R2,2, … R2,k2 }, and so on.  A ruleset is a disjunction or rules that are 

conjunctions of selectors, so the intersection of rulesets is equivalent to a conjunction of 

rulesets and is given by the following formula: 

 Λ i=1..N RSi = Λ i=1..N (Ri,1 v Ri,2 v … v Ri,ki) (3-1) 

Using De Morgan’s and absorption laws the intersection RS can be easily computed.  In 

fact, computation of such an intersection is one of the most common operations in the AQ 

algorithm applied during the star generation phase.  In LEM3 we use this feature of 

AQ21 to compute the intersection.  By nature, the intersection of alternative rulesets for a 

given class is also a ruleset. 

 

When AQ21 works in TF mode and all rulesets are complete and consistent, the 

intersection is also a complete and consistent ruleset.  To prove this, it is sufficient to 
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mention two facts: by the assumption, none of the rules in the rulesets cover any negative 

examples, so their intersection cannot cover any such examples; and each positive 

example is covered by at least one rule from each ruleset, so it will be covered in the 

intersection.  Let e be a positive example that is covered by rules R1,m1, R2,m2, … Rn,mn.  It 

is straightforward that Λ1..n Ri,mi covers the example e.  Instantiation of the intersection of 

alternative rulesets speeds up the evolution process by limiting the area covered by 

learned rules.  It may, however, lead evolution in wrong direction, since intersected 

rulesets may be too specialized, and the program may converge to a point that is not 

necessarily an optimal solution. 

 

The second method is to take the union of alternative rulesets.  The union is defined using 

the following formula: 

 Vi=1..N RSi = Vi=1..N (Ri,1 v Ri,2 v … v Ri,ki) (3-2) 

In this case, computation of RS is trivial and requires only the use of absorption laws in 

order to remove unnecessary rules.  Similarly to the case of intersection, it can be proven 

that the union of complete and consistent rulesets is itself also a complete and consistent 

ruleset.  Unlike intersection, the union expands the area in which new candidate solutions 

are instantiated.  This slows down the evolution process, but increases the chance that the 

target solution is covered. 

 

3.5 LEM3 Implementation of the Learnable Evolution Model 

The presented work is based on the most recent version of the learnable evolution model 

implemented in the George Mason University Machine Learning and Inference 
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Laboratory, called LEM3.  It is up to date the most advanced implementation that 

combines several features not present the previous implementations (e.g. Wojtusiak, 

2004b; Wojtusiak and Michalski, 2006).  This section briefly describes the LEM3 

system, and presents its algorithm and selected novel features. 

 

3.5.1 LEM3 Algorithm 

Following the regular schema of evolutionary computation, LEM3 algorithm consists of 

several standard features such as generation of the initial population, evaluation of 

candidate solutions, and selection of populations.  Other features introduced in LEM3 are 

action selection, adjustment of representation, and use of different innovation actions.  

The system is also able to support different attribute types defined in attributional 

calculus (see Section 2.3.1), which makes it applicable to a wide range of real world 

problems.  The LEM3 algorithm in pseudocode is presented Figure 3-7, and its flowchart 

in Figure 3-8. 

 

Generate initial population 
Loop until the stop condition is satisfied 
 Evaluate candidate solutions 
 Select parent population 
 Select one or more of the following actions: 
  Learn and instantiate hypothesis that discriminates high and low  
        performing candidate solutions in the parent population  
        (Learning Mode) 
  Generate new individuals through Darwinian-type operators  
        (Probing Mode) 
  Change the representation of individuals 
  Randomize the population (either partially or via a start-over  
        evolution process) 
  Search locally 
Compute statistics and display results 
End LEM3 

Figure 3-7: Pseudocode of LEM3 Algorithm. 
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Figure 3-8: Flowchart of LEM3 Algorithm. 

 

The following sections describe two unique features of LEM3: innovation operators and 

their selection.  Adjustment of representation, which is one of two main topics of this 

dissertation, is discussed in Chapter 5. 

 

3.5.2 Innovation Operators in LEM3 

The process of creating new candidate solutions is called innovation. LEM3 is a 

multistrategy evolutionary computation method that integrates several innovation 

methods and can apply them in different combinations.  The main innovation action in 

the learnable evolution model and its LEM3 implementation is hypothesis formulation 

and instantiation.  It uses the AQ21 learning module to hypothesize why some candidate 
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solutions perform better and some perform worse.  Such hypotheses are instantiated in 

different ways in order to produce new candidate solutions. 

 

In addition to standard learning and instantiation action, LEM3 implements conventional 

methods of creating candidate solutions.  These include probing that applies mutation and 

recombination, well known in the field of evolutionary computation, randomizing that 

randomly generates a given number of candidate solutions, or restarts the evolutionary 

process, and searching locally that applies user-defined local search methods (e.g. 

gradient-based operators). 

 

3.5.3 Action Selection 

Execution of different modes of operation is a unique feature of LEM3 that distinguishes 

it from other implementations of the learnable evolution model and from many other 

evolutionary computation methods.  As mentioned above, the two basic modes that guide 

the evolution process are learning mode, which uses hypotheses creation and 

instantiation, and probing mode, which employs Darwinian-type operators such as 

mutation and crossover.  In addition to the two modes of operation, LEM3 employs 

additional actions including adjusting discretization and randomizing designed to help the 

evolution process. 

 

An important question is when each action should be executed.  The two main modes of 

operation can be executed in parallel, or the program can switch between them as defined 

in duoLEM (e.g. Michalski, 2000).  Other operations such as changing representation 
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need to be executed separately.  To control the application of different actions, LEM3 

defines an action profiling function (APF) that, based on the performance of different 

types of operators, decides which operators should be applied in the next step.  It also 

decides how many new individuals to create in each mode.  For example, if the total 

number of new individuals to be created is 100, the APF may decide to generate 70 by 

the learning mode, 25 by the probing mode and 5 by randomizing.  The APF should adapt 

during the evolution process to reflect which operators are the most relevant for the 

optimization problem.  Controlling the learning and probing modes can be done by two 

simple rules: 

If average-learning-fitness >> average-probing-fitness then 
  Increase number of individuals in learning mode 
If average-learning-fitness << average-probing-fitness then 
  Increase number of individuals in probing mode 

 

where averages are computed for candidate solutions created  in one or more iterations of 

the respective modes.  In order to avoid extinction of one mode, a minimum number of 

candidate solutions in each mode can be defined, regardless of its performance. 

 

APF can also support problem-oriented operators defined by an expert.  For example, in 

numerical domains, a wide range of gradient-based operators can be programmed into 

LEM3 and appropriately handled. 

 

During the evolution process, it may happen that over a number of iterations, the program 

does not make sufficient progress in terms of the value of the fitness function.  This 

situation can be identified through the use of the no-progress condition that utilizes two 

program parameters, learn-probe and learn-threshold.  Learn-probe defines the 
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maximum number of iterations that are performed even if there is unsatisfactory progress, 

as defined by learn-threshold, the minimal acceptable increase of fitness of the best 

candidate solution.  When the no-progress condition is satisfied, several possible 

operations are considered.  If the no-progress condition is met, mutation, adjust 

discretization (or in general, adjust representation), and/or start-over operators are 

invoked.  LEM3 tries to apply mutation for mutation-probe iterations.  If there is still no 

progress, the program then tries to adjust discretization for discretization-probe iterations.  

If there is still no progress, LEM3 tries to run the start-over operation for no more than 

start-over-probe iterations. 

 

Increment learn-probe-counter 
If learn-probe-counter >= learn-probe 

Learn-probe-counter = 0 
If mutation-probe-counter < mutation-probe 

Increment mutation-probe-counter 
Mutate candidate solutions 
Evaluate modified candidate solutions 

Else if discretization-probe-counter < discretization-probe 
Increase discretization-probe-counter 
Mutation-probe-counter = 0 
Adjust discretization 
Mutate candidate solutions 
Evaluate modified candidate solutions 

Else if start-over-probe-counter < start-over-Probe 
Increment start-over-probe-counter 
Discretization-probe-counter = 0 
Mutation-probe-counter = 0 
Rollback discretization 
Add the best solutions to a list of local optima 
Start-over 
Evaluate candidate solutions 

Else 
Stop LEM3 

Figure 3-9: Pseudocode of no-progress condition. 

 

The order of mutation, adjust discretization, and start-over operations is not accidental.  

Mutation is performed in order to introduce diversity into a population, and test if the 
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program did not get stuck “close” to the optimal value (this could be a local or global 

optimum).  It is usually the case that AQ21 is unable to learn hypotheses because of a 

lack of diverse examples.  The next step increases the precision of the search by adjusting 

discretization.  If the change of precision does not make any difference, it may mean that 

the program has found an optimum.  However, the optimum may be local and it may be 

desirable to start over the evolution process with a new random population to explore 

different parts of the search space. Details of these actions are described by Wojtusiak 

and Michalski (2005; 2006). 

 

3.6 Example Execution of LEM3 and EA 

To illustrate LEM3 on a simple optimization problem, this section presents an example of 

applying LEM3 and a conventional, Darwinian-type algorithm, here called evolutionary 

algorithm (EA) to a function optimization problem (Wojtusiak and Michalski, 2005).  

The EA was implemented using the evolutionary objects (EO) library available at 

http://eodev.sourceforge.net.  The problem is simple enough to be illustrated graphically 

using generalized logic diagrams but sufficiently complex to show some important 

aspects of the LEM3 algorithm.   

 

The optimization problem is to find global maxima of the sample function: 

  (3-3) 2
32

2
1

2
03210 )*2cos(*816),,,( xxxxxxxxf −−−−=

Domains of all attributes are ranges [-2, 2].  The cosine part was added to the function in 

order to make two equal global optimal solutions to the problem.  A two dimensional 
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version of the function, given by the formula  is 

illustrated in 

)*2cos(*48),( 1
2
010 xxxxf −−=

Figure 3-10.  The factors 4*n and 2*n (values 16, 8 and 8, 4 in expressions 

above), where n is the number of attributes, are used the function for scalability and to 

guarantee that its value is not negative. 

 

 
Figure 3-10: A plot of the function f(x0, x1). 

 

The following illustrations demonstrate consecutive steps of executing LEM3 and EA.  

The figures use generalized logic diagrams to represent four dimensional spaces spanned 

over discretized variables x0,…,x3.  The discretized values {0, 1, 2, 3, 4} in the diagrams 

correspond to the original values {-2, -1, 0, 1, 2} respectively.  For each generation, two 

diagrams are presented for LEM3, one with the current population and one with selected 

solutions in the H-group and L-group) and the learned rules.  For comparison, steps of 

executing EA for this problem are also illustrated.  A similar method of illustration of 

LEM2 on the Rosenbrock function was presented by Cervone (1999). 
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Generation 1: In the first iteration, the population is randomly initialized in the entire 

search space as shown in Figure 3-11.  Initial populations in LEM3 and EA (Figure 3-12) 

are the same.  LEM3 selects candidate solutions for the H- and L-groups indicated as 

respectively “1” and “2”, and provided with the groups AQ21 learns rules presented as 

shaded areas in Figure 3-13. 

LEM3 EA 

 
Figure 3-11: Randomly generated initial 

population (the same for both programs). 

 
Figure 3-12: Randomly generated initial 

population (the same for both programs). 

 
Figure 3-13: Learned hypothesis and H- and L-

group candidate solutions in LEM3. 
 

 
 
EA applies mutation and crossover to 
generate new candidate solutions. 
 
EA probability of mutation is 0.1 
EA probability of crossover is 0.1 
EA selection method is tournament. 
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Generation 2: Instantiated candidate solutions are combined with the old candidate 

solutions and a new population is selected (Figure 3-14).  In the instantiated candidate 

solutions both solutions of the function have already been found (0, 0, -2, 0) and (0, 0, 2, 

0). These solutions correspond to the discrete points (2, 2, 0, 2) and (2, 2, 4, 2) illustrated 

using GLDs. The found solutions are maxima of the function assuming the used 

discretization, as the real solutions are (0, 0, ±π/2, 0).  This discretization is used only for 

demonstration purpose and it is sufficient for this example.   

 

Although the program has found the solutions, it still needs for all candidate solutions to 

converge to the solutions in order to satisfy the LEM3 stop condition (the only candidate 

solutions are solutions).  Figure 3-16 shows high and low performing candidate solutions 

selected from the population and learned rules (shaded areas).  Evolutionary algorithm 

slowly converges toward the solutions as shown in Figure 3-15. 
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LEM3 EA 

 
Figure 3-14: LEM3 Population in the second 

generation (100 fitness evaluations). 

 
Figure 3-15: EA Population in the second 

generation (85 fitness evaluations). 

 
Figure 3-16: Learned hypothesis and H- and L-

group candidate solutions in LEM3. 

 
 
EA applies mutation and crossover to 
generate new candidate solutions. 
 
EA probability of mutation is 0.1 
EA probability of crossover is 0.1 
EA selection method is tournament. 
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Generation 3: In the third generation, LEM3 candidate solutions converge closer to the 

solutions as shown in Figure 3-17.  After selecting L- and H-groups from the population, 

one rule is learned as shown in Figure 3-19.  EA also found the solutions, but the 

population is much more distributed over the space (Figure 3-18). 

LEM3 EA 

 
Figure 3-17: LEM3 Population in the third 

generation (150 fitness evaluations). 

 
Figure 3-18: EA Population in the third 

generation (130 fitness evaluations). 

 
Figure 3-19: Learned hypothesis and H- and L-

group candidate solutions in LEM3. 

 
 
EA applies mutation and crossover to 
generate new candidate solutions. 
 
EA probability of mutation is 0.1 
EA probability of crossover is 0.1 
EA selection method is tournament. 
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Generation 4: The fourth generation in LEM3 consists of candidate solutions that 

converged to the two solutions and one candidate solution that is not a solution (Figure 

3-20).  The only candidate solution that is not a solution is used as the L-group, and all 

other candidate solutions are included in the H-group.  One simple rule describes the H-

group against the L-group (Figure 3-22).  EA slowly converges towards solutions as 

depicted in Figure 3-21. 

 55



 

LEM3 EA 

 
Figure 3-20: LEM3 population in the fourth 

generation (200 fitness evaluations). 

 
Figure 3-21: EA Population in the fourth 

generation (168 fitness evaluations). 

 
Figure 3-22: Learned hypothesis and H- and L-

group candidate solutions in LEM3. 

 
 
EA applies mutation and crossover to 
generate new candidate solutions. 
 
EA probability of mutation is 0.1 
EA probability of crossover is 0.1 
EA selection method is tournament. 
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Generation 5: Finally, in the fifth generation (250 fitness evaluations) all candidate 

solutions generated by LEM3 converged to the two solutions (Figure 3-23).  This ends 

the evolution process in LEM3.  EA did not converge to the solutions yet (Figure 3-24). 

 

LEM3 EA 

 
Figure 3-23: Two global optima found by LEM3 

in the last, fifth generation (250 fitness 
evaluations). 

 
Figure 3-24: EA population in the fifth 

generation (214 fitness evaluations). 
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Generation 8: In the eighth generation, EA converged to one of the two solutions shown 

in Figure 3-25.  The total number of fitness function evaluations needed by LEM3 was 

250, and by EA was 346.  Also, LEM3 found both optima, and EA only one of the two. 

LEM3 EA 
 
 
 
 
LEM3 already converged to both optimal 
solutions after fifth generation, as shown in 
Figure 3-23. 
 

 
Figure 3-25:  One of the two optima found by EA 
in the eighth generation (346 fitness evaluations). 

 

 

While the advantage of LEM3 over EA in solving this simple problem (only 4 variables 

describe the candidate solutions) is relatively large (EA needs about 100 more fitness 

evaluations than LEM3), a more impressive advantage of LEM3 is seen in problems with 

larger numbers of variables.  This is so because LEM3’s advantage grows with the 

number of variables (Wojtusiak and Michalski, 2005). 
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3.7 Other Systems Based on the LEM Methodology 

The learnable evolution model was introduced by Michalski (1998) and its initial 

implementation, LEM1, has shown very promising results (e.g. Michalski 1998; 2000; 

Michalski and Zhang, 1999).  This initial implementation has several limitations on 

methods used and classes of problems it can be applied to.  As a learning module LEM1 

used the AQ15 learning program, with which it communicated through text files.  The 

most important difference that distinguishes LEM1 from the later LEM systems is that it 

instantiates only the strongest rule from the learned hypothesis.  Because of this fact, the 

program may be inadequate for multi-modal functions, and can easily got stuck at a local 

optimum (described by the strongest rule), while more advanced LEM implementations 

are able to search in parallel local areas near different local optima.  Another limitation is 

that LEM1 can be applied only to numerical data.  Shortly after LEM1 was introduced, a 

more advanced implementation, LEM2, was developed (Cervone, Kaufman, and 

Michalski, 2000).  It is based on the AQ18 learning program (Kaufman and Michalski, 

2000b) and uses a more advanced instantiation method, which instantiates all rules from 

learned hypotheses.  It also implements an adaptive discretization method, ANCHOR 

(Michalski and Cervone, 2001), whose improved version is implemented in LEM3 as 

described in Chapter 5. 

 

A class of LEM-based systems for heat exchanger optimization has been developed.  

These include ISHED systems for optimizing evaporators and ISCOD systems for 

optimizing condensers (e.g. Kaufman and Michalski, 2000a,c; Domanski et al., 2004; 

Michalski and Kaufman, 2006).  These specialized systems combine LEM’s learning and 
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instantiation operators with specialized probing operators that are specifically designed to 

work with heat exchangers.  They also implement methods for handling constraints 

which either describe physically impossible designs (strict constraints) or expert 

knowledge about which designs are reasonable (flexible constraints).  Based on the 

ISHED and ISCOD systems Michalski and Kaufman (2006) proposed a general LEMd 

methodology for optimizing complex systems. 

 

An independent implementation of the learnable evolution model for multi-objective 

optimization, LEMMO (Jourdan et al., 2005), is based on rules derived from decision 

trees learned by the C4.5 program (Quinlan, 1993).  LEMMO was developed for 

application to a water quality optimization problem.  Decision trees and rules derived 

from them by C4.5 are significantly limited when compared to these learned by AQ 

systems (e.g. there is no internal disjunction), and therefore many more rules are usually 

needed to describe the same concept.  Despite these limitations, the authors reported very 

promising results. 

 

For completeness of this section, it is important to note that LEM is also used as an 

optimization method in the VINLEN inductive database system (e.g. Kaufman et al. 

2007).  The system combines a database with a knowledge base and several knowledge 

generation operators.  In the current implementation LEM3 is used as an optimization 

tool in the system.  Its initial population can be loaded from the database, where results of 

optimization are also stored.  Intermediate hypotheses can be stored in its knowledge base 

in order to provide users with additional information about the optimization problem. 
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3.8 Related Research on Non-Darwinian Evolutionary Computation 

Research on evolutionary computation, which originated in the early 1960s, followed a 

general Darwinian principle of evolution.  Simple operators for creating new candidate 

solutions are used and selection of candidate solutions into a new population follows the 

principle of the survival of the fittest.  More recently, mostly in the 1990s, a number of 

advanced evolutionary computation methods were introduced.  These methods 

significantly differ form the original evolutionary computation techniques by use of 

advanced reasoning and/or machine learning for creation of new candidate solutions, use 

of advanced methods for selecting new populations, and multistrategy application of 

different methods and modes of operation on different stages of evolution.  In addition to 

the learnable evolution model discussed in this dissertation, among the best well-known 

methods from this class are cultural algorithms, estimation of distribution algorithms, and 

memetic algorithms.  The next sections discuss these methods and their relation to LEM, 

in particular its LEM3 implementation. 

 

3.8.1 Estimation of Distribution Algorithms 

Estimation of distribution algorithms (EDAs) use statistical inference and learning to 

generate distributions of high-performing candidate solutions selected from one 

population (Mühlenbein and Paaß, 1996; Larrañaga and Lozano, 2002) usually without 

using a contrast set of low-performing candidate solutions.  The most popular statistical 

inference methods in EDAs include building different variants of Gaussian distributions.  

There are also a number of implementations that use Bayesian and Gaussian networks as 

models for representing hypotheses. 
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This approach is significantly different from the learnable evolution model, which uses 

symbolic learning to distinguish between high- and low-performing candidate solutions.  

EDAs also use values of fitness functions only for selecting candidate solutions for 

learning, while LEM can effectively use the values during learning process (e.g. by 

learning significance-based descriptions; Wojtusiak, 2004b). 

 

3.8.2 Cultural Algorithms 

Another class of methods close in spirit to the learnable evolution model are cultural 

algorithms (Reynolds, 1994; Reynolds and Zhu, 2001; Saleem and Reynolds, 2001; 

Reynolds and Peng, 2004), which use information about candidate solutions to guide 

mutation and recombination operators.  The cultural algorithms perform a constrained 

optimization process in which constraints are created in parallel to the evolution process.  

The constraints, called beliefs, are stored in a belief space that is updated to reflect the 

fitness profile or the current population.  Candidate solutions that are stored in an 

optimization space are modified (via constrained mutation and recombination) so that 

they satisfy the beliefs.  The belief space is built based on statistical information about 

candidate solutions, which usually consists of intervals containing the fittest candidate 

solutions. 

 

3.8.3 Memetic Algorithms 

Another form of non-Darwinian evolutionary computation is called memetic algorithms 

(MAs). They use an idea of switching between global search performed by evolutionary 
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computation and local search in order to improve selected candidate solutions in the 

population.  Most research on memetic algorithms concerns combining evolutionary 

computation with methods of local search in context of particular applications. Issues 

investigated in memetic algorithms include selection of appropriate local search methods 

and their integration with evolutionary search.  A good summary of memetic algorithms 

was prepared in the book edited by Hart, Krasnogor, and Smith (2004). 

 

The idea of switching between different modes of operation is also present in LEM.  In 

LEM3 it is realized by the action profiling function (see Section 3.5.3) which executes 

several actions such as learning and instantiating, probing, randomizing, and searching 

locally. 

 

3.8.4 Wise Breeding Genetic Algorithm 

An effort to combine ideas from the learnable evolution model and the estimation of 

distribution algorithms has been made by Llora and Goldberg (2003).  The method is in 

fact a simplified version of LEM, which uses statistical information about a population to 

instantiate attributes not included in rules.  The method uses a fixed bit representation of 

candidate solutions and passes high-performing and low-performing examples to the ID3 

(Quinlan, 1986) decision tree learning program.  Rules obtained (from trees) by ID3 

consist of information which bits are present in high-performing candidate solutions.  For 

bits not included in the rules the method uses an idea of the population based incremental 

learning (PBIL; Baluja, 1994; Baluja and Caruana, 1995) which uses incrementally 

updated probabilities of values of bits in the best candidate solutions.  Such a method of 
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selecting values of bits (attributes) not included in rules is equivalent to method 

implemented in LEM3 that takes values from a probabilistically selected candidate 

solution with proportion to its fitness.  Moreover, LEM3 operates on level of phenotypes, 

not bits, therefore it is more general.  Experiments have shown that PBIL have 

outperformed standard genetic algorithms in solving some problems, and underperformed 

in solving others. 

 

3.8.5 Other methods related to LEM 

There are several attempts of using learning in evolutionary computation such as adaptive 

control of crossover (Sebag and Schoenauer, 1994; Sebag, Schoneauer and Ravise, 

1997a).  Learning rules that are used to prevent new generations from repeating past 

errors by keeping track of past evolution failures is described in (Ravise and Sabag, 1996; 

Sebag, Schoenauer and Ravise, 1997b). 

 

An approach that extends the traditional Darwinian approach can be found in the GADO 

algorithm (Rasheed, 1998).  GADO is an evolutionary algorithm developed for 

engineering problem optimization.  It differs from traditional genetic algorithms 

primarily in the way new candidate solutions are generated.  It uses five different 

crossover operators, three of which are introduced in GADO:  line crossover, double line 

crossover, and guided crossover.  However, the algorithm does not apply any 

generalization operations for guiding the evolution, such as one used in LEM’s learning 

mode. 
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The STAGE method uses statistical learning (e.g., linear or quadratic regression) to 

approximate the fitness function.  In the area with the predicted best value the method 

applies a local search method such as hill climbing or simulated annealing (Boyan and 

Moore, 2000).  STAGE can be viewed as a guided method in the sense that learning is 

used to guide local search as it approximates the fitness function. In contrast to LEM, 

STAGE does not learn hypotheses distinguishing high- and low-performing individuals. 

 

To conclude this section, it is important to mention that a significant amount of work on 

optimization has been done in operations research (e.g., Rardin, 1997; Hiller and 

Lieberman, 2004).  Specifically, optimization is present in such fields as planning (e.g., 

Jensen, Veloso, and Bryant, 2004; Riley and Veloso, 2006) and scheduling (e.g., 

Kovalov, Ng, and Cheng, 2007).  These methods are based on different principles than 

the learnable evolution model, but many of the ideas they use can potentially enrich 

LEM3 or future LEM-based systems. 
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CHAPTER 4 HANDLING CONSTRAINTS 

This chapter presents the problem of handling constraints during the evolutionary 

optimization process, and presents methods for constrained optimization in the learnable 

evolution model.  Section 4.1 gives an introduction and formally defines constrained 

optimization problems, and Section 4.2 presents an overview of methods applicable to the 

learnable evolution model described in the literature. A proposed classification of 

constraints is presented in Section 4.3, and methods for handling selected classes of 

instantiable constraints, and for handling general constraints, are presented in Sections 

4.4 and 4.5, respectively.  Sections 4.6 and 4.7 describe special issues concerning flexible 

constraints and starting with no feasible solutions. 

 

4.1 Introduction and Definitions  

Most real world optimization problems are constrained.  The constraints may represent 

physical limitations of objects being optimized, experts’ domain knowledge, or simply 

the user’s desire to get results with specific properties.  For example, when designing the 

shape of one-gallon containers, their dimensions may vary, but the volume has to be 

constant, or when designing a network it is important that all considered nodes are 

connected to the network. 



 

Optimization problems to which LEM is applied involve finding optima (either minima 

or maxima) of a given fitness function:  

f(X1,..,Xn): E -> R (4-1)
    

where E = D1 x D2 x … Dn is a Cartesian product of domains of attributes X1, … Xn.  It is 

often the case that not all points in E represent feasible solutions.  In addition to domains 

Di, i=1..n, a constrained optimization problem specifies sets of constraints limiting the 

representation space. The constraints define a set of feasible solutions, a subset of E. In 

this dissertation, constraints and constrained optimization problems are defined as: 

 

A constraint is a condition (selector) that is used to define feasible solutions. 

 

A constrained optimization problem in the learnable evolution model is to find a vector 

x* = (x1
*, … xk

*) that is an optimum of a fitness function in the form (4-1) that satisfy 

constraints expressed in attributional calculus. 

 

The constraints can be given, for example, in disjunctive normal form (DNF). For 

example, suppose that E is a Cartesian product of domains of three attributes: Color with 

domain {red, green, blue}, Length with domain [0 ..10], and Width with domain [0..10], 

and f: E  R  is a fitness function. Example constraints for such a problem are: 

[Color=red] & [Length > 4] v [Color=blue v green] & [Length+Width < 10] (4-2)

which can be paraphrased as “feasible solutions are those for which Color is red and 

Length is greater than 4 or Color is blue or green and the sum of Length and Width is less 

than 10.” 
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These definitions are more general than those often found in literature (e.g. Michalewicz 

and Schoenauer, 1996; Liang et al., 2005) where two types of constraints are recognized, 

namely equality, and inequality constraints. Attributional calculus allows using functions 

in conditions, thus constrained problems available in literature can be immediately 

transformed into the form used in this dissertation.  It also means that a constraint may 

involve an external simulator, for example, as in (4-3) where sim is a function that returns 

a Boolean value based on the result of the simulator execution. 

[Color=blue v green] & [sim(Color, Length, Width)] (4-3)
 

An important question is if it is possible by the learnable evolution model to generate 

candidate solutions, through hypotheses generation and instantiation, which satisfy 

constraints.  The following theorem guarantees that when the learning mode is applied in 

LEM it is possible to generate feasible candidate solutions. 

 

Theorem 1: If all high-performing candidate solutions provided to AQ learning program 

are feasible, then each rule in a learned hypothesis can be instantiated with feasible 

candidate solutions. 

 

Proof: Each rule covers at least one high-performing candidate solution.  Since the high-

performing candidate solutions are feasible, the candidate solution is also feasible. 

 

The above theorem makes the assumption that all constraints are strict, meaning that they 

need to be satisfied, in contrast to flexible constraints, which do not necessarily need to 

be satisfied.  A general version of the theorem is presented in Section 4.6.  Also, the 
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theorem guarantees the existence of feasible solutions, but it does not guarantee the 

existence of any new feasible solutions, i.e. solutions that are not included in the previous 

population.  It is the role of a learning program to inductively generalize provided 

examples. Learned hypotheses cover previously unknown parts of the space that are 

likely to contain new feasible solutions. 

 

4.2 Summary of Methods of Handling Constrains 

The literature includes numerous papers addressing the problem of handling constrained 

optimization problems using evolutionary computation.  Over the past decades a number 

of methods have been proposed and applied in different evolutionary computation 

methods.  A good description of the constraint handling techniques in evolutionary 

computation is presented in the book edited by Back, Fogel and Michalewicz (2000; Vol. 

2, Part 2).  The following sections present a brief summary of different methods of 

handling constraints and their relation to methods used in the learnable evolution model. 

 

4.2.1 Penalty Functions 

Probably the best well known and the most popular method of handling constraints is to 

penalize infeasible candidate solutions by modifying their fitness values.  Suppose that 

the optimization problem is to find a minimum of the fitness function f: E  R .  The 

penalty function methods reformulate the optimization problem to the problem of finding 

an optimum of the function F: E  R  given by (4-4). 

F(x) = f(x) + p(x) (4-4)
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p(x) is a penalty function equal zero for feasible candidate solutions and positive for 

infeasible candidate solutions.  Similarly for maximization problems, the penalty function 

is subtracted instead of being added.  Penalty functions may reflect number of violated 

constraints, distance to the feasible area, etc.  Values of penalty functions are usually 

significantly larger than values of the corresponding fitness functions.  In the extreme 

case, the value equals infinity in so called death penalty methods. 

 

In the learnable evolution model, constrained optimization problems can be directly 

handled by penalty functions without any additional changes to the program.  This 

requires only modifying the fitness function definition, which is treated by LEM as a 

black box.  The LEM algorithm will then correctly execute in all modes, even though the 

population may be a mixture of feasible and infeasible candidate solutions.  Also, it is 

important to note that the Theorem 1 applies to the penalty function methods as well. 

 

4.2.2 Constraint Preserving Operators 

An important class of methods of handling constrained optimization problems is based on 

constraint preserving operators.  The application of such an operator guarantees 

feasibility of newly generated candidate solutions.  These operators, however, need to be 

designed for specific application domains and need to incorporate problem-oriented 

background knowledge.  The constraint preserving operators have been designed for a 

number of specific problems such as numeric optimization with linear constraints 

(Michalewicz, 2000) and the traveling salesman problem (Whitley et al., 1989). 
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In the learnable evolution model, methods of handling instantiable constraints are 

classified to this category.  Given a learned hypothesis and a set of constraints, the 

instantiation process generates new candidate solutions that satisfy both the hypothesis 

and constraints (see Section 4.4).   

 

ISHED, an implementation of the learnable evolution model tailored to heat exchanger 

design, implements change operators that preserve constraints in both learning and 

probing modes (e.g. Kaufman and Michalski, 2000a).   In the learning mode, the program 

uses heuristics to instantiate hypotheses in such a way that constraints are never violated. 

 

4.2.3 Rejection Methods 

Rejection methods represent the simplest and most natural approach to the problem of 

handling constraints.  If application of an operator generates an infeasible candidate 

solution, simply reject the solution and try again.  This process is illustrated by the 

following pseudocode. 

 

Loop while candidate solution is infeasible and not exceeded maximum 
number of trials 

 Generate new candidate solution 

 Test feasibility of the solution 

Figure 4-1: Pseudocode of rejection method for handling constraints. 
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The rejection methods assume that the operator is not deterministic, meaning that each 

time it will generate a different candidate solution with some probability.  In the learnable 

evolution model, the rejection method is implemented for handling general constraints, 

and is described in detail in Section 4.5.  Given a learned hypothesis, the instantiation 

algorithm is applied until a feasible candidate solution is generated.  The applied 

operators may use heuristics in order to minimize the probability of generating infeasible 

solutions.  For example, one of the methods described in Section 4.5 applies inductive 

learning to find an approximation of the feasible space.  The approximation is used to 

reject candidate solutions without complete evaluation of constraints.  Theorem 1 applies 

to the rejection methods, meaning that it is always possible to generate feasible solutions 

if the number of trials is sufficiently large. 

 

The ISHED system in probing mode uses the rejection strategy; it tries to apply one of 

several available operators until a fully feasible solution is found.  If the total number of 

trials exceeds a user-defined threshold, no new designs are generated.  For details of this 

method, see for example Kaufman and Michalski (2000a,c). 

 

4.2.4 Representation Change 

Methods based on a change of representation use the idea that a candidate solution may 

be encoded in such a representation space in which only feasible solutions are 

represented.  For fitness evaluation, each candidate solution is decoded into the original 

representation space, thus this class of methods is also known as decoders.  The main 
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disadvantage of this class of methods is that they are problem-oriented and require a 

precise definition of the representation space.  It is important that all feasible solutions 

from the original representation space are represented in the modified space, or at least 

the best solutions are represented.  Otherwise, the global solution to the optimization 

problem may be missed. 

 

In the literature there are several known applications of the representation change 

methods to specific problems, most commonly to combinatorial optimization problems.  

For example, a method of solving the traveling salesman problem using representation 

change was presented by Grefenstette et al. (1985).  Other applications include 

scheduling and partitioning (e.g. Syswerda, 1991; Jones and Beltramo, 1991). 

 

4.2.5 Repair Methods 

A result of the application of a genetic operator may be an infeasible candidate solution.  

Instead of rejecting such a candidate solution, it may be repaired, or transformed into a 

feasible candidate solution.  In the literature, two possibilities are investigated: to use the 

transformed candidate solution for the evaluation only, or to replace the infeasible 

candidate solution with its new feasible version.  Similarly to the representation change, 

the repair methods require problem-specific solutions.  For each particular application, a 

repair algorithm needs to be constructed, and more importantly there are no general 

heuristics that could help in constructing such an algorithm (Michalewicz, 2000).  In the 

literature these methods are mostly known in combinatorial optimization, e.g. in the 
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knapsack problem (Michalewicz, 1996).  The repair methods are also used in the 

Genocop III system (Michalewicz and Nazhiyath, 1995) that utilizes two populations of 

so-called search points and reference points.  The latter consist of only feasible candidate 

solutions, which are used as reference to repair possibly infeasible candidate solutions 

from the search population. 

 

4.2.6 Multi-objective Optimization Methods 

A number of authors considered the problem of handling constraints by reformulating the 

initial problem into its multi-objective equivalent (e.g. Surry, Radcliffe, and Boyd, 1995; 

Deb, 2001).  The general idea behind this approach is to convert constraints to additional 

objectives in the multi-objective optimization.  Let f: E  R  be the fitness function and 

C1, …, Cn be the constraints.  One possible method is to use the multi-objective 

optimization to find an optimum of (f(x), #C(x)) where #C(x) denotes the number of 

unsatisfied constraints in the minimization problems.  Another possibility is to treat each 

constraint as a separate objective, whose value indicates the degree to which the 

constraint is violated. 

 

A result of applying multi-objective optimization methods is usually a Pareto front 

consisting on several possible solutions.  In the case of using of the multi-objective 

optimization to constraints, the most interesting solutions are ones where #C(x) = 0. 
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4.3 Classification of Constraints 

It is usually the case that methods more universal and applicable to many problems are 

less efficient than methods specialized to do particular tasks.  This is also the case for the 

methods for handling constrained optimization problems. Formally, the problem of 

constraint satisfaction (CSP) that is equivalent to instantiation in LEM is known to be 

NP-complete (e.g. Mackworth, 1977).  The presented methodology distinguishes between 

different types of constraints and methods for handling them. 

 

The following is a classification of constraints into four types, from the easiest to the 

most difficult to handle by LEM’s instantiation process.  Detailed algorithms used for 

handling selected constraints of these types are presented in Sections 4.4 and 4.5. 

 

To illustrate the proposed types of constraints let  

E = D(Length) x D(Width) x D(Height) x D(Color) x D(Background Color) 

where Length, Width, Height, Color, and Background Color are attributes and D(X) 

denotes the domain of the attribute X.  The optimization problem is to find an optimum 

of a fitness function f: E R  given a set of constraints C. 

 

Type 1: Constraints are defined using conditions that include attributes from the original 

representation space, that is, in the form (4-5). Here, ATT is an attribute from the original 

problem definition, VALS is a set of values from D(ATT), and rel is a relation that 

applies to ATT and VALS. 

[ATT rel VALS] (4-5)
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Example: 

[Length=1..5] & [Color=red] v [Length=2..7] & [Height<4] 

 

This type of constraints is the simplest to handle.  It can be done by intersecting 

conditions in learned hypotheses with the constraints.  According to Theorem 1, such an 

intersection is always non-empty whenever feasible high-performing candidate solutions 

were provided to the learning program. No additional changes to LEM’s instantiation 

algorithms are needed. 

 

Type 2:  Constraints are defined using conditions in the form (4-6), where ATT is an 

attribute from the original problem definition (representation space), EXPR is an 

expression that may include only constants and attributes from the original representation 

space, excluding ATT, and rel is a relation applicable to ATT and EXPR. 

[ATT rel EXPR] (4-6)
 

Example: 

[Length = 5 + Width * Height] 

 

These constraints can also be instantiated by intersecting them with hypotheses 

describing high-performing candidate solutions.  Once the expression on the right side of 

the condition is evaluated, such a condition takes the form [ATT rel VAL], which is 

equivalent to a Type 1 constraint defined in the original representation space. 
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Type 3: Ordered conjunctions of Type 2 conditions in the form (4-7), where ATTi for 

i=1..n are attributes from the original representation space; reli are relations (e.g., =, <, >); 

EXPR1 is an expression that does not include attributes ATTi for i=1..n, EXPR2 is an 

expression that does not include ATT2, .., ATTn, EXPRn is an expression that does not 

include ATTn. 

[ATT1 rel1 EXPR1] & [ATT2 rel2 EXPR2] & … & [ATTin reln EXPRn] (4-7)
 

Example: 

[X7 = 5 – X32 – X12] & [X5 ≤ X8 – 6] & [X10 = X7 – X52 + X1] 

 

Constraints of Type 3 can be sequentially evaluated.  The first constraint does not depend 

on any other constraint, thus it can be evaluated independently.  The second constraint 

may depend only on the first constraint, which is already evaluated.  In general a 

constraint Ci may depend only on constraints Cj for j < i.  This prevents interdependency 

between constraints, so they can be efficiently solved in a sequence. 

 
Type 4: General constraints which cannot be directly instantiated or an efficient 

instantiation method is not available at the time.  Among methods for handling general 

constraints are those known from the field of evolutionary computation (e.g. penalty 

functions, repair algorithms; see Section 4.2) and methods designed especially for the 

LEM’s learning mode.  The latter include methods that approximate the feasible area of 

the optimization space, trim learned rules in order to minimize their intersection with the 

infeasible area, and use infeasible solutions as contrast sets for learning.  These methods 

are described in detail in Section 4.5. 
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4.4 Instantiable Constraints 

The instantiable constraints are those for which it is possible to apply the LEM’s learning 

mode in such a way that it preserves the constraints.  Each newly generated candidate 

solution is guaranteed to satisfy constraints.  There are several different forms of such 

constraints classified from the LEM’s perspective in three different types.  This section 

presents methods of handling constraints of Types 1-3. Although these types of 

constraints may seem not to be practically important, as they constitute a very narrow 

class, they are important for instantiating hypotheses learned in modified representation 

spaces presented in Chapter 5.  The AQ21 learning module equipped with constructive 

induction is able to learn hypotheses in modified representation spaces that are equivalent 

to Type 2 and 3 constraints. 

 

Suppose that the problem is to find an optimum (either minimum or maximum) of a 

function f: E  R  given set of constraints C = C1 v C2 v … v Cn in disjunctive normal 

form, where Ci = Ci
1 & Ci

2 & … & Ci
ki for i=1..n and Ci

 are of Types 1 – 3.  Suppose also 

that the program is at a given stage of evolution, meaning that there is a population P of 

feasible candidate solutions and learning mode has been selected as an innovation 

operator.  Learning mode is then applied in the steps presented in Figure 4-2 as an 

extension of one presented in Figure 3-7.  
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1. Select H- and L-groups of high- and low-performing candidate 
solutions, respectively 

2. Apply rule learning to generate a hypothesis, H, characterizing 
H-group against L-group 

3. Intersect the learned hypothesis H with constraints C to create a 
target constrained hypothesis (TCH) 

4. Reduce the size of TCH based on coverage 
5. Instantiate the TCH to create new candidate solutions 

Figure 4-2: Steps of LEM’s learning mode with instantiable constraints. 

 

The selection of high-performing and low-performing in candidate solutions into the H-

group and L-group, respectively, is done using one of the standard methods available in 

the learnable evolution model, namely population-based selection or fitness-based 

selection (Section 3.2).  Application of a rule learning program to the sets of high- and 

low-performing solutions also does not differ from standard (unconstrained) LEM.  

Because high-performing candidate solutions are feasible, Theorem 1 guarantees that it is 

possible to generate feasible candidate solutions from learned hypotheses.  The following 

methods assume that the learned hypotheses are in the form of attributional rulesets, 

which can be learned by programs from the AQ family, for example LEM3’s AQ21. 

 

Hypotheses which are attributional rulesets, as generated by AQ learning programs, 

usually consist of several attributional rules needed to describe the group of high-

performing candidate solutions (4-8). 

H = R1 v R2 v …v Rm (4-8)
   

Intersection of the hypothesis H with constraints C gives (4-9). 

TCH = (R1 v R2 v …v Rm) & (C1 v C2 v … Cn) (4-9)
 

After transforming (4-9) into disjunctive normal form the TCH becomes (4-10). 
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TCH = (R1&C1 v R1&C2 v … v R1&Cn v … v Rm&C1 v … v Rm&Cn ) (4-10)
    

The rules RiCj are called target constrained rules (TCR), as they represent rules 

intersected with constraints.  The total number of the target constrained rules after 

intersection is m x n where m is the number of rules in H and n is the number of 

conjunctions of constraints in C.  Some of the rules may be eliminated by applying 

absorption laws. 

 

It is often the case that many of these constrained rules are empty, meaning that the 

intersection RiCj cannot be satisfied.  For such constrained rules there is no point in even 

starting the instantiation, because it cannot be successfully finished.  For example, let  

H = [x = 1..2] v [y = 1..2] and C = [x > 3] v [y > 3].  The intersection of H with C is  

TCH = [x=1..2] & [x>3] v [x=1..2] & [y > 3] v [y = 1..2] & [x > 3] v [y = 1..2] & [y >3], 

in which the first and the last target constrained rules cannot be satisfied.  Finally, TCH 

consists of two rules with CONSEQUENT parts [x=1..2] & [y > 3] and [y = 1..2] & [x > 

3].  In many situations it may be difficult to determine whether an intersection of a rule 

with a constraint is empty or not, especially when constraints are defined using 

expressions, not just values as in the above simple example.  This observation is the 

reason for using nonzero positive coverage of target constrained rules as a basis for 

choosing them for the instantiation process.  For each constrained rule the method 

computes its positive coverage (number of high-performing candidate solutions that 

satisfy the rule).  All rules for which the coverage is empty are removed from the target 

constrained hypothesis.  This guarantees that each rule passed to the instantiation module 

can be instantiated.  The instantiation module, described in detail in Section 4.4.1, 

 80



 

sequentially assigns values of attributes in a created candidate solution.  Doing this for 

many attributes involves computing values of expressions that define constraints. 

 

4.4.1 Instantiation Algorithm 

Creation of new candidate solutions in LEM’s learning mode is realized by the 

instantiation of learned hypotheses.  For constrained optimization problems, the 

instantiation takes the target constrained hypothesis (TCH) as an input and produces a set 

of feasible candidate solutions that satisfy the given TCH.  Because the TCH is created 

by intersecting the learned hypothesis with constraints, the newly generated candidate 

solutions will be feasible and likely high-performing.  Also, because the TCH is reduced 

to rules that cover positive examples (high performing and feasible candidate solutions), 

each rule is instantiable. 

 

The pseudocode in Figure 4-3 describes an algorithm for generating new candidate 

solutions from a given target constrained hypothesis.  It is assumed that all constraints are 

of Types 1-3, meaning that they can be sequentially evaluated while generating a new 

candidate solution.  Whenever a constraint cannot be satisfied because of previous 

selections of attribute values, a simple backtracking algorithm is used. 

 

In the algorithm, the number of new candidate solutions generated for each constrained 

rule is proportional to its positive coverage (number of covered high-performing 

solutions).  At this point the set of already created new candidate solutions is empty.  It is 

important to correctly order conditions (attributes) in the current constrained rule, so all 
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attributes needed to instantiate an attribute are already instantiated.  After the list of 

attributes to be instantiated is prepared, the algorithm creates new candidate solutions 

until their total number reaches the desired level, or until the total number of unsuccessful 

conditions’ instantiations exceeds a given threshold.     

 

For each rule in TCH 
 Compute the number of candidate solutions to be generated 
 New Solutions = NULL 
 Compute order of attributes based on constraints 
 While size of New Solutions < number of solutions to be generated 
  For all attributes in the computed order 
   Compute all expressions with the attribute on left side 
   Compute condition for the attribute 
   If condition is empty 
    If the total number of tries exceeds a threshold 
     Stop instantiating the current rule 
    Jump to one of attributes before based on backtracking 
   Else 
    Instantiate the condition 
  Add the candidate solution to New Solutions 

Figure 4-3: Top level instantiation algorithm for constrained rules. 

 

Each new candidate solution is created by selecting values of attributes in the order 

defined in the previous step.  If for an attribute being considered there is no condition in 

the instantiated constrained rule, the program uses one of the methods described in 

Chapter 3. This includes taking a value from a randomly selected high-performing 

candidate solution that satisfies the rule, or selecting a value from the entire attribute’s 

domain.  This situation happens if the attribute is included neither in the original rule nor 

in the constraints.  For attributes included in the constrained rule, the final condition to be 

instantiated is computed based on conditions from the constraints and the hypothesis.  For 

example, the hypothesis may include a rule with condition [Height ≥ 34] and the 

intersected constraints may include conditions [Height ≥ Width + Length – 2] and 

 82



 

[Height ≤ 50].  To select a value of the attribute Height, it is necessary to compute 

conjunction of the three conditions: [Height ≥ 34] & [Height ≥ Width + Length – 2] & 

[Height ≤ 50].  Because it is assumed that all constraints are of Types 1-3, the values of 

attributes Length and Width will already be selected, and therefore all expressions in all 

conditions can be evaluated.  For example if Width = 30 and Length = 10, we have 

[Height ≥ 34] & [Height ≥ 38] & [Height ≤ 50], which can be reformulated as 

[Height=38..50].  The final condition consists of a range that can be instantiated using 

one of the methods discussed in Chapter 3. 

 

An important question arises what should be done in a situation when a constraint of 

Type 2-3 (defined by an expression) cannot be satisfied because of the choice of 

previously selected values of attributes needed to evaluate a condition.  Suppose that in 

the previous example the new candidate solution was assigned value 31 for the attribute 

Width and value 25 for the attribute Length (the attributes were instantiated in this order).  

In such a case conditions for the attribute Height are [Height ≥ 34] & [Height ≥ 54] & 

[Height ≤ 50] which is an empty interval and obviously cannot be satisfied.  To solve this 

problem the program needs to reinstantiate the attribute Length and compute conditions 

for Height again.  Because values of attributes that satisfy conditions are assigned 

randomly (according to some distribution) it may happen that the condition is not 

satisfied again and the operation needs to be repeated.  This process is continued no 

longer than a specified number of times, when the program tries to reinstantiate a 

previous attribute (in this case Width) also for a specified number of times.  This process 

repeats until the condition is satisfied or a total number of tries (usually very large) is 
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exceeded and the rule is ignored.  According to Theorem 1, it is always possible to find a 

set of values that satisfy all conditions, but it may take a very large number of trials. 

 

The backtracking-like algorithm described above is presented in Figure 4-4.  The notation 

assumes that attributes X1 .. Xi-1 are successfully instantiated, and Xi is the attribute 

currently being instantiated. 

 

If the condition for attribute Xi is empty 
 If the count of trials for the attribute Xj is below threshold 
  Reinstantiate X  and all attributes Xj+1..Xi j

  Increase counter 
 Else  
  Decrement j (if j > 1) 
  Counter = 0 
Else 
  Set j = i 
  Counter = 0 

Figure 4-4: Backtracking-like method for resolving constraints of Types 2-3. 

 

The algorithm does not invoke full backtracking, but uses a counter for a group of 

attributes being reinstantiated.  It was mentioned above that according to Theorem 1, 

there is always a feasible solution that satisfies all of the conditions.  It can be achieved if 

the threshold for the total number of trials is set to infinity.  The threshold is added to 

increase the efficiency of the entire instantiation function in LEM. 

 

4.4.2 An Example Execution of the Instantiation Algorithm 

A simple optimization problem can be used to illustrate the execution of the instantiation 

algorithm for constraints of Types 1-3.  Let c1: E  R  be a generalized n-dimensional 

sphere function c1(X1,…,Xn) = ∑Xi
2, E=[-n, n]n, and constraints are given by (4-11). 
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C = Π(Xi ≥ Xi+1 + 1), i=1..n-1 (4-11)
 

The function has one global minimum S0 = ((n-1)/2, (n-1)/2-1, …, -(n-1)/2+1, -(n-1)/2).  

For example for n=5 the solution is (2, 1, 0, -1, -2) and for n=4 the solution is (3/2, 1/2, -

1/2, -3/2).  In this example no discretization is used. 

 

Suppose that LEM is applied to the 5-dimensional c1 function and at a given step of 

evolution its learning module discovered the rule (4-12) characterizing selected high 

performing candidate solutions. 

[S is high performing] s [X1=2..4] & [X3=-1..1] & [X5=-4..2] (4-12)
    

The learned hypothesis may consist of several of such rules, but for simplicity this 

section focuses on problem of instantiating only one rule.  The rest of this section 

presents a step-by-step illustration of the instantiation of one candidate solution. 

 

Step 1: Intersection of the learned rule with constraints. 

At this step the hypothesis (4-8) is intersected with constraints (4-11) resulting a 

constrained target rule given by (4-13). 

[X1=2..4] & [X1≥X2+1] & [X2≥X3+1] & [X3=-1..4] & 
[X3≥X4+1] & [X4≥X5+1] & [X5=-4..2] (4-13)

  

Step 2: Order attributes (conditions). 

Type 2 and 3 constraints require evaluation of expressions and the outcome of the 

evaluation depends on previously selected values.  Here, X4 depends on X5, X3 depends 

on X4, X2 depends on X3, and finally X1 depends on X2. Thus, the only allowed order of 
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the attributes to be instantiated is X5, X4, X3, X2, and X1.  The ordered target constrained 

rule is given by (4-14). 

[X5=-4..2] & [X4≥X5+1] & [X3=-1..4] & 
[X3≥X4+1] & [X2≥X3+1] & [X1=2..4] & [X1≥X2+1] (4-14)

 

Please note that for many optimization problems in general, many different possible 

orders of the attributes may exist. 

 

Step 3: Create a new candidate solution and select its attribute values. 

In this step values of attributes are selected according to the given target constrained rule 

in the order determined in Step 2.  First an empty candidate solution is generated (4-15). 

The “*” indicates that no value is selected for a given attribute. 

(*, *, *, *, *) (4-15)
 

Because X5 is the first attribute to be instantiated a value is selected satisfying the 

condition [X5=-4..2].  Here, it is assumed that the uniform distribution is used to 

instantiate conditions. 

(*, *, *, *, -1.75) (4-16)
 

The next attribute to be instantiated is X4, whose value needs to satisfy condition 

[X4≥X5+1]. Because the value of X5 was selected as -1.75, the condition takes the form 

[X4≥-0.75], and is also limited by the upper bound of the domain of attribute X4.  

Suppose finally that the randomly selected value satisfying the condition [x4=-0.75..5] is 

2.1, which gives (4-17). 

(*, *, *, 2.1, -1.75) (4-17)
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The next attribute to be instantiated is X3, whose value needs to satisfy the conditions  

[X3=-1..4] & [X3≥X4+1].  After evaluating the conditions, we have [X3=-1..4] & 

[X3≥3.1], which is equivalent to [X3=3.1..4].  A random value satisfying the condition is 

selected, say 3.7, resulting in the instantiated candidate solution shown in (4-18). 

(*, *, 3.7, 2.1, -1.75) (4-18)
    

The next attribute to be instantiated is X2, whose value needs to satisfy condition 

[X2≥X3+1], which takes the form [X2≥4.7].  Because the upper bound of the domain of 

X2 is 5, the condition takes the form [X2=4.7..5], which can give a random value 4.9, and 

the candidate solution takes the form (4-19). 

 (*, 4.9, 3.7, 2.1, -1.75) (4-19) 

The next attribute to be instantiated is X1, whose value needs to satisfy conditions 

[X1=2..4] & [X1≥X2+1]. After evaluation, the conditions are [X1=2..4] & [X1≥5.9], which 

cannot be satisfied.  Using the backtracking method, the attribute X2 is reinstantiated to, 

say, 4.8 which satisfies the condition [X2=4.7..5], and gives (4-20). 

 (*, 4.8, 3.7, 2.1, -1.75) (4-20) 

Again, X1 needs to satisfy conditions [X1=2..4] & [X1≥X2+1], which are [X1=2..4] & 

[X1≥5.8], and cannot be satisfied.  Suppose now for simplicity that the threshold for 

backtracking is set to 1.  The program reinstantiates the attribute X3 to satisfy condition 

[X3=3.1..4]. If the value 3.15 is selected, we have the new candidate solution in form: 

 (*, *, 3.15, 2.1, -1.75) (4-21) 

Now, X2 needs to satisfy condition [X2=4.15..5] resulting in (4-22). 

 (*, *, 3.15, 2.1, -1.75) (4-22) 
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Suppose that after selection of value of X2 the solution takes form (4-23).  The conditions 

for attribute X1, which are [X1=2..4] & [X1≥5.22] still cannot be satisfied. 

 (*, 4.22, 3.15, 2.1, -1.75) (4-23) 

The backtracking threshold is met again and the next attribute to be reinstantiated is X4, 

which needs to satisfy condition [X4≥-0.75].  Suppose that the value -0.5 is selected, 

giving (4-24). 

 (*, *, *, -0.5, -1.75) (4-24) 

Suppose now that instantiation of attributes X3 and X2 result in (4-25) and (4-26), 

respectively. 

 (*, *, 0.7, -0.5, -1.75) (4-25) 

 (*, 2.8, 0.7, -0.5, -1.75) (4-26) 

Now, X1 needs to satisfy conditions [X1=2..4] & [X1≥3.8] which is [X1=3.8..4].  If the 

value of X1 is selected as 3.91, the new candidate solution takes the form (4-27) which 

satisfies both the learned rule and the problem constraints. 

 (3.91, 2.8, 0.7, -0.5, -1.75) (4-27) 

The new candidate solution is added to the list of new candidate solutions, and its fitness 

value will be later evaluated.  In the presented example, the selected value X4=2.1 caused 

an eventual problem when instantiating attribute X1, which was three attributes later.   
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4.5 General Constraints 

The previous sections discussed a specific type of instantiable constraints, that is, 

constraints for which there are defined constraint-preserving instantiation methods.  In 

this section it is assumed that constraints are given as a function (4-28), 

 c: E -> {true, false} (4-28) 

where c(s) = true if a candidate solution s is feasible (satisfies all constraints) and c(s) = 

false otherwise (at least one constraint is violated). This is equivalent to the attributional 

condition (4-29) that consists of one selector which includes the function c. 

 [ c ( X ) ] (4-29) 

Because of this assumption, the methods described in this section are not provided with 

any prior knowledge about the structure of the constraints; they can only check whether 

they are satisfied.  They are also not provided with the degree to which constraints are 

violated. The degree of violation of constraints is, however, used later in methods that 

allow starting with no feasible solutions. 

 

When handling the general constraints, rejection-like methods briefly discussed in 

Section 4.2.3 can be used.  These methods led to two important considerations: (1) the 

number of fitness evaluations needed to achieve a desired solution, and (2) the number of 

infeasible candidate solutions generated.  Suppose that the fitness evaluation of a 

candidate solution takes in average tf time units and the evaluation of constraints takes in 

average tc time units.  Let FE be the total number of fitness evaluations needed to find a 

solution and CE be the total number of constraint evaluations needed to find the solution.  

The total execution time of LEM is given by (4-30), 
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 T = FE * tf + CE * tc + R (4-30) 

where R is the total time of all additional operations such as hypothesis formulation, 

instantiation, population selection etc.  For any problem for which the fitness function 

evaluation is non-trivial, the factor FE * tf is greater than R, sometimes very significantly 

(e.g. Wojtusiak and Michalski, 2005; 2006).  The same applies to evaluation of 

constraints, which may take more time than R.  By keeping FE and CE as low as 

possible, the total time T can be minimized.  However, keeping CE low may cause FE to 

increase, as stricter instantiation which minimizes CE may lead to lack of diversity and 

improper exploration of the space.  It eventually may cause increases of FE and T.  Prior 

knowledge of the evaluation times tf and tc may lead to a proper selection of a constraint 

handling method. 

 

Three methods of handling general type constraints are presented.  They are applicable to 

LEM’s learning mode only.  The methods are illustrated using a simple example. Initial 

results from testing the performance of early versions of these methods are presented by 

Wojtusiak (2006) and further investigated in Chapter 6.  Suppose that an optimization 

problem is defined in a two-dimensional representation space, as illustrated in Figure 4-5.  

Candidate solutions on the plot are marked H (high-performing), L (low-performing) and 

X (infeasible), and the shaded area represents the feasible region.  Given sets of positive 

examples (H-group) and negative examples (L-group) the learning program may generate 

rules characterizing the H-group illustrated in Figure 4-6.  The rules are complete and 

consistent with regard to training data (they cover all positive and no negative examples), 

but also cover a number of infeasible candidate solutions, and large portions of the 
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infeasible region.  When instantiating these rules, the program may generate many 

infeasible solutions that would have to be rejected.  In real world optimization problems, 

evaluation of constraints may be a very time-consuming process, sometimes as time-

consuming as evaluation of the fitness function.  For example, one of the constraints used 

in the application to finding the best discretization, presented in Chapter 7, requires 

running an external program.  Thus, the presented methods of handling constraints are 

designed to minimize the number of infeasible solutions generated during the 

optimization process and at the same time not increase the total number of fitness 

function evaluations (the evolution length). 
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H – high-performing candidate solution, L – low-performing candidate solution, 
X – infeasible candidate solution, gray area – feasible space 

Figure 4-5: Feasible and infeasible candidate solutions in the example problem. 

 

 

 

 

H – high-performing candidate solution, L – low-performing candidate solution, 
X – infeasible candidate solution, gray area – feasible space, striped rectangles – rules 

Figure 4-6: Example rules discriminating high- and low-performing candidate solutions. 
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4.5.1 Trimming of Rules 

The AQ21 learning program learns rules with controllable levels of generality.  Figure 

4-6 shows rules that cover a much larger area than is needed to cover the high-performing 

examples.  The rules also cover large portions of the infeasible region.  The first 

presented method of handling general constraints in the learnable evolution model trims 

the learned rules, so they do not extend far beyond the high-performing examples.  As 

shown in the Figure 4-7, the trimmed rules cover a significantly smaller part of infeasible 

area, but large portions of the feasible region are also not covered, thus some solutions 

may be missed. 

 

 

H – high-performing candidate solution, L – low-performing candidate solution, 
X – infeasible candidate solution, gray area – feasible space, striped rectangles – rules 

Figure 4-7: Trimmed rules for the example problem. 

 

It can be also noted that the rule in the right part of the diagram covers a large portion of 

the infeasible area, because the program does not have any information that the area is 

infeasible.  The problem arises when the feasible area consists of disjoint parts, or in 
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general, it cannot be precisely covered by attributional rules that can be interpreted as 

hyperrectangles. 

 

4.5.2 Learning an Approximation of the Feasible Area 

The idea behind this method is to learn an approximation of the feasible area in parallel to 

the evolutionary optimization process.  Thus, in addition to the achieved optima, the 

program reports the approximation of the feasible space, which can be useful for domain 

experts.  The method applies the AQ21 learning program to sets of feasible and infeasible 

solutions in order to learn a general description of the feasible area. 

 

Let Sf be set of all feasible candidate solutions, and Sn be set of infeasible solutions 

created during the evolutionary optimization process in LEM.  Using Sf as the set of 

positive and Sn as the set of negative examples, the method learns an approximation of 

the feasible region.  Because both sets are growing during the evolution process, the 

approximation is becoming more accurate.  Instead of checking the newly created 

candidate solutions against the original constraints, which may be time-consuming (see 

application to automatic discretization in Chapter 7), the candidate solutions are first 

checked against the approximation, which is a very fast operation.  Only solutions that 

are included in the approximation are checked against the original constraints. 

 

The approximation of the feasible area may miss the actual solution when the learned 

description is overspecialized.  In such cases, some feasible candidate solutions may be 

missed, and the actual solution to the optimization problem may not be achieved. This 
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may happen especially when it approaches the border of the set of feasible solutions.  

This problem can be solved by (1) learning maximally general descriptions of feasible 

solutions, (2) checking randomly selected candidate solutions that do not satisfy the 

learned description of the feasible area, or (3) using a flexible rule interpretation, as 

defined in attributional calculus by Michalski (2000a).  After instantiation, sets Sf and Sn 

are updated with new candidate solutions.  The method is illustrated in Figure 4-8 and 

Figure 4-9. 

 

 

 

H – high-performing candidate solution, L – low-performing candidate solution, 
X – infeasible candidate solution, gray area – feasible space, rectangles – rules 

Figure 4-8: Feasible space approximation. 
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H – high-performing candidate solution, L – low-performing candidate solution, 
X – infeasible candidate solution, gray area – feasible space, rectangles – rules 

Figure 4-9: Intersection of the learned hypothesis and the feasible space approximation where candidate 
solutions are created and tested against constraints. 

 

4.5.3 Using Infeasible Candidate Solutions as a Contrast Set for Learning 

The latter described method for handling general constraints keeps a list Sn of infeasible 

solutions and uses them to constrain hypothesis formation in LEM by adding the 

solutions from Sn to the group of low-performing candidate solutions.  Hypotheses 

learned using such a method not only describe high-performing candidate solutions, but 

also avoid areas with infeasible solutions.  After instantiation, the set Sn is updated with 

new infeasible candidate solutions.  Similarly to the previously presented methods, to 

avoid missing solutions, when rules are overspecialized, flexible rule interpretation may 

be used. 

 

Figure 4-10 presents an example hypothesis learned with infeasible examples used as a 

contrast set. 
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H – high-performing candidate solution, L – low-performing candidate solution, 
X – infeasible candidate solution, gray area – feasible space, rectangles – rules 

Figure 4-10: Hypothesis learned with set of infeasible solutions used as negative examples. 

 

4.5.4 Discussion 

An important issue concerning the second and third method for handling general 

constraints is that the sets Sf and Sn may be very large. This may happen when the 

evolution process is long, or when many candidate solutions are rejected.  This may 

negatively affect the performance of the learning program.  To overcome this problem, 

subsets of Sf and Sn are used.  Selection of the subsets can be random, or through 

choosing the most representative candidate solutions.  The selected subset should be 

relatively small in order to guarantee efficient learning, yet it should be large enough for 

close approximation.  Methods for selecting examples applicable to AQ learning were 

investigated, for example, in the ESEL program (Michalski and Larson, 1978). 
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It is often the case that one or more constraints are active at the optimum, meaning that 

the optimum is located at the edge of the feasible area.  In such a case, the optimum 

cannot be surrounded by feasible, high-performing known candidate solutions; those are 

present from only “one side.”  Moreover, attributional rules learned by AQ programs 

represent hyperrectangles that may easily miss such a solution. This problem, easily 

illustrated for numerical domains (Figure 4-11), can be generalized to symbolic domains. 

 

  

H – high-performing candidate solution, L – low-performing candidate solution, 
X – infeasible candidate solution, gray area – feasible space, striped rectangles – rules 

Figure 4-11: An example of a missed optimum for a constrained optimization problem. 

 

It is important to note that this problem applies also to non-constrained optimization.  For 

example, when optimizing the Rosenbrock function (see Chapter 6), for which the 

optimum is located on the narrow ridge where values of all attributes are equal, learned 

rules may easily miss the solution.  This problem can be solved by using flexible rule 

interpretation described in attributional calculus by Michalski (2004a).  A condition with 
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a linear attribute (ordinal, cyclic, interval, ratio, etc.) can be interpreted strictly (match if 

the condition is satisfied, do not match otherwise) or flexibly (where the degree of match 

depends on the distance of the matched value to the condition).  If the condition is 

satisfied, the rule is matched with the degree of match equal one, otherwise, the condition 

can still be matched with the degree of match less than one (Michalski, 2004a). The 

degree decreases linearly with the distance from the condition.  For example is a 

condition says [Date=May 1 … October 19] and the date is October 20, there is a high 

chance that the date also should be matched, but with degree of match lower than if the 

condition was matched strictly.  A linear function that defines the degree of match for the 

flexible selector interpretation is proposed by Michalski (2004a).  Other than linear 

functions that can be used for the flexible selector interpretation have been investigated in 

fuzzy logic as described by Zadeh (1965). 

 

Flexible interpretation applies also to the process of instantiation in the learnable 

evolution model, as described in Chapter 3.  For each condition, the method generates a 

value that matches strictly the condition with probability p and is outside the condition 

with probability 1-p (e.g., p=0.95).  The probability of a value being selected decreases 

with distance from the condition.  Experiments have shown that for several problems 

(both constrained and not constrained) the method slightly slows convergence of 

candidate solutions, but also helps to maintain diversity. 
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4.6 Flexible Constraints 

All methods discussed in the previous sections were designed to cope with strict 

constraints that need to be satisfied.  Flexible constraints, on the other hand, may be 

violated if such a violation leads to better performance (fitness) of a candidate solution or 

when the program is unable to find a feasible solution.  The latter may happen for 

example for overconstrained problems in which there is no possible solution that satisfies 

all constraints and the goal is to find a solution which maximizes the fitness function and 

satisfies as many constraints as possible. 

 

Strict constraints are usually added to the problem specification in order to eliminate 

candidate solutions that make no sense.  For example an aircraft design where wings are 

not attached to the fuselage does not make sense, and it is obviously infeasible.  Flexible 

constraints usually represent experts’ knowledge, and are used to guide the evolution 

process.  This is done by not allowing candidate solutions that contradict the general 

knowledge in the area, or desired features of designs.  However, flexible constraints can 

be ignored if that leads to better solutions.  It is important to note that there are two ways 

of giving advice to the system, by flexible constraints and by plausible modifications of 

the representation space, as discussed in Chapter 5. 

 

A flexible constraint’s importance is a number that defines the degree of infeasibility 

when the constraint is violated.  Higher importance is assigned to constraints that should 

not be violated, and lower importance is assigned to those that may be violated if needed. 
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The infeasibility of a candidate solution is the sum of importances of the constraints 

violated by the candidate solution.  Individuals with infeasibility equal to zero are 

feasible. Theorem 2 generalizes Theorem 1 presented in Section 4.1 to flexible 

constraints.  In particular, it describes the situation when high-performing candidate 

solutions have infeasibility greater than zero. 

 

Theorem 2: If k is the highest infeasibility of high-performing candidate solutions 

provided to AQ learning program, then each rule in a learned hypothesis can be 

instantiated with a candidate solution of infeasibility at most k. 

 

Proof: Each rule covers at least one high-performing candidate solution. Since 

infeasibility of all high-performing candidate solutions is at most k, the candidate 

solution covered by any rule has infeasibility at most k. 

 

To handle flexible constraints, the lexicographical evaluation functional given by (4-31) 

can be used. It allows solutions with some infeasibility when their fitness is high. 

<(MinInfeasibility, τ); (MaxFitness, 0)> (4-31)
 

Here, τ is a tolerance of allowing infeasible solutions.  Strict constraints should be 

assigned very high importances, in order not to allow them to be selected by the LEF (see 

also Section 4.7). 
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4.7 Starting with no Feasible Solutions 

Methods for handling constrained optimization problems presented in the previous 

sections make the assumption that there is a known population of feasible candidate 

solutions to start the evolution process.  It is, however, often the case that such solutions 

are not known prior to evolution and may be difficult to find.  Methods that can be used 

to start evolution with no initial feasible solutions can be classified into sequential and 

parallel.  The former start by searching for a starting population of feasible candidate 

solutions and then apply the methods discussed in previous sections, while the latter 

search for feasible candidate solutions in parallel to the optimization process. 

 

In the sequential methods, candidate solutions can be randomly generated in the search 

space until sufficiently many feasible solutions are found.  This method is often very 

ineffective, especially when the feasible area is small in relation to the entire search 

space, but its advantage is that it gives good diversity to the initial set of feasible 

solutions.  Another possibility is to use two-step optimization by applying first an 

evolutionary search to find a population of feasible solutions (here fitness reflects 

feasibility of the candidate solutions and ignores the actual optimization problem).  When 

the starting population of feasible candidate solutions is found, the normal constrained 

optimization process is performed as described in the previous sections. 

 

The second class of methods searches for feasible solutions in parallel to the optimization 

process.  This can be done in several different ways, for example by applying 

multiobjective optimization (e.g., Surry, Radcliffe, and Boyd, 1995; Deb, 2001) or 
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penalty functions.  Another possibility is to use the lexicographical evaluation functional 

(see Chapter 2) with criteria (4-32) for selection of candidate solutions into a new 

population and optionally also during selection into the H-group and L-group before 

learning. 

 <(MinInfeasibility, τ); (MaxFitness, 0)> (4-32) 

By using MinInfeasibility with a given tolerance τ as the first criterion, the method 

prefers selection of candidate solutions with lower infeasibility (those that violate fewer 

constraints) and in this initial stage treats their fitness as less important (the second 

criterion).  Once all candidate solutions are feasible, there is no need for using the LEF 

any more, and the selection can be based solely on the fitness values. 

 

To illustrate the method based on LEF, the program was applied to the optimization of 

the G1 function, a well-known constrained optimization testing problem.  For this 

example, infeasibility is defined as the number of violated constraints.  Figure 4-12 

illustrates infeasibility of the best individuals in each of 50 generations.  The program 

was applied with four different values of tolerance in the LEF, and each experiment was 

repeated ten times.  For details of the experiment and the G1 function, please refer to 

Chapter 6. 
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Figure 4-12: Infeasibility of the best individuals in different generations when optimizing the G1 

function. Each line represents average of ten executions for a given tolerance t. 

 

 

It is not surprising that the higher the tolerance is, the slower the program’s convergence 

to the feasible solutions.  For this particular problem, however, the feasible solutions are 

found after roughly the same numbers of generations. 

 

4.8 Conclusion 

This chapter presented several methods for handling constraints. In addition to an 

overview of methods known in the literature, such as penalty functions, repair algorithms, 

and multiobjective optimization, it presented methods specifically developed for the 

learnable evolution model.  Constraints, depending on their form, can be classified as 

instantiable, which can be used directly to produce new candidate solutions, and general 

for which it can be computed whether they are violated or not (possibly with a degree of 

violation).  Instantiable constraints, which consist of ordered lists of conditions in the 

specific form [ATT rel EXPR] are handled by the presented backtracking algorithm. The 
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method is more efficient in terms of execution time than a standard rejection algorithm.  

General constraints can be handled by three different methods that incorporate them into 

the learning process, either as a contrast set, or by a secondary learning process. 

 

Additionally, this chapter discussed problems of handling flexible constraints that may be 

violated under specific conditions, and methods for starting with no feasible solutions in 

the initial population.  Experimental application of the presented techniques to a set of 

problems is presented in Chapter 6. 
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CHAPTER 5 REPRESENTATION SPACE 

The problem representation space, also known as search space, is the set of all possible 

problem solutions.  Finding an appropriate representation space for a given optimization 

or learning problem is one of the most important and challenging tasks.  This chapter 

introduces the topic of representation space in the learnable evolution model and 

proposes automated methods for its improvement.  These methods are built upon results 

previously obtained in the field of machine learning, in which constructive induction has 

been introduced. This chapter is organized in the following way: Section 5.1 presents two 

simple examples illustrating the importance of improving the representation space.  

Section 5.2 presents a general representation-based learnable evolution model schema.  

Detailed descriptions of methods of searching for the best representation space, creation 

of new candidate solutions from modified representations, and how LEM controls these 

processes are presented in Sections 5.4 - 5.6. 

 

5.1 Two Examples Illustrating Modifications of Representation Space 

In order to illustrate the importance of representation space, two simple examples are 

used in this section.  The examples are based on the generalized Rosenbrock function and 

a designed circular shape function.  The Rosenbrock function, defined by expression  
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(6-3) and graphically illustrated in Figure 6-26, has an almost flat ridge for all variables 

equal, and is very steep outside of the ridge.  Provided with a sufficient number of known 

candidate solutions and past hypotheses, it may be possible to discover that it is necessary 

only to search for the solution along the ridge.  When such information is discovered, the 

optimization problem can be reduced to one dimension.  When the generalized 

Rosenbrock function is defined using a large number of attributes, even discovery of the 

fact that values of some of the variables need to be equal may significantly reduce the 

complexity of the optimization problem. 

 

For example, Figure 5-1 presents rules learned by LEM3 during optimization of the 

Rosenbrock function of 5 variables without discovering the concept of the ridge, and 

Figure 5-2 presents a rule learned for the same data with the ridge discovered.  In the 

example, 4 high-performing and 7 low-performing candidate solutions were provided to 

LEM’s learning module. 

 
 [C is high-performing] s [x0=-1.5..2.5: 3,3,50%] & 
                             [x1=-1.5..2.5: 3,4,42%] & 
                             [x2=-1.5..2.5: 3,3,50%]  : p=3,n=0,u=2 
 
 [C is high-performing] s [x0=1.5..5: 2,2,50%] & 
                             [x1=1.5..5: 2,2,50%] & 
                             [x2=1.5..5: 2,3,40%] & 
                             [x3=1.5..5: 2,1,66%]     : p=2,n=0,u=1 

Figure 5-1: Rules learned during optimization of the Rosenbrock function of 5 attributes. 

 

The above hypothesis describes high-performing candidate solutions using two rules. The 

first rule consists of three conditions specifying attributes x0, x1, and x2, all defined in the 

range -1.5 to 2.5.  The annotation after the rule indicates that it covers 3 high-performing 

candidate solutions (p=3), 0 low-performing candidate solutions (n=0), and has a unique 
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coverage that is 2 (u=2).  The small-sized numbers used in the conditions represent 

positive and negative support, and confidence of conditions, respectively.  The second 

rule can be interpreted similarly. 

 

[C is high-performing] s  
        [equal(x0, x1, x2, x3, x4; ε=0): 4,0,100%] : p=4,n=0,u=3 

Figure 5-2: Rule learned during optimization of the Rosenbrock function of 5 attributes with 
discovered ridge. 

 

The hypothesis presented in Figure 5-2 consists of one rule that consists of a single 

condition sufficient to consistently describe all provided candidate solutions, as it covers 

all four high-performing candidate solutions (p=4) and no low-performing solutions 

(n=0).  The only condition included in the rule uses equal( xi; ε ), i=1..k function that 

returns true if values of all attributes xi are equal within margin/tolerance ε, and false 

otherwise.  The margin can be defined either as maximum difference between values of 

attributes.  All candidate solutions satisfying the condition lie on the narrow ridge of the 

Rosenbrock function.  In this case, by introducing to the representation space a new 

attribute, the optimization problem is reduced to one dimension. 

 

The rule presented in Figure 5-2 is sufficient to discriminate between high- and low-

performing candidate solutions.  However, experimental evaluations of the learnable 

evolution model indicate that characteristic descriptions tend to perform better.  In the 

characteristic mode, the program discovers the rule shown in Figure 5-3.  It combines the 

condition with the equal( xi; ε ) function with a basic condition. 
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  [C is high-performing]  
    s [x2=-1.5..5: 4,5,44%] & 
     [equal(x0,x1,x2,x3,x4; ε=0): 4,0,100%]: p=4,n=0,u=3 

Figure 5-3: Characteristic rule learned during optimization of the Rosenbrock function of 5 
attributes with discovered ridge. 

 

The procedure for instantiating rules with the equal function consists of three steps. First, 

the intersection of conditions with all attributes used by the equal function is computed. If 

no conditions are present for a given attribute, its entire domain is used.  In the second 

step a value is selected from the intersection.  Finally, all attributes used in the equal 

function are assigned the selected value. 

 

The second example presented in this section shows a suggestion-taking capability that 

allows the user to propose plausible transformations of the representation space to the 

system.  Such transformations may help in learning simpler and more accurate 

descriptions of high-performing candidate solutions. Hypotheses learned in better 

representation spaces are more likely to contain optimal solutions. 

 

Suppose that during the evolutionary process of maximizing the function given by (5-1), 

the learnable evolution model generated 30 positive and 30 negative examples 

graphically illustrated in Figure 5-4 (high- and low-performing candidate solutions are 

marked as “+” and “-“, respectively). 

 f(x,y)=cos(x2+y2-1)+x2/4 (5-1) 

The LEM’s learning module, provided with the examples, generated six rules shown in 

Figure 5-5
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Figure 5-4: An illustration of function (5-1) with marked high- and low-performing candidate 
solutions. 

 

 
[Group=H]  
  s [x=-1.36..-0.77: 8,3]&[y=-0.82..-0.006: 13,5] : p=7,n=0  
  s [x=-1.071..0.07267: 19,9]&[y=0.52..1.05: 11,3] : p=7,n=0 
  s [x=-0.58..1.07: 18,12]&[y=-0.81..-0.08: 10,4] : p=6,n=0 
  s [x=0.25..1.17: 11,6]&[y=0.03..0.99: 13,8] : p=5,n=0 
  s [x=0.27..0.39: 2,0] : p=2,n=0 
  s [y=0.4288..0.5237: 1,0] : p=1,n=0 

Figure 5-5: Rules leaned by LEM when optimizing the function (5-1). 

 

Suppose now that the user, based on domain knowledge, provides the program with a 

suggestion to change the search space.  The suggestion is to introduce two new attributes 

w and z, defined as mathematical formulas: z = sin( x + y ) and w = x2 + y2.  In the 

presented methodology, some of the suggestions given to the system may be correct, and 

some may be incorrect, or no suggestions given to the system may be correct.  It is the 

role of the LEM learning module to determine which of the provided suggestions help to 

describe high performing candidate solutions, and which suggestions should be ignored.  
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In the presented example, the second provided attribute, w, helps the system to easily 

capture the high performing candidate solutions.  Given the new attribute, LEM learns 

the rule (5-2). 

 [Group=H]  s  [w = 0.8375..1.213: 30,0]: p=30, n=0 (5-2) 

Due to the suggestion, LEM is able to reduce the optimization problem to one dimension, 

w.  In next steps LEM adds additional conditions in order to narrow the search along the 

w dimension, producing rules such as (5-3). 

 [Group=H] s [w=0.8..1.2: 30,7]&[x=1..3: 10, 5]: p=10, n=0 (5-3) 

 

In the presented example, an explicit definition of a new attribute was provided, but in 

general, LEM can be provided with a general statement such as w = poly(x, y; 2), 

meaning polynomial of x and y of degree 2, or simply a general request for discovering 

new attributes. 

 

5.2 Representation Space in the Learnable Evolution Model 

Evolutionary computation methods, including the learnable evolution model, can be 

viewed as a population of candidate solutions and a set of operators that modify the 

population.  In this model, selection operators that are used to choose candidate solutions 

that remain in the population and evaluation operators (fitness and constraints) are 

representation independent, that is, evaluated in the original representation.  Innovation 

operators used to create new candidate solutions, e.g., by learning and instantiation or 

probing, may depend on the representation of candidate solutions.  The role of 

representation was illustrated in Section 5.1, where LEM’s learning and instantiation 

 111



 

operator was applied in the original and modified representations. Operators that are used 

to modify the representation space are also representation-dependent, as they relate to the 

current representation space, which they may further modify.  These dependencies are 

graphically illustrated in Figure 5-6. 

 

 

Figure 5-6: A general schema of dependencies on representation in LEM. 

 

The above schema that assumes that candidate solutions are stored in their original 

representation is only one of many possibilities.  Others include a population of candidate 

solutions in a modified representation and evaluation of fitness or constraints that 

requires translation to the original space.  Such a solution is often used in evolutionary 

computation. For example, in genetic algorithms that use bit coding of individuals 

(genotypes), the fitness evaluation requires decoding these bits into the original 

representation (phenotypes). 
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In LEM3, candidate solutions are represented in the original space and translated into 

modified spaces in order to apply change operators.  This is possible because LEM3 

implements several attribute types available in attributional calculus.  Storing candidate 

solutions in their original representation have several advantages.  Each candidate 

solution needs to be in the original space in order to evaluate its fitness and constraints.  It 

is easier to translate solutions from the original space into the modified one than to define 

a reverse transformation of the space.  New candidate solutions are created in the original 

representation and the reverse transformation is realized by the instantiation process, i.e. 

when hypothesis formulation includes representation space transformations.  Also, 

because the process of updating representation space is incremental, the reverse 

transformation would need to consist of multiple steps, which is not practical. 

 

5.3 Constructive Induction 

The original representation space provided to a machine learning, data mining, or 

evolutionary computation system may be inadequate for performing the desired task for 

concept learning, pattern discovery, optimization, etc.  A careful design of the 

representation space is considered one of the tasks most important to successful 

applications in these areas.  Most concept learning programs use so called selective 

induction, meaning that hypotheses are generated by selecting attributes and their values 

in form of patterns describing the provided data.  Such a process does not involve 

modifications to the original representation space. 
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Constructive induction (CI) methods automatically create new representation spaces 

based on the original representations, which allows the determination of relationships that 

cannot be represented in the original spaces.  New representations are created by 

removing attributes irrelevant to the considered problem, modifying domains of attributes 

(for example by abstracting values), and by creating new attributes.  Formally, the 

constructive induction process can be characterized by the function (5-4), where E is the 

original representation space and EC is the modified representation space. 

 Ψ: E  EC (5-4) 

 

The problem of searching for the best representation space has been investigated in field 

of machine learning by numerous researchers (e.g. Bloedorn and Michalski, 1991; 1998; 

Wnek and Michalski, 1994; Bensusan and Kuscu, 1996; Markovich and Rosenstein, 

2002; Muharram and Smith, 2005).  Constructive induction methods can be classified 

into four categories: data-driven constructive induction, which uses results of analysis of 

data to modify the representation space, hypothesis-driven constructive induction, which 

uses results of analysis of preliminary hypotheses to modify the representation space, 

knowledge-driven constructive induction, which uses domain knowledge provided by 

experts to modify the representation space, and multistrategy constructive induction, 

which combines the above methods. 

 

Data-driven constructive induction (DCI) searches for the best representation space by 

analyzing the data and the current representation.  Among the best known DCI methods 

are AQ17-DCI (Bloedorn and Michalski, 1991; 1996) and methods based on evolutionary 
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search for the best representation space (e.g. Bemsusan and Kuscu, 1996; Krawiec, 2002; 

Muharran and Smith, 2005). 

 

AQ17-DCI uses an extensive search over the set of possible representations.  Newly 

generated attributes, e.g., by abstraction or construction, are evaluated using a statistical 

measure.  When the quality of all attributes according to the statistical measure is 

satisfactory, the program employs AQ learning in order to generate hypotheses using a 

part of the data (the primary training dataset), and evaluates the hypotheses using rest of 

the training data (the secondary training dataset).  If the quality of the learned hypotheses 

(measured as predictive accuracy) is not satisfactory, the program returns to 

representation space modification; otherwise the program learns hypotheses using the 

entire dataset and ends execution.  A general schema of the presented algorithm is 

illustrated in Figure 5-7.  A version of this algorithm is implemented in the AQ21 system 

used for hypotheses formulation in LEM3. 
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Figure 5-7: General diagram of constructive induction in AQ learning. 

 

Hypothesis-driven constructive induction (HCI) searches for the best representation space 

by analyzing previously learned hypotheses (e.g. Wnek and Michalski, 1991; Wnek, 

1993; Wnek and Michalski, 1994).  The AQ17-HCI system follows the general 

framework of AQ constructive induction systems presented in Figure 5-7.  It extends the 

representation space by creating new attributes that represent strong relationships in 

previously learned rules.  Such patterns can be groups of rules, parts of rules, individual 

conditions, or groups of attribute’s values from a condition. 

 

Knowledge-driven constructive induction (KCI) improves the representation space based 

on background knowledge provided by an expert or accumulated during past 

experiments.  The knowledge provided by an expert may include information about 

attributes, information about particular learning (optimization) problem, information 

about dependencies between attributes, previously learned hypotheses etc.  Background 
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knowledge about attributes may be communicated in the form of their types (nominal, 

structured, rank, absolute, ratio, etc.), discretization, importance, cost, and all other 

information potentially useful when inducting hypotheses.  Dependencies between 

attributes are given in the form of arithmetic expressions (A-rules) or logic expressions 

(L-rules) that extend the representation space and possibly guide the system toward the 

problem solution. 

 

Knowledge about plausible representation space transformations is provided in the form 

of suggestions of three different levels of generality.  On the lowest level, explicit 

suggestions are given, for example, “There is a relation between variables x, y, and z 

such that an optimal solution satisfies: x = 4*y + z,” or “There may be a relation between 

variables x, y, and z such that an optimal solution satisfies: x = 4*y + z.” There is a 

fundamental difference between the two statements.  The former one can be viewed as a 

constraint, making feasible individuals only those that satisfy the given formula, while 

the latter states that it is plausible that the solution satisfies the formula.  If the knowledge 

is given as a constraint, one of the methods used in Chapter 4 should be applied. In the 

case of plausible modifications, the suggestions provided to the system may be 

contradictory or incomplete, and it is the role of a learning system to determine their 

correctness and how to use them in the learning process. 

 

In the second level of suggestion, background knowledge is given in the form of 

equations in which coefficients need to be discovered by the system.  For example “There 

might be a relation between variables x, y, and z such that an optimal solution satisfies:  
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x = a*y + b*z, where a and b are parameters.”  The program needs to find the coefficients 

a and b based on the known candidate solutions. This can be done using known methods, 

such as least squares. 

 

On the most general level of suggestion, the system is provided with background 

knowledge in the form of a general statement about possible relationships in the data. For 

example, “There is a polynomial relation between x, y, and z,” or “There is a 

trigonometric relation between variables x1, x2, and x3.”  These types of suggestions are 

handled by applying data-driven constructive induction in which operators and functions 

are defined by the user, and only to specified attributes.  It is not clear where to put a 

distinction between knowledge- and data-driven constructive induction methods in this 

case. Clearly, the distinction should be based on the amount of background knowledge 

used by the system.  With an increasing amount of background knowledge, less data is 

needed to search for the best representation. 

 

Multistrategy constructive induction (MCI) combines hypothesis- and data-driven 

constructive induction methods.  MCI uses advanced reasoning to choose which 

operators should be applied to modify the representation space.  The decision is made 

based on high level meta-rules tailored to the problem (e.g., Bloedorn, Michalski, and 

Wnek, 1993; Bloedorn, 1996; Bloedorn and Michalski, 1998). 
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5.4 Automated Improvement of Representation in the Learnable Evolution Model 

In order to better characterize high-performing candidate solutions, it is sometimes 

necessary to change their representation, as illustrated by the two examples in Section 

5.1.  This section illustrates how methods of constructive induction, in particular a 

combination of data-driven constructive induction and suggestion-taking (a special case 

of knowledge-driven constructive induction), can be applied to improve hypothesis 

generation in the learnable evolution model.  Methods for creating new candidate 

solutions from hypotheses learned in such transformed representation spaces will be 

discussed in Section 5.5. 

 

The considered method for transforming representation spaces in the learnable evolution 

model follows the general constructive induction methodology presented in Section 5.3 

and illustrated in Figure 5-7.  At each step of evolution, LEM applies machine learning to 

distinguish between selected high- and low-performing candidate solutions.  This process 

may be performed in the original representation space, in a previously transformed 

representation space, or may involve transformations of the representation space. For 

instance, LEM3 while applying the AQ21 learning program may use its constructive 

induction capabilities.  The following subsections describe in detail methods used in 

LEM for transforming representation spaces and their relation to the original constructive 

induction methods used in concept learning. 
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5.4.1 Transformation Algorithm 

The methodology used in this dissertation for the learnable evolution model 

transformation of representation spaces, follows the general algorithm used in 

constructive induction presented in Figure 5-7.  The program starts by splitting the 

training dataset into primary and secondary sets; the former is used to hypothesize rules 

that describe high-performing candidate solutions, and the latter is used to test the 

hypotheses.  When the quality of hypothesis learned in the current hypothesis is below a 

given threshold, the program tries to improve the representation space.  The 

improvements aim at helping to better capture the high-performing candidate solutions in 

the learned hypotheses.  The improvements include selection of the most relevant 

attributes, construction of new attributes, and adjustment of discretization of continuous 

attributes. The learning program is applied to examples in the new representation, and the 

resulting hypothesis is evaluated. The following sections describe this algorithm in detail. 

 

5.4.2 Construction of Attributes 

The most important feature of constructive induction presented in this dissertation is its 

ability to create new attributes. These new attributes are designed to more adequately 

capture high-performing candidate solutions, and help in distinguishing high- and low-

performing solutions with simple well performing hypotheses.  The new attributes can be 

in the form of equations involving numeric attributes, and special forms involving 

symbolic attributes (e.g., count, equality).  Unlike in concept learning, where the goal is 

to learn simple and well-performing hypotheses, in LEM an additional requirement needs 

to be satisfied. The requirement is that the learned hypotheses must be in such a form that 
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the instantiation process is efficient.  The following paragraphs describe two algorithms 

for constructing new attributes, first one that constructs attributes in a general form, and 

then one that constructs attributes in the special instantiable form. 

 

Attributes = Current attributes 
For depth = 1 to maxdepth 
  For each attribute Att in Attributes 
    For each attribute Att1 ≠ Att in Attributes 
      Create attributes using operators +, -, *, / on Att and Att1 
    Create attributes Att * Att and Att + Att 
    Create attributes using requested special functions on Att 
    Evaluate quality of new attributes and add to Attributes list if 
      the quality is above a given threshold 
Remove all attributes with quality below a threshold 
Keep only k best attributes 

Figure 5-8: Algorithm for constructing general form of attributes. 

 

The algorithm presented in Figure 5-8 starts with attributes from the current 

representation space. The representation may be the original or it may be already 

modified.  New attributes are created by applying standard arithmetic operators (+, -, *, /) 

to each pair of already existing attributes, and by applying user-specified special 

functions such as sin(X), cos(X), sqrt(X), etc. that apply to numeric attributes.  For 

symbolic attributes, program may construct count, and equality attributes. Each newly 

created attribute is evaluated and if its quality is above a given threshold, it is added to 

the list of attributes.  Finally, new representation space is assembled using at most the k 

highest quality attributes, where k << P is a user-defined parameter significantly smaller 

than the number of high-performing examples in the current population. 

 

The above algorithm creates new attributes in a general form.  In order to efficiently 

instantiate hypotheses that include constructed attributes, new attributes need to be in 
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special instantiable form such as (4-6).  The following algorithm creates new attributes in 

a special form (5-5) similar to (4-6): 

 ATT +/- EXPR (5-5) 

 

Attributes = Current attributes 
For depth = 1 to maxdepth 
  For each attribute Att in Attributes 
    Add Att to the list of used attributes 
    For each attribute in Attributes and not in the used attributes 
      Create attributes using operators +, -, *, / on Att and Att1 
      Evaluate quality of new attributes 
    Create attributes using requested special functions on Att 
    Evaluate quality of new attributes and add to Attributes list if 
      the quality is above a given threshold 
Remove all attributes with quality below threshold 
Remove worst quality attributes so only k best are kept 

Figure 5-9: Algorithm for constructing instantiable attributes. 

 

The constructed attributes are used by the AQ learning module as standard numeric 

attributes, as their values can be computed for each example prior to execution of the 

learning module.  Because of constraints imposed on the form of these attributes, there 

are transformations that cannot be represented. For example (5-6) cannot be created by 

the presented algorithm. 

 X2 + X + Y2 + Y (5-6) 

 

Both algorithms presented above tend to be inefficient or even impossible to apply for 

representation spaces with very large numbers of attributes.  For example, if there are 100 

original attributes and the program seeks only combinations of pairs of attributes, there 

are 40,000 potential new attributes for which the quality measure needs to be computed.  

Even if the method implements additional heuristics, such as checking monotonicity of 

the attributes, as in the ABACUS system (e.g. Falkenhainer, 1984; Falkenhainer and 
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Michalski, 1990), the number of possible combinations will still be very large.  In 

concept learning problems in which exploration of these possibilities is usually done only 

once, it still may be possible to do. In LEM, however, such a process is repeated many 

times at different stages of evolution, thus it seems to be computationally too expensive 

for practical applications.  One possibility of solving this problem is to combine only 

high quality attributes. Such attributes are more likely to produce new high quality 

attributes than combinations of low quality ones.  Following this idea, the attribute 

generation algorithms presented in Figure 5-8 and Figure 5-9 need to be modified to 

narrow the search space.  This is done by applying beam search – at each step of attribute 

generation only max best attributes are selected, where max is a parameter. 

 

A simple experiment performed for minimization of the Rosenbrock function (see 

Chapter 6) shows that with an increased max parameter LEM3 finds better solutions after 

10 generations (1100 fitness evaluations), but its execution time significantly increases.  

In this example the program was run for only few steps for demonstration purposes, thus 

the solutions are far from optimal. This is illustrated in Table 5-1 where fitness of the best 

obtained result and the time of execution are compared for LEM3 without constructive 

induction, and LEM3 with constructive induction for which the max parameter set to 5 

and 10, respectively.  The minimal fitness value of the Rosenbrock function is 0. 

Table 5-1: The best fitness value and time of LEM3 execution with no constructive induction, and 
constructive induction with max parameter set to 5 and 10 respectively.  

Max Fitness 
Value 

Time of 
Execution 

No CI 121116 3 seconds
5 117872 169 seconds

10 109351 1007 seconds
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Although computation time significantly increases with the max parameter, for problems 

for which the fitness function evaluation takes a significant amount of time, it is desirable 

to keep it large.  For example, if evaluation of the fitness takes about 10 minutes, which is 

not unusual in design problems, 1100 evaluations takes about 11,000 minutes (over 7 

days) which is significantly larger than 1004 seconds (less than 17 minutes) overhead 

used by applying the constructive induction in LEM. 

 

5.4.3 Discretization of Continuous Attributes 

Full precision of continuous attributes is often too high, especially at the early stages of 

evolution.  Thus, it seems plausible to roughly discretize attributes at the beginning of 

evolution and increase their precision in the most promising areas as the evolution 

progresses.  This section describes an adaptive discretization method used to improve 

representation space in LEM.  The method is a slightly modified version of the adaptive 

anchoring discretization (ANCHOR) described by Michalski and Cervone, (2001). 

 

The method starts by creating the first order approximation FOA, defined as the closest 

numbers with a digit that can be followed only by zeros.  For example the value 12.375 is 

approximated by 10, the value 1836.3672 is approximated by 2000, and -37,446.22 is 

approximated by -40,000.  As one can see such a method follows the general idea of 

natural induction, as it resembles the process of discretizing numbers by humans to the 

closest “round” number, not necessarily evenly distributed.  Note that such a method is 

strongly biased toward higher precision near zero.  Because the AQ21 learning program 

requires definition of domains of all attributes, such a domain for attribute Xi discretized 
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to Xdi is defined as {yi: yi = FOA(xj) for all xj in domain of Xi}.  For example if the 

domain of the attribute X is [-33.2, 476.20], it is replaced by {-30, -20, -10, -9, -8, …, -1, 

0, 1, 2, …, 10, 20, …, 90, 100, 200, …, 400, 500}. 

 

Discretization is adjusted in the most promising areas during the evolution process.  

Suppose that during an evolution process, the value of the attribute X in the best 

individual is x and the program determines a need for adjusting discretization.  The 

program increases precision in a neighborhood of x between its two neighbors in the 

discretization.  Each point in this neighborhood is replaced by the second order 

approximation, which is defined by the closest numbers with at most two digits followed 

by zeros or a single digit followed by one decimal digit (for x in [-10, 10]).  For instance 

if in the previous example x = 40, precision in the range [30, 50] is increased by adding 

values 31, 32, …, 39, 41, 42, …, 49 to the domain of attribute Xd.  If the discretization 

needs to be adjusted in area in which the second order discretization was introduced, the 

third order discretization is created in an analogous way, and so on. 

 

The discretized attributes are semantically equivalent to their original forms, as 

discretization preserves type-invariant operations (Michalski and Wojtusiak, 2007).  This 

means that a discretized ratio attribute still have properties of a ratio attribute, a 

discretized interval attribute still have properties of an interval attribute etc.  A process of 

applying transformations to discretized attributes works as follows:  values in discretized 

examples are first undiscretized, to get continuous values in the intervals, then the 

operations are executed.  Results are discretized back into the discrete form.  This feature 
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of discretized attributes is important, as it makes it possible to construct new attributes 

that involve mathematical formulas with discretized attributes. 

 

Another important property of the discretization is the fact that it does not preserve 

feasibility in constrained optimization problems.  A feasible (satisfying all problem 

constraints) candidate solution in the original representation space may not be feasible if 

one or more attributes are discretized.  To illustrate this fact, it is enough to consider a 

simple example.  Suppose that the optimization space consists of one continuous attribute 

Z and a constraint C = [Z < 47.23].  A first order approximation of value Z = 46 which is 

feasible is Zd = 50 which does not satisfy C.  Note that to solve this problem, in many 

cases it is not sufficient to simply discretize values in the constraint.  A similar example 

can be given for which an infeasible candidate solution becomes feasible after 

discretization.  This means that when applying the learnable evolution model to 

constrained optimization problems, one must carefully consider consequences of using 

discretization.  Feasible solutions may not exist in a modified optimization space with 

discretized attributes.  This also can be addressed by relaxing strict constraints and 

flexible constraints instead.  Such a method may not be, however, applicable to all 

problems. 

 

5.4.4 Selection of Attributes 

Selection of the most relevant attributes (a.k.a. feature selection) is one of the most 

important representation space modifications, especially when the original space is very 

large.  For optimization problems with tens or hundreds of attributes, most of the 
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attributes are not included in hypotheses describing high-performing candidate solutions. 

The problem of attribute selection is widely known in machine learning, data mining and 

knowledge discovery, and other fields.  Several workshops, conference sessions, special 

issues of journals, and books have been dedicated to selection of the most relevant 

attributes (e.g. Liu and Motoda, 1998; Liu, Stine, and Auslender, 2005).  Many of the 

methods described in the literature apply to selection of the most relevant attributes in 

LEM, which uses concept learning to distinguish between high- and low-performing 

candidate solutions. 

 

LEM3 uses the AQ21 learning system, which currently implements two well-known 

methods of evaluating quality of attributes.  These methods are PROMISE, described in 

(Baim, 1982; Kaufman, 1997), and Gain Ratio, used by the c4.5 decision tree learning 

program (Quinlan, 1993).  AQ21 first computes quality of all attributes, and then 

removes attributes whose quality normalized to range [0, 1], is below a given threshold. 

 

5.4.5 Selection of Representation 

Another important issue in constructive induction, both in concept learning and the 

learnable evolution, is how to detect that a transformed representation space is better than 

the original one.  Methods presented in (Wnek and Michalski, 1994; Bloedorn and 

Michalski, 1998) use predictive accuracy as the main criterion for testing quality of 

representation spaces.  The training dataset is split into primary and secondary sets, the 

first of which is used for learning, and the latter for testing.  If predictive accuracy on the 

secondary set is above a given threshold, the new representation is accepted.  Although 
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the accuracy is a very important criterion, it cannot be used as the only one.  A slight gain 

in accuracy may cause significant increase in complexity of learned hypotheses (i.e. when 

very complex constructed attributes are used), or a modification of representation space 

may cause significant decrease in complexity, while accuracy does not change.  The latter 

is illustrated in Figure 5-10 where the hypothesis learned in the original representation 

space is 100% accurate, but requires 4 rules (left), while a hypotheses that uses a 

constructed attribute Y = X ± d, where d is half the thickness of the stripe on the Figure, 

requires only one rule, and is also 100% accurate.  A similar situation is found when 

optimizing the Rosenbrock function, whose optimum lies on a narrow ridge. 
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Figure 5-10: An illustration of improved simplicity when transforming the representation space. 

 

The constructive induction module in AQ21 seeks representations in which both accuracy 

and simplicity are as maximized.  A new representation space is accepted if both 

accuracy and complexity are not worse than in the original representation space and at 

least one of the two is strongly better than in the original representation.  In general, one 

can define a representation quality measure (i.e. using LEF) that involves more properties 

of a representation than only accuracy and complexity of learned hypotheses. 
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5.5 Instantiation of Hypotheses Learned in Transformed Representations 

In the learnable evolution model, new candidate solutions are generated by instantiating 

hypotheses that describe known high-performing solutions in contrast to known low-

performing ones.  New candidate solutions need to be defined in the original optimization 

space in order to calculate their fitness.  Hypotheses in the form of attributional rules 

learned in the original representation space can be directly instantiated using one of the 

methods described in Chapter 3.  Instantiation of hypotheses learned in modified 

representation spaces is a more complicated process, as it may require generating 

attribute values from attributional conditions with constructed attributes (e.g. equations, 

discretized attributes, special functions). This section describes methods for creating new 

candidate solutions from hypotheses learned in specific types of transformed 

representation spaces. 

 

5.5.1 Instantiation of Discretized Attributes 

Each value from the symbolic domain of a discretized continuous attribute corresponds to 

an interval in the domain of the original attribute.  These intervals are disjoint and their 

union covers the entire domain of the original attribute.  Because candidate solutions 

consist of values of the original attributes, the instantiation process has to translate values 

of discretized attributes into corresponding original attributes.  This process may vary 

depending on the method used to create the discretized attributes. 

 

To describe the process of instantiation of conditions with discretized attributes, suppose, 

that A is the original continuous (e.g. ratio) attribute, with domain [lb, ub], and Ad is an 
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attribute created by discretizing A into intervals i1, i2, …, in.  Thus the domain of Ad is 

D( Ad ) = {i1, i2, …, in}.  Suppose now that a learning program induced a rule with 

condition given by (5-7) where ik = (lbk, ubk) and il = (lbl, ubl) are elements of D(Ad). 

 [A’ = ik .. il] (5-7) 

The condition (5-7) is equivalent to (5-8) expressed in the original representation space. 

  [A = lbk .. ubl] (5-8) 

Thus, the condition (5-7) can be instantiated either by selecting a discrete interval from 

the condition and selecting a value from that interval, or by instantiating condition (5-8), 

producing a value of A in the original space. Even if at both stages uniform distributions 

are used, these instantiation methods are not equivalent. 

 

When adaptive anchoring discretization is used, candidate solutions are allowed to have 

only values which are anchor points, so each value from D( A ) is replaced with its 

corresponding anchor point, as defined in Section 5.4.3.  This anchoring point may be 

found directly by selecting its corresponding interval when instantiating a condition, or 

by discretization of a selected real value from D( A ). 

 

5.5.2 Rejection of Unsatisfied Conditions with Constructed Attributes 

The simplest method of instantiating hypotheses learned in modified representation 

spaces is in spirit similar to the rejection method for handling constrained optimization 

problems.  The program creates new candidate solutions using all attributes from the 

original representation space and checks if conditions with constructed attributes are 

satisfied.  If they are satisfied, the new candidate solution is accepted and added to the set 
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of new candidate solutions; otherwise it is rejected, and another candidate solution is 

generated.  Because conditions with constructed attributes can be treated as constraints, 

Theorem 1 presented in Chapter 4 guarantees existence of solutions that satisfy the rule. 

 

For attributes not present in regular conditions, but present in definitions of constructed 

attributes used in the instantiated rule, values need to be selected from their entire 

domains, not from existing individuals, in order to keep proper generalization of the rule.  

Otherwise, the program may generate only duplicates of existing candidate solutions, 

without actually exploring new parts of the search space defined by the constructed 

conditions.  For attributes that are neither directly nor indirectly present in the rule, one of 

the instantiation methods described in Chapter 3 can be used.  The instantiation algorithm 

incorporating constructed attributes is presented in Figure 5-11. 

 

Determine the number, n, of candidate solutions to be created 
Create list, L, of attributes that are present in definitions of 

constructed attributes 
While number of created solutions is smaller than n 
 Create new candidate solution s 
 Assign random values to all attributes from L in s 
 For each regular condition c in R 
  Assign value in s according to c 
 For each attribute A in s without assigned value 
  Instantiate A using one of the available methods 
 Match s against conditions with constructed attributes in R 
 If matched 
  Insert s into the set of created solutions 
 Else 
  Drop the solution s 
Return created solutions 

Figure 5-11: Instantiation algorithm for rules with constructed attributes. 

 

The presented algorithm tends not to be very efficient, especially when domains of 

attributes used in conditions with constructed attributes are large.  According to 
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experimental results, however, the results obtained from this method are very good in 

terms of achieved solutions after a given number of fitness evaluations. Details of the 

experimental evaluation are described in Chapter 6. 

 

5.5.3 Instantiation of Conditions with Constructed Attributes 

New attributes created by the algorithm presented in Figure 5-9 are in the instantiable 

form (4-6), and therefore their values can be computed. Because the constructed 

attributes in learned hypotheses can be interpreted as Type 3 constraints, the algorithm 

for handling instantiable constraints (Figure 4-3) can be applied.  As described in Chapter 

4, the algorithm checks one constraint at a time, and uses backtracking when a constraint 

is not satisfied.  Specifically, AQ learning systems treat constructed attributes as regular 

numeric attributes creating conditions in the form (5-9). 

 [CA rel VALS] (5-9) 

Here, CA is a constructed attribute in the form (5-5), VALS is either a value, or a range 

of values, and rel is <, >, ≤, ≥, or =.  The (5-9) can be rewritten as (5-10). 

 [ATT +/- EXPR rel VALS] (5-10) 

By selecting a random value v from the VALS, the condition (5-10) can be rewritten as 

(5-11), where “+” and “-“ operators are appropriately changed. 

  [ATT rel v +/- EXPR] (5-11) 

Values of all attributes in the expression EXPR can be instantiated from the previous 

conditions, or their domains, therefore v +/- EXPR can be effectively computed. This 

transforms (5-11) into a form that is instantiable by methods discussed in Chapter 3. 
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According to experimental study, this algorithm tends to be more efficient than one that 

checks all constraints simultaneously, as was presented in the previous section.  A 

detailed experimental comparison of these algorithms is presented in Chapter 6. 

 

5.6 Controlling the Search for the Best Representation Space 

The previous sections described how to improve representation spaces, how to create new 

candidate solutions from hypotheses learned in the modified representations, and related 

issues.  Another important issue, discussed in this section, is when to apply a search for 

the best representation space. The search can be performed in each LEM iteration, in 

every n iterations, whenever the current representation is inadequate, or only once for the 

entire optimization process.  Selection of the method should depend on the optimization 

problem and the types of representation modifications to be performed. 

 

The search for the best representation space can be performed by a learning method, such 

as AQ21, which is equipped with data-driven constructive induction.  In such a case, it is 

convenient to invoke the representation space modification operator in all iterations. This 

method is implemented in the LEM3 system and used in experimental evaluation 

presented in Chapters 6 and 7. 

 

5.7 Conclusion 

Learning accurate and useful knowledge from data requires an adequate representation 

space.  In the fields of machine learning, data mining, and statistical learning, a 

significant amount of research has been conducted to study representation-related issues.  
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Different methods of constructive induction methods have been developed in machine 

learning to automatically improve representation spaces by selecting the most relevant 

attributes, discretizing numerical attributes, and constructing new attributes. 

 

Because the learnable evolution model uses machine learning to hypothesize why some 

candidate solutions perform better than others, constructive induction methods can be 

applied to improve the representation space used for learning.  This process, however, 

needs to satisfy an additional criterion, namely, the instantiation operator in the learnable 

evolution model needs to be able to efficiently create new candidate solutions that satisfy 

the learned hypotheses.  This implies a need for either explicit reverse transformation that 

transforms the modified representation spaces back to the original forms, or an efficient 

method for creating solutions based on hypotheses learned in the modified spaces. 

 

An important observation used in this research is that methods for handling constrained 

optimization problems can be applied to the process of instantiating hypotheses learned in 

modified representation spaces.  Because of that, the instantiation methods presented in 

this chapter are based on methods discussed in Chapter 4. 
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CHAPTER 6 EXPERIMENTAL EVALUATION 

This chapter presents experimental evaluation of the learnable evolution model, methods 

of handling constrained optimization problems, and automatic improvement of 

representation spaces, discussed in Chapters 3 - 5.  Because constrained and non-

constrained optimizations require different sets of testing problems, this chapter is split 

accordingly into two parts.  The goal of the experimental evaluation is to compare 

LEM3’s performance with different sets of parameters and to compare its performance 

with selected other methods.  Because of that, a set of popular testing problems has been 

selected.  The results presented in this chapter along with previous ones described by 

Wojtusiak and Michalski (2005), illustrate very good LEM3’s performance when 

compared to other evolutionary computation methods.  In addition to good performance 

on numerical optimization, LEM3 is applicable to optimization problems where different 

types of attributes are used.  The results presented here include only standard numerical 

optimization problems whose results are available in the literature and to which other 

methods can be applied for comparison.  An example of an optimization problem that is 

defined using different types of attributes is presented in Chapter 7. 
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6.1 Evaluating the Learnable Evolution Model on Non-Constrained Optimization 

This section presents results of the application of LEM3 to selected non-constrained test 

optimization problems.  The main goal of this evaluation is to test the effects of different 

program parameters on the evolutionary process and obtained results, and in particular 

the role of constructive induction on the evolutionary optimization process.  Subsection 

6.1.1 presents optimization problems to which LEM3 is applied, Subsection 6.1.2 

describes methods of comparing the program’s performance, and Subsection 6.1.3 

presents and discusses optimization results. 

 

6.1.1 Optimization Problems 

This section presents evaluation problems on which the learnable evolution model is 

evaluated.  These problems include functions frequently used in testing evolutionary 

computation methods, namely, Rastrigin, Griewangk, Rosenbrock, Sphere, and Step. 

 

Optimizing (minimizing) the Rastrigin function is a well-known problem used in testing 

evolutionary algorithms.  As shown in Figure 6-12, the function has a large number of 

local optima, and one global minimum equal to zero.  It is reached when each of the 

variables equals zero.  A general expression of the Rastrigin function is given by (6-1) 

and its two-variable plot is presented in Figure 6-12. 
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Optimizing (minimizing) the Griewangk function is a well-known problem used in 

testing evolutionary algorithms.  The function also has a large number of local optima, 

and one global minimum equal to zero.  It is reached when all the variables equal zero.  

The domain for all variables in the performed experiments was [-5.12, 5.12].  The general 

n-dimensional Griewangk function is given by the expression (6-2). 
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A plot of its 2 dimensional case is presented in Figure 6-13. 

 

Optimizing (minimizing) the Rosenbrock function is a well-known problem used in 

testing evolutionary algorithms.  The function has one global minimum reached when 

values of all attributes equal one.  The Rosenbrock function is a hard optimization 

problem due to the high correlation of variables and the almost flat ridge on which the 

optimum is located.  The function is given by the equation (6-3), and a plot of its 2-

dimensional case is presented in Figure 6-26.   
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Optimizing (minimizing) the Sphere function is a well-known problem used in testing 

evolutionary algorithms.  The function is relatively simple, as it has a smooth surface and 

one optimum. Its minimum is reached when all the variables equal zero.  The domain for 

all variables in the performed experiments was [-5.12, 5.12].  The general n-dimensional 

Sphere function is given by the expression (6-4) and a plot of its 2 dimensional case is 

presented in Figure 6-15. 
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Optimizing (maximizing) the Step function is a well-known problem used in testing 

evolutionary algorithms.  The function is very hard for many numerical optimization 

methods because it is not continuous. Its global maximum is reached when all the 

variables equal their maximum allowed value (here values at least five).  The domain for 

all variables in the performed experiments was [-5.12, 5.12].  The general n-dimensional 

Step function is given by the expression (6-5) and a plot of its 2 dimensional case is 

presented in Figure 6-16. 
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Figure 6-12: The Rastrigin function of 2 
variables. 

Figure 6-13: The Griewangk function of 2 
variables. 

Figure 6-14: The Rosenbrock function of 2 
variables. 

Figure 6-15: The Sphere function of 2 variables. 

 
Figure 6-16: The Step function of 2 variables. 
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6.1.2 Evaluating Results 

There are many possible methods of reporting results of testing optimization methods.  

The most common are to report the best result obtained after a given number of fitness 

evaluations (or generations), or to report the number of fitness evaluations needed to 

achieve a given solution.  Other possibilities include computation time needed to achieve 

a given solution on a given computer, the number of fitness evaluations needed to 

achieve a given improvement, and so forth. 

 

In the latter method the results are reported for δ-close solutions that are characterized by 

a normalized distance from the optimal solution (Michalski, 2000; Wojtusiak and 

Michalski, 2005; 2006).  This method can be used to evaluate performance on test 

problems to which solutions are known.  The δ-close solution, s, is a solution for which 

function δ(s), defined as (6-6) reaches an assumed δ-target value, where init is the 

evaluation (fitness value) of the best solution in the initial population, opt is the optimal 

value, and v(s) is the evaluation of the solution s. 

 initopt
svopt
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 (6-6) 

Such a measure works for both maximization and minimization problems, that is, for 

problems in which the optimal solution has maximal or minimal evaluation. 

 

This definition of δ-close solution suggests two possible ways of analyzing performance 

of evolutionary computation methods.  First, one may consider the problem of how many 

fitness function evaluations are needed to achieve a given δ=k by the best individual in 

the population, denoted as FE(δ=k), where k is a number between 0 and 1.  Secondly, one 
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may consider the problem of finding δ(v) after given number of fitness evaluations, 

where v is the fitness value of the best individual after a given number of fitness function 

evaluations.  The latter is the primary way of reporting results in this dissertation.  Figure 

6-17 illustrates concept of the δ-close solution.  

 

 

 
Figure 6-17: Illustration of a δ-close solution (from Wojtusiak and Michalski, 2005). 

 

 

For example if the fitness value of the best individual in the initial population is 100 and 

during the process of minimization the program achieved value 0.1, and the optimal value 

is 0 then δ=0.001, indicating that program found a solution within 0.1% distance from the 

optimal solution, normalized by the fitness value of the best individual in the initial 

population. 
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6.1.3 Results 

To compare performance of the learnable evolution model with and without constructive 

induction, it has been applied to the test problems described in Section 6.1.1.  The Table 

6-2 presents parameter settings of LEM3 used in these experiments.  Because of the very 

large number of performed experiments (about 700 combinations of parameter settings, 

each repeated 10 times), the presented results are aggregated.  They are grouped by 

numbers of attributes, optimization problems, and methods for improving representation 

spaces.  The main goal of these experiments is to compare performance of LEM3 with 

and without automatic improvement of representation spaces.  The results are presented 

in terms of the average δ(v) values (see Section 6.1.2) obtained after 100 generations of 

LEM3’s evolutions.  The results grouped by the number of attributes are presented in 

Table 6-3, and the results grouped by optimization problem are presented in Table 6-4.  

LEM3 equipped with automated improvement of representation spaces by constructive 

induction gave on average better results than LEM3 without constructive induction.  

However, it can be observed from the tables that the advantage of LEM3 equipped with 

constructive induction tends to diminish with increasing numbers of attributes.  The 

average result for 100 variables is better for LEM3 without constructive induction than 

for LEM3 that improves representation spaces.  This fact can be attributed to the used 

method of improving the representation spaces, which is unable to create new attributes 

that include many attributes from the original spaces.  Thus, the method is unable to 

capture complex numerical relationships involving many attributes. 
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Table 6-2: List of parameters used in experimental evaluation. 

Parameter Name Used Values Description 

Population size 30, 50, 100 The number of candidate solutions in one 

population.  

Number of children 30, 50, 100 The number of candidate solutions created in 

each iteration. 

Adaptive anchoring 

discretization 

Yes, No If yes, adaptive anchoring discretization is used 

to improve the representation of candidate 

solutions. If no, pure continuous attributes is 

used. 

Data-driven 

constructive 

induction (DCI) 

Yes, No If yes, data-driven constructive induction is 

applied to improve the representation space.  If 

no, only the original attributes are used in 

learning. 

Method of 

instantiating 

constructed 

attributes 

Rejection, 

Instantiation 

Defines the method in which rules with 

constructed attributes are instantiated.  

Rejection means that all non-constructed 

attributes are instantiated, and then the 

conditions with constructed ones are checked 

(similarly as constraints).  Instantiation means 

that the constructed attributes are evaluated and 

instantiated along with regular attributes. 
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Another important issue is that the advantage of LEM3 equipped with the methods for 

improving representation space depends on the optimization problem to which it is 

applied.  From the results in Table 6-4, it is clear that using constructive induction is not 

appropriate for the Step function.  This can be attributed to the fact that there is no 

correlation between attributes, and it is sufficient to learn rules with conditions in the 

form [ X > a ], where X is an attribute and a is a value. Also for the Griewangk function 

LEM3 without constructive induction tends to perform in average slightly better than 

LEM3 with that feature enabled.   

 

Table 6-3: Average δ(v) values after 100 generations for different numbers of attributes for 
Griewangk, Rastrigin, Rosenbrock, and Sphere functions. 

Number of 
Attributes 

No DCI DCI with 
Instantiation

DCI with 
Rejection 

2 0.021942 0.019636 0.011148 
4 0.012114 0.009134 0.010078 

10 0.050666 0.048895 0.058637 
50 0.213508 0.208315 0.215043 

100 0.277329 0.295008 0.280424 
average 0.115112 0.116198 0.115066 

 

Table 6-4: Average δ(v) values after 100 generations for the Griewangk, Rastrigin, Rosenbrock, 
Sphere, and Step functions with 2, 4, 10, 50 and 100 attributes. 

Function No DCI DCI with  
Instantiation 

DCI with 
Rejection 

Griewangk 0.260521 0.270987 0.260965 
Rastrigin 0.134349 0.130729 0.133836 

Rosenbrock 0.019625 0.018622 0.018889 
Sphere 0.045952 0.044452 0.046573 

Step 0.09915 0.104438 0.11328 
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Table 6-5: Average δ(v) values after 100 generations for the Griewangk, Rastrigin, Rosenbrock, 
Sphere, and Step functions with 2 attributes. 

Function No CI CI with  
Instantiation 

CI with 
Rejection 

Griewangk 0.076674 0.071342 0.043669 
Rastrigin 0.007828 0.004404 0.000566 

Rosenbrock 0.003236 0.002796 0.000355 
Sphere 2.8E-05 1.73E-06 9.57E-07 

Step 0.01 0.033529 0 
 

Detailed results for two attributes, for which the used method of constructive induction 

gives very significant improvement of LEM’s performance, are presented in Table 6-5.   

 

6.2 Evaluating the Learnable Evolution Model on Constrained Optimization 

This section presents an experimental evaluation of the learnable evolution model on 

selected constrained optimization problems. Methods for handling constraints 

implemented in the LEM3 system are compared in terms of their performance.  

Additionally the results are compared with those obtained by two of the methods that 

won the CEC 2006 competition on constrained optimization (Liang et al., 2005). 

 

6.2.1 Constrained Optimization Problems 

Problems used in this evaluation were selected from the list of twenty four problems used 

at the competition organized during 2006 Congress on Evolutionary Computation.  The 

complete list of problems used for the competition has been published as a technical 

report by Liang et al. (2005). 
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The G1 function (Floudas and Pardalos, 1987; Michalewicz and Schoenauer, 1996) is 

given by the formula (6-7) and constrained by (6-8).  The domain of attributes x1, x2, …, 

x9, x13 is the interval [0,1], and the domain of attributes x10 x11, and x12 is [0, 100].  The 

function reaches its maximum G1(x*) = -15 for x*=(1,1,1,1,1,1,1,1,1,3,3,3,1). 
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g1(x) = 2x1 + 2x2 + x10 + x11 -10 ≤ 0 
g2(x) = 2x1 + 2x3 + x10 + x12 -10 ≤ 0 
g3(x) = 2x2 + 2x3 + x11 + x12 -10 ≤ 0 

g4(x) = -8x1 + x10 ≤ 0 
g5(x) = -8x2 + x11 ≤ 0 
g6(x) = -8x3 + x12 ≤ 0 

g7(x) = -2x4 – x5 + x10 ≤ 0 
g8(x) = -2x6 – x7 + x11 ≤ 0 
g9(x) = -2x8 – x9 + x12 ≤ 0 

(6-8)

  

The G12 function (Koziel and Michalewicz, 1999) is given by (6-9) and constrained by 

(6-10), where D(xi) = [0, 10], i=1,2,3, and p,q,r=1,2,..,9.  A candidate solution is feasible 

if there exists a combination of p, q, and r such that (6-10) is satisfied. 

G12(x)= - (100 – (x1 – 5)2 – (x2 - 5)2 – (x2 - 5)2)/100 (6-9)
 

G (x) = (x1 – p)2 – (x2 - q)2 – (x2 – r)2 – 0.0625 ≤ 0 (6-10) 
 

The G19 function (Himmelblau, 1972) is given by (6-11) and constrained by (6-12), 

where D(xi) = [0, 10], i=1,…15.  Values of a, b, c, and d are in (Liang et al. 2005). 
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The G24 function (Floudas, 1999) is given by (6-13) and constrained by (6-14), where 

D(x1) = [0, 3] and D(x2) = [0, 4]. 

G24(x)= - x1 - x2 (6-13)
 

g1(x) = -2x1
4 + 8x1

3 – 8x1
2 + x2 – 2 ≤ 0 

g2(x) = -4x1
4 + 32x1

3 – 88x1
2 + 96x1 + x2 – 26 ≤ 0 (6-14) 

 

6.2.2 Results of the Experimental Evaluation 

The presented results are reported in terms of the best obtained results, numbers of fitness 

function evaluations, and numbers of constraint evaluations.  Three methods of handling 

constrained optimization problems described in Chapter 4 are compared: trimming, 

learning approximations, and using infeasible solutions as negative examples for 

learning.  Other controlled parameters include population sizes and numbers of 

instantiated candidate solutions, adaptive anchoring discretization, and use of 

constructive induction. 

 

Except for few cases, the LEM3 system with the three described methods for handling 

constraints achieved very similar fitness values after a given number of generations.  

There are, however, differences in the numbers of infeasible solutions generated while 

executing the program with the three methods.  For all studied problems, the simple 

trimming method that uses only feasible solutions in the learning process, required testing 

the largest number of infeasible candidate solutions.  The normalized average numbers of 

infeasible solutions are illustrated in Figure 6-18.  For each tested function, the average 

numbers of generated infeasible solutions were normalized into the range [0, 1], 
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separately for experiments with continuous and adaptively discretized attributes.  Finally, 

averages over all testing problems and different parameters’ settings were computed. 
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Figure 6-18: The average normalized numbers of infeasible candidate solutions generated during 100 

generations of LEM3 execution on the G1, G12, G19, and G24 functions. 

 

 

The performance of learning of feasible space approximation and using unfeasible 

solutions as a contrast set depends on the use of discretization.  For discretized attributes, 

using infeasible solutions as a contrast set significantly outperforms other methods, while 

for pure continuous attributes approximation of the feasible space scores the best. 

 

In order to compare LEM3’s performance on the four selected constraint optimization 

problems, two other methods were selected.  The methods scored the best during CEC 

2006 competition on constrained optimization.  The first method, εDE, applies the ε 

constrained method to differential evolution (Takahama and Sakai, 2006), and the second 

method combines DMS-PSO dynamic multi-swarm optimization, with SQP sequential 

quadratic programming (Liang and Suganthan, 2006).  Other results are reported at the 
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competition website, and results of applying all five accepted methods are included in the 

conference proceedings.  Following the format of results published at the conference, the 

results are reported in the form of errors from the actual solutions and numbers of 

violated constraints after 5,000 fitness evaluations.  Additionally, LEM3 reports the total 

number of infeasible solutions generated.  LEM3 is able to reject infeasible solutions 

without computing their fitnesses, while for both compared methods, the number of 

fitness evaluations is always equal to the number of constraint evaluations. In the 

presented experiments, LEM3 was executed with and without adaptive discretization of 

continuous attributes.  The results also were compared for LEM3 starting with and 

without a population of feasible candidate solutions.  

 

Results of the comparison are summarized in Table 6-6.  For all four considered 

functions LEM3 achieved better results in terms of the value of the fitness function.  

However, in some cases, when executed with feasible starting population, LEM3 required 

very large number of constraints evaluations as it generated many infeasible solutions.  

On the other hand, LEM3 achieved also very good results when starting without known 

feasible individuals, and produced significantly fewer rejected infeasible solutions (below 

800 in all experiments per 5,000 fitness evaluations).  This result indicates an important 

issue to be considered in constrained optimization. For many constrained problems the 

fitness function is defined only for feasible candidate solutions, for example when 

constraints define a set of parameters under which a given simulator can be correctly 

executed.  In such cases starting with no feasible solutions is not possible and neither the 

two compared methods can be applied. 
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Table 6-6: Comparison of errors (E) for εDE, DMS-PSO + SQP, and LEM3 on G1, G12, G19, and 
G24 functions after 5000 fitness evaluations.  For LEM3, the number of infeasible solutions (I) and 
for DMS-PSO + SQP the number of violated constraints (C), are also reported.  

Method  G1 G12 G19 G24 
εDE E 10.536 0.00001230 963.18 0.00000024962 

E 9.0738 0.0025467 367.1 0.016628 DMS-PSO + 
SQP C  3 0 0 0 

E 0 0 179.369407 1.12801327 LEM3 + 
ANCHOR I 9998 5650 2,924,828 122 

E 0.1271483551 0.000000007012 6.0786283386537 0.00000000006536 LEM3 
Continuous I 2,176,968 5112 529,381 71013 

E 0 0 181.469407 1.12801327 NF LEM3 
ANCHOR I 681 612 643 133 

E 1.2970298 0.000001491556 114.772007 0.01910691393536 NF LEM3 
Continuous I 686 712 739 787 

 

 

6.3 Conclusions 

This chapter presented experimental testing of the learnable evolution model in the 

LEM3 system on selected well known benchmark optimization problems.  These 

problems included constrained and non-constrained functions to which LEM3 was 

applied with different settings of parameters.  The goal of the experimental evaluation 

was to test effects of automated improvement of representation spaces and different 

methods for handling constraints on the evolutionary process and results of optimization. 

 

An important result is that the provided method for modifying representation spaces 

consistently improved LEM3’s performance. This improvement, however, tends to 

diminish with growing numbers of attributes.  This may be due to use of a DCI-based 

method for automated improvement of representation space that is unable to construct 

attributes involving many original attributes – the search space is too large.  Two 

potential solutions to this problem include (1) using a different method for modifying 
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representation, and (2) using background knowledge to narrow the attribute search space.  

A method (1) for modifying the representation space should be able to construct new 

attributes that include many original attributes.  For example, principal component 

analysis, which is widely used in statistics (e.g., Hotelling, 1933; Gentle, 2002), 

constructs new dimensions that may include all original attributes at the same time.  The 

possible solution (2) is to use background knowledge by suggesting possible 

transformations of the representation space in the form of advices in order to narrow the 

search for new attributes. 

 

Another important result is that the presented experimental study confirmed the 

hypothesis that methods for handling general constraints, described in Chapter 4, reduce 

the total number of generated infeasible solutions.  For some problems, that decrease is 

significant.  However, different methods show the best performance on different 

problems.  More importantly, the comparison of LEM3 with two top-ranked programs for 

constrained optimization showed its advantage.  In all tested cases, LEM3 was able to 

find more accurate feasible solutions after 5,000 fitness function evaluations. 
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CHAPTER 7 OPTIMIZATION OF PARAMETERS OF 

COMPLEX SYSTEMS WITH APPLICATIONS IN MEDICINE 

Results presented in the previous chapters suggest that LEM is particularly suitable for 

optimization problems in which evaluation of the fitness function is complex (e.g. 

requires running a simulator) and to problems represented using different types of 

attributes.  One such a problem is optimization of parameters of complex systems or 

programs.  Two applications investigated in this chapter are: optimizing parameters of the 

AQ21 machine learning program, and optimizing discretization of continuous variables.  

Both applications are investigated in context of real world medical datasets. 

 

7.1 Optimization of AQ21 Parameters on Selected Medical Datasets 

AQ21 is a complex machine learning system which can be controlled by several 

parameters, some of which are described in Chapter 2.  Depending on the application, 

different settings of parameters may lead to the best solutions.  For large datasets 

consisting of hundreds or thousands of examples, the learning process takes a 

considerable amount of time (sometimes in order of hours for very large problems).  The 

large number of parameters controlling AQ21, include both numerical and are symbolic 

parameters. The space of possible parameter settings consists of multi-type attributes. 
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There are also several constraints which define impossible combinations of parameters or 

combinations that don’t make sense. 

 

7.1.1 Representation Space 

The representation space spans all possible combinations of AQ21’s parameters chosen 

to be optimized.  Each of AQ21’s parameters defines one attribute in the representation, 

and possible values of the parameter constitute a domain of the corresponding attribute.  

The complete list of attributes defined from AQ21’s parameters used in this study and 

their descriptions are presented in Table 7-7. 

 

The space consists of 24 attributes (12 nominal, 10 ratio, and 2 absolute).  Assuming that 

initially the numeric attributes are discretized by adaptive anchoring discretization into 10 

ranges, the total size of the space is given by (7-1). 

3 x 10 x 3 x 10 x 10 x 30 x 2 x (14 x 10)6 x 2 x 8 x 4 x 10 x 10   ≈   2.6 x 1021 (7-1)

Assuming that a single execution of AQ21 takes in average only one second the 

exhaustive search over the entire parameters space would take over 8 x 1011 years.  This 

means that checking all combinations of parameters is not possible.  

 

Table 7-8 presents the problem constraints that define correct combinations of AQ21’s 

parameters.  Even significantly smaller search space after introducing constraints is too 

large for performing the full search.  Descriptions of the used parameters and 

relationships between them are described by Wojtusiak (2004a) in AQ21 User’s Guide, 

and by Wojtusiak et al. (2006a,b). 
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Table 7-7: Representation space for the problem of optimizing AQ21 parameters. 

Attribute 
Name 

Type Domain Description 

Mode Nominal TF, ATF, PD Mode of operation: theory 
formation, approximate theory 
formation, and pattern discovery. 

W Ratio [0, 1] Completeness vs confidence gain 
weight. 

Attribute 
Selection 
Method 

Nominal Promise, Gain Ratio, 
None 

Method of selecting attributes. 
None indicates no selection – all 
attributes are used for learning. 

Attribute 
Selection 
Threshold 

Ratio [0, 1] Threshold of acceptance of 
attributes evaluated using the above 
method. 

Maxstar Absolute 1, …, 10 Number of rules selected from a 
partial star during learning process. 

Maxrule Absolute 1, …, 30 Number of rules selected from a 
star during learning. 

Exceptions Nominal True, false Invokes algorithm for learning 
rules with exception clauses. 

LEF_ps_c1 Nominal MinNumSelectors, 
MaxNumSelectors, 
MaxNewPositives, 
MaxUniquePositives, 
MaxPositives, 
MinNegatives, 
MaxQ, MinCost, 
MaxConfidence, 
MaxNewPositivesQ, 
MinComplexity, 
MaxGenerality, 
MaxSignificance, 
GainRatio 

The first LEF criterion for selecting 
rules from partial stars. 

LEF_ps_t1 Ratio [0, 1] Tolerance for the first criterion for 
selecting rules from partial stars. 

LEF_ps_c2 Nominal Same as LEF_ps_c1 The second LEF criterion for 
selecting rules from partial stars. 

LEF_ps_t2 Ratio [0, 1] Tolerance for the second criterion 
for selecting rules from partial 
stars. 

LEF_star_c1 Nominal Same as LEF_ps_c1 The first LEF criterion for selecting 
rules from stars. 

LEF_star_t1 Ratio [0, 1] Tolerance for the first criterion for 
selecting rules from stars. 

LEF_star_c2 Nominal Same as LEF_ps_c1 The second LEF criterion for 
selecting rules from stars. 
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LEF_star_t2 Ratio [0, 1] Tolerance for the second criterion 
for selecting rules from stars. 

LEF_trunc_c1 Nominal Same as LEF_ps_c1 The first LEF criterion for selecting 
the final stars. 

LEF_trunc_t1 Ratio [0, 1] Tolerance for the first criterion for 
selecting the final rules. 

LEF_trunc_c2 Nominal Same as LEF_ps_c1 The second LEF criterion for 
selecting the final rules. 

LEF_trunc_t2 Ratio [0, 1] Tolerance for the second criterion 
for selecting the final rules. 

Evaluation of 
Selector 

Nominal Flexible, strict Interpretation of selectors during 
testing. 

Evaluation of 
Conjunction 

Nominal Strict, coverage ratio, 
selectors ratio, 
minimum, weighted 
minimum, product, 
average, weighted 
average 

Interpretation of conjunction of 
selectors during testing. 

Evaluation of 
Disjunction 

Nominal Average, 
probabilistic sum, 
maximum, best only 

Interpretation of disjunction of 
rules (rulesets) during testing. 

Acceptance 
Threshold 

Ratio [0, 1] Minimum degree of match of an 
event needed for classification. 

Equivalence 
Tolerance 

Ratio [0, 1] Tolerance within which degrees of 
match are considered equivalent. 
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Table 7-8: Constraints in the problem of optimizing AQ21s parameters. 

Constraints Explanation 

[W > 0] & [W < 1] Extreme values of W do not make sense. 

 [LEF_ps_c1 ≠ LEF_ps_c2] & 

[LEF_star_c1 ≠ LEF_star_c2]  & 

[LEF_trunc_c1 ≠ LEF_trunc_c2] 

Two criteria used in a LEF should not be the same. 

[Mode = TF]  

[LEF_star_c1 ≠ MinNegatives v 

MaxQ v MaxConfidence v 

MaxNewPositivesQ] & 

In theory formation mode where each rule is 

guaranteed not to cover any negative examples 

criteria that use numbers of negatives, such as Q(W) 

and confidence, are not applicable to LEF star. 

[LEF_star_c2 ≠ MinNegatives v 

MaxQ v MaxConfidence v 

MaxNewPositivesQ] 

[Evaluation of selector = flexible] 

 [Evaluation of conjunction = 

minimum v weighted minimum v 

product v average v weighted 

average] 

For flexible selector evaluation, only the listed 

methods of evaluating conjunctions are applicable. 

[Evaluation of selector = strict]  

 [Evaluation of conjunction = 

strict v selectors ratio v coverage 

ratio] 

For strict selector evaluation, only the listed methods 

of evaluating conjunctions are applicable. 
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7.1.2 Optimization Objective 

After defining representation space for the problem of optimizing AQ21’s parameters, the 

next step is to define the optimization objective (a fitness function).  In this application, 

the function is based on the accuracy and complexity of the learned hypotheses. To 

compute accuracy and complexity, it is needed to execute AQ21 and analyze its results. 

This section presents definition of the fitness function based on the output from the AQ21 

system. 

 

The ATEST program briefly described in Chapter 2 reports results of testing differently 

than most machine learning programs.  One of major differences is the assumption that it 

is better to give a correct answer which may be imprecise than give a precise, but 

incorrect answer.  Consequently, in addition to predictive accuracy ATEST returns a 

measure of precision of the given answer (e.g. Reinke, 1984; Wojtusiak, 2004a; 

Wojtusiak et al., 2006a,b).  Similarly to the predictive accuracy, the precision is given by 

a number varying from 0% to 100%, where 0% represents fully imprecise answers (all 

testing examples are assigned to all classes), and 100% corresponds to precise answers 

(only one class is assigned for each testing example).  Because of the design of the 

ATEST program, it is not sufficient to maximize the predictive accuracy, but also 

precision needs to be maximized.  Both predictive accuracy and precision are expressed 

in percents, so the multiplication of the two can be meaningfully used as given by (7-2). 

Accuracy( X )a x Precision( X )b (7-2)
  

Here, X is a set of AQ21’s parameters, Accuracy( X ) and Precision( X ) are predictive 

accuracy and precision obtained by AQ21 using the parameter setting X, and a and b are 
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numbers in range [0, 1].  Due to the use of (7-2) the two criteria optimization problem is 

converted into the single criterion.  

 

In natural induction simplicity of learned knowledge is equally important to its accuracy.  

AQ21 learning module computes complexity of learned hypotheses by assigning a weight 

to each operation using formula (7-3) as proposed in attributional calculus by Michalski 

(2004a).  Default values of the coefficients c1,..,c7 are in (Wojtusiak, 2004a).  The 

complexity of an exception clause is computed as twice the complexity of its elements.  

CX = c1 * conjunction count   +    c2 * disjunction count   +  
c3 * internal disjunction count + c4 * range count   +   c5 * equal count   + 

c6 * less or greater count   +   c7 * not equal count 
(7-3)

 

Because examples can be represented in the form (7-4), it is possible to apply the formula 

(7-3) to compute complexity of the input examples, or simply input complexity, as (7-5). 

(x1 = v1, x2 = v2, …, xk = vk) (7-4)
 

ICX = (|P| – 1) * c2   +   |P| * (k – 1) * c1   +   |P| * k * c5 (7-5)
 

Here, |P| is the number of positive examples of a concept and k is the number of input 

attributes.  Based on the input complexity it is possible to define the simplicity gain as (7-

6) and normalized simplicity gain as (7-7). 

SG = ICX – CX (7-6)
 

NSG = ( ICX – CX )  /  ICX (7-7)
 

Complexity of a cover learned by AQ21 will not be larger than input complexity thus the 

significance gain is always a positive number. The normalized significance gain is a 
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number from the range [0, 1].  Multiplication of the normalized significance gain by 100, 

is also a number from the range [0, 100].  Finally the formula (7-2) can be extended into 

(7-8) and used as a fitness function. 

Fitness( X ) = Accuracy( X )a   x   Precision( X )b   x   (100 x NSG)c (7-8)
 

Here, a, b, and c are numbers in range [0, 1]. In the experimental results presented in 

Section 7.1.4, their values are a=1, b=1, and c=0.5. Using this setting of coefficients the 

fitness function takes values in the range [0, 100 000). 

 

7.1.3 Medical Datasets 

In this study AQ21’s parameters are optimized to achieve the best performance on three 

medical datasets consisting of groups of patients with metabolic syndrome, patients’ 

vitality scores, and relationships between diseases and lifestyles. These datasets represent 

different types of learning problems, with different numbers of classes, examples, 

attributes, etc. 

 

The first dataset consists of measurements of different parameters aggregated over 

different groups of patients, and is referred to as the metabolic syndrome dataset. It 

consists of 20 examples drawn from 4 classes.  These classes represent three diseases 

from the metabolic syndrome spectrum, namely, non-alcoholic fatty liver disease 

(NAFLD), simple steatosis (SS), and nonalcoholic steatohepatitis (NASH). It also 

includes a healthy status, represented by a control group serving as a contrast set for 

learning. NAFLD is the most general condition that comprises both SS and NASH cases, 
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which means that values of the output attribute form a hierarchy.  Each example consists 

of mean values of different medical parameters measured over a group of patients. Such 

an aggregated data are not protected by patients’ privacy laws, so they are easily 

available for the study.  The total number of 152 input attributes in the dataset has been 

reduced to 20 most common, due to the fact that different measurements were recorded in 

different studies (most of the attributes were available only in single studies).  The dataset 

used in this study has been collected from articles published in medical journals such as 

Hepatology, Obesity Research, International Journal of Obesity and some others 

(Wojtusiak et al., 2007). 

 

The second dataset consists of measurements of different parameters of a group of 

patients and their vitality scores.  The vitality score is a measure of patients’ performance 

computed from answers to the SF-36 form (e.g., see http://www.sf-36.org).  Because self-

reporting based on the form SF-36 is not convenient for patients, in is important to be 

able to predict the value of vitality score based on other measurements, preferred by 

patients.  The dataset consists of 43 patients, and more than 50 input attributes from 

which 11 attributes were selected.  This selection was based on expert’s decision about 

their relevance to the problem.  All of the selected attributes are numeric. The continuous 

output attribute representing the vitality score has been discretized into three classes: low 

for values below 40, medium for values between 40 and 55, and high for values above 

55. These ranges were based on the expert’s decision and consisted of 11, 18, and 14 

examples respectively. 
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The third dataset consists of lifestyles and diseases of non-smoking males, aged 50-65. 

The study employed a database from the American Cancer Society that contained 73,553 

records of responses of patients to questions regarding their lifestyles and diseases.  Each 

patient was described in terms of 32 attributes: 7 lifestyle attributes (2 Boolean, 2 

numeric, and 3 rank), and 25 Boolean attributes representing diseases.  From the original 

set of examples, 200 examples were randomly chosen for the presented experiments.  The 

problem considered here was to determine rules for classifying prostate cysts based on 

lifestyles and presence of other diseases. 

 

7.1.4 Results 

When applied to the metabolic syndrome dataset AQ21 with default parameters gives in 

average on the 5-fold cross validation 75% predictive accuracy, with precision 100% and 

complexity 12 (0.99 normalized simplicity gain).  The value corresponds to the fitness 

value 74,624.06.  After LEM3 optimization of parameters on the same dataset AQ21 

achieved 95% predictive accuracy, 100% precision and complexity 9, which is a 

significant improvement that gives the fitness value 94,523.81.  An interesting result is 

that out of six LEM3 executions the program achieved this result twice – both times with 

enabled automatic improvement of representation space by constructive induction.   

 

When applied to the vitality score dataset AQ21 with default parameters and 5-fold cross 

validation achieved averaged predictive accuracy 40%, precision 100%, and complexity 

65 (normalized simplicity gain is 87%), which correspond to fitness value of 37,309.52. 

The fitness of the best obtained result is 77,149.21 giving over two times improvement.  
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The fitness is computed from the obtained average predictive accuracy 80%, precision 

100%, and complexity 33.8 (93% simplicity gain). 

 

An example plot illustrating LEM3’s progress on optimizing the AQ21’s parameters for 

the vitality score dataset is presented in Figure 7-19.  It shows a singe program’s 

execution with population size 50, number of children 30, and automated improvement of 

representation space instantiated by rejection. 
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Figure 7-19: Increasing value of the fitness function when optimizing AQ21’s parameters for the 
vitality score dataset. 

 

When applied to the lifestyles dataset AQ21 with default parameters and 5-fold cross 

validation achieved averaged predictive accuracy 57%, precision 99.02%, and complexity 

610.4 (normalized simplicity gain is 95%), which correspond to fitness value of 

55,012.27.  The fitness of the best result found by LEM3 is 79,639.4 (average predictive 

accuracy 82%, average precision 97.12%, and average complexity 59.40).   
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7.1.5 Conclusions 

The application of LEM3 to optimization of parameters of a complex system, AQ21, 

gave excellent practical results.  LEM3 was able to improve performance, measured in 

terms of hypotheses’ accuracy and simplicity, achieved by the AQ21 system on all three 

medical datasets.  These are important results because: 

• The optimization problem consisted of multitype attributes to which many methods 

cannot be applied. 

• The best obtained results were achieved using LEM3 with automated improvement 

of representation space. 

• These results confirm LEM3’s applicability to optimization of very complex 

systems, the example of which is the optimization of AQ21’s parameters.  Complex 

systems are rarely described using only numeric attributes, which makes LEM3 

particularly suitable for this type of tasks. 

 

7.2 Application to Finding the Best Discretization of Numeric Attributes 

Discretization is an abstraction of real values of the domain of a numeric attribute (e.g. 

ratio, interval) into a finite number of intervals.  Proper discretization of numeric 

attributes is one of the most important steps of data preparation process.  Using pure 

continuous variables in AQ-based learning often leads to overfitting, that is, learning 

hypotheses which accurately describe training data, but poorly generalize to new 

examples.  On the other hand, too high abstraction into to very few intervals, may lead to 

loss of important information and introduce ambiguity to a dataset.  
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Another rationale for discretizing numeric attributes is increase of comprehensibility of 

learned knowledge.  Conditions that include high precision numeric attributes are harder 

to memorize and understand by humans, while conditions that include not so precise, 

discretized, attributes tend to be preferable.  In many cases discrete values can be 

additionally replaced with symbolic labels such as low, medium, high, very high, to 

further improve understandability.  Because comprehensibility of knowledge is hard to 

measure numerically (e.g. because it is subjective), it is not directly measured in this 

study.  It is only assumed that people prefer discretized attributes with fewer values. 

 

Most methods described in the literature, such as ChiMerge (Kerber, 1992) and Chi2 

(Tay and Shen, 2002), are used to discretize only one variable at once (Dougherty, 

Kohavi and Sahami, 1995).  Some methods use the approach considered in this study that 

assumes that all numeric attributes are discretized at the same time (e.g., Bay, 2001).  An 

overview and experimental comparison of different discretization methods used in 

machine learning is presented in (Dougherty, Kohavi and Sahami, 1995).  Also, recently 

introduced field of granular computing includes methods for discretizing numeric 

variables by so called granulation of variables (e.g. Bargiela and Pedrycz, 2002).    

 

7.2.1 Optimization Objective 

The objective of the presented optimization is to find the best discretization of numeric 

attributes in a given dataset.  This can be formulated as finding the smallest possible 

number of discrete intervals that give the most accurate and simplest learning results.  

This can be measured using cross-validation as described in Section 7.1 by finding the 
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best discretization that maximizes the measure (7-8).  For large datasets, however, the 

fitness evaluation may be very computationally expensive. 

 

Another possibility is to maximize total quality of all numerical attributes being 

discretized. The quality of a single attribute can be measured using statistical methods 

such as gain ratio (Quinlan, 1993) or PROMISE (Baim, 1982).  The total quality of all 

numerical attributes (7-9) is a sum of qualities of single attributes. 

∑
=

=
n

i
in XQualityXXQuality

1
1 )()..(  (7-9)

 

Assuming that quality a single attribute is normalized into [0, 1] range as for example in 

the case of promise measure, the fitness function takes values between 0 and n, where n is 

the number of numerical attributes in the given dataset. In this study PROMISE is used to 

evaluate quality of attributes. 

 

7.2.2 Representation Space 

The previous section described the optimization objective (fitness function) for the 

problem of discretization of numeric attributes.  This section discusses representation of 

candidate solutions (representation space) for that problem.   

 

Suppose that X1, …Xn are numeric attributes that need to be discretized, and D(X1), …, 

D(Xn) are their domains defined by intervals [lb1, ub1], … [lbn, ubn], respectively.  By 

applying discretization process, each attribute Xi is transformed into its discretized form 

Xdi with domain given by (7-10). 
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 D(Xdi) = { Ii
1, Ii

2, …, Ii
ki } (7-10)

 

where Ii
j are disjoint intervals given by (7-11) whose union is D(Xi) = [lbi, ubi].   

 Ii
j = [lbi

j, ubi
j] (7-11)

 

Assuming that the intervals are ordered, we have (7-12), (7-13) and (7-14). 

 ubi
j = lbi

j+1     for j=1..ki-1  (7-12)
 

lbi
1 = lbi (7-13)

 

ubi
ki = ubi  (7-14)

 

The equations (7-10) to (7-14) imply that to represent discretization of a numeric attribute 

Xi it is sufficient to store values lbi
2, … lbi

ki, that are borderlines between intervals. 

 

To represent different discretizations in the optimization process, each of the numbers lbi
j 

can be represented in the learnable evolution model by one numeric attribute LBi
j. The 

attributes LBi
j must satisfy (7-15) and (7-16). 

D(LBi
j) = D(Xi)  (7-15)

 

lbi < LBi
2 < … < LBi

ki < ubi  (7-16)
 

LEM3 implementation of the learnable evolution model requires that all candidate 

solutions are represented by the same numbers of attributes.  This requirement is present 

because of representation of examples used for learning by the AQ21 system used by 

LEM3 for hypotheses formulation.  Because of that each attribute Xi has an additional 

constant Ki such that ki ≤ Ki for all candidate solutions. Such a constant can be set for 

 166



 

example to a maximum acceptable number of intervals.  Finally, discretization of one 

attribute can be represented by Ki numbers (7-17). 

ki, lbi
2, … lbi

ki, ui
ki+1, …, ui

Ki (7-17)
 

The values of ui
ki+1, …, ui

Ki are ignored during evolution and hypotheses formulation.  

Additionally, when AQ21 learning is applied all values ui
j are replaced with not 

applicable meta-value that indicates that the actual values do not exist (Michalski and 

Wojtusiak, 2005).   

 

Representation of complete candidate solutions is given by (7-18). It includes 

representation (7-17) of all original numeric attributes being discretized.  The total 

number of attributes used to represent discretizations is K1 + K2 + … Kn. 

k1, lb1
2, … lb1

k1, u1
k1+1, …, u1

K1, … kn, lbn
2, … lbn

kn, un
kn+1, …, un

Kn (7-18)
 

7.2.3 Constraints 

Single-objective optimization of discretization of numeric attributes requires definition of 

several constraints.  These constraints are partially caused by the form of representation 

space described in the previous section, and partially represent desired properties of the 

discretizations. 
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Table 7-9: Constraints in the problem of finding optimal discretization. 

Constraint Explanation 

LBi
2 < … < LBi

ki,  i = 1..n Intervals in discretization must not be overlapping. 

This constraint is needed because of the 

representation space used in the optimization. 

Degree of violation of this constraint is the ratio of 

the number violated inequalities to the total number 

of inequalities. 

Discretization does not introduce 

ambiguity 

When abstracting numerical values, examples 

belonging to different classes may become 

indistinguishable, therefore ambiguity is introduced 

to the learning process.  Such a situation is a 

violation of this constraint.  Degree of the violation 

of this constraint is the ratio of the total number of 

examples to the number of examples that become 

ambiguous.  

max(|D(DXi)|) ≤ min(|D(DXi)|)+τ Avoiding violation of the previous constraint may 

lead to a situation when some attributes are 

discretized into a very small number of intervals, and 

others may have many intervals that are sufficient to 

distinguish between training examples. To avoid this 

situation the number of intervals for all discretized 

attributes must be within a given threshold. 

Sizes of domains of discretized 

attributes do not differ more than 

by τ 
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7.2.4 Results 

This section describes a summary of experimental results of applying the learnable 

evolution model to automatic discretization of continuous attributes.  In these 

experiments two previously described medical datasets are used, namely, metabolic 

syndrome and vitality score.  The results are compared with ChiMerge (Kerber, 1992) 

method executed with different numbers of ranges.  The ChiMerge algorithm is 

implemented in the AQ21 system, thus it is easy to use and compare with results obtained 

by LEM3. 

 

In the original metabolic syndrome dataset there is no ambiguity (identical examples 

belonging to different classes), and the total PROMISE of all attributes is 7.75.  In the 

presented experiments LEM3 was started with no known feasible solutions (see Section 

4.7).  LEM3 obtained result with no ambiguous examples that needed only two intervals 

for sixteen attributes and three intervals for four attributes in the dataset consisting of 

twenty attributes total. This result is in contrast with the result obtained by ChiMerge that 

when finding three intervals per attribute, introduced two ambiguous examples. The total 

promise of discretized attributes found by LEM3 is also higher as shown in Table 7-10. 
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Table 7-10: Results of finding the best discretization by LEM3 and ChiMerge on the metabolic 
syndrome dataset. 

Method Fitness Ambiguity 

Original data 7.75 0 

ChiMerge with 2 intervals per attribute 10.964 3 

ChiMerge with 3 intervals per attribute 10.597 2 

ChiMerge with 4 intervals per attribute 10.2945 0 

ChiMerge with 5 intervals per attribute 10.1406 0 

ChiMerge with 6 intervals per attribute 9.5049 0 

LEM3, no more than 3 intervals per attribute 12.1609 0 

 

 

Table 7-11: Results of finding the best discretization by LEM3 and ChiMerge on the vitality score 
dataset. 

Method Fitness Ambiguity 

Original data 3.7991 0 

Manually discretized 4.02792 0 

ChiMerge with 2 intervals per attribute 3.89843 4 

ChiMerge with 3 intervals per attribute 4.29631 0 

ChiMerge with 4 intervals per attribute 4.34179 0 

ChiMerge with 5 intervals per attribute 4.68878 0 

ChiMerge with 6 intervals per attribute 4.7587 0 

LEM3, no more than 4 intervals per attribute 5.55234 0 
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In the original vitality score dataset there is no ambiguity neither when continuous data 

are used, nor when the data are manually discretized by an expert.  The fitness value (the 

total PROMISE of all attributes) corresponding to the original continuous data is 3.7991, 

and for the manually discretized data it is 4.02792.  The comparison of results found by 

the ChiMerge algorithm and LEM3 is presented in Table 7-11. 

 

The presented results were obtained using the LEF-based method for starting with no 

feasible solutions implemented in LEM3 and described in Section 4.7. The program 

converged to feasible solutions (i.e. correct discretizations that don’t introduce 

ambiguity), while optimizing the given quality measure. 

 

7.2.5 Conclusions 

Application of the learnable evolution model to automatic discretization of numeric 

attributes shows that it is able to find simple and high performing discrete attributes.  Due 

to the use of constraints, the new attributes do not introduce ambiguity into data when 

replacing the original continuous attributes.  On both metabolic syndrome and vitality 

score datasets LEM3 found better discretizations than those found by the ChiMerge 

algorithm.  For the vitality score dataset the discretization found by LEM3 also have 

higher quality than the discretizations manually created by an expert. 
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CHAPTER 8 CONCLUSIONS 

This dissertation presents a new methodology for handling constrained optimization 

problems and for automatically improving representation spaces in the learnable 

evolution model. Previous research has shown LEM’s excellent performance and 

applicability to many real world problems. While the fact that most of the real world 

optimization problems are constrained is well known, the double relation between 

handling constraints and improvement of the representation space has not been 

previously investigated.  The methods for handling specific types of instantiable 

constraints can be applied to instantiate hypotheses learned in modified representation 

spaces in order to improve program’s efficiency.  On the other hand, improvements of the 

representation spaces may help to better capture feasible candidate solutions, and reduce 

the number of infeasible solutions generated. This is particularly important when 

evaluation of constraints is a time consuming process. 

 

Key components of the described methodology have been implemented in an 

experimental system LEM3.  Experimental evaluation on selected widely known testing 

problems revealed high potential of the implemented methodology and indicated new 

areas of research.  Also application of the methodology to two real world problems 

indicated excellent results and provided more evidence about its importance. 
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8.1 Contributions of the Dissertation 

The presented work has contributed to theoretical and practical aspects of the problems of 

handling constrained optimization problems and automatically improving representation 

spaces in the learnable evolution model.  Specifically, the most important contributions 

include: 

• Classification of constraints into four classes based on the difficulty of handling them 

in the learnable evolution model. The most important distinction is made between 

instantiable and general constraints.  This distinction is made by the presence of an 

efficient method for solving them in the instantiation process. 

• Design and implementation of methods for handling instantiable constraints of types 

1-3, including these given in the form or ordered conditions [ATT rel EXPR].  

Although these types of constraint are very limited, and few optimization problems 

may have constraints in these forms, they are important for instantiation of conditions 

with constructed attributes. 

• Design and implementation of three methods for handling general constraints in the 

learnable evolution model.  The methods are specifically designed to work with the 

learnable evolution model, and are based on trimming rules hypothesized from high 

performing candidate solutions, approximation of the feasible area using machine 

learning, and using infeasible solutions as a contrast set for learning. 

• Design and implementation of methods for automatically improving the 

representation space in LEM.  Two methods based on data-driven constructive 

induction were included in the presented study.  The former creates new attributes in 
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a general form, and the latter creates only attributes that can be treated as instantiable 

constraints. 

• Design of methods for instantiating in the modified spaces. The methods are based on 

the fact that conditions that include constructed attributes can be treated as 

constraints. 

• Two real world applications are presented in this dissertation. The first one concerns 

optimization of parameters of complex systems, and the second concerns finding the 

best discretization of numeric attributes. The former application uses the AQ21 

machine learning system as an example of a complex system with 24 controllable 

parameters and several constraints.  It is applied to three medical datasets.  The latter 

application seeks the best discretization of all numeric attributes on two medical 

datasets. 

 

8.2 Future Work 

Many aspects of the presented research require additional studies on the methodology, 

implementation, and application levels.  Several assumptions have been made to simplify 

the process of implementation and application. 

 

Among the most important methodological unresolved issues are: 

• The methodology for handling constrained optimization problems was tested on 

widely known problems with relatively small numbers of constraints.  Additional 

study is needed to adjust these methods for problems with numbers of constraints 
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on the order of hundreds or more.  This can be done by combining the presented 

approach with methods already available in the literature. 

• Methods for constructing new attributes presented in Chapter 6 are designed for 

numerical attributes only, while one of the strengths of the learnable evolution 

model is its applicability to problems defined using multitype attributes.  An 

important extension of the work is automatic construction of attributes of different 

types such as nominal, structured, ordinal, and count. 

• The presented work uses data-driven constructive induction to improve 

representation space.  Although the method gives very good results for small 

representation spaces, its performance drastically decreases with increasing 

numbers of attributes.  This is due to the complexity of a search process that 

involves testing different combinations of attributes.  Other methods for 

constructing new attributes such as principal component analysis that can easily 

involve many attributes at the same time can be tested. Use of such methods, 

however require definition of efficient instantiation methods. 

 

The presented methodology has been implemented in an experimental system LEM3. A 

significant amount of work is needed to transform LEM3 into a user-friendly program 

that does not require programming skills to operate.  This includes creating a graphical 

interface, creating methods for easy specification of problems, removing unneeded 

parameters and procedures implemented for experimental purposes, and setting 

remaining parameters to carefully selected default values. Current efforts in this direction 

include integrating LEM3 with the VINLEN system (e.g. Kaufman et al, 2007). 
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