
Ryszard S. Michalski: The Vision and Evolution of
Machine Learning

Janusz Wojtusiak1, Kenneth A. Kaufman1

1 Machine Learning and Inference Laboratory

George Mason University
Fairfax, VA 22030, USA

jwojt@mli.gmu.edu, ken.kaufman@gmail.com

Abstract. Ryszard S. Michalski was an outstanding scientist who dedicated his
life to research and discovery. He pioneered so many areas and methods of
machine learning that it is not possible to describe them properly in one chapter.
Thus, we present a brief summary of what we believe are the most important
aspects of his research, and present the vision of machine learning that he
communicated to us on multiple occasions. The most important topics
mentioned in this chapter are: natural induction, knowledge mining, AQ
learning, conceptual clustering, VL1 and attributional calculus, constructive
induction, the learnable evolution model, inductive databases, methods of
plausible reasoning, and the inferential theory of learning.

Keywords: Machine Learning, Natural Induction, Concept Learning,
Conceptual Clustering, Knowledge Mining

 This chapter is dedicated to Dr. Ryszard S. Michalski, our mentor and
friend, who opened for us the wonderful world of machine learning.

1 Introduction

The very fast growth of machine learning and related disciplines is attributed to its
great importance and applicability in almost all aspects of modern society. Learning is
considered one of the most important aspects of intelligent systems, thus work in this
area has been attempted since the very beginning of the field of artificial intelligence
over half a century ago. Dr. Ryszard S. Michalski was among the most significant
contributors to machine learning. His involvement in the formation of the field,
including organization of the first workshops and conferences on machine learning,
the first books in the area, including [29][30], is only a small part of the overall
contributions.

In this chapter we overview selected research areas originated by Dr. Michalski,
and present the vision and directions of the field presented to us over many years of
work with him. We understand that it is not possible to summarize four decades of

In Advances in Machine Learning I, Koronacki, J., Ras, Z.W., Wierzchon, S.T. and Kacprzyk, J. (Eds.), 3-22, Springer-Verlag, 2010.
Original version available at spsringerlink.com

jwojtusi
Typewritten Text

intense research and over 350 publications in one chapter; thus, we emphasize the
newest aspects of his research, and those we believe are the most significant.

We start this chapter with an overview of natural induction, an approach to
inductive learning that puts a human recipient of learned knowledge in a central
position. A key part of natural induction concerning representation of knowledge is
described in Section 3. We also discuss learning methods and paradigms originated by
Dr. Michalski, including the learnable evolution model, and inductive databases. We
conclude this chapter by describing his selected contributions to theory of machine
learning, and describe software built to teach and entertain.

2 Natural Induction

Before describing selected methods and algorithmic contributions of Ryszard
Michalski to the field of machine learning, let us start by describing natural induction,
which can be viewed as a central aspect of his research over the past decades. The
actual name “natural induction” did not appear until the 1990s, but its principles can
be found in different forms back at least to the early 1970s. The name natural
induction consisting of two parts suggests that induction is done in a natural way. The
induction, or more precisely inductive reasoning or learning, is a falsity preserving
reasoning process in which generated knowledge is generated from
observations/examples and background knowledge. The word natural relates to the
knowledge resulting from learning that is in a form easy to understand by people.
Thus, natural induction refers to an inductive learning process whose results are
designed to be natural to people.

There are several forms of knowledge that are natural to people, including natural
language descriptions [43], easy to interpret rules, graphical representations, relatively
small decision trees, Bayesian networks, etc. These forms of knowledge are
considered to be “transparent box”, in contrast to “black box” representations that
may provide very good predictions, but be hard to understand. The latter can be
exemplified by neural networks, random forests, support vector machines, and many
other models often used in machine learning.

In order to present results of reasoning in forms easily understandable, one can
either transform the learned knowledge, or learn directly in a language natural to
people. While the former can be exemplified by all kinds of visualization methods,
the latter requires reasoning directly in some language that corresponds directly to
natural language statements. This and other issues regarding representation of
knowledge are described in next section.

One important representation of knowledge that directly corresponds to natural
language is an attributional rule, described in section 3, and exemplified in Figure 1.
The rule can be paraphrased: ”The plan to do is to run experiments, if it is a weekend,
the weather is rainy and cold, the available workstation has a clock speed at least
2GHz, and the available laboratory is lab1 or lab2, except for when there is a server
malfunction.” The value “weekend” is a higher-level value of a structured
(hierarchical) attribute “Day”, the attribute “Weather” is a compound attribute that
takes a conjunction of values. The pairs of numbers within conditions represent

In Advances in Machine Learning I, Koronacki, J., Ras, Z.W., Wierzchon, S.T. and Kacprzyk, J. (Eds.), 3-22, Springer-Verlag, 2010.
Original version available at spsringerlink.com

numbers of positive and negative examples satisfying these conditions. The entire rule
is satisfied by 27 positive and 1 negative example, as indicated by “p=27, n=1” in the
rule’s annotation, and its quality, defined by (6), is 0.9.

 [Plan to do = run experiments]
 [Day = weekend: 38,131] &
 [Weather = rainy and cold: 22, 5] &
 [Available workstation clock speed >= 2GHz: 50,5] &
 [Available lab = lab1 or lab3: 43,57]

 Ã [Server malfunction: 0,3] : p=27, n=1, Q=0.9

Fig. 1. An example of an attributional rule.

Two graphical representations of knowledge developed by Dr. Michalski are
general logic diagrams (GLD), and concept association graphs (CAG). In GLDs,
each cell represents a combination of input attributes, and examples are marked
within cells by their class [19]. Complexes (see section 3) are represented by
rectangles. An example of a GLD with 19 examples and 2 complexes is presented in
Figure 2. A CAG represents rules as a labeled graph with varying thicknesses of the
links indicating the strength of the knowledge component represented by the link [11].
An example is presented in Figure 3.

C – Condition, W – Wind, T – Temperature, D – Daytype, r – rain, c – cloudy, s – sunny,
n – no, y – yes, v – very low, l – low, m – medium, h – high, o – workday, e – weekend,

P – Play, R – Read, S - Shop
Fig. 2. A general logic diagram (reproduced from [34]).

Natural induction is an important part of knowledge mining, an approach to data
analysis that is used to derive high level concepts from data and background
knowledge [13]. In contrast to traditional data mining, this approach is not limited to
analyzing large amounts of data. To the contrary, knowledge mining can analyze

In Advances in Machine Learning I, Koronacki, J., Ras, Z.W., Wierzchon, S.T. and Kacprzyk, J. (Eds.), 3-22, Springer-Verlag, 2010.
Original version available at spsringerlink.com

both large and small amounts of data and, more importantly, use problem-oriented
background knowledge. It can be viewed as a next step following in the evolution of
data analysis and knowledge creation methods.

The thickness of links is proportional to condition or rule coverage.

Fig. 3. A concept association graph representing seven patterns in a medical database

(reproduced from [34]).

Natural induction requires human-oriented representation of knowledge and
learning algorithms that can utilize power of that representation. In the next two
sections we describe the creation of attributional calculus, a representation language
ofr natural induction, and learning methods that can utilize this language.

3 Representation

Appropriate representation of knowledge and data is critical for successful
application of machine learning methods. To go along with his nascent Aq algorithm,
Michalski [20] developed the VL1 knowledge representation language, a variable-
valued logic with an expressive power somewhere between those of propositional and
predicate calculus. The availability of such internal operators as range and internal
disjunction made it suitable for representing compact, easily understood rulesets.
Contrast that with, for example, the traditional-style decision trees that still persist to

In Advances in Machine Learning I, Koronacki, J., Ras, Z.W., Wierzchon, S.T. and Kacprzyk, J. (Eds.), 3-22, Springer-Verlag, 2010.
Original version available at spsringerlink.com

this day, in which several levels of nodes may be needed to subdivide a single
continuous attribute into the ranges needed for the learned classifier.

But to take advantage of the power of such a representation, it was necessary to
have available all data types that mirrored our natural cognitive experience – nominal,
discrete-ordered, hierarchically structured, cyclic, continuous, set-valued, etc. – and
be able to operate upon and reason with them as needed. Thus, as part of the AQ
packages developed and distributed over the years (see section 4.1), the operators to
handle the calculus of (most of) these data types at all stages – input, extension
against, selection, trimming, and output – was built in.

This would be enough for many applications, but many was not enough. The
representation of knowledge soon included annotations, so that it would be easy to
access and work with and from the metaknowledge as well as the basic discovered
facts. Now it would be easy to access the support and confidence levels of different
knowledge components, and use these to guide your data exploration process.

The VL1 language was subsequently extended to the VL2 representation language
[16] that added the existential quantifier. Now the natural induction schema extended
to structured descriptions, in which components of the whole and relations among
them could be understandably expressed; such descriptions would be utilized in the
INDUCE programs for learning structured descriptions (see section 4.2), the
CLUSTER conceptual clustering programs (see section 4.5), and the SPARC program
for qualitative sequence analysis, discovery and prediction (see section 4.3).

In 2004, Michalski presented a further extension of these languages, Attributional
Calculus [26]. Attributional calculus further simplified representation of concepts we
use naturally by introducing constructs for counting attributes (e.g., at least 3 of these
4 conditions must be present) and relationships among attributes (e.g., height < length
+ width). Another important idea formalized in attributional calculus concerns using
unknown, not-applicable, and irrelevant meta-values. Although all three values
appeared in different forms in the early work of Dr. Michalski, it is in attributional
calculus where their semantics are first described together. Unknown meta-values, are
the most popular, and represent situations in which a regular value exists, but it is not
recorded for some reason. Not-applicable meta-values are used when the regular
values do not exist. For example the value of an attribute describing pregnancy in
male patients does not exist, thus it is not applicable. The irrelevant meta-value is
used when a regular value exists, but it is considered not to be relevant to the current
learning task. The two latter types of meta-values constitute problem background
knowledge.

In attributional calculus, learned knowledge is represented in the form of
attributional rules, which consist of attributional conditions. An attributional
condition takes the form (1):

 [L rel R: A] (1)

where L is an attribute, an internal conjunction or disjunction of attributes, a
compound attribute, or an expression; rel is one of =, >, <, ≤, ≥, :, or ≠; R is an
attribute value, an internal disjunction of attribute values, an attribute, an internal
conjunction of values of attributes that are constituents of a compound attribute, or an
expression, and A is an optional annotation that may list |p| and |n| values for the

In Advances in Machine Learning I, Koronacki, J., Ras, Z.W., Wierzchon, S.T. and Kacprzyk, J. (Eds.), 3-22, Springer-Verlag, 2010.
Original version available at spsringerlink.com

condition, defined as the numbers of positive and negative examples, respectively,
that satisfy the condition, the condition’s consistency defined as |p|/(|p|+|n|), and other
measures of conditions’ quality. There are several different forms of attributional
rules allowed by attributional calculus. Three important forms of attributional rules
are (2) - (4).

 CONSEQUENT s PREMISE (2)

 CONSEQUENT s PREMISE Ã EXCEPTION (3)

 CONSEQUENT s PREMISE À PRECONDITION (4)

where PREMISE, CONSEQUENT, EXCEPTION, and PRECONDITION are
complexes, that is, conjunctions of attributional conditions. An EXCEPTION can
also be an explicit list of examples that constitute exceptions to the rule. The rules (2)
are interpreted that the CONSEQUENT is true whenever the PREMISE is true. The
rules (3) are interpreted that the CONSEQUENT is true whenever the PREMISE is
true, except for when the EXCEPTION is true. The rules (4) are interpreted that the
CONSEQUENT is true whenever the PREMISE is true, provided that the
PRECONDITION is true. Each rule may be optionally annotated with several
parameters such as numbers of covered examples (positive and negative), the rule
complexity etc.

Static representation used by selective induction methods (most inductive learning
methods including rule learners, decision tree learners, Bayesian networks, etc.) did
not seem sufficient for many applications. This sparked the development of
constructive induction, in which a representation space is changed to better fit the
machine learning problem being considered [22]. This change of representation space
may include removing irrelevant attributes, adjusting discretization of existing
attributes, including operations on hierarchies, and most importantly the construction
of new attributes. The latter can be in the form of arithmetic or logic expressions,
counting attributes (generalization of quantifiers), or some other special forms. A
general classification of constructive induction methods include data-driven
constrictive induction (DCI) in which modifications of the representation space are
based on the analysis of input data, hypothesis-driven constructive induction (HCI) in
which modifications of the representation space are based on the analysis of learned
hypotheses, knowledge-driven constructive induction (KCI) in which modifications to
the representation space are based on background knowledge provided to the system,
and multistrategy constructive induction (MCI) that dynamically selects appropriate
DCI, HCI, and KCI methods based on a learning problem’s characteristics. Some
recent work on constructive induction includes the investigation of different
specificities of advices provided to the system and the use of constructive induction in
intelligent evolutionary optimization [50].

In Advances in Machine Learning I, Koronacki, J., Ras, Z.W., Wierzchon, S.T. and Kacprzyk, J. (Eds.), 3-22, Springer-Verlag, 2010.
Original version available at spsringerlink.com

4 Learning

This section gives a brief overview of machine learning methods developed or co-
developed by Ryszard Michalski over the past four decades. These methods were
implemented in numerous computer programs. Most of them follow a general
separate and conquer approach to inductive learning. They take data and background
knowledge and generate new knowledge, often in the form of attributional rules.

4.1 AQ: Learning Attributional Rules from Examples

The well-known family of AQ programs originated with the Aq algorithm for solving
the general covering problem [14][18]. In fact, the AQ programs perform a simplified
version of the original algorithm. AQ programs pioneered the separate and conquer
approach to rule learning [6]. Numerous implementations and extensions of the
method were developed using different programming languages and on different
platforms over the years. Among the best known AQ implementations are AQ7 [26],
AQ11 [38], AQ15c [47], AQ17 [1], AQ19 [32], and most recently AQ21[53].

The general problem to which AQ programs are applied is learning from examples.
Given a set of examples e1, e2, .. en, belonging to classes c1, …, ck, find a set of rules
(5), where Ci,j are complexes, that describe the input data. Note that this is the form
(2) of rules. Some AQ implementations are also able to create rules in the forms (3)
and (4) that include exceptions and preconditions.

 c1 s C1,1, c1 s C1,2, …, c1 s C1,t1
 c2 s C2,1, c2 s C2,2, …, c2 s C2,t2 (5)
 …
 ck s Ck,1, ck s Ck,2, …, ck s Ck,tk

A basic version of the AQ learning algorithm is presented in Figure 4. It takes as

input a set of positive examples of a concept, P, and set of negative examples, N,
belonging to all other classes (examples not belonging to the learned concept), and a
quality measure. It returns a complete and consistent hypothesis in the form of an
attributional ruleset, optimized according to the given lexicographical evaluation
functional (LEF). In the case when input data consists of multiple classes, learning is
repeated for each class against all other classes.

Hypothesis = null
While P is not empty
 Select a seed example e from P
 Generate star G(e, N)
 Select the best rule R from G(e, N) according to LEF, and
 include it in Hypothesis
 Remove from P all examples covered by the selected rule
Return learned Hypothesis

Fig. 4. Basic AQ algorithm.

In Advances in Machine Learning I, Koronacki, J., Ras, Z.W., Wierzchon, S.T. and Kacprzyk, J. (Eds.), 3-22, Springer-Verlag, 2010.
Original version available at spsringerlink.com

The central part of the algorithm is the generation of star G(e, N) given a seed p
and set of negative examples N. The star is a set of maximally general rules covering
the seed e, but not covering any negative example from N. A star is constructed by
intersecting partial stars which are generated using the extension-against operator
[22]. The extension-against that takes two data points and creates a set of single-
condition rules. The rules are maximal generalizations of one data point (the seed)
that does not cover the second data point (a selected negative example). The set of
rules created by extension-against is called a local star. An intersection of local stars
for all negative examples is the star G(e, N). To narrow down a possibly very large
number of intermediate generalizations, AQ uses a beam search that at each step of
star generation keeps no more than a parameter-defined number of best rules, as
determined by the given pattern quality measure, as defined by the LEF. LEF
evaluates rules through a sequence of criteria with defined thresholds. Different AQ
programs have implemented different LEF criteria, but most of them select by default
rules that cover the most positive examples and are the simplest. Many other criteria
have been introduced that can be tuned to a specific problem by the user. A complete
list of LEF criteria available in the AQ21 system is presented in [48].

To select a rule from a star, the algorithm also uses a LEF, but possibly with
different criteria than for the beam search. One important extension of the method is
to learn approximate theories from noisy data, and discover strong regularities,
patterns, in the data. To do so, AQ at each step of star generation is able to optimize
rules according to the Q(w) rule quality measure. The measure is given by (6) and has
been defined by Michalski and Kaufman [33].

 Q(w) = covw * consig1-w (6)

where

 cov=|p| / |P| (7)

and

 consig=((|p| / (|p| + |n|)) – (|P| /(|P| + |N|))) * (|P| + |N|) / |N| (8)

Here, |p| and |n| are the numbers of positive and negative examples covered by the
rule, and |P| and |N| are the numbers of positive and negative examples in the training
dataset, respectively. The Q(w) definition (6) assures in practice that consig ≥ 0 which
means that a rule’s prediction is better than a blind guess of the target class. The
actual implemented formula handles also the case when consig < 0, but such rules are
always dropped as not useful.

Optimization of rules consists of several possible operations which may lead to
improvement of rules’ quality. The operations are: abstraction of conditions,
specialization of conditions, removal of conditions, and removal of entire rules.

Numerous other modifications and extensions of the AQ learning algorithm have
been made over years. For example, some AQ versions use several seeds (to protect
the method against noise), employ different concept representations (attributional or
relational), generate rules with different interrelationships (independent, disjoint or

In Advances in Machine Learning I, Koronacki, J., Ras, Z.W., Wierzchon, S.T. and Kacprzyk, J. (Eds.), 3-22, Springer-Verlag, 2010.
Original version available at spsringerlink.com

sequentially ordered covers), use different methods for handling data inconsistency
(minimum, maximum, free and statistic-based generalization), learn rules in a batch
of incremental mode, seek rules that represent the best trade-off between their
consistency, coverage and simplicity, use different criteria of rule optimality, involve
operators for deriving more relevant attributes (data-driven, hypothesis-driven or
multistrategy constructive induction), apply prior knowledge (a- and l-rules,
knowledge-driven constructive induction), post-optimize learned descriptions
(TRUNC/s, TRUNC/sg and TRUNC/nl), generate single or alternative descriptions,
learn rules with exceptions or preconditions, handle unknown, not-applicable and
irrelevant, meta-values, learn in standard multiclass mode or without a contrast set,
etc.

The evolution of AQ-based learning systems was not linear, and no one system had
encompassed all of these methodological features. In recent years, Dr. Michalski
along with his group of collaborators initiated an attempt to implement most of the
AQ learning methodology developed over many years into one system, AQ21. Its
goal is to become a laboratory for natural induction, that is, to allow users to learn
attributional rules of different types, present results in easy to interpret forms, such as
natural language, and allow experimentation exploiting large numbers of parameters
to specify users’ preferences. The program, which is being constantly extended, is the
most advanced AQ implementation to date, and this effort continues at the GMU
Machine Learning and Inference Laboratory.

4.2 INDUCE: Learning Structures

Learning structural descriptions in the form of easy to understand rules is realized
by a class of programs called INDUCE. In contrast to AQ programs, INDUCE does
not take input in the form of labeled examples, but rather in the form of sets of rules
describing considered objects. Its goal is to arrive at a smaller set of rules consistent
with original ones. The INDUCE programs are multipurpose and applicable to a wide
class of problems, but they are particularly suitable for learning structural descriptions
of classes of objects in which the number of relations between objects is not known in
advance. The method takes as an input a set of rules (9) describing objects in classes
c1, c2, …, cn.

 c1 s C1,1, c1 s C1,2, …, c1 s C1,r1
 c2 s C2,1, c2 s C2,2, …, c2 s C2,r2 (9)
 …
 ck s Ck,1, ck s Ck,2, …, ck s Ck,rk

The goal is to fined a set of rules (10) where ri ≥ ti, i=1..k. The obtained set of

rules is not only more compact (fewer rules), but it is also a generalization of input
rules.

In Advances in Machine Learning I, Koronacki, J., Ras, Z.W., Wierzchon, S.T. and Kacprzyk, J. (Eds.), 3-22, Springer-Verlag, 2010.
Original version available at spsringerlink.com

 c1 s C1,1, c1 s C1,2, …, c1 s C1,t1
 c2 s C2,1, c2 s C2,2, …, c2 s C2,t2 (10)
 …
 ck s Ck,1, ck s Ck,2, …, ck s Ck,tk

The INDUCE method follows the star generation algorithm similar to one used in

AQ, but in addition to extension-against, it uses other generalization operators [22]. It
is more general than the AQ example learner, but is also less efficient. Because most
real word learning problems can be represented in the in the form of labeled
examples, development of AQ systems has progressed much further than that of
INDUCE.

4.3 SPARC: Learning Sequences

Another type of learning is done through part-to-whole generalization in which
given observations of a part of an observed set of objects, the goal is to hypothesize
the entire set of objects. One specific case of this type of learning concerns learning
and predicting sequences (ordered sets) of objects. Among the many real world
applications of predicting sequences are predicting stock market behavior, predicting
outcomes of medical treatments, predicting gene sequences, predicting computer
users’ behavior, and so forth.

The problem considered here is to predict events (objects) that follow a given
sequence of objects. Given the sequence of events in the form (11), the goal is to find
events en+1, en+2, and so on.

 e1, e2, e3, en (11)

Each of the objects ei may be described in terms of one or more attributes (12), where
vi1, vi2, .. vik are values of attributes X1, …, Xk in the event ei. These attributes may be
of different types, e.g. nominal, structured, ordinal, cyclic, ratio.

 ei = (vi1, vi2, …, vik) (12)

In some specific situations it may not be necessary to predict entire events en+1,

en+2, …, but rather values of selected attributes in these events. It may also be
appropriate to predict not one, but several plausible events that fit into the sequence in
a particular place. In this non-deterministic prediction problem, the goal is to
discover some properties of events in the sequence, not necessarily precisely predict
them [3].

Computer programs called SPARC represent a multistrategy approach to
discovering sequences, by combining the periodic conjunctive model, lookback
decomposition model, and disjunctive normal form models. Two programs were
created, SPARC/E, a specialized system designed for playing the eleusis card game
[3][35], and the SPARC/G general purpose sequence discovery tool [36]. The
programs work in three steps. In the first step, constructive induction methods are

In Advances in Machine Learning I, Koronacki, J., Ras, Z.W., Wierzchon, S.T. and Kacprzyk, J. (Eds.), 3-22, Springer-Verlag, 2010.
Original version available at spsringerlink.com

applied to derive attributes that may better characterize sequences of events. In the
second step, rules characterizing sequences are derived by applying AQ learning to
data prepared for each type of model. In the last step, final rules are selected based on
their consistency and simplicity. These rules can be later used to predict plausible
continuationa of the input sequence.

4.4 ABACUS: Learning Equations

Quantitative discovery deals with discovering equations from data. The ABACUS
approach to quantitative discovery is able to incorporate symbolic attributes in
learning equations, cope with irrelevant attributes, and work with noisy data. Its main
advantage is that it is able do discover multiple equations, each characterizing a
subset of data, and provide preconditions under which the equations should be used
[5].

The ABACUS method works in two steps. First, in the equation discovery module,
it analyzes input data and creates equations. If more than one equation is needed, the
data is split into subsets. Because of the enormous size of the possible search space of
possible equations ABACUS uses a number of heuristics. One such heuristic
involves constructing and searching proportionality graphs of attributes that are
qualitatively proportional (or inversely quantitatively proportional). For such
attributes, a given percentage of values of one attribute grows (or decreases) with
values of other attribute for other attributes constant. Other heuristics include
checking for compatibility of units, detection of redundancy in formulas, and
tautology detection. In the second step, a precondition generation module generates
logic preconditions characterizing the subsets of data for which equations were
created in the first step. To do so, ABACUS employs the AQ learning method.

The system was applied to multiple datasets, and was able to correctly discover, for
example, Stoke’s law and the law of conservation of kinetic energy.

4.5 CLUSTER: Conceptual Clustering

Learning from observation is, after concept learning from examples, the second
largest class of problems in machine learning. The goal is to construct meaningful
classes from observed objects. Traditional clustering methods group objects based on
their similarity, without regard to what global concepts they form. The answer to this
problem was proposed by Michalski and is called conceptual clustering [21][41] in
which objects are grouped together based on their conceptual cohesiveness (13). This
measure is based not only on the distance between objects, but more importantly on
the set of concepts, C, that are available for describing the objects, and other objects,
E, in the dataset.

 conceptual cohesiveness(O1, O2) = f(O1, O2, C, E) (13)

An example of a problem in which standard distance-based clustering methods

may incorrectly form clusters is presented in Figure 5. The two marked points are the

In Advances in Machine Learning I, Koronacki, J., Ras, Z.W., Wierzchon, S.T. and Kacprzyk, J. (Eds.), 3-22, Springer-Verlag, 2010.
Original version available at spsringerlink.com

closest objects to one another in the figure, so they would quickly and invariably be
assigned to he same cluster by many methods. In contrast, a conceptual clustering
method that has been provided with the concepts of letters and their shapes would be
able to correctly create two clusters representing the X and the Y.

Fig. 5. An example of a conceptual clustering problem.

The basic algorithm used in CLUSTER implementations of conceptual clustering

takes as an input a set of objects, E, the desired number of clusters, k, and an LEF
expressing criteria of clusters’ quality. It starts by randomly selecting k seed
examples, Es={e1, …, ek}. For each seed example oi a star G(oi, Es\{oi}) is generated.
Then a clustering is created by selecting disjoint rules from the stars according to the
LEF. If termination criteria are not met, a new set of seeds is selected from examples
covered by rules in the clustering, and the procedure is repeated [40].

Recent research on conceptual clustering concerns building goal-oriented clusters
from the perspective of different viewpoints [45]. A viewpoint is defined as a subset
of attributes in the representation space that can be meaningfully combined. For
example, one may cluster students in a database from the viewpoint of their
intellectual abilities, while other may want to cluster students based on their
demographics. These two viewpoints require clearly different sets of attributes,
which are drawn from the set of all attributes available in database.

5 Learnable Evolution Model

The learnable evolution model (LEM) is an evolutionary optimization method that
employs machine learning to direct the evolutionary process [24][25]. Specifically,
LEM creates general hypotheses indicating regions in the search space that likely
contain optimal solutions and then instantiates these hypotheses to generate new
candidate solutions. In order to apply concept learning, LEM creates two groups of
individuals that are respectively high- and low-performing according to the fitness
function being optimized. These individuals can be selected from the current
population or a combination of current and past populations of individuals. The
group of high-performing individuals is called H-Group and the group of low-

In Advances in Machine Learning I, Koronacki, J., Ras, Z.W., Wierzchon, S.T. and Kacprzyk, J. (Eds.), 3-22, Springer-Verlag, 2010.
Original version available at spsringerlink.com

performing individuals is called L-Group. Once the groups are selected, LEM applies
concept learning to create a general hypothesis describing the H-Group in contrast to
the L-Group. The hypotheses are then instantiated to create new candidate solutions.
In the final step, a new population is assembled from old and new individuals, and the
process is repeated until stopping criteria are met.

Very successful initial implementations of the learnable evolution model sparked
development of the third generation of LEM software, called LEM3. It extends many
ideas found in the original LEM methodologies, some of which are unique in the field
of evolutionary computation. The general flow diagram of LEM3’s algorithm is
presented in Figure 6. In addition to components found in standard evolutionary
computation methods, such as generation of an initial population, evaluation of
individuals, and selection of individuals, LEM3 includes several novel components. It
dynamically selects one or more innovation methods to create new individuals. These
methods are: learn & instantiate, the aforementioned main mechanism for creating
new individuals in LEM3; probe, to apply traditional operators such as mutation and
crossover, search locally, to apply a user-defined local search method; and
randomize, to add to the current population a number of randomly created individuals,
or restart the evolutionary process. One of the major novelties of LEM3 is the ability
to automatically adjust representation space through constructive induction [49][50].

Fig. 6. Diagram of the LEM3 algorithm (reproduced from [49]).

In Advances in Machine Learning I, Koronacki, J., Ras, Z.W., Wierzchon, S.T. and Kacprzyk, J. (Eds.), 3-22, Springer-Verlag, 2010.
Original version available at spsringerlink.com

Theoretical and experimental work indicates that LEM is particularly suitable for

optimization problems in which the fitness evaluation is costly. This is because of the
trade-off between significantly shorter evolution length [25][52], and more complex
learning and instantiation when compared to simple operators used in evolutionary
computation. Moreover, the use of machine learning to guide evolutionary
computation extends the applicability of LEM. For example, because of the use of
AQ21 as a learning module in LEM3, it is able to handle optimization problems
naturally described using different types of attributes (nominal, structured, ordinal,
cyclic, interval, ratio, and compound) and background knowledge provided to the
learning program [51].

A class of LEM-based systems for heat exchanger optimization has been
developed. These include the ISHED system for optimizing evaporators and ISCOD
system for optimizing condensers [4][10]. These specialized systems combine LEM’s
learning and instantiation operators with specialized probing operators that are
specifically designed to work with heat exchangers. Based on the ISHED and ISCOD
systems, Michalski and Kaufman proposed a general LEMd methodology for
optimizing complex systems [31].

6 Inductive Databases and Knowledge Scouts

Imagine a database system that can answer queries about items not present in the
database. By applying inductive learning to data and background knowledge stored in
the database an inductive database is able to answer such queries. In fact, an inductive
database system should integrate many inductive and deductive reasoning methods on
data and knowledge stored in the database. Results of reasoning are added to the
existing knowledge in the database and can be reused when answering further queries.
The latter feature distinguishes the concept of inductive databases proposed by
Michalski and his collaborators, from those often found in literature. The key idea
behind inductive database is one of knowledge system that combines database and
knowledge base. The term knowledge system signifies integration of database and a
relevant knowledge base to support knowledge mining and knowledge application.
Knowledge bases contain knowledge created by experts and knowledge generated by
inductive learning operators applied to data in the database and to knowledge in the
knowledge base.

The idea of inductive database originated in 1980s through development of
computer systems QUIN [28][46], ADVISE [27], and AURORA [7]. It was later
extended in the inductive database system INLEN (INference and LEarNing) [7][14],
and most recently in its successor, VINLEN [12][15]. Both INLEN and VINLEN
provide interfaces that allow users to access knowledge system and apply knowledge
generation and application operators, as depicted in Figures 7 and 8.

In Advances in Machine Learning I, Koronacki, J., Ras, Z.W., Wierzchon, S.T. and Kacprzyk, J. (Eds.), 3-22, Springer-Verlag, 2010.
Original version available at spsringerlink.com

Fig. 7. The INLEN system main menu.

A knowledge scout is a script that allows intelligent search for answers in an
inductive database [11]. It usually involves multiple steps of inductive reasoning and
knowledge application in which one step depends on results of previous steps. One
script language that can create knowledge scouts is knowledge generation language
(KGL) developed within the INLEN system [12]. The second generation of such a
language is knowledge query language (KQL) which is being implemented in the
VINLEN system. One way of interpreting knowledge scouts is that they are
intelligent agents operating inside the inductive database, whose purpose is to seek
requested relevant knowledge.

Through knowledge scouts or a graphical interface, the users of VINLEN have
access to numerous operators for data and knowledge manipulation, knowledge
creation, and knowledge application. These operators are grouped in categories such
as learn description, improve rules, learn trees, create clusters, apply statistics,
generate equations, and determine optima. Each of the categories consists of multiple
operators, as shown in Figure 8. Because of the large variety of different operators
and forms in which they generate knowledge, VINLEN is oriented so that the results
of one operator are understood by other, applicable, operators. This enables the
creation of knowledge scouts in which operators are applied to the results of applying
other operators.

At the time that this chapter is being written, the VINLEN system is still under
development, and new operators and functionalities are being added. This work
follows the original design outlined by Ryszard Michalski.

In Advances in Machine Learning I, Koronacki, J., Ras, Z.W., Wierzchon, S.T. and Kacprzyk, J. (Eds.), 3-22, Springer-Verlag, 2010.
Original version available at spsringerlink.com

Fig. 8. The VINLEN system graphical interface.

7 Theoretical Aspects of Machine Learning

With his Theory and Methodology of Inductive Learning [22], Michalski defined
several axes on which to categorize the inductive process, including input type
(classified examples or unclassified observations), data types, whether or not
counterexamples were presented, the types of covers learned and their relation to each
other, and the use of original or constructed attributes. In this framework, he utilized
VL1-style languages to express learned knowledge with high comprehensibility,
which could be employed in concept learning, conceptual clustering, qualitative
prediction, integrated qualitative and quantitative discovery, etc.

But more than that, he was fascinated by how we learn, for only through such an
understanding could machines be made to truly emulate human learning process. He
collaborated with numerous cognitive scientists, and among the fruits of this
collaboration were the logic and theory of plausible seasoning [2], and the inferential
theory of learning [23].

To utilize both of these ideas, Michalski noticed that we store many concepts in
hierarchies. If an entity about which you are trying to extrapolate knowledge is a
close relative (e.g., they share a common parent or grandparent in the hierarchy) of an
entity whose characteristics you know, it stands to reason plausibly that the unknown

In Advances in Machine Learning I, Koronacki, J., Ras, Z.W., Wierzchon, S.T. and Kacprzyk, J. (Eds.), 3-22, Springer-Verlag, 2010.
Original version available at spsringerlink.com

entity may share characteristics similar to those of the known entity. Minnesota is
near Iowa. They grow lots of corn in Iowa. Maybe they grow lots of corn in
Minnesota too. Conversely, Arizona is far from Iowa and has a hotter, drier climate.
They probably don’t grow much corn there.

Thus, similization and dissimilization operators allow the induction of relationships
between objects and concepts through the traversal of concept hierarchies. The
inferential theory extended this idea by viewing all learning operators as
implementers of knowledge transmutations, which would perform various tasks upon
the network of hierarchies. Generalization would climb a hierarchy, while
specialization would descend it. Abstraction would select only certain available
information about an entity, while concretion would restore such information. Other
transmutations would alter the hierarchies themselves and their interrelationships.

On these theoretical foundations, it was possible to explore the integration of
diverse knowledge transmutations and their associated learning strategies into
multistrategy systems. It is no coincidence that Ryszard Michalski was a prime
impetus behind the first workshops, conferences and books on multistrategy learning.

8 Education

Given his belief in understandable knowledge representations, it is natural that Dr.
Michalski also sought to educate all comers in the wider field of machine learning.
Behind his impetus, the Machine Learning and Inference Laboratory produced a
series of educational tools that could also serve as a springboard for research in the
field.

In 1986, he entered into an agreement with representatives of the Boston Museum
of Science to produce an introduction to and demonstration of inductive learning.
The result was ILLIAN, a system that presented five different learning programs: AQ,
INDUCE, CLUSTER, SPARC and ABACUS (see section 4). For each of these, the
user was able to accept challenges on the types of problems these programs were
capable of solving, and then create their own problems in the same toy domains and
witness the programs’ performance on them. They could also see brief descriptions
of the learning algorithms used.

ILLIAN toured eight cities as part of the exhibition “Robots and Beyond: The Age
of Intelligent Machines” before permanently taking root in Boston. Counters had
been installed to track usage, and a report after the tour had concluded indicated that
the program had been run over half a million times.

ILLIAN was oriented toward the general public, who may have had no AI
exposure. In order to allow users go somewhat further into depth, an expanded
version of the system, called EMERALD [9] doubled as a research tool. More
complex problems were displayed and available to the user to create for the learning
programs. EMERALD was displayed at classes in several countries, and distributed
to hundreds of interested institutions. A recent reimplementation of one of
EMERALD’s modules, AQ, with a modern graphical interface is offered in the iAQ
program [39][44], one of whose screens is presented in Figure 9.

In Advances in Machine Learning I, Koronacki, J., Ras, Z.W., Wierzchon, S.T. and Kacprzyk, J. (Eds.), 3-22, Springer-Verlag, 2010.
Original version available at spsringerlink.com

Fig. 9. A screen from the iAQ program.

9 Conclusion

In his research on machine learning, Ryszard S. Michalski contributed through new
theories, algorithms, and organizational skills. He looked at problems differently than
most researchers, which provided the field with his unique perspective, allowing him
to originate several directions of research. Many of these directions, such as
conceptual clustering, constructive induction, or natural induction, continue to evolve
all over the world. His vision of the field has inspired many.

Perhaps the most important aspect of his research concerns the understandability of
knowledge created by machine learning systems. While a majority of researchers in
the field agree with this principle, very little has been actually done in this direction.
Researchers construct more and more complicated models that slowly expand the
barrier of predictive accuracy, and at the same time are often not understandable even
by other researchers in the area. Dr. Michalski’s ideas of natural induction or
knowledge mining deserve further research in order to win back comprehensibility
along with predictive accuracy.

This chapter briefly describes what we believe are some of the most important
contributions of Dr. Michalski to machine learning research. It is, however, not

In Advances in Machine Learning I, Koronacki, J., Ras, Z.W., Wierzchon, S.T. and Kacprzyk, J. (Eds.), 3-22, Springer-Verlag, 2010.
Original version available at spsringerlink.com

possible to give enough attention to many important aspects of work that appeared in
over 350 publications. In the references section of this chapter, readers can find many
important works, some of which are already considered classic in the field. Among
the “conceptual offspring” worth mentioning, but not included in this chapter are:
variable-precision logic, two-tiered concept representation, dynamic recognition,
attributional ruletrees, dynamic interlaced hierarchies, and many others.

A comprehensive review of applications of natural induction and conceptual
clustering is in a recent technical report [34]. Descriptions and lists of publications of
the mentioned works and the many works of Dr. Michalski not mentioned here are
maintained at the website of the GMU Machine Learning and Inference Laboratory, at
http://www.mli.gmu.edu.

References

[1] Bloedorn, E., Wnek, J., Michalski, R.S. and Kaufman, K.: AQ17 A Multistrategy

Learning System The Method and Users Guide. Reports of the Machine Learning and
Inference Laboratory, MLI 93-12, School of Information Technology and Engineering,
George Mason University, Fairfax, VA, November (1993)

[2] Collins, A. and Michalski, R. S.: The Logic of Plausible Reasoning: A Core Theory.
Cognitive Science, 13, pp. 1-49 (1989)

[3] Dietterich, T.G. and Michalski, R.S.: Discovering Patterns in Sequence of Events.
Artificial Intelligence Journal, 25, No 2, pp. 187-232 (1985)

[4] Domanski, P. A., Yashar, D., Kaufman, K. and Michalski, R. S.: An Optimized Design
of Finned-Tube Evaporators Using the Learnable Evolution Model. International
Journal of Heating, Ventilating, Air-Conditioning and Refrigerating Research, 10, pp.
201-211 (2004)

[5] Falkenhainer, B. and Michalski, R.S.: Integrating Quantitative and Qualitative
Discovery in the ABACUS System. In: Y. Kodratoff and R.S. Michalski (Eds.),
Machine Learning: An Artificial Intelligence Approach, Vol. III, San Mateo, CA, pp.
153-190, Morgan Kaufmann Publishers, June (1990)

[6] Fürnkranz, J.: Separate-and-Conquer Rule Learning. Artificial Intelligence Review, 13,
1, pp. 3-54 (1999)

[7] International Intelligent Systems, Inc.: User’s Guide to AURORA 2.0: A Discovery
System. International Intelligent Systems, Inc. (1988)

[8] Kaufman, K.: INLEN: A Methodology and Integrated System for Knowledge
Discovery in Databases. Ph.D. Dissertation, School of Information Technology and
Engineering, Reports of the Machine Learning and Inference Laboratory, MLI 97-15,
George Mason University, Fairfax, VA, November (1997)

[9] Kaufman, K. and Michalski, R.S.: EMERALD 2: An Integrated System of Machine
Learning and Discovery Programs to Support Education and Experimental Research.
Reports of the Machine Learning and Inference Laboratory, MLI 93-10, School of
Information Technology and Engineering, George Mason University, Fairfax, VA,
September (1993)

[10] Kaufman, K. and Michalski, R.S.: ISHED1: Applying the LEM Methodology to Heat
Exchanger Design. Reports of the Machine Learning and Inference Laboratory, MLI
00-2, George Mason University, Fairfax, VA, (2000)

[11] Kaufman, K. and Michalski, R.S.: A Knowledge Scout for Discovering Medical
Patterns: Methodology and System SCAMP. Proceedings of the Fourth International

In Advances in Machine Learning I, Koronacki, J., Ras, Z.W., Wierzchon, S.T. and Kacprzyk, J. (Eds.), 3-22, Springer-Verlag, 2010.
Original version available at spsringerlink.com

Conference on Flexible Query Answering Systems, FQAS'2000, Warsaw, Poland, pp.
485-496, October 25-28 (2000)

[12] Kaufman, K. and Michalski, R.S.: The Development of the Inductive Database System
VINLEN: A Review of Current Research. International Intelligent Information
Processing and Web Mining Conference, Zakopane, Poland (2003)

[13] Kaufman, K. and Michalski, R.S.: From Data Mining to Knowledge Mining. In: Rao,
C.R., Solka, J.L. and Wegman, E.J. (Eds.), Handbook in Statistics, Vol. 24: Data
Mining and Data Visualization, pp. 47-75, Elsevier/North Holland (2005)

[14] Kaufman, K., Michalski, R.S. and Kerschberg, L.: Mining for Knowledge in Databases:
Goals and General Description of the INLEN System. In: G. Piatetski-Shapiro and W. J.
Frawley (Eds.), Knowledge Discovery in Databases, Menlo Park, CA , AAAI Press/The
MIT Press (1991)

[15] Kaufman, K., Michalski, R.S., Pietrzykowski, J. and Wojtusiak, J.: An Integrated Multi-
task Inductive Database VINLEN: Initial Implementation and Early Results: In 5th
International Workshop on Knowledge Discovery in Inductive Databases, Revised
Selected and Invited Papers, Lecture Notes in Computer Science, 4747, 116-133,
Springer (2007)

[16] Larson, J. and Michalski, R.S.: Inductive Inference of VL Decision Rules, Invited paper
for the Workshop in Pattern-Directed Inference Systems, Hawaii, and published in
SIGART Newsletter, ACM, No. 63, pp. 38-44, June 1977, May 23-27 (1977)

[17] Michalski, R.S.: On the Quasi-Minimal Solution of the General Covering Problem.
Proceedings of the V International Symposium on Information Processing (FCIP
69)(Switching Circuits) , Vol. A3 , Yugoslavia, Bled, pp. 125-128, October 8-11 (1969)

[18] Michalski, R.S.: Synteza wyrazen minimalnych i rozpoznawanie symetrii funkcji
logicznych. Prace Instytutu Automatyki PAN, Zeszyt 92, Warszawa, Instytut
Automatyki Polskiej Akademii Nauk (1971)

[19] Michalski, R.S.: A Geometrical Model for the Synthesis of Interval Covers. Report No.
461, Department of Computer Science, University of Illinois, Urbana, June 24 (1971)

[20] Michalski, R.S.: A Variable-Valued Logic System as Applied to Picture Description
and Recognition. Graphic Languages, In: F. Nake and A. Rosenfeld (Eds.), North-
Holland Publishing Co. (1972)

[21] Michalski, R.S.: Knowledge Acquisition Through Conceptual Clustering: A Theoretical
Framework and an Algorithm for Partitioning Data into Conjunctive Concepts. Journal
of Policy Analysis and Information Systems, 4, 3, pp. 219-244, September (1980)

[22] Michalski, R.S.: A Theory and Methodology of Inductive Learning. In: R.S. Michalski,
T.J. Carbonell and T.M. Mitchell (Eds.), Machine Learning: An Artificial Intelligence
Approach, pp. 83-134, TIOGA Publishing Co., Palo Alto (1983)

[23] Michalski, R.S.: Learning = Inferencing + Memorizing: Basic Concepts of Inferential
Theory of Learning and Their Use for Classifying Learning Processes: In: Foundations
of Knowledge Acquisition, Vol. 2: Machine Learning, pp. 1-41 (1993)

[24] Michalski, R.S., Learnable Evolution: Combining Symbolic and Evolutionary Learning.
Proceedings of the Fourth International Workshop on Multistrategy Learning (MSL'98),
Desenzano del Garda, Italy, pp. 14-20, June 11-13 (1998)

[25] Michalski, R.S.: LEARNABLE EVOLUTION MODEL Evolutionary Processes Guided
by Machine Learning. Machine Learning, 38, pp.9-40 (2000)

[26] Michalski, R.S.: ATTRIBUTIONAL CALCULUS: A Logic and Representation
Language for Natural Induction. Reports of the Machine Learning and Inference
Laboratory, MLI 04-2, George Mason University, Fairfax, VA, April (2004)

[27] Michalski, R.S. and Baskin, A.B.: Integrating Multiple Knowledge Representations and
Learning Capabilities in an Expert System: The ADVISE System. Proceedings of the 8th
International Joint Conference on Artificial Intelligence, Karlsruhe, West Germany, pp.
256-258 (1983)

In Advances in Machine Learning I, Koronacki, J., Ras, Z.W., Wierzchon, S.T. and Kacprzyk, J. (Eds.), 3-22, Springer-Verlag, 2010.
Original version available at spsringerlink.com

[28] Michalski, R.S., Baskin, A.B. and Spackman, K.A.: A Logic-based Approach to
Conceptual Database Analysis. Sixth Annual Symposium on Computer Applications in
Medical Care (SCAMC-6), George Washington University Medical Center,
Washington, DC, pp. 792-796 (1982)

[29] Michalski, R.S., Carbonell, T.J. and Mitchell, T.M. (Eds.), Machine Learning: An
Artificial Intelligence Approach, Palo Alto, TIOGA Publishing Co., Palo Alto (1983)

[30] Michalski, R.S., Carbonell, T.J. and Mitchell, T.M. (Eds.): Machine Learning: An
Artificial Intelligence Approach, Vol. II, Los Altos, CA, Morgan Kaufmann Publishers,
Inc. (1986)

[31] Michalski, R.S. and Kaufman, K.: INTELLIGENT EVOLUTIONARY DESIGN: A
New Approach to Optimizing Complex Engineering Systems and its Application to
Designing Heat Exchangers. International Journal of Intelligent Systems, 21, 12 (2006)

[32] Michalski, R.S. and Kaufman, K.: The AQ19 System for Machine Learning and Pattern
Discovery: A General Description and User's Guide. Reports of the Machine Learning
and Inference Laboratory, MLI 01-2, George Mason University, Fairfax, VA (2001)

[33] Michalski, R.S. and Kaufman, K.: Learning Patterns in Noisy Data: The AQ Approach.
In: G. Paliouras, V. Karkaletsis and C. Spyropoulos (Eds.), Machine Learning and its
Applications, pp. 22-38, Springer-Verlag (2001)

[34] Michalski, R.S., Kaufman, K., Pietrzykowski, J., Wojtusiak, J., Mitchell, S. and
Seeman, W.D.: Natural Induction and Conceptual Clustering: A Review of
Applications. Reports of the Machine Learning and Inference Laboratory, MLI 06-3,
George Mason University, Fairfax, VA, June (2006)

[35] Michalski, R.S., Ko, H. and Chen, K.: SPARC/E(V.2), An Eleusis Rule Generator and
Game Player. Reports of the Intelligent Systems Group, ISG 85-11, UIUCDCS-F-85-
941, Department of Computer Science, University of Illinois, February (1985)

[36] Michalski, R.S., Ko, H. and Chen, K., Qualitative Prediction: The SPARC/G
Methodology for Inductively Describing and Predicting Discrete Processes. In Expert
Systems, Academic Press Inc., London (1986)

[37] Michalski, R.S. and Larson, J.: AQVAL/1 (AQ7) User's Guide and Program
Description. Report No. 731, Department of Computer Science, University of Illinois,
Urbana, June (1975)

[38] Michalski, R.S. and Larson, J.: Incremental Generation of VL1 Hypotheses: The
Underlying Methodology and the Description of Program AQ11. Reports of the
Intelligent Systems Group, ISG 83-5, UIUCDCS-F-83-905, Department of Computer
Science, University of Illinois, Urbana, January (1983)

[39] Michalski, R.S. and Pietrzykowski, J.: iAQ: A program that discovers rules. AAAI-07
AI Video Competition, Twenty-Second Conference on Artificial Intelligence (AAAI-
07), Vancouver, British Columbia, July 22–26 (2007)

[40] Michalski, R.S. and Stepp, R.: Learning from Observation: Conceptual Clustering. In:
R.S. Michalski, T.J. Carbonell and T.M. Mitchell (Eds.), Machine Learning: An
Artificial Intelligence Approach, pp. 331-363, TIOGA Publishing Co., Palo Alto (1983)

[41] Michalski, R.S., Stepp, R. and Diday, E.: A Recent Advance in Data Analysis:
Clustering Objects into Classes Characterized by Conjunctive Concepts. In: L. Kanal
and A. Rosenfeld (Eds.), Progress in Pattern Recognition, Vol. 1, pp. 33-55, North-
Holland (1981)

[42] Michalski, R.S. and Wojtusiak, J.: Reasoning with Meta-values in AQ Learning.
Reports of the Machine Learning and Inference Laboratory, MLI 05-1, George Mason
University, Fairfax, VA, June (2005)

[43] Michalski, R.S. and Wojtusiak, J.: Generalizing Data in Natural Language. Proceedings
of the International Conference Rough Sets and Emerging Intelligent Systems
Paradigms, RSEISP'07, Lecture Notes in Computer Science, Springer (2007)

In Advances in Machine Learning I, Koronacki, J., Ras, Z.W., Wierzchon, S.T. and Kacprzyk, J. (Eds.), 3-22, Springer-Verlag, 2010.
Original version available at spsringerlink.com

[44] Pietrzykowski, J.: Demonstration and Application of Rule Discovery Methods Using
iAQ. Workshop on Building Computational Intelligence and Machine Learning Virtual
Organizations, George Mason University, Fairfax, VA, pp. 39-44, October 24 (2008)

[45] Seeman, W.D. and Michalski, R.S.: The CLUSTER3 System for Goal-oriented
Conceptual Clustering: Method and Preliminary Results. Proceedings of The Data
Mining and Information Engineering 2006 Conference, Prague, Czech Republic, July
11-13 (2006)

[46] Spackman, K.A., QUIN: Integration of Inferential Operators within a Relational
Database. Reports of the Intelligent Systems Group, ISG 83-13, UIUCDCS-F-83-917,
M.S. Thesis, Department of Computer Science, University of Illinois, Urbana (1983)

[47] Wnek, J., Kaufman, K., Bloedorn, E. and Michalski, R. S.: Inductive Learning System
AQ15c: The Method and User's Guide. Reports of the Machine Learning and Inference
Laboratory, MLI 95-4, George Mason University, Fairfax, VA, March (1995)

[48] Wojtusiak, J.: AQ21 User's Guide. Reports of the Machine Learning and Inference
Laboratory, MLI 04-3, George Mason University, Fairfax, VA, September, (2004)

[49] Wojtusiak, J.: Handling Constrained Optimization Problems and Using Constructive
Induction to Improve Representation Spaces in Learnable Evolution Model. Ph.D.
Dissertation, College of Science, Reports of the Machine Learning and Inference
Laboratory, MLI 07-3, George Mason University, Fairfax, VA, November (2007)

[50] Wojtusiak, J.: Data-driven Constructive Induction in the Learnable Evolution Model.
Proceedings of the 16th International Conference Intelligent Information Systems,
Zakopane, Poland, June 16-18 (2008)

[51] Wojtusiak, J. The LEM3 System for Multitype Evolutionary Optimization. Computing
and Informatics, accepted for publication (2009)

[52] Wojtusiak, J. and Michalski, R.S.: The LEM3 Implementation of Learnable Evolution
Model and Its Testing on Complex Function Optimization Problems. Proceedings of
Genetic and Evolutionary Computation Conference, GECCO 2006, Seattle, WA, July 8-
12 (2006)

[53] Wojtusiak, J., Michalski, R.S., Kaufman, K. and Pietrzykowski, J.: The AQ21 Natural
Induction Program for Pattern Discovery: Initial Version and its Novel Features.
Proceedings of the 18th IEEE International Conference on Tools with Artificial
Intelligence, Washington D.C., November 13-15 (2006)

In Advances in Machine Learning I, Koronacki, J., Ras, Z.W., Wierzchon, S.T. and Kacprzyk, J. (Eds.), 3-22, Springer-Verlag, 2010.
Original version available at spsringerlink.com

