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Abstract. Ryszard S. Michalski was an outstanding scientist who dedicated his 
life to research and discovery.  He pioneered so many areas and methods of 
machine learning that it is not possible to describe them properly in one chapter. 
Thus, we present a brief summary of what we believe are the most important 
aspects of his research, and present the vision of machine learning that he 
communicated to us on multiple occasions. The most important topics 
mentioned in this chapter are: natural induction, knowledge mining, AQ 
learning, conceptual clustering, VL1 and attributional calculus, constructive 
induction, the learnable evolution model, inductive databases, methods of 
plausible reasoning, and the inferential theory of learning. 

Keywords: Machine Learning, Natural Induction, Concept Learning, 
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 This chapter is dedicated to Dr. Ryszard S. Michalski, our mentor and 
friend, who opened for us the wonderful world of machine learning. 

1   Introduction 

The very fast growth of machine learning and related disciplines is attributed to its 
great importance and applicability in almost all aspects of modern society. Learning is 
considered one of the most important aspects of intelligent systems, thus work in this 
area has been attempted since the very beginning of the field of artificial intelligence 
over half a century ago.  Dr. Ryszard S. Michalski was among the most significant 
contributors to machine learning.  His involvement in the formation of the field, 
including organization of the first workshops and conferences on machine learning, 
the first books in the area, including [29][30], is only a small part of the overall 
contributions. 

In this chapter we overview selected research areas originated by Dr. Michalski, 
and present the vision and directions of the field presented to us over many years of 
work with him. We understand that it is not possible to summarize four decades of 
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intense research and over 350 publications in one chapter; thus, we emphasize the 
newest aspects of his research, and those we believe are the most significant. 

We start this chapter with an overview of natural induction, an approach to 
inductive learning that puts a human recipient of learned knowledge in a central 
position. A key part of natural induction concerning representation of knowledge is 
described in Section 3. We also discuss learning methods and paradigms originated by 
Dr. Michalski, including the learnable evolution model, and inductive databases.  We 
conclude this chapter by describing his selected contributions to theory of machine 
learning, and describe software built to teach and entertain. 

2   Natural Induction 

Before describing selected methods and algorithmic contributions of Ryszard 
Michalski to the field of machine learning, let us start by describing natural induction, 
which can be viewed as a central aspect of his research over the past decades. The 
actual name “natural induction” did not appear until the 1990s, but its principles can 
be found in different forms back at least to the early 1970s. The name natural 
induction consisting of two parts suggests that induction is done in a natural way. The 
induction, or more precisely inductive reasoning or learning, is a falsity preserving 
reasoning process in which generated knowledge is generated from 
observations/examples and background knowledge. The word natural relates to the 
knowledge resulting from learning that is in a form easy to understand by people. 
Thus, natural induction refers to an inductive learning process whose results are 
designed to be natural to people. 

There are several forms of knowledge that are natural to people, including natural 
language descriptions [43], easy to interpret rules, graphical representations, relatively 
small decision trees, Bayesian networks, etc. These forms of knowledge are 
considered to be “transparent box”, in contrast to “black box” representations that 
may provide very good predictions, but be hard to understand. The latter can be 
exemplified by neural networks, random forests, support vector machines, and many 
other models often used in machine learning. 

In order to present results of reasoning in forms easily understandable, one can 
either transform the learned knowledge, or learn directly in a language natural to 
people. While the former can be exemplified by all kinds of visualization methods, 
the latter requires reasoning directly in some language that corresponds directly to 
natural language statements. This and other issues regarding representation of 
knowledge are described in next section. 

One important representation of knowledge that directly corresponds to natural 
language is an attributional rule, described in section 3, and exemplified in Figure 1. 
The rule can be paraphrased: ”The plan to do is to run experiments, if it is a weekend, 
the weather is rainy and cold, the available workstation has a clock speed at least 
2GHz, and the available laboratory is lab1 or lab2, except for when there is a server 
malfunction.”  The value “weekend” is a higher-level value of a structured 
(hierarchical) attribute “Day”, the attribute “Weather” is a compound attribute that 
takes a conjunction of values. The pairs of numbers within conditions represent 
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numbers of positive and negative examples satisfying these conditions. The entire rule 
is satisfied by 27 positive and 1 negative example, as indicated by “p=27, n=1” in the 
rule’s annotation, and its quality, defined by (6), is 0.9. 

 
 

 [Plan to do = run experiments] 
     [Day = weekend: 38,131] & 
     [Weather = rainy and cold: 22, 5] & 
     [Available workstation clock speed >= 2GHz: 50,5] & 
     [Available lab = lab1 or lab3: 43,57] 

   Ã [Server malfunction: 0,3] : p=27, n=1, Q=0.9 
 

Fig. 1. An example of an attributional rule. 
 
 

Two graphical representations of knowledge developed by Dr. Michalski are 
general logic diagrams (GLD), and concept association graphs (CAG).  In GLDs, 
each cell represents a combination of input attributes, and examples are marked 
within cells by their class [19].  Complexes (see section 3) are represented by 
rectangles.  An example of a GLD with 19 examples and 2 complexes is presented in 
Figure 2.  A CAG represents rules as a labeled graph with varying thicknesses of the 
links indicating the strength of the knowledge component represented by the link [11].  
An example is presented in Figure 3. 

 
 

 
C – Condition, W – Wind, T – Temperature, D – Daytype, r – rain, c – cloudy, s – sunny, 
n – no, y – yes, v – very low, l – low, m – medium, h – high, o – workday, e – weekend, 

P – Play, R – Read, S - Shop 
Fig. 2. A general logic diagram (reproduced from [34]). 

 
 

Natural induction is an important part of knowledge mining, an approach to data 
analysis that is used to derive high level concepts from data and background 
knowledge [13].  In contrast to traditional data mining, this approach is not limited to 
analyzing large amounts of data.  To the contrary, knowledge mining can analyze 
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both large and small amounts of data and, more importantly, use problem-oriented 
background knowledge.  It can be viewed as a next step following in the evolution of 
data analysis and knowledge creation methods. 

 
 
 

 
The thickness of links is proportional to condition or rule coverage. 

 
Fig. 3. A concept association graph representing seven patterns in a medical database 

(reproduced from [34]). 
 
 

Natural induction requires human-oriented representation of knowledge and 
learning algorithms that can utilize power of that representation.  In the next two 
sections we describe the creation of attributional calculus, a representation language 
ofr natural induction, and learning methods that can utilize this language. 

3   Representation 

Appropriate representation of knowledge and data is critical for successful 
application of machine learning methods.  To go along with his nascent Aq algorithm, 
Michalski [20] developed the VL1 knowledge representation language, a variable-
valued logic with an expressive power somewhere between those of propositional and 
predicate calculus.  The availability of such internal operators as range and internal 
disjunction made it suitable for representing compact, easily understood rulesets.  
Contrast that with, for example, the traditional-style decision trees that still persist to 
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this day, in which several levels of nodes may be needed to subdivide a single 
continuous attribute into the ranges needed for the learned classifier. 

But to take advantage of the power of such a representation, it was necessary to 
have available all data types that mirrored our natural cognitive experience – nominal, 
discrete-ordered, hierarchically structured, cyclic, continuous, set-valued, etc. – and 
be able to operate upon and reason with them as needed.  Thus, as part of the AQ 
packages developed and distributed over the years (see section 4.1), the operators to 
handle the calculus of (most of) these data types at all stages – input, extension 
against, selection, trimming, and output – was built in. 

This would be enough for many applications, but many was not enough.  The 
representation of knowledge soon included annotations, so that it would be easy to 
access and work with and from the metaknowledge as well as the basic discovered 
facts.  Now it would be easy to access the support and confidence levels of different 
knowledge components, and use these to guide your data exploration process. 

The VL1 language was subsequently extended to the VL2 representation language 
[16] that added the existential quantifier.  Now the natural induction schema extended 
to structured descriptions, in which components of the whole and relations among 
them could be understandably expressed; such descriptions would be utilized in the 
INDUCE programs for learning structured descriptions (see section 4.2), the 
CLUSTER conceptual clustering programs (see section 4.5), and the SPARC program 
for qualitative sequence analysis, discovery and prediction (see section 4.3). 

In 2004, Michalski presented a further extension of these languages, Attributional 
Calculus [26].  Attributional calculus further simplified representation of concepts we 
use naturally by introducing constructs for counting attributes (e.g., at least 3 of these 
4 conditions must be present) and relationships among attributes (e.g., height < length 
+ width). Another important idea formalized in attributional calculus concerns using 
unknown, not-applicable, and irrelevant meta-values.  Although all three values 
appeared in different forms in the early work of Dr. Michalski, it is in attributional 
calculus where their semantics are first described together. Unknown meta-values, are 
the most popular, and represent situations in which a regular value exists, but it is not 
recorded for some reason.  Not-applicable meta-values are used when the regular 
values do not exist. For example the value of an attribute describing pregnancy in 
male patients does not exist, thus it is not applicable. The irrelevant meta-value is 
used when a regular value exists, but it is considered not to be relevant to the current 
learning task. The two latter types of meta-values constitute problem background 
knowledge. 

In attributional calculus, learned knowledge is represented in the form of 
attributional rules, which consist of attributional conditions.  An attributional 
condition takes the form (1):  

 
 [L rel R: A] (1) 
 
where L is an attribute, an internal conjunction or disjunction of attributes, a 
compound attribute, or an expression; rel is one of =, >, <, ≤, ≥, :, or ≠; R is an 
attribute value, an internal disjunction of attribute values, an attribute, an internal 
conjunction of values of attributes that are constituents of a compound attribute, or an 
expression, and A is an optional annotation that may list |p| and |n| values for the 
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condition, defined as the numbers of positive and negative examples, respectively, 
that satisfy the condition, the condition’s consistency defined as |p|/(|p|+|n|), and other 
measures of conditions’ quality.  There are several different forms of attributional 
rules allowed by attributional calculus.  Three important forms of attributional rules 
are (2) - (4). 

 
 CONSEQUENT s PREMISE (2) 
 
 CONSEQUENT s PREMISE Ã EXCEPTION (3) 
 
 CONSEQUENT s PREMISE À PRECONDITION (4) 
 
where PREMISE, CONSEQUENT, EXCEPTION, and PRECONDITION are 
complexes, that is, conjunctions of attributional conditions.  An EXCEPTION can 
also be an explicit list of examples that constitute exceptions to the rule.  The rules (2) 
are interpreted that the CONSEQUENT is true whenever the PREMISE is true.  The 
rules (3) are interpreted that the CONSEQUENT is true whenever the PREMISE is 
true, except for when the EXCEPTION is true.  The rules (4) are interpreted that the 
CONSEQUENT is true whenever the PREMISE is true, provided that the 
PRECONDITION is true.  Each rule may be optionally annotated with several 
parameters such as numbers of covered examples (positive and negative), the rule 
complexity etc. 

Static representation used by selective induction methods (most inductive learning 
methods including rule learners, decision tree learners, Bayesian networks, etc.) did 
not seem sufficient for many applications. This sparked the development of 
constructive induction, in which a representation space is changed to better fit the 
machine learning problem being considered [22].  This change of representation space 
may include removing irrelevant attributes, adjusting discretization of existing 
attributes, including operations on hierarchies, and most importantly the construction 
of new attributes.  The latter can be in the form of arithmetic or logic expressions, 
counting attributes (generalization of quantifiers), or some other special forms.  A 
general classification of constructive induction methods include data-driven 
constrictive induction (DCI) in which modifications of the representation space are 
based on the analysis of input data, hypothesis-driven constructive induction (HCI) in 
which modifications of the representation space are based on the analysis of learned 
hypotheses, knowledge-driven constructive induction (KCI) in which modifications to 
the representation space are based on background knowledge provided to the system, 
and multistrategy constructive induction (MCI) that dynamically selects appropriate 
DCI, HCI, and KCI methods based on a learning problem’s characteristics. Some 
recent work on constructive induction includes the investigation of different 
specificities of advices provided to the system and the use of constructive induction in 
intelligent evolutionary optimization [50]. 
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4   Learning 

This section gives a brief overview of machine learning methods developed or co-
developed by Ryszard Michalski over the past four decades. These methods were 
implemented in numerous computer programs. Most of them follow a general 
separate and conquer approach to inductive learning. They take data and background 
knowledge and generate new knowledge, often in the form of attributional rules. 

4.1 AQ: Learning Attributional Rules from Examples 

 
The well-known family of AQ programs originated with the Aq algorithm for solving 
the general covering problem [14][18].  In fact, the AQ programs perform a simplified 
version of the original algorithm.  AQ programs pioneered the separate and conquer 
approach to rule learning [6].  Numerous implementations and extensions of the 
method were developed using different programming languages and on different 
platforms over the years. Among the best known AQ implementations are AQ7 [26], 
AQ11 [38], AQ15c [47], AQ17 [1], AQ19 [32], and most recently AQ21[53]. 

The general problem to which AQ programs are applied is learning from examples. 
Given a set of examples e1, e2, .. en, belonging to classes c1, …, ck, find a set of rules 
(5), where Ci,j are complexes, that describe the input data.  Note that this is the form 
(2) of rules. Some AQ implementations are also able to create rules in the forms (3) 
and (4) that include exceptions and preconditions. 

 
 c1 s C1,1, c1 s C1,2, …, c1 s C1,t1 
 c2 s C2,1, c2 s C2,2, …, c2 s C2,t2 (5) 
 … 
 ck s Ck,1, ck s Ck,2, …, ck s Ck,tk 

 
A basic version of the AQ learning algorithm is presented in Figure 4.  It takes as 

input a set of positive examples of a concept, P, and set of negative examples, N, 
belonging to all other classes (examples not belonging to the learned concept), and a 
quality measure.  It returns a complete and consistent hypothesis in the form of an 
attributional ruleset, optimized according to the given lexicographical evaluation 
functional (LEF). In the case when input data consists of multiple classes, learning is 
repeated for each class against all other classes. 

 
Hypothesis = null 
While P is not empty 
 Select a seed example e from P 
 Generate star G(e, N) 
 Select the best rule R from G(e, N) according to LEF, and  
   include it in Hypothesis 
 Remove from P all examples covered by the selected rule 
Return learned Hypothesis 

Fig. 4. Basic AQ algorithm. 
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The central part of the algorithm is the generation of star G(e, N) given a seed p 
and set of negative examples N.  The star is a set of maximally general rules covering 
the seed e, but not covering any negative example from N.  A star is constructed by 
intersecting partial stars which are generated using the extension-against operator 
[22].  The extension-against that takes two data points and creates a set of single-
condition rules. The rules are maximal generalizations of one data point (the seed) 
that does not cover the second data point (a selected negative example). The set of 
rules created by extension-against is called a local star.  An intersection of local stars 
for all negative examples is the star G(e, N).  To narrow down a possibly very large 
number of intermediate generalizations, AQ uses a beam search that at each step of 
star generation keeps no more than a parameter-defined number of best rules, as 
determined by the given pattern quality measure, as defined by the LEF.  LEF 
evaluates rules through a sequence of criteria with defined thresholds.     Different AQ 
programs have implemented different LEF criteria, but most of them select by default 
rules that cover the most positive examples and are the simplest.  Many other criteria 
have been introduced that can be tuned to a specific problem by the user.  A complete 
list of LEF criteria available in the AQ21 system is presented in [48]. 

To select a rule from a star, the algorithm also uses a LEF, but possibly with 
different criteria than for the beam search.  One important extension of the method is 
to learn approximate theories from noisy data, and discover strong regularities, 
patterns, in the data. To do so, AQ at each step of star generation is able to optimize 
rules according to the Q(w) rule quality measure. The measure is given by (6) and has 
been defined by Michalski and Kaufman [33]. 
 
 Q(w) = covw * consig1-w (6) 
 
where  
 
 cov=|p| / |P| (7) 
 
and 
 
 consig=((|p| / (|p| + |n|)) – (|P| /(|P| + |N|))) * (|P| + |N|) / |N| (8) 
 
Here, |p| and |n| are the numbers of positive and negative examples covered by the 
rule, and |P| and |N| are the numbers of positive and negative examples in the training 
dataset, respectively. The Q(w) definition (6) assures in practice that consig ≥ 0 which 
means that a rule’s prediction is better than a blind guess of the target class.  The 
actual implemented formula handles also the case when consig < 0, but such rules are 
always dropped as not useful. 

Optimization of rules consists of several possible operations which may lead to 
improvement of rules’ quality.  The operations are: abstraction of conditions, 
specialization of conditions, removal of conditions, and removal of entire rules. 

Numerous other modifications and extensions of the AQ learning algorithm have 
been made over years. For example, some AQ versions use several seeds (to protect 
the method against noise), employ different concept representations (attributional or 
relational), generate rules with different interrelationships (independent, disjoint or 
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sequentially ordered covers), use different methods for handling data inconsistency 
(minimum, maximum, free and statistic-based generalization), learn rules in a batch 
of incremental mode, seek rules that represent the best trade-off between their 
consistency, coverage and simplicity, use different criteria of rule optimality, involve 
operators for deriving more relevant attributes (data-driven, hypothesis-driven or 
multistrategy constructive induction), apply prior knowledge (a- and l-rules, 
knowledge-driven constructive induction), post-optimize learned descriptions 
(TRUNC/s, TRUNC/sg and TRUNC/nl), generate single or alternative descriptions, 
learn rules with exceptions or preconditions, handle unknown, not-applicable and 
irrelevant, meta-values, learn in standard multiclass mode or without a contrast set, 
etc. 

The evolution of AQ-based learning systems was not linear, and no one system had 
encompassed all of these methodological features.  In recent years, Dr. Michalski 
along with his group of collaborators initiated an attempt to implement most of the 
AQ learning methodology developed over many years into one system, AQ21. Its 
goal is to become a laboratory for natural induction, that is, to allow users to learn 
attributional rules of different types, present results in easy to interpret forms, such as 
natural language, and allow experimentation exploiting large numbers of parameters 
to specify users’ preferences.  The program, which is being constantly extended, is the 
most advanced AQ implementation to date, and this effort continues at the GMU 
Machine Learning and Inference Laboratory. 

4.2 INDUCE: Learning Structures 

Learning structural descriptions in the form of easy to understand rules is realized 
by a class of programs called INDUCE. In contrast to AQ programs, INDUCE does 
not take input in the form of labeled examples, but rather in the form of sets of rules 
describing considered objects.  Its goal is to arrive at a smaller set of rules consistent 
with original ones. The INDUCE programs are multipurpose and applicable to a wide 
class of problems, but they are particularly suitable for learning structural descriptions 
of classes of objects in which the number of relations between objects is not known in 
advance.  The method takes as an input a set of rules (9) describing objects in classes 
c1, c2, …, cn.  

 
 

 c1 s C1,1, c1 s C1,2, …, c1 s C1,r1 
 c2 s C2,1, c2 s C2,2, …, c2 s C2,r2 (9) 
 … 
 ck s Ck,1, ck s Ck,2, …, ck s Ck,rk 

 
The goal is to fined a set of rules (10) where ri ≥ ti, i=1..k. The obtained set of 

rules is not only more compact (fewer rules), but it is also a generalization of input 
rules. 
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 c1 s C1,1, c1 s C1,2, …, c1 s C1,t1 
 c2 s C2,1, c2 s C2,2, …, c2 s C2,t2 (10) 
 … 
 ck s Ck,1, ck s Ck,2, …, ck s Ck,tk 

 
The INDUCE method follows the star generation algorithm similar to one used in 

AQ, but in addition to extension-against, it uses other generalization operators [22].  It 
is more general than the AQ example learner, but is also less efficient.  Because most 
real word learning problems can be represented in the in the form of labeled 
examples, development of AQ systems has progressed much further than that of 
INDUCE. 

4.3 SPARC: Learning Sequences  

Another type of learning is done through part-to-whole generalization in which 
given observations of a part of an observed set of objects, the goal is to hypothesize 
the entire set of objects.  One specific case of this type of learning concerns learning 
and predicting sequences (ordered sets) of objects.  Among the many real world 
applications of predicting sequences are predicting stock market behavior, predicting 
outcomes of medical treatments, predicting gene sequences, predicting computer 
users’ behavior, and so forth. 

The problem considered here is to predict events (objects) that follow a given 
sequence of objects. Given the sequence of events in the form (11), the goal is to find 
events en+1, en+2, and so on. 
 
 e1, e2, e3, en  (11) 

 
Each of the objects ei may be described in terms of one or more attributes (12), where 
vi1, vi2, .. vik are values of attributes X1, …, Xk in the event ei. These attributes may be 
of different types, e.g. nominal, structured, ordinal, cyclic, ratio. 

 
 

 ei = (vi1, vi2, …, vik) (12) 
 
In some specific situations it may not be necessary to predict entire events en+1, 

en+2, …, but rather values of selected attributes in these events. It may also be 
appropriate to predict not one, but several plausible events that fit into the sequence in 
a particular place.  In this non-deterministic prediction problem, the goal is to 
discover some properties of events in the sequence, not necessarily precisely predict 
them [3]. 

Computer programs called SPARC represent a multistrategy approach to 
discovering sequences, by combining the periodic conjunctive model, lookback 
decomposition model, and disjunctive normal form models.  Two programs were 
created, SPARC/E, a specialized system designed for playing the eleusis card game 
[3][35], and the SPARC/G general purpose sequence discovery tool [36]. The 
programs work in three steps. In the first step, constructive induction methods are 
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applied to derive attributes that may better characterize sequences of events. In the 
second step, rules characterizing sequences are derived by applying AQ learning to 
data prepared for each type of model.  In the last step, final rules are selected based on 
their consistency and simplicity.  These rules can be later used to predict plausible 
continuationa of the input sequence. 

4.4 ABACUS: Learning Equations 

Quantitative discovery deals with discovering equations from data.  The ABACUS 
approach to quantitative discovery is able to incorporate symbolic attributes in 
learning equations, cope with irrelevant attributes, and work with noisy data. Its main 
advantage is that it is able do discover multiple equations, each characterizing a 
subset of data, and provide preconditions under which the equations should be used 
[5]. 

The ABACUS method works in two steps. First, in the equation discovery module, 
it analyzes input data and creates equations. If more than one equation is needed, the 
data is split into subsets. Because of the enormous size of the possible search space of 
possible equations ABACUS uses a number of heuristics.  One such heuristic 
involves constructing and searching proportionality graphs of attributes that are 
qualitatively proportional (or inversely quantitatively proportional).  For such 
attributes, a given percentage of values of one attribute grows (or decreases) with 
values of other attribute for other attributes constant.  Other heuristics include 
checking for compatibility of units, detection of redundancy in formulas, and 
tautology detection.  In the second step, a precondition generation module generates 
logic preconditions characterizing the subsets of data for which equations were 
created in the first step.  To do so, ABACUS employs the AQ learning method. 

The system was applied to multiple datasets, and was able to correctly discover, for 
example, Stoke’s law and the law of conservation of kinetic energy. 

4.5 CLUSTER: Conceptual Clustering 

Learning from observation is, after concept learning from examples, the second 
largest class of problems in machine learning.  The goal is to construct meaningful 
classes from observed objects.  Traditional clustering methods group objects based on 
their similarity, without regard to what global concepts they form.  The answer to this 
problem was proposed by Michalski and is called conceptual clustering [21][41] in 
which objects are grouped together based on their conceptual cohesiveness (13). This 
measure is based not only on the distance between objects, but more importantly on 
the set of concepts, C, that are available for describing the objects, and other objects, 
E, in the dataset. 

 
 conceptual cohesiveness(O1, O2) = f(O1, O2, C, E) (13) 

 
An example of a problem in which standard distance-based clustering methods 

may incorrectly form clusters is presented in Figure 5. The two marked points are the 
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closest objects to one another in the figure, so they would quickly and invariably be 
assigned to he same cluster by many methods. In contrast, a conceptual clustering 
method that has been provided with the concepts of letters and their shapes would be 
able to correctly create two clusters representing the X and the Y. 

 
 

 
 

Fig. 5. An example of a conceptual clustering problem. 
 
 
The basic algorithm used in CLUSTER implementations of conceptual clustering 

takes as an input a set of objects, E, the desired number of clusters, k, and an LEF 
expressing criteria of clusters’ quality. It starts by randomly selecting k seed 
examples, Es={e1, …, ek}.  For each seed example oi a star G(oi, Es\{oi}) is generated. 
Then a clustering is created by selecting disjoint rules from the stars according to the 
LEF. If termination criteria are not met, a new set of seeds is selected from examples 
covered by rules in the clustering, and the procedure is repeated [40]. 

Recent research on conceptual clustering concerns building goal-oriented clusters 
from the perspective of different viewpoints [45].  A viewpoint is defined as a subset 
of attributes in the representation space that can be meaningfully combined.  For 
example, one may cluster students in a database from the viewpoint of their 
intellectual abilities, while other may want to cluster students based on their 
demographics.  These two viewpoints require clearly different sets of attributes, 
which are drawn from the set of all attributes available in database. 

5 Learnable Evolution Model 

The learnable evolution model (LEM) is an evolutionary optimization method that 
employs machine learning to direct the evolutionary process [24][25].  Specifically, 
LEM creates general hypotheses indicating regions in the search space that likely 
contain optimal solutions and then instantiates these hypotheses to generate new 
candidate solutions.  In order to apply concept learning, LEM creates two groups of 
individuals that are respectively high- and low-performing according to the fitness 
function being optimized.  These individuals can be selected from the current 
population or a combination of current and past populations of individuals.  The 
group of high-performing individuals is called H-Group and the group of low-
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performing individuals is called L-Group. Once the groups are selected, LEM applies 
concept learning to create a general hypothesis describing the H-Group in contrast to 
the L-Group.  The hypotheses are then instantiated to create new candidate solutions.  
In the final step, a new population is assembled from old and new individuals, and the 
process is repeated until stopping criteria are met. 

Very successful initial implementations of the learnable evolution model sparked 
development of the third generation of LEM software, called LEM3. It extends many 
ideas found in the original LEM methodologies, some of which are unique in the field 
of evolutionary computation. The general flow diagram of LEM3’s algorithm is 
presented in Figure 6. In addition to components found in standard evolutionary 
computation methods, such as generation of an initial population, evaluation of 
individuals, and selection of individuals, LEM3 includes several novel components. It 
dynamically selects one or more innovation methods to create new individuals. These 
methods are: learn & instantiate, the aforementioned main mechanism for creating 
new individuals in LEM3; probe, to apply traditional operators such as mutation and 
crossover, search locally, to apply a user-defined local search method; and 
randomize, to add to the current population a number of randomly created individuals, 
or restart the evolutionary process.  One of the major novelties of LEM3 is the ability 
to automatically adjust representation space through constructive induction [49][50]. 

 
 

 
 

Fig. 6. Diagram of the LEM3 algorithm (reproduced from [49]). 
 

In Advances in Machine Learning I,  Koronacki, J., Ras, Z.W., Wierzchon, S.T. and Kacprzyk, J. (Eds.), 3-22, Springer-Verlag, 2010. 
Original version available at spsringerlink.com



 
Theoretical and experimental work indicates that LEM is particularly suitable for 

optimization problems in which the fitness evaluation is costly.  This is because of the 
trade-off between significantly shorter evolution length [25][52], and more complex 
learning and instantiation when compared to simple operators used in evolutionary 
computation. Moreover, the use of machine learning to guide evolutionary 
computation extends the applicability of LEM. For example, because of the use of 
AQ21 as a learning module in LEM3, it is able to handle optimization problems 
naturally described using different types of attributes (nominal, structured, ordinal, 
cyclic, interval, ratio, and compound) and background knowledge provided to the 
learning program [51]. 

A class of LEM-based systems for heat exchanger optimization has been 
developed.  These include the ISHED system for optimizing evaporators and ISCOD 
system for optimizing condensers [4][10].  These specialized systems combine LEM’s 
learning and instantiation operators with specialized probing operators that are 
specifically designed to work with heat exchangers.  Based on the ISHED and ISCOD 
systems, Michalski and Kaufman proposed a general LEMd methodology for 
optimizing complex systems [31]. 

6   Inductive Databases and Knowledge Scouts 

Imagine a database system that can answer queries about items not present in the 
database. By applying inductive learning to data and background knowledge stored in 
the database an inductive database is able to answer such queries. In fact, an inductive 
database system should integrate many inductive and deductive reasoning methods on 
data and knowledge stored in the database. Results of reasoning are added to the 
existing knowledge in the database and can be reused when answering further queries. 
The latter feature distinguishes the concept of inductive databases proposed by 
Michalski and his collaborators, from those often found in literature. The key idea 
behind inductive database is one of knowledge system that combines database and 
knowledge base. The term knowledge system signifies integration of database and a 
relevant knowledge base to support knowledge mining and knowledge application. 
Knowledge bases contain knowledge created by experts and knowledge generated by 
inductive learning operators applied to data in the database and to knowledge in the 
knowledge base. 

The idea of inductive database originated in 1980s through development of 
computer systems QUIN [28][46], ADVISE [27], and AURORA [7]. It was later 
extended in the inductive database system INLEN (INference and LEarNing) [7][14], 
and most recently in its successor, VINLEN [12][15]. Both INLEN and VINLEN 
provide interfaces that allow users to access knowledge system and apply knowledge 
generation and application operators, as depicted in Figures 7 and 8. 
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Fig. 7. The INLEN system main menu. 

 
 

A knowledge scout is a script that allows intelligent search for answers in an 
inductive database [11]. It usually involves multiple steps of inductive reasoning and 
knowledge application in which one step depends on results of previous steps. One 
script language that can create knowledge scouts is knowledge generation language 
(KGL) developed within the INLEN system [12]. The second generation of such a 
language is knowledge query language (KQL) which is being implemented in the 
VINLEN system.  One way of interpreting knowledge scouts is that they are 
intelligent agents operating inside the inductive database, whose purpose is to seek 
requested relevant knowledge. 

Through knowledge scouts or a graphical interface, the users of VINLEN have 
access to numerous operators for data and knowledge manipulation, knowledge 
creation, and knowledge application. These operators are grouped in categories such 
as learn description, improve rules, learn trees, create clusters, apply statistics, 
generate equations, and determine optima. Each of the categories consists of multiple 
operators, as shown in Figure 8.  Because of the large variety of different operators 
and forms in which they generate knowledge, VINLEN is oriented so that the results 
of one operator are understood by other, applicable, operators. This enables the 
creation of knowledge scouts in which operators are applied to the results of applying 
other operators. 

At the time that this chapter is being written, the VINLEN system is still under 
development, and new operators and functionalities are being added. This work 
follows the original design outlined by Ryszard Michalski. 
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Fig. 8. The VINLEN system graphical interface. 

 
 

7   Theoretical Aspects of Machine Learning 

With his Theory and Methodology of Inductive Learning [22], Michalski defined 
several axes on which to categorize the inductive process, including input type 
(classified examples or unclassified observations), data types, whether or not 
counterexamples were presented, the types of covers learned and their relation to each 
other, and the use of original or constructed attributes.  In this framework, he utilized 
VL1-style languages to express learned knowledge with high comprehensibility, 
which could be employed in concept learning, conceptual clustering, qualitative 
prediction, integrated qualitative and quantitative discovery, etc. 

But more than that, he was fascinated by how we learn, for only through such an 
understanding could machines be made to truly emulate human learning process.  He 
collaborated with numerous cognitive scientists, and among the fruits of this 
collaboration were the logic and theory of plausible seasoning [2], and the inferential 
theory of learning [23]. 

To utilize both of these ideas, Michalski noticed that we store many concepts in 
hierarchies.  If an entity about which you are trying to extrapolate knowledge is a 
close relative (e.g., they share a common parent or grandparent in the hierarchy) of an 
entity whose characteristics you know, it stands to reason plausibly that the unknown 
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entity may share characteristics similar to those of the known entity.  Minnesota is 
near Iowa.  They grow lots of corn in Iowa.  Maybe they grow lots of corn in 
Minnesota too.  Conversely, Arizona is far from Iowa and has a hotter, drier climate.  
They probably don’t grow much corn there. 

Thus, similization and dissimilization operators allow the induction of relationships 
between objects and concepts through the traversal of concept hierarchies.  The 
inferential theory extended this idea by viewing all learning operators as 
implementers of knowledge transmutations, which would perform various tasks upon 
the network of hierarchies.  Generalization would climb a hierarchy, while 
specialization would descend it.  Abstraction would select only certain available 
information about an entity, while concretion would restore such information.  Other 
transmutations would alter the hierarchies themselves and their interrelationships. 

On these theoretical foundations, it was possible to explore the integration of 
diverse knowledge transmutations and their associated learning strategies into 
multistrategy systems.  It is no coincidence that Ryszard Michalski was a prime 
impetus behind the first workshops, conferences and books on multistrategy learning. 

8   Education 

Given his belief in understandable knowledge representations, it is natural that Dr. 
Michalski also sought to educate all comers in the wider field of machine learning.  
Behind his impetus, the Machine Learning and Inference Laboratory produced a 
series of educational tools that could also serve as a springboard for research in the 
field. 

In 1986, he entered into an agreement with representatives of the Boston Museum 
of Science to produce an introduction to and demonstration of inductive learning.  
The result was ILLIAN, a system that presented five different learning programs: AQ, 
INDUCE, CLUSTER, SPARC and ABACUS (see section 4).  For each of these, the 
user was able to accept challenges on the types of problems these programs were 
capable of solving, and then create their own problems in the same toy domains and 
witness the programs’ performance on them.  They could also see brief descriptions 
of the learning algorithms used. 

ILLIAN toured eight cities as part of the exhibition “Robots and Beyond: The Age 
of Intelligent Machines” before permanently taking root in Boston.  Counters had 
been installed to track usage, and a report after the tour had concluded indicated that 
the program had been run over half a million times. 

ILLIAN was oriented toward the general public, who may have had no AI 
exposure.  In order to allow users go somewhat further into depth, an expanded 
version of the system, called EMERALD [9] doubled as a research tool.  More 
complex problems were displayed and available to the user to create for the learning 
programs.  EMERALD was displayed at classes in several countries, and distributed 
to hundreds of interested institutions.  A recent reimplementation of one of 
EMERALD’s modules, AQ, with a modern graphical interface is offered in the iAQ 
program [39][44], one of whose screens is presented in Figure 9. 
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Fig. 9. A screen from the iAQ program. 

 

9   Conclusion 

In his research on machine learning, Ryszard S. Michalski contributed through new 
theories, algorithms, and organizational skills.  He looked at problems differently than 
most researchers, which provided the field with his unique perspective, allowing him 
to originate several directions of research.  Many of these directions, such as 
conceptual clustering, constructive induction, or natural induction, continue to evolve 
all over the world.  His vision of the field has inspired many. 

Perhaps the most important aspect of his research concerns the understandability of 
knowledge created by machine learning systems.  While a majority of researchers in 
the field agree with this principle, very little has been actually done in this direction.  
Researchers construct more and more complicated models that slowly expand the 
barrier of predictive accuracy, and at the same time are often not understandable even 
by other researchers in the area.  Dr. Michalski’s ideas of natural induction or 
knowledge mining deserve further research in order to win back comprehensibility 
along with predictive accuracy. 

This chapter briefly describes what we believe are some of the most important 
contributions of Dr. Michalski to machine learning research. It is, however, not 
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possible to give enough attention to many important aspects of work that appeared in 
over 350 publications.  In the references section of this chapter, readers can find many 
important works, some of which are already considered classic in the field.  Among 
the “conceptual offspring” worth mentioning, but not included in this chapter are: 
variable-precision logic, two-tiered concept representation, dynamic recognition, 
attributional ruletrees, dynamic interlaced hierarchies, and many others. 

A comprehensive review of applications of natural induction and conceptual 
clustering is in a recent technical report [34].  Descriptions and lists of publications of 
the mentioned works and the many works of Dr. Michalski not mentioned here are 
maintained at the website of the GMU Machine Learning and Inference Laboratory, at 
http://www.mli.gmu.edu. 
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