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Abstract 
 

This paper briefly describes the AQ21 learning  
system that implements a simple form of natural 
induction, an approach to learning that generates 
hypotheses in forms resembling natural language 
descriptions, and by that easy to understand and 
interpret. The system was applied to the analysis of 
aggregated data obtained from non-invasive tests 
performed on different groups of patients with 
metabolic syndrome. The discovered patterns were 
very simple and were evaluated by an expert as 
potentially medically significant.  
 
1. Introduction 
 

In many areas of application, in particular, in 
medicine, computer-generated knowledge must be not 
only accurate but also understandable and interpretable 
by people. Most machine learning research, however, 
has given primary attention to predictive accuracy of 
the learned knowledge, and lesser attention to its 
understandability. 

The goal of achieving both high accuracy and 
knowledge interpretability has led us to the 
development of the natural induction approach to 
machine learning [7] that seeks inductive hypotheses in 
forms natural to people, such as natural language-like 
descriptions. 

This paper provides a brief description of an early 
version of the natural induction system AQ21, 
implemented in our laboratory, and its experimental 
application to an important medical problem. The 
problem is to determine patterns in patients with 
metabolic syndrome (MS) from aggregated data about 
groups of such patients. Metabolic syndrome 
represents a cluster of significant health risk factors 
that are on the rise in many countries. They include 
obesity, insulin-resistance, hypertension, elevated 
triglycerides, as well as decreased level of high-density 
lipoprotein cholesterol (“good cholesterol”). The 
presence of any three of these factors increases the risk 
of cardiovascular disease and predisposes a patient to 

the development of type 2 diabetes and its 
complications. Recently, nonalcoholic fatty liver 
disease (NAFLD) and its more aggressive form, 
nonalcoholic steatohepatitis (NASH), have come to be 
regarded as the hepatic manifestation of MS [4]. 
Additionally, MS plays a well-recognized role in the 
development of the obstructive sleep apnea, erectile 
dysfunction, polycystic ovary syndrome, and 
malignant tumors [20]. The problem is significant 
because about 47 million residents of the United States 
have metabolic syndrome [15]. Thus, discovering 
valid, simple, and useful clinical patterns 
characterizing MS is a significant diagnostically goal. 

In this study, we used aggregated data from clinical 
journals because obtaining individualized data about 
specific patients turned out to be difficult as they are 
protected by strict privacy laws. Because the AQ21 
learning program (as most of machine learning 
programs) was developed to learn from concept 
examples representing single entities (in this case 
patients), not from aggregated data; our first task was 
to develop a methodology for reasoning with 
aggregated data. The method presented here represents 
our initial solution to this problem.   

2. AQ21 as Natural Induction Laboratory 
 
AQ21 deeply integrates a wide range of features 

that are either not present in other programs or present 
only individually. Because it can perform many 
different functions and generate different kinds of 
descriptions and patterns, AQ21 can be viewed as a 
laboratory for natural induction, rather than as a single 
program (e.g. [18], [19]). A brief overview of its 
features, especially those relevant to our study on 
metabolic syndrome, is presented here.  

AQ21 seeks descriptions in different forms that 
generalize examples of given concepts and optimize a 
multi-criterion measure of description quality (defined 
by the user). Descriptions are expressed as attributional 
rules, whose form used in this study is (1): 
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CONSEQUENT <= PREMISE |_EXCEPTION 
: ANNOTATION     (1) 

 
where CONSEQUENT and PREMISE are attributional 
statements that are conjunctions of attributional 
conditions, and  EXCEPTION (optional) stands for 
either an exception clause (which is also an 
attributional statement) or a list of examples 
constituting exceptions to PREMISE.  ANNOTATION 
lists statistical and other information about the rule, 
such as numbers of positive and negative examples 
covered, the rule’s quality, its complexity, etc. Here is 
an example of such a rule: 
 
[PlanToDo= run_experiments]   
<= [Day= weekend: 38,131] &  

[Weather = rainy and cold: 22, 5]  & 
[Available_workstation_clock_speed >= 2GB/s: 50,5] &  
[Available_lab = lab1 or lab3: 43,57]  
    |_ [Server_malfunction: 0,3] : p=27, n=1, Q=0.9 

 
which can be paraphrased:  
 

 The plan to do is to run_experiments, if it is 
weekend, the weather is rainy and cold, the 
available workstation has the clock_speed at 
least 2GB/s, and the available laboratory is lab1 
or lab2, except for when there is a server 
malfunction. 

 
The value “weekend” is a higher-level value of a 
structured (hierarchical) attribute “Day”, the attribute 
“Weather” is a compound attribute that takes a 
conjunction of values. The pairs of numbers within 
conditions represent numbers of positive and negative 
examples satisfying these conditions. The entire rule is 
satisfied by 27 positive and 1 negative examples, as 
indicated by “p=27, n=1” in the ANNOTATION part, 
and its quality, defined by (2), is 0.9. Notice that the 
rule closely corresponds to its equivalent natural 
language interpretation. 

Attributional rules learned by AQ21 may include  
other types of linguistic constructs than those 
exemplified above, such as count attributes that  
express the number of statements being true or the 
number of properties satisfying a given condition in the 
training data (they generalize quantifiers in standard 
logic), arithmetic expressions, provided-that clauses, 
and other forms resembling natural language 
descriptions. 

As shown above, an attributional rule employs a 
richer representation language than a typical 
elementary rule learned by most rule learning 

programs, in which conditions are limited to the form 
(attribute relation attribute-value).  

Before we describe further details of AQ21, let us 
briefly relate it to other rule learning methods. Among 
recent methods are those that use rough-set theory 
approach [11], and those applying evolutionary 
computation [14]. Some recent papers also describe 
methods partially based on the AQ approach, e.g., [17]. 
All these methods, as well as earlier ones, such as 
RIPPER [3], CN2 [2] and C4.5 [13], are significantly 
different from AQ21, both in the types of rules they 
can learn (only elementary rules) and in the way they 
learn them, typically in the top down-fashion, rather 
than bidirectionally, as in AQ21.  
 
2.1. Top Level Learning Algorithm 

 
AQ21 integrates three basic learning modes. One 

mode, called TF (“Theory Formation”), learns 
complete and consistent hypotheses with regard to the 
training data. The second mode, called ATF 
(“Approximate Theory Formation”), learns 
approximated hypotheses that may be partially 
inconsistent and/or incomplete. The third mode, called 
PD (“Pattern Discovery”), seeks optimized patterns 
that capture strong regularities in data.  Figure 1 
presents the top level of algorithm for all three modes. 

  
RS = null 
While P is not empty 
   Select a seed example, p, from P 
      Generate a star or an approximate star G(p, N) 
      Select the best k rules from G according to LEF, 

and include them in RS 
  Remove from P all examples covered by the selected  
      rules  
Optimize rules in RS 
Assemble a final hypothesis, a set of alternative 

hypotheses, or patterns from all rules in RS 
Figure 1: Top-level learning algorithm in AQ21. 

The input to the algorithm is a set of positive 
examples, P, and a set of negative examples, N, of the 
concept to be learned, and a multicriterion quality 
measure, LEF (Lexicographic Evaluation Functional), 
of the generated hypotheses. In the case of learning 
multiple concepts, negative examples are examples of 
other concepts than the one being learned. The key part 
of the algorithm is the generation of a star G(p, N), for 
the given seed, p, against the set of negative examples, 
N. In TF mode, a star is a set of maximally general 
consistent attributional rules that cover the seed but do 
not cover any negative examples, and ATF and PD 
modes, the rules may be partially inconsistent [6].  



The above algorithm applies to all three modes, but 
in ATF and PD modes at each step of star generation it 
optimizes rules according to a rule quality measure, 
Q(w), instead of generating consistent rules. Q(w) 
defines the desirable tradeoff between rule 
completeness, denoted compl, and confidence gain, 
denoted config [9], controlled by a user-defined 
parameter w (varying between 0 and 1).   

 
Q(w) = complw * config1-w                  (2) 

 
Here, compl = #p / #P and config = ((#p / (#p + #n)) – 
(#P / (#P + #N))) * (#P + #N) / #N.  Here, #p and #n 
are the numbers of positive and negative examples 
covered by the rule, and #P and #N are the numbers of 
positive and negative examples in the training dataset. 

In each mode, rules are selected from stars using a 
Lexicographical Evaluation Functional (LEF), a 
multicriterion measure of rule preference, defined by 
the user by selecting a subset of elementary criteria 
from a list of such criteria predefined in AQ21 [18].  
Such elementary criteria include, for example, the 
maximization of the number of positive examples, the 
number of positive examples not covered by other 
rules, the rule simplicity, and rule confidence, and the 
minimization of the cost measuring attributes in the 
rule. The final hypothesis assembled from stars by 
selecting the fewest highest LEF-ranked rules that 
cover all positive examples (in TF mode) or a 
significant subset of them (in ATF mode). 

 
2.2. Learning Censored Rules 

 
The concept of an exception from a rule is 

commonly used by humans when they are referring to 
rarely occurring anomalies in the rule application (e.g., 
[7], [16]).  It is not unusual that a simple rule may 
work well most of the time but not always.  Improving 
it to work for all cases would make it, however, much 
more complex. To capture such cases, AQ21, learns 
censored rules, a.k.a. rules with exception parts, as 
presented in (1). 

A standard run of AQ21 in all modes creates 
standard rules, i.e., rules without exception parts. 
Method of generating exceptions depends on mode in 
which AQ21 is executed. In ATF and PD modes, 
where inconsistency is allowed, the system learns 
standard rules and generates exception phrases that 
represent covered negative examples. This is done by 
finding a conjunctive description of negative examples 
by applying AQ learning to the examples covered by 
the rule. The result of generating exceptions in ATF 
mode is a hypothesis that consists of rules that may 

have exceptions, and in PD mode is a set of patterns 
with exceptions.  

In TF mode, where consistency must be guaranteed, 
the program adds negative examples to the list of 
exceptions, if such examples are infrequent in 
comparison to the examples covered by the rule, but 
would introduce significant complexity in order to 
accommodate them. If all exceptions from the rule can 
be described by one conjunctive description, such a 
description is created and used as the exception part, 
otherwise, an explicit list of examples that are 
exceptions is used. 

 
2.3. Learning Alternative Hypotheses 

 
From any non-trivial set of concept examples, it is 

usually possible to generate many alternative inductive 
generalizations. Such generalizations, called alternative 
hypotheses, can be useful for a variety of practical 
applications of computational learning systems. For 
example, in medical decision making (diagnosis, drug 
prescription, or therapy assignment), some tests 
required by a given diagnostic procedure may be 
unavailable and an alternative procedure would be 
necessary.  Alternative hypotheses can also be used to 
increase the accuracy of classification decisions, 
through simple voting on decisions assigned by 
different hypotheses, or by weighted voting, as is 
typically done in boosting. 

AQ21 learns alternative hypotheses in two steps. In 
the first step, more than one rule is selected from each 
star, thus different generalizations of the seed are kept 
(when k > 1 in the algorithm in Figure 1). In the 
second step, these rules are assembled together to 
create alternative hypotheses, ordered based on user-
defined criteria. Details of the algorithm for learning 
alternative hypotheses are presented in [8]. 

 
3. Application to Metabolic Syndrome 

 
Metabolic syndrome (MS) and its secondary 

complications are clinical entities that pose a 
significant challenge in determining correct diagnosis. 
Abdominal obesity and insulin resistance appear to be 
its predominant underlying risk factors. Some types of 
metabolic abnormalities predispose people to non-
alcoholic fatty liver disease (NAFLD) and 
nonalcoholic steatohepatitis (NASH). The costs 
associated with treating patients with these 
complications are substantial, thus an early prediction 
and prevention of complications is of significant 
importance. Currently, it is not possible to make an 
accurate diagnosis without liver biopsy. It is an 
invasive and costly procedure that is prone to 



complications, some minor, such as pain, and some 
more severe, including death [12]. An attractive 
alternative, pursued in this research, is to use panels of 
the serum markers, as blood samples could be collected 
in a minimally invasive way. However, the predictions 
made in different studies using current non-invasive 
methods lack consistency. Most of the clinical studies 
of MS are based on the same serum parameters as ones 
used in this study, but are performed on only one group 
of patients collected in a single hospital and use only 
simple statistical measures for group comparisons and 
correlation plotting. For example, Poynard et al. 
developed a panel of biomarkers known as NashTest 
aimed at the detection of NASH in patients with 
NAFLD in order to reduce the need for liver biopsy 
[12]. Described panel uses proprietary algorithms 
taking into account a combination of 13 parameters: 
age, sex, height, weight, and serum levels of 
triglycerides, cholesterol, alpha2macroglobulin, 
apolipoprotein A1, haptoglobin, gamma-glutamyl-
transpeptidase, transaminases ALT, AST, and total 
bilirubin. The specificity (true negatives) of the method 
is 94% for NASH, and its selectivity (true positives) is 
33%.  

A similar study presented a composite index for 
distinguishing steatosis from NASH calculated by 
counting the risk factors: age >=50 years, female 
gender, AST ≥ 45 IU/l, BMI ≥ 30 mg/kg2, AAR ≥ 0.80, 
and HA ≥ 55 microg/l. The presence of three or more 
of the above risk factors had sensitivity 73.7% and 
specificity 65.7% [10].  

A number of other researchers attempted to use 
HOMA, or a combination of adiponectin and other 
secreted adipokines (e.g. resistin, visfatin, leptin etc.) 
as predictors of NASH. It is well known that low levels 
of adiponectin expression may predispose patients to 
the progressive form of NAFLD or NASH [1], [5]. 

 
3.1. Data 

 
As mentioned earlier, data used for this study were 

in aggregated form.  They were collected from articles 
published in journals such as Hepatology, Obesity 
Research, International Journal of Obesity and some 
others. The data do not include individual 
measurements of clinical parameters, as the 
individual’s privacy is protected by HIPAA (Health 
Insurance Portability and Accountability Act) and 
similar protection policies. 

For this study, we retrieved aggregated clinical data 
from 16 separate hospital cohorts that included 12 
groups of patients with present liver disease symptoms 
and 8 control groups of healthy subjects. Every single 
group of patients was described in terms of the mean of 
attributes measured for this group of patients. The total 

number of different parameters measured was 152. 
Different attributes were measured, however, in 
different studies, which added additional complexity to 
the problem.  The only parameter that was quantified 
in all studies is AST (level of aspartate 
aminotransferase).  

Twenty most common attributes used in this study 
are presented in Table 1. In addition, we constructed an 
extra attribute, defined as the ratio of AST and ALT, as 
this ratio is often used in liver disease diagnostics.  

  
Table 1: List of attributes used in the initial study. 

Attribute 
Name 

Description 

Weight Patient’s Weight (Kg) 
BMI Body-Mass Index 
Height Patient’s Height 
Fast glu  Glucose level after fasting (mg/dll) 
Fast ins  Insulin level after fasting (mUI/l) 
Total cholest  Cholesterol level 
HDL  High-Density Lipoproteines (mg/dl) 
LDL  Low-density Lipoproteines (mg/dl) 
Triglycerides  Triglyceride levels (mg/dl) 
HOMA Level of insulin resistance according to the 

Homeostasis Model Assessment of insulin 
resistance 

AST  Aspartate aminotransferase level (U/l) 
ALT Alanine aminotransferase level (U/l) 
Gamma GT Gamma-glutamyltransferase level (U/l) 
ALP Alkaline phosphatase level (U/l) 
Leptin  Leptin level (ng/ml) 
Adiponectin  Adiponectin level (mg/ml) 
Systolic bp Systolic blood pressure  
Diastolic bp Diastolic blood pressure 
Body fat % Percent of the body fat  
Visceral fat % Percent of the body visceral fat 

 
The domain of the output attribute “Class” contains 

diseases under consideration, namely NAFLD (non-
alcoholic fatty liver disease), SS (simple steatosis), and 
NASH (Nonalcoholic Steatohepatitis), and includes 
also a healthy status, represented by control groups 
serving as a contrast set for learning. It should be noted 
that NAFLD is the most general condition that 
comprises both SS and NASH cases, which means that 
values of the output attribute form a hierarchy. 
Therefore, we first sought rules that differentiate 
examples of all three diseases together from healthy 
cases and then rules characterizing NASH, the most 
severe form of NAFLD.  

 
3.2. Selected Results 

 
In order to explore different types of rules that can 

be learned from the data, AQ21 was run in PD and TF 
modes, and with different parameter settings. Selected 



results that appear be medically most interesting are 
presented in this section. 

In the first set of experiments, we sought rules 
differentiating the three diseases from the healthy cases 
provided by control groups.  Here is a selection of the 
censored rules learned by AQ21 working in PD mode. 
Due to use of exceptions patterns in the first two rules 
were turn into consistent form (which may not happen 
in the general case when exceptions cannot be 
characterized by one attributional statement). 
 
[Class=NAFLD or SS or NASH]  
   <= [BMI>=26.85: 8,2] 
      |_ [AST<=27.2] & [Adiponectin>=7.25] 
       : p=8,n=0,q=0.816,cx=25 
 
[Class=NAFLD or SS or NASH]  
   <= [HOMA>=2.27: 9,2] 
      |_ [Fast_ins<=13.17] & [Leptin>=14.25] & 
      [Adiponectin>=7.25] 
       : p=9,n=0,q=0.972,cx=35 

 
[Class=NAFLD or SS or NASH]  
   <= [Adiponectin<=6.18: 8,1] 

     : p=8,nmin=0,nmax=1,q=0.695,cx=5 
 
The first rule states: 
 
  There is presence of non-alcoholic fatty liver 
disease or its subtypes, simple steatosis or 
nonalcoholic steatohepatitis, if body-mass index 
is greater or equal 26.85, except for when 
aspartate aminotransferase level is at most 27.2 
and adiponectin level is at least 7.25.  
 
A detailed explanation of the parameters in the 

annotation is in the AQ21 User’s Guide [18]. Other 
rules can be interpreted similarly. In the third rule, the 
condition part indicates that one negative example is 
covered. This example is only potentially covered, as 
its value of adiponectin is unknown, which is indicated 
as nmin=0 and nmax=1 in the rule’s annotation. 

Another set of experiments was to discover rules for 
diagnosing the most severe form of NAFLD, 
nonalcoholic steatohepatitis (NASH). Groups of 
patients with non-alcoholic fatty liver disease 
(NAFLD) were excluded from dataset for these 
experiments, as this clinical entity covers both benign 
steatosis (SS) and aggravated disease (NASH). 

The following pattern was learned by AQ21 in PD 
mode: 

 
[Class=NASH]  
   <= [AST_ALT_ratio<=0.8121: 4,1] 
      |_ [Total_cholest>=209.3] 
       : p=4,n=0,q=1,cx=15 

 

The rule is clinically relevant as it reflects the most 
skewed cases of extreme AST/ALT ratios usually 
pinpointing most severe forms of the non-alcoholic 
liver pathology. 

In AQ21’s TF mode, the following complete and 
consistent alternative rulesets were learned: 

Alternative Ruleset 1 

[Class=NASH]  

 <= [Adiponectin<=5.925: 4,1] & 

    [AST_ALT_ratio<=9.879: 4,10] 

     : p=4,n=0,cx=10 

Alternative Ruleset 2 
[Class=NASH]  

 <= [AST>=22.88] & [Adiponectin<=5.925] 
    : p=4,n=0,cx=10 

Alternative Ruleset 3 

[Class=NASH]  

 <= [HOMA>=1.86] & [Adiponectin<=5.925]  

    : p=3,n=0,cx=10 

 <= [Fast_ins>=9.5] & [Adiponectin<=5.925]   

    : p=3,n=0,cx=10 

 
In the above results, the strongest indication of non-

alcoholic fatty liver disease is low value of 
adiponectin.  The condition would be sufficient to 
describe all groups of patients with nonalcoholic 
steatohepatitis. However, because of one study in 
which values of adiponectin were not available, the 
AQ21 system needed additional conditions to 
guarantee consistency of the rule in TF mode. 

The rules based on the adiponectin concentrations 
are especially important as the role of the decrease in 
the adipocytic secretion of this protein is related to an 
increase of the BMI. Rulesets created by AQ21 
unequivocally point to the importance of this secreted 
protein of adipose as a potential diagnostic component.  

 
6. Summary 

This paper briefly reviewed the AQ21 natural 
induction system and its application to discovering 
patterns in the aggregated clinical data obtained from 
different studies of liver diseases associated with 
metabolic syndrome. AQ21 is particularly attractive for 
this problem because it seeks hypotheses that are not 
only accurate but also easy to understand, which is 
particularly important in medical applications. The 
system can be viewed as a laboratory for pattern 
discovery, because is allows the user to experiment 
with learning of different types of hypotheses (fully 
consistent, approximate, or patterns), apply different 
criteria of attributional rule quality, learn hypotheses 
with and without exception parts, generate an 
optimized set of alternative hypotheses from the same 



data, control their level of generality, and some other 
features [18], [19].  

The study produced some clinically relevant results, 
including one stating the importance of adiponectin, 
which might be added to the currently used panels of 
non-invasive diagnostic markers. The learned rules 
also indicate important relationships between several 
diagnostic markers and diseases from the metabolic 
syndrome spectrum. Their further evaluation, on both 
aggregated and non-aggregated data (not available for 
us in this study), is needed in order to determine their 
predictive accuracy.  

In our future research, we plan to analyze datasets 
characterizing other diseases of metabolic syndrome 
spectrum than those of concern here, to experiment 
with a variety of parameter settings, and to test the 
obtained hypotheses on a larger number of cases to 
ensure high reliability of the predictive accuracy. 
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