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Abstract

The learnable evolution model (LEM) is a non-Darwinian evolutionary compu-
tation method which applies symbolic machine learning to guide the evolution-
ary optimization process. This paper investigates application of data-driven con-
structive induction to automatically improve representation spaces in LEM. This
includes investigation of methods for modifying representation spaces and meth-
ods for creating new candidate solutions from hypotheses learned in the modified
spaces. Experimental results indicate that LEM equipped with constructive in-
duction outperforms LEM working only in the original representation spaces.

Keywords: constructive induction, evolutionary computation, learnable evolu-
tion model, machine learning

1 Introduction

This research investigates and extends an evolutionary optimization method, called
the learnable evolution model (LEM), that applies machine learning to search very
complex problem solution spaces. By applying machine learning, LEM hypoth-
esizes why some candidate solutions (e.g. designs, complex parameter settings)
perform better than others, and uses that knowledge to create new candidate so-
lutions (Michalski, 1998, 2000; Wojtusiak and Michalski, 2006). In particular, this
research investigates how to automatically improve representation spaces in which
solutions are sought in order to improve and speed-up the optimization process.

The original representation of candidate solutions may not be adequate for the
optimization problem, thus its improvement may lead to finding better solutions or
finding solutions more efficiently. The process of designing representation spaces
is often complicated and requires substantial domain knowledge. Moreover, differ-
ent representations may be needed at different stages of the optimization process.
Because of that, there is a need for automated methods that improve the represen-
tation of solutions. In evolutionary computation several methods for automatically
improving representation spaces have been investigated. The methods are usually
based on based on evolving representations in parallel to finding solutions (Ange-
line and Jordan, 1994; Reisinger and Miikkulainen, 2007), thus they are different
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Create an initial population of candidate solutions

Evaluate candidate solutions in the initial population

Loop while stop criteria are not satisfied

Create new candidate solutions by machine learning:

Identify groups of high- and low-performing candidate solutions

Apply machine learning to distinguish between the groups

Instantiate the learned hypothesis

Evaluate fitness of the new candidate solutions

Select a new population

Figure 1: Pseudocode of a general LEM algorithm.

from those discussed in this research. Here, we adopt selected constructive induc-
tion (CI) methods used in machine learning for improving representation spaces.

Section 2 of this paper briefly describes the learnable evolution model and its
LEM3 implementation, Section 3 discusses constructive induction and its applica-
tion in LEM, and Section 4 presents results of experimental evaluation.

2 The Learnable Evolution Model

Research on non-Darwinian evolutionary computation is concerned with develop-
ing algorithms in which the creation of new candidate solutions in the population
is guided by an ”intelligent agent,” rather than done merely by random or semi-
random change operators, such as mutation and/or crossover, employed in the
”Darwinian-type” evolutionary methods. The selection of candidate solutions for
the new generation from those generated by the intelligent agent is done accord-
ing to standard methods of selection, or can also be done by employing advanced
reasoning. The learnable evolution model (LEM) employs a machine learning pro-
gram to direct the evolutionary process (Michalski, 1998, 2000; Wojtusiak and
Michalski, 2006). Specifically, the program creates general hypotheses indicating
regions in the search space that likely contain optimal solutions and then instan-
tiates these hypotheses to generate new candidate solutions.

The learnable evolution model follows a general evolutionary computation
schema. Specifically, in LEM, whose algorithm is presented in the Figure 1, cre-
ation of new candidate solutions is done by applying hypothesis learning and in-
stantiation.

The assignment of high- and low-performing candidate solutions into the H-
group and L-group allows these sets to be used as examples for a concept learning
program. The concept learning program generates a hypothesis determining why
candidate solutions in the H-group perform better than those in L-group. Such a
hypothesis is then instantiated to generate new candidate solutions which are likely
to be high-performing because they satisfy the hypothesis description. LEM3,
the newest implementation of the learnable evolution model, uses the AQ21 rule
learning program to induce hypotheses differentiating H- and L-groups. In partic-
ular, AQ21 learns rules in the form (1), where PREMISE and CONSEQUENT
are conjunctions of attributional conditions (Wojtusiak et al., 2007). In LEM
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the CONSEQUENT is always [Group=H], indicating that descriptions of high-
performing candidate solutions are learned.

CONSEQUENT ⇐ PREMISE (1)

Instantiation of rules in the form (1) is done by sequentially assigning values of
their conditions. Because the rules may not include all attributes used to define the
optimization problem, values of the not included attributes are taken from selected
high-performing candidate solutions, or from the entire attributes’ domains.

3 Constructive Induction

The problem representation space, also known as search space, is the set of all
possible problem solutions. Designing suitable representation space for a given
optimization or learning problem is one of the most important and challenging
tasks. This section proposes an automated method for improving representation
spaces in the learnable evolution model. This method is built upon those previ-
ously developed in the field of machine learning, in which constructive induction
has been introduced.

The original representation space provided to a machine learning, data mining,
or evolutionary computation system may be inadequate for performing the desired
task for concept learning, pattern discovery, optimization, etc. Constructive in-
duction (CI) methods automatically create new representation spaces based on
the original representations. The new representations allow the determination of
relationships that cannot be represented in the original spaces. New representa-
tions are created by removing attributes irrelevant to the considered problem, by
modifying domains of attributes (for example by discretizing numeric attributes),
and by creating new attributes. In this study we concentrate on creation of new
attributes, because automated discretization and attribute selection were previ-
ously studied in LEM (Michalski, 2000; Wojtusiak and Michalski, 2006). The
constructive induction process can be characterized by the function:

Ψ : E → EC (2)

where E is the original representation space and EC is the modified represen-
tation space. When considering automatic improvement of representation space in
the learnable evolution model, two interrelated problems need to be investigated:

• how to modify representation spaces, i.e., find the function Ψ; and

• how to create new candidate solutions from hypotheses learned in the modified
spaces, i.e., find or approximate the function Ψ−1.

Each candidate solution needs to be stored in the original space in order to evaluate
its fitness and constraints, thus there must exist an inverse transformation Ψ−1.
The transformation, however, do not need to be explicit and can be realized by
the instantiation operator. Application of learning and instantiation operators
equipped with constructive induction is done following four steps:

• Identify groups of high- and low-performing candidate solutions
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• Find the best representation space for distinguishing the groups

• Apply machine learning to distinguish between the groups

• Instantiate the learned hypothesis into the original space.

The first step is identical to one in LEM not equipped with constructive induc-
tion. The third step applies machine learning in already modified representation
spaces, thus no additional changes are needed. The key parts of using constructive
induction in the learnable model are in the steps two and four. They are based on
the idea that all changes to representation spaces should be such, that there is an
efficient method for creating new candidate solutions from hypotheses learned in
the modified spaces.

3.1 Improving Representation Spaces

The problem of searching for the best representation space has been investigated
in the field of machine learning by numerous researchers, e.g., (Markovich and
Rosenstein, 2002; Krawiec, 2002; Muharram and Smith, 2005). This study adapts
data-driven constructive induction (DCI) to search for the best representation
space by analyzing the data and the current representation (Bloedorn and Michal-
ski, 1998). This is possible because machine learning is used to induce hypotheses
discriminating between high- and low-performing candidate solutions.

The most important feature of constructive induction is its ability to create
new attributes. These new attributes are designed to more adequately capture
high-performing candidate solutions, and help in distinguishing high- and low-
performing solutions with simple well performing hypotheses. These new at-
tributes can be in the form of equations involving numeric attributes, and spe-
cial forms involving symbolic attributes (e.g., count, equality). Unlike in concept
learning, where the goal is to learn simple and well-performing hypotheses, in
LEM an additional requirement needs to be satisfied. The requirement is that
the learned hypotheses must be in such a form that the instantiation process is
efficient. The following paragraphs describe an algorithm for constructing new
attributes in a special instantiable form (3). The form is defined by the existence
of a sequence of attributes, ATT1, . . . ATTn such that the expression EXPR1

does not include ATT1, . . . ATTn, EXPR2 does not include ATT2, . . . ATTn, but
may include ATT1, and so on. Finally, EXPRn does not include ATTn, but may
include ATT1, . . . ATTn−1. Such a sequence guarantees that the conditions can
be efficiently evaluated during the instantiation as discussed in the next section.

[ATT1 ± EXPR1] ∧ [ATT2 ± EXPR2] ∧ . . . ∧ [ATTn ± EXPRn] (3)

The algorithm for creating attributes in the form (3) is presented in Figure 2. It
starts with attributes from the current representation space. The representation
may be original, or it may be already modified. New attributes are built from
expressions by adding available existing attributes to expressions using standard
arithmetic operators (+, −, ∗, /), and by applying user-specified functions such
as sin(X), cos(X), sqrt(X), etc. For symbolic attributes, program may construct
count, and equality attributes. Each newly created attribute is evaluated and if its
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Attributes = Current attributes

For depth = 1 to maxdepth

For each attribute Att in Attributes

Add Att to the list of used attributes

For each attribute Att1 in Attributes and not in the used attributes

Create attributes using operators +, -, *, / on Att and Att1

Evaluate quality of new attributes

Create attributes using requested functions on Att

Evaluate quality of new attributes and add to Attributes list if

the quality is above a given threshold

Remove all attributes with quality below threshold

Remove worst quality attributes so only k best are kept

Figure 2: Pseudocode of the algorithm for constructing instantiable attributes.

quality is above a given threshold, it is added to the list of attributes. Finally, new
representation space is assembled using at most the k highest quality attributes,
where k << P is a user-defined parameter significantly smaller than the number
of high-performing examples in the current population (P ).

The constructed attributes are used by the AQ21 learning module as standard
numeric attributes, as their values can be computed for each candidate solution
prior to execution of the learning module. Because of the imposed form of these
attributes, there are transformations that cannot be represented. For example (4)
cannot be created by the algorithm.

X2 + X + Y 2 + Y (4)

The algorithm presented above tends to be inefficient or even impossible to
apply for representation spaces with very large numbers of attributes. For example,
if there are 100 original attributes and the program seeks only combinations of
pairs of attributes, there are nearly 40, 000 potential new attributes for which the
quality measure needs to be computed. Even if the method implements additional
heuristics, such as checking monotonicity of the attributes, checking duplicate
attributes, etc., the number of possible combinations is still very large. In concept
learning in which exploration of these possibilities is usually done only once, it still
may be possible to do. In LEM, however, such a process is repeated many times
at different stages of evolution, thus it may be computationally too expensive for
practical applications. One possibility of solving this problem may be to combine
only high quality attributes. Such attributes are more likely to produce new high
quality attributes than combinations of low quality ones.

3.2 Instantiation in Modified Representation Spaces

Creation of new candidate solutions in LEM’s learning mode is realized by in-
stantiation of learned hypotheses. Newly created candidate solutions need to be
stored in the original representation space, in order to allow evaluation of their
fitness and constraints. The process of creating solutions that satisfy a given rule
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For each rule

Compute the number of candidate solutions to be generated

New Solutions = NULL

Compute order of attributes based on their interdependency

While size of New Solutions < number of solutions to be generated

For each attribute in the computed order

Compute all expressions with the attribute on the left side

Compute condition for the attribute

If condition is empty

If the total number of tries exceeds a threshold

Stop instantiating the current rule

Jump to one of attributes before based on backtracking

Else

Instantiate the condition

Add the candidate solution to New Solutions

Figure 3: Top level instantiation algorithm for constrained rules.

may be very time consuming, thus, the approach taken in this research is to allow
constructed attributes only in the form (3) that can be efficiently evaluated.

The pseudocode in Figure 3 describes the algorithm for generating new candi-
date solutions from a given hypothesis learned in a modified representation space.
It is assumed that all constructed attributes are in the form (3), meaning that they
can be sequentially evaluated while generating a new candidate solution. When-
ever a condition cannot be satisfied because of previous selections of attribute
values, a simple backtracking algorithm is used.

In the algorithm presented in Figure 3, the number of new candidate solutions
generated for each constrained rule is proportional to its positive coverage (number
of covered high-performing solutions). At this point the set of already created
new candidate solutions is empty. It is important to correctly order conditions
(attributes) in the current rule, so all attributes needed to instantiate an attribute
are already instantiated. After the list of attributes to be instantiated is prepared,
the algorithm creates new candidate solutions until their total number reaches the
desired level, or until the total number of unsuccessful conditions’ instantiations
exceeds a given threshold.

Each new candidate solution is created by selecting values of attributes in the
defined order. If for an attribute being considered there is no condition in the rule,
the program uses one of methods already known in the learnable evolution model.
These include taking a value from a randomly selected high-performing candidate
solution that satisfies the rule, or selecting a value from the entire attribute’s
domain. For attributes included in the rule, the final condition to be instantiated
is computed based on previous and currently instantiated conditions. For example,
the hypothesis may include a rule with conditions [Height ≥ Width+Length−2]
and [Height ≤ 50]. To select a value of the attribute Height, it is necessary
to compute conjunction of the two conditions: [Height ≥ Width + Length −
2] ∧ [Height ≤ 50]. Because it is assumed that all constructed attributes are in
the form (3), the values of attributes Length and Width are already selected,
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and therefore all expressions in the conditions can be evaluated. For example, if
Width = 30 and Length = 10, we have [Height ≥ 38]∧ [Height ≤ 50], which can
be reformulated as [Height = 38..50]. The final condition consists of a range that
can be instantiated by selecting a value from between 38 and 50.

An important question arises what should be done in a situation if a con-
dition cannot be satisfied because of the choice of previously selected values of
attributes needed to evaluate a condition. To illustrate this situation, suppose
that in the previous example the new candidate solution was assigned values
Width = 31 and Length = 25. In such a case, conditions for the attribute Height

are [Height ≥ 54] ∧ [Height ≤ 50] which is an empty interval. To solve this
problem the program needs to reinstantiate the attribute Length and compute the
conditions for Height again. Because values of attributes that satisfy conditions
are assigned randomly (according to some distribution) it may happen that the
condition is not satisfied again and the operation needs to be repeated. This pro-
cess is continued no longer than a specified number of times, when the program
tries to reinstantiate a previous attribute (in this case Width) also for a specified
number of times. This process repeats until the condition is satisfied or a total
number of tries (usually very large) is exceeded and the rule is ignored. It is
always possible to find a combination of values that satisfy all conditions (Woj-
tusiak, 2007), but the process may take a large number of trials. However, the
backtracking algorithm mentioned above tends to be efficient and in the performed
experiments all conditions are satisfied relatively fast.

In addition to the instantiation algorithm described above, we implemented
also a simple rejection method for instantiating rules with constructed attributes.
The method creates new candidate solutions by ignoring all conditions with con-
structed attributes. Then, the newly created candidate solutions are checked
against all conditions with constructed attributes. If some of the conditions are vio-
lated, such solutions are rejected and the process is repeated until a sufficient num-
ber of candidate solutions satisfying all conditions is created (Wojtusiak, 2007).

4 Experimental Results

There are many possible methods of reporting results of testing optimization al-
gorithms. The most common are to report the best result obtained after a given
number of fitness evaluations (or generations), or to report the number of fitness
evaluations needed to achieve a given solution. Other possibilities include compu-
tation time needed to achieve a given solution on a given computer, the number of
fitness evaluations needed to achieve a given improvement, and so forth. In the lat-
ter method the results can be reported for δ−close solutions that are characterized
by a normalized distance from the optimal solution (Michalski, 2000; Wojtusiak
and Michalski, 2006). This method can be used to evaluate performance on test
problems to which solutions are known. The δ-close solution, s, is a solution for
which function δ(s), defined as (5) reaches an assumed δ− target value, where init
is the evaluation (fitness value) of the best solution in the initial population, opt
is the optimal value, and v(s) is the evaluation of the solution s. Such a measure
works for both maximization and minimization problems.



198 Janusz Wojtusiak

δ(s) =
|opt − v(s)|

|opt − init|
(5)

This definition of δ − close solution suggests two possible ways of analyzing
performance of evolutionary computation methods. First, one may consider the
problem of how many fitness function evaluations are needed to achieve a given
δ = k by the best candidate solution in the population, denoted as FE(δ = k),
where k is a number between 0 and 1. Secondly, one may consider the problem of
finding δ(s) after given number of fitness evaluations or generations, where s is the
best candidate solution found after a given number of fitness function evaluations
or generations. The latter is the primary way of reporting results in this study. For
example, if the fitness value of the best candidate solution in the initial population
is 100 and during the process of minimization the program achieved value 0.1, and
the optimal value is 0 then δ = 0.001, indicating that program found a solution
within 0.1% distance from the optimal solution, normalized by the fitness value of
the best candidate solution in the initial population.

To compare performance of the learnable evolution model with and without
constructive induction, it has been applied to optimizing well known benchmark
problems, namely the Rastrigin, Griewangk, Rosenbrock, Sphere, and Step func-
tions. For descriptions of the problems see, for example, (Wojtusiak, 2007). Be-
cause of the very large number of performed experiments (about 700 combinations
of tested parameter settings, each repeated 10 times), the presented results are av-
eraged. They are grouped by numbers of attributes, optimization problems, and
methods for improving representation spaces. The results are presented in terms
of the average δ(s) values obtained after 100 generations of LEM3’s evolutions.
The results grouped by the number of attributes are presented in Table 1, and the
results grouped by optimization problem are presented in Table 2.

LEM3 equipped with automated improvement of representation spaces by con-
structive induction gave on average better results than LEM3 without constructive
induction. The results are very strong for problems with 2 and 4 attributes. How-
ever, it can be observed from results in the Table 1 that the advantage of LEM3
equipped with constructive induction tends to diminish with increasing numbers
of attributes. The average result for 100 variables is better for LEM3 without
constructive induction than for LEM3 that improves representation spaces. This
fact can be attributed to the method of improving the representation space, which
is unable to create new attributes that include many attributes from the original
spaces. Thus, the method is unable to capture complex numerical relationships
involving many attributes. Similarly, Table 2 suggests that the automated im-
provement of representation spaces significantly improves results for most tested
problems, but may not be appropriate for others. For the step function LEM3
without constructive induction gives better results than one improving represen-
tation space. This can be explained by the fact that to optimize this function
it is sufficient to optimize all attributes independently, and construction of new
attributes only adds additional complexity to the problem. Further investigation
of characteristics of problems to which LEM with constructive induction should
be applied is needed to confirm this hypothesis.
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Table 1: Mean and standard deviation δ(s) values after 100 generations for different
numbers of attributes averaged for Griewangk, Rastrigin, Rosenbrock, and Sphere func-
tions.

Number of CI with CI with

Attributes No CI Instantiation Rejection

2 0.021942± 0.01 0.01 ± 0.01 0.011148± 0.007
4 0.01 ± 0.004 0.009134± 0.005 0.010078± 0.003

10 0.050666± 0.017 0.048895± 0.026 0.058637± 0.02
50 0.213508± 0.08 0.208315± 0.087 0.215043± 0.089

100 0.277329± 0.085 0.295008± 0.074 0.280424± 0.083
average 0.115112± 0.0399 0.116198± 0.04 0.115066± 0.041

Table 2: Mean and standard deviation δ(s) values after 100 generations for the
Griewangk, Rastrigin, Rosenbrock, Sphere, and Step functions averaged for 2, 4, 10,
50 and 100 attributes.

CI with CI with

Function No CI Instantiation Rejection

Griewangk 0.260521± 0.0798 0.270987± 0.076 0.260965± 0.087
Rastrigin 0.134349± 0.0428 0.130729± 0.0466 0.133836± 0.038

Rosenbrock 0.019625± 0.013 0.018622± 0.014 0.018889± 0.013
Sphere 0.045952± 0.024 0.044452± 0.026 0.046573± 0.026

Step 0.09915± 0.037 0.104438± 0.053 0.11328± 0.0427

5 Conclusion

This paper briefly introduced the idea of using data-driven constructive induc-
tion to improve representation spaces in the learnable evolution model. An im-
portant result is that the presented method for modifying representation spaces
consistently improved LEM3’s performance. This improvement, however, tends to
diminish with growing numbers of attributes. This may be due to use of a DCI-
based method for automated improvement of representation space that is unable
to construct attributes involving many original attributes - the search space is too
large. Two potential solutions to this problem include using a different method
for modifying representations, and using background knowledge to narrow the at-
tribute search space. A method for modifying the representation space should
be able to construct new attributes that include many original attributes. For
example, principal component analysis, which is widely used in statistics (Gentle,
2002), constructs new dimensions that may include all original attributes at the
same time. Another possible solution is to use background knowledge by suggest-
ing possible transformations of the representation space in the form of advices in
order to narrow the search for new attributes. Given such advices the program
will be able to immediately construct correct attributes without trying all possible
combinations.
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