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Abstract 
 
This report describes four very simple methods for preparing training data sets for machine 
learning when training examples are split to several subsets, and only aggregated values of 
attributes are available for each subset. Specifically, each subset of examples is represented by a 
vector of pairs of values for each attribute. The first value in the pair is the mean, and the second 
is the standard deviation of the attribute. Presented methods, M0, M1, M2, and M3, employ 
consecutively more accurate approximations of the normal distribution of values for each 
attribute. The consecutive approximations require, however, increasingly larger sets of training 
examples for each subset in the class. 
 
Keywords: Machine Learning, Aggregated Data, AQ learning, Natural Induction, Computational 
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1 Introduction 
 
In some application domains training data for concept learning is available not in the 
standard form of training instances, but in an aggregated form. For example, in medicine, 
due to the privacy protection, data may be available only in the form of means and 
standard deviations of values of individual medical parameters for groups of patients.  
Such data are common in medical literature. Typical methods for machine learning are, 
however, oriented toward learning from training sets of specific instances, not from 
aggregated data, hence a problem arises as to how to adopt existing methods to learn 
from such training sets.  
 
This paper presents an approach to learning from aggregated data that develops an 
approximation of the distribution of attribute values, and uses them to create training sets 
for learning. Based on this idea, four simple methods, M0, M1, M2, and M3, are 
described, which represent increasingly accurate distribution approximations.  
 
2 Problem Description 
 
Let us assume that the problem is to learn general descriptions of m classes (or concepts) 
C1, C2, …Cm.  We assume that training examples of each class are described by 
aggregated examples, which for each attribute specify the mean value, μ , and standard 
deviation, σ, of this attribute in a subset of instances of this concept.  
 
Let us assume that attributes characterizing the instances are x1, x2, .., xn, and a training 
set for a class consists of statements in the form of a conjunction: 
 

[x1 =  (μ1; σ1)]   &   [x2 = (μ2, σ2)]  & ...  &  [xn = (μn, σn)]                       (1) 
 
in which each condition [xi =  (μi; σi)] states that in a given subset of training examples  
the attribute xi takes the mean value μi with the standard deviation  σi. We will refer to 
such statements as aggregated examples.  
 
A training set for a given class may consists of several such aggregate examples, each 
characterizing a subset (sample) of specific examples of this class. 
 
3 The Distribution Approximation Approach 
 
Standard methods of machine learning require a set of training examples to learn from. It 
will not accept statements in the form (1) as examples. The simple idea presented in this 
paper is to replace each aggregated example by a set of specific examples approximating 
the distributions of values of each attribute on the basis of the mean and standard 
deviation for each attribute. Because it is assumed that data do not include a covariance 
matrix, this information is unknown and the methods assume the independence of the 
attributes in examples characterizing individual classes.  
 



 

The following sections present four methods of replacing statements (1) by sets of 
examples providing consecutively more accurate approximations of a normal distribution 
that is assumed to have generated the available data. 

3.1 Method M0: Mean Only 
 
This is the simplest method for creating a training set based on the statement (1). It 
reduces (1) to the statement (2), and creates class examples in the form (3). 
 

[x1 =  μ1] & [x2 = μ2] & .. &.[xn = μn]                                    (2) 
 

(μ1, μ2, ..., μn)                                                        (3) 
 
In this case, the aggregated training set consists of single vectors representing each 
subgroup in the given class – one example for each subgroup.  The method is very 
simple. Because it ignores the standard deviation of examples in the subgroup, it does not 
explore all the available information about the class.  This method has been previously 
applied to analyze metabolic syndrome related data (Wojtusiak et al., 2007). 

3.2 Method M1: Mean with Borders 
 
In this method, a training set consists of examples approximating a normal distribution by 
its mean and selected data points. To explain this matter, let us consider a distribution of 
values of an attribute, xi, in the aggregated example (1). Assuming that these values 
follow a normal distribution N(μ, σ) approximately:  
 
• 68% of values of xi are within the range  μ - σ  ≤  x   ≤ μ + σ 
• 95% of values of xi, that is 27% more, are within the range  μ - 2σ  ≤  x   ≤ μ + 2σ 
• 99.7% of values of xi, that is 4.7% more are within the range  μ - 3σ  ≤  x   ≤ μ + 3σ 
 
If the size of the population is assumed to be 40, a simple approximation of the normal 
distribution would be to draw: 
 
• 14 examples with value of xi between  μ  and  μ + σ 
• 14 examples with value of xi between  μ  and  μ  - σ 
• 5 examples with value of xi between  μ + σ  and  μ + 2σ 
• 5 examples with value of xi between  μ - σ and  μ  - 2σ 
• 1 example with value of xi between   μ + 2σ and  μ + 3σ 
• 1 example with value of xi between   μ - 2σ and  μ -  3σ 
 
Figure 1 illustrates the difference between this distribution and the normal distribution. It 
shows the percentages of cases in different ranges according to the normal distribution 
(2nd row) and corresponding numbers of examples  to be drawn within these ranges (3rd 
row), and their percentages (4th row) in order to approximate the distribution using a 
population of 40 examples. 



 

 

 
Figure 1: An approximation of the normal distribution by examples drawn  

from a population of size 40. 
 
Method M1 assumes that the distribution is approximated by seven weighted examples: 
 
• Example 1 with weight 16 and value of xi =  μ 
• Example 2 with weight 6  and  values of xi =  μ +σ 
• Example 3 with weight 6  and  values of xi =  μ - σ 
• Example 4 with weight 5  and  values of xi =  μ + 2σ 
• Example 5 with weight 5  and  values of xi =  μ - 2σ 
• Example 6 with weight 1  and  values of xi =  μ + 3σ 
• Example 7 with weight 1  and  values of xi =  μ - 3σ 

 
This method uses a better approximation of the distribution of examples than Method 
M0, but that approximation is still very rough. In order to create examples with multiple 
attributes x1, .., xn, the process is applied to all attributes producing seven weighted 
examples: 

 
• e1 = (x1 =  μ1, ..., xn =  μν), weight = 16 
• e2 = (x1 =  μ1 + σ1, ..., xn =  μν + σn), weight = 6 
• e3 = (x1 =  μ1 - σ1, ..., xn =  μν - σn), weight = 6 
• e4 = (x1 =  μ1 + 2σ1, ..., xn =  μν + 2σn), weight = 5 
• e5 = (x1 =  μ1 - 2σ1, ..., xn =  μν - 2σn), weight = 5 
• e6 = (x1 =  μ1 + 3σ1, ..., xn =  μν + 3σn), weight = 1 
• e7 = (x1 =  μ1 - 3σ1, ..., xn =  μν - 3σn), weight = 1 
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3.3 Method M2: Approximation by Sampling in Ranges (ASR) 
 

In this method, each aggregated example is replaced by a population of 40 examples 
drawn according to the rules: 
 
• 14 examples are drawn with a randomly generated values μi ≤ xi < μi + σi, i=1..n 
• 14 examples are drawn with a randomly generated values μi - σi < xi ≤ μi, i=1..n 
• 5 examples are drawn with a randomly generated values μi + σi ≤ xi < μi + 2σi, i=1..n 
• 5 examples are drawn with a randomly generated values μi - 2σi < xi ≤ μi + σi, i=1..n 
• 1 example are drawn with a randomly generated values μi + 2σi ≤ xi < μi + 3σi, i=1..n 
• 1 example are drawn with a randomly generated values μi - 3σi < xi ≤ μi + 2σi, i=1..n 
 
As opposed to the method M1, all examples have the same weight of 1. Method M2 is 
also very simple, as it generates only 40 examples per class, but provides a better 
approximation than the methods M0 and M1.  
 

3.4 Method M3: Approximation by Sampling Distribution (ASD) 
 
This method replaces an aggregated example by a number of samples, k >> 40 in which 
values of each variable xi, i=1,2,..n, are drawn according to the normal distribution 
N(μi ,σi).   To apply this method one could use R statistical package (Venables and 
Smith, 2008) in which command: 
 

 x  =  rnorm(n, m, s)                                                    (4) 
 
where n is number of values to be generated, m is the mean, and s is the standard 
deviation, generates values following normal distribution N(m, s). 
 
This method requires a generation of a large set of training examples (about 1000 for 
each attribute) than previous methods, but provides the best approximation of the 
distribution. Thus, this method trades the size of the training set for a better 
approximation of the distribution. 
 
Because values for each attribute are generated independently, this method produces 
again only an approximation of the distribution. A better approximation would be created 
if additional information, such as a covariance matrix, was available.  
 
4 Experimental Comparison 
 
In order to experimentally test and compare the proposed methods, we created a set of 
four artificial 2-dimensional problems.  These problems are simple enough to be 
graphically illustrated, and complex enough to be used to compare the proposed 
distribution approximation methods for learning from aggregated data.  The following 
testing procedure was used: 



 

 
1. Prepare original dataset: 

a. Generate p points (μi,x, μi,y), i=1..p, uniformly distributed in the area 
representing the concept being learned. 

b. Generate n points (μi,x, μi,y), i=p+1.. p+n+1, uniformly distributed outside 
the area representing the concept being learned. 

c. For each generated point generate two numbers σi,x c [0, σxmax] and σi,y c 
[0, σymax] where σxmax and σymax are user-defined parameters. 

d. Generate data points Ti = (xi,j, yi,j), j = 1..ni. xi,j are generated according to 
the normal distribution N(μi,x, σi,x), and yi,j are generated according to 
normal distribution N(μi,y, σi,y), i=1..p+n+1. 

e. Create dataset T by inserting points (xi,j, yi,j, ‘positive’), i=1..p, and  
(xi,j, yi,j, ‘negative’), i=p+1..p+n+1, j=1..ni. 

2. Calculate means, μ'i,x, μ'i,y, and standard deviations, σ'i,x, σ'i,y for datasets Ti, 
i=1..p+n+1.  

3. Apply methods M0, M1, M2, and M3 to learn classifiers for the concept on 
aggregated data in the form [xi=(μi,x; σi,x)] & [yi=(μi,x, σi,x)], i=1..p+n+1. 

4. Test the learned classifiers on the original dataset T. 
5. Repeat steps 1 – 4 ten times with different random numbers initialization, and 

report average results. 
 
In the presented experiments we used the following values: p=20, n=20, and ni=40, 
i=1..40.  For each example problem, the process was repeated three times with 
σxmax=σymax=5, 10, 20, respectively. 
 
Four example problems on which the method was experimentally tested are, “halves,” 
“quarters,” “checker,” and “square.” These problems represent different levels of 
difficulty of learning from aggregated data, because of overlapping data belonging and 
not belonging to the learned concepts. 
 
The problems are illustrated on Figure 2.  In the figure, each ellipse represents mean 
values and standard deviations of one original dataset.  Centers of the ellipses are 
(μi,x, μi,y), i=1..p, and radii of the ellipses are σi,x and σi,y, respectively.   
 
 
 
 
 
 



 

 
(a) Halves 

 
(b) Quarters 

 
(c) Checker 

 
(d) Square 

Figure 2: Illustration of four problems used to test methods for learning from aggregated 
data.  Each ellipse represents one original distribution with center (μi,x, μi,y) and radii σi,x 
and σi,x.  Green ellipses represent positive concept examples, and red ellipses represent 
negative concept examples. The illustrated data were generated with σxmax=σymax= 10. 
 
 
In the experimental evaluation we compared methods M0, M1, M2, and M3, with results 
obtained on the original not aggregated dataset.  To learn classifiers we applied the AQ21 
rule learning program (Wojtusiak, 2004; Wojtusiak et al., 2006).  In order to reduce 
possible bias caused by AQ21’s parameters, the program was applied with four different 
settings of parameters.  Two program’s modes were compared, namely theory formation 
(TF), in which the program learns complete and consistent classifiers, and approximate 
theory formation (ATF), in which program allows partial inconsistency of learned rules, 
but optimizes the quality measure Q(w).  The measure represents a tradeoff between 



 

rule’s confidence gain and completeness, as indicated by a parameter w.  For details of 
the measure please refer, for example, to the description by Kaufman and Michalski 
(2000).  Three values of the parameter w were used: 0.1, 0.3, and 0.5. 
 
Table 1 compares results of testing classifiers learned by AQ21 on datasets created using 
methods M0, M1, M2, and M3, with the original data. The results are averaged over 
different AQ21 settings. Not averaged values for the case of the “quarters” problem with 
standard deviation set to 5 are shown in Table 2. All results are reported in terms of 
accuracies and precisions (Wojtusiak, 2004) of learned classifiers as tested on the original 
data.  The results presented in Table 1 clearly indicate that application of methods M0, 
M1, M2, and M3 gives consecutively better accuracies.  These accuracies are, however, 
in most cases worse than those obtained by classifiers learned from the original data.   
 
The measure of precision is used to capture the situation when the program is unable do 
give a definitive answer to which class a testing example should belong.  In many 
situations it is better to give an imprecise answer, than a precise incorrect classification. 
Details of the measure are described by Wojtusiak (2004). 
 
 
 
Table 1: Accuracies and precisions obtained by methods M0, M1, M2, and M3, from 
aggregated data and on the original data for four tested problems. The original data was 
generated with three values of standard deviation: 5, 10, and 20. 
 Halves Quarters Checker Square Average 

Standard deviation = 5 
 Acc. Prec. Acc. Prec. Acc. Prec. Acc. Prec. Acc. Prec. 
Original 1.00 0.83 0.98 0.76 0.98 0.76 0.99 0.70 0.99 0.76
M0 0.98 1.00 0.95 0.98 0.95 0.98 0.96 0.95 0.96 0.97
M1 0.99 0.80 0.96 0.74 0.96 0.74 0.97 0.68 0.97 0.74
M2 0.99 0.81 0.97 0.70 0.97 0.70 0.99 0.68 0.98 0.72
M3 1.00 0.82 0.97 0.72 0.97 0.72 0.99 0.67 0.98 0.73

Standard deviation = 10 
Original 0.99 0.73 0.98 0.60 0.98 0.60 0.98 0.62 0.98 0.64
M0 0.96 1.00 0.90 0.97 0.90 0.97 0.92 0.94 0.92 0.97
M1 0.98 0.67 0.91 0.66 0.91 0.66 0.94 0.56 0.93 0.64
M2 0.98 0.71 0.94 0.63 0.94 0.63 0.95 0.63 0.95 0.65
M3 0.99 0.73 0.96 0.60 0.96 0.60 0.96 0.61 0.96 0.63

Standard deviation = 20 
Original 0.98 0.65 0.94 0.56 0.94 0.56 0.95 0.53 0.95 0.58
M0 0.91 0.99 0.82 0.93 0.82 0.93 0.83 0.91 0.85 0.94
M1 0.93 0.59 0.84 0.56 0.84 0.56 0.86 0.49 0.87 0.55
M2 0.95 0.56 0.89 0.56 0.89 0.56 0.88 0.55 0.90 0.56
M3 0.96 0.59 0.89 0.52 0.89 0.52 0.89 0.53 0.91 0.54

 
 



 

Table 2: Accuracies and precisions obtained in single AQ21 executions with different 
methods of handling aggregated values on the “quarters” problem with standard deviation 
equal 5. With each combination of parameters program was executed 10 times as 
indicated by the numbers 0..9.  Program parameters indicate mode of execution (ATF or 
TF) and the number accompanying ATF mode is a weight, w, of confidence gain vs. 
completeness of rules. “Org.” indicates original, not aggregated, dataset. 

   0 1 2 3 4 5 6 7 8 9 Avg. SD 

ATF 
01 

Org. Acc. 0.98 0.94 0.99 0.98 0.96 0.94 0.95 0.96 0.98 0.87 0.95 0.03
 Prec. 0.99 0.98 0.89 0.71 0.99 0.94 0.84 0.98 0.83 1.00 0.91 0.10
M0 Acc. 0.96 0.92 0.93 0.93 0.96 0.93 0.94 0.96 0.95 0.92 0.94 0.02
 Prec. 0.97 0.98 0.99 0.99 0.99 0.99 0.99 1.00 1.00 0.97 0.99 0.01
M1 Acc. 0.98 0.90 0.93 0.95 0.93 0.93 0.94 0.90 0.90 0.86 0.92 0.03
 Prec. 0.96 0.98 0.93 0.96 0.96 0.83 0.93 0.99 0.92 0.90 0.94 0.05
M2 Acc. 0.97 0.95 0.98 0.98 0.97 0.97 0.96 0.93 0.95 0.89 0.95 0.03
 Prec. 0.98 0.85 0.80 0.58 0.76 0.65 0.89 1.00 0.89 0.96 0.83 0.14
M3 Acc. 0.98 0.97 0.97 0.96 0.96 0.95 0.95 0.93 0.98 0.80 0.94 0.05
 Prec. 0.96 0.93 0.90 1.00 0.99 0.78 0.92 0.96 0.82 0.97 0.92 0.07

ATF 
03 

Org. Acc. 1.00 0.99 0.99 0.99 0.99 0.99 0.97 0.97 0.99 0.96 0.99 0.01
 Prec. 0.68 0.90 0.66 0.62 0.72 0.37 0.76 0.92 0.73 0.49 0.68 0.17
M0 Acc. 0.97 0.93 0.95 0.95 0.96 0.93 0.94 0.96 0.95 0.93 0.95 0.02
 Prec. 0.99 0.98 0.96 0.94 0.99 0.97 0.99 1.00 1.00 1.00 0.98 0.02
M1 Acc. 0.97 0.99 0.97 0.99 0.97 0.96 0.97 0.98 0.99 0.94 0.97 0.02
 Prec. 0.96 0.43 0.69 0.44 0.72 0.69 0.54 0.61 0.64 0.70 0.64 0.15
M2 Acc. 0.99 0.97 0.98 1.00 0.99 0.99 0.98 0.96 0.98 0.95 0.98 0.01
 Prec. 0.57 0.70 0.60 0.47 0.60 0.57 0.58 0.81 0.49 0.39 0.58 0.12
M3 Acc. 0.99 0.98 0.99 0.99 1.00 0.99 0.97 0.98 0.97 0.99 0.98 0.01
 Prec. 0.91 0.74 0.47 0.46 0.49 0.46 0.74 0.73 0.71 0.38 0.61 0.18

ATF 
05 

Org. Acc. 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.00
 Prec. 0.76 0.57 0.53 0.27 0.41 0.35 0.26 0.51 0.47 0.39 0.45 0.15
M0 Acc. 0.97 0.94 0.95 0.97 0.96 0.93 0.94 0.96 0.96 0.92 0.95 0.02
 Prec. 1.00 0.96 0.95 0.63 0.99 0.97 0.99 1.00 0.95 1.00 0.94 0.11
M1 Acc. 0.99 0.97 1.00 1.00 0.99 0.97 0.98 0.99 1.00 0.98 0.99 0.01
 Prec. 0.40 0.62 0.27 0.22 0.58 0.62 0.42 0.30 0.57 0.34 0.43 0.15
M2 Acc. 1.00 0.99 1.00 1.00 0.98 0.99 0.98 0.99 1.00 0.97 0.99 0.01
 Prec. 0.68 0.34 0.33 0.26 0.60 0.30 0.38 0.58 0.26 0.46 0.42 0.15
M3 Acc. 0.99 0.99 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.00
 Prec. 0.59 0.46 0.38 0.22 0.30 0.29 0.16 0.56 0.57 0.23 0.38 0.16

TF 

Org. Acc. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
 Prec. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
M0 Acc. 0.99 0.96 0.96 0.97 0.96 0.94 0.95 0.96 0.96 0.93 0.96 0.02
 Prec. 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.01
M1 Acc. 0.98 0.95 0.96 0.95 0.95 0.94 0.94 0.94 0.93 0.88 0.94 0.02
 Prec. 0.98 0.94 0.95 0.93 0.94 0.92 0.94 0.94 0.94 0.92 0.94 0.02
M2 Acc. 0.99 0.98 0.98 0.97 0.97 0.96 0.96 0.97 0.97 0.93 0.97 0.01
 Prec. 0.99 0.97 0.98 0.97 0.97 0.95 0.98 0.98 0.96 0.96 0.97 0.01
M3 Acc. 0.99 0.98 0.98 0.98 0.98 0.97 0.97 0.98 0.98 0.95 0.98 0.01
 Prec. 0.99 0.99 0.98 0.98 0.98 0.98 0.98 0.99 0.98 0.96 0.98 0.01
 



 

5 Conclusion 
 
The described methods, M0, M1, M2, and M3 generate consecutively better 
approximations of the normal distributions of attribute values.  They are used to create 
subsets of training datasets for a learning program when the original data are available 
only in an aggregated form. These approximations require, however, a consecutively 
larger number of examples to generate. The methods are simple and allow one to apply 
any existing learning program without modification.  Experimental evaluation using 
AQ21 program on four example problems confirms that better approximations lead to 
better predictive accuracies. 
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