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Abstract

This report describes an evolutionary approach to distributed planning by transport agents.
These agents, representing trucks, autonomously decide on their transport orders by interacting with
cargo agents representing containers. The agents use a guided evolutionary computation method,
called the learnable evolution model, to create transport plans and render optimized decisions on
which cargo to transport. The model is implemented within the PlaSMA multiagent simulation
platform, and evaluated experimentally.
Keywords: PlaSMA, Multiagent-based Simulation, Autonomous Logistics, Learnable Evolution
Model, Evolutionary Computation

1 Introduction

Unprecedented growth of transportation and logistics networks in recent years calls for a shift in planning
and control methods. Centralized planning approaches are gradually becoming less suited to handle
the complexity of entire logistics networks. This is specifically true with the frequent occurrence of
unexpected events which constitute disruptions to existing plans. When centralized approaches are
used, often entire global plans need to be re-computed which may be very time consuming, and, in
practice, infeasible. To remedy this situation, a highly distributed agent-based approach to logistics has
been proposed [HW07]. This approach assumes autonomy in decision-making of agents that are acting
on behalf of logistic entities. As a consequence of the renunciation of a centralized planning strategy
the approach has been shown to be robust in the sense that it allows for the handling of unexpected
irritations at the local level of individual agents.

The problem considered in this report is defined from the perspective of a freight forwarding agency
which needs to handle a continuous dynamic flow of transport orders for freight containers. New orders
arrive at the system on a regular basis at a certain sub set of storage facilities that are geographically
distributed over the federal territory of Germany. The model assumes, that two subsequent transport
orders need to be handled for each container introduced in the scenario. The first order comprises the
transport of a full container without further distinction of containers with respect to enclosed contents.
The second, subsequent order comprises the return transport of the empty container after unloading at
its initial delivery target facility. Therefore, the system incorporates aspects of reverse transportation.

In order to handle the transport orders which have already been successfully acquired from customers,
the freight forwarding agency is to employ exclusively its own fleet of transport vehicles. Therefore, the
considered scenarios thus far factor out the delegation of transport orders to sub-contractors as additional
handling modality. The freight forwarder operates a homogeneous transport fleet of semi-trailer trucks
which are equipped to carry exactly one freight container at a time. Thus, each operated truck can
only be in either of the two states empty or fully-loaded. For the scope of the experiments presented
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in this report, the simplifying assumption has been introduced that these trucks can be operated on a
continuous 24/7 basis1.

This report introduces an agent-based distributed control system which autonomously handles the
processing of incoming transport orders. The main contribution of this work however lies in the adoption
of a domain-agnostic guided evolutionary optimization method for the local formation of pickup and
delivery plans for individual trucks in the freight forwarding agency’s transport fleet.

The remainder of this report is structured as follows: The next section provides details with regard to
order (re)valuation and strategies employed for selection of transport orders. For the latter, the greedy
order selection implemented in the baseline transport agents is sketched briefly. Subsequently, the focus
is shifted to a detailed description of the transport plan optimization approach adopted by the group of
planning transport agents. Section 3 then gives a brief overview of the implementation of the freight
forwarding agency as multiagent system and discusses in particular the adoption of the learnable evolution
model in the context of the presented application scenario. Hereafter, Section 4 presents experimental
results from multiagent based simulation with the PlaSMA simulation system2 [GOB07,WPG+10].
Three configurations of transport agents have been tested in scenarios that are differentiated by the
size of the order inflow over the course of simulation runs. These configurations are: homogeneous
deployment of greedy transport management agents, homogeneous deployment of planning transport
management agents, and balanced, heterogeneous deployment with equal-sized sub-groups of both types
of agents operating in the same scenario. An extensive analysis of the simulation results shows the
advantages of the planning approach. Section 5 concludes with a discussion of results.

2 Autonomous Control of Container On-Carriage

The presented multiagent-based autonomous control system for a freight forwarding agency adopts
a system design consisting of two parts that jointly determine the emerging system behavior. These
are 1) an intra-system approach to the valuation (prioritization) of pending transport orders which are
active in the system, and 2) local selection of orders for handling deliveries with particular trucks in the
transport fleet.

These two components can be understood as falling into separate areas of responsibility. While the
intra-organizational order valuation is part of order management, the operative order handling, which for
the purposes of this report subsumes order selection, is part of transport management. This distinction
is introduced here as it is reflected in the agent-based implementation of the autonomous control system.
In particular, the system design comprises two primary classes of logistic agents which each handle one
of the aforementioned management tasks. Transport agents each authoritatively act on behalf of a
single truck and manage its intra-company order selection, acquisition and subsequent operative order
handling. These agents rely on an adequate valuation of pending transport orders as this constitutes the
foundation of their respective approach to order selection, be it a simple greedy approach as employed
by the baseline transport agent version or a more sophisticated planning approach. Order management
agents, which constitute the second primary agent class, are short-lived representatives for pending
orders and as such, are responsible for the valuation - or prioritization - of their respective transport
order.

The following sections introduce the mechanics of order valuation by the order management agents and
the mechanics of order selection and planning by the transport management agents. One important
aspect and to some extent prerequisite of the series of experiments to be described in Section 4 has
been to establish an effective interplay of the deployed valuation and planning strategies leading to the
emergence of a stable behaviour of the whole freight forwarder multiagent-system under the considered
order inflow scenarios. In particular, part of the evaluation of conducted experiments refers to the
correlation of system parametrization and the waiting times for the assignment of pending transport
orders.

1Future experiments will account for down-times that are either due to service and shift changeover or mandated by law
and other constraints.

2PlaSMA web site: http://plasma.informatik.uni-bremen.de

http://plasma.informatik.uni-bremen.de
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2.1 (Re-)Valuation of Transport Orders

Since the implementation of transport management agents that act for the freight forwarder assumes
that transport agents select the most profitable orders, other orders with lower associated contractual
order value may never be selected for transport. From the global point of view of the freight forwarding
agency, such a system behavior evidently violates contract agreements with customers that the company
has committed to obey when the orders where acquired in the first place.

Therefore, the forwarding agency requires an effective mechanism which is designed to ensure a timely
handling of all pending transport orders. As the orders which are considered in this report do not yet
specify a contractually fixed delivery time frame, timely in this context denotes that the system should
be designed such that all orders should be handled in what would be considered a sensible global time
window, e. g. 48 hours. The following text outlines an approach which is based on an autonomous
revaluation of transport orders, which emanates from the original real valuation of the orders in terms
of monetary value. However, while retaining the monetary pretense, the values whose calculation
is introduced hereafter should be understood solely as a means of intra-organizational prioritization
of orders. In particular, the approach does not assume additional monetary flows between process
stakeholders, i. e. the customers placing orders and the freight forwarding agency.

Having clarified the notion of value, the employed revaluation approach can described in detail.

The transport management agents internally consider the order value, which can be understood as an
intra-company priority, for order selection, such that, assuming a sufficiently large number of transport
agents and thus managed means of transport, each order will eventually be selected for transport as its
value increases with time. The order value of an order to transport a particular container is calculated
as follows:

value(order, t) = price(order) + prior+(order, t) (2.1)

value(order, t) is computed as sum of a first component price(order) which constitutes the initial
order price agreed between customer and forwarder (cf. Equation (2.2)) and a second component
prior+(order, t) for the oder revaluation based on the period of time the cargo has already been waiting
to establish a transport contract (cf. Equation (2.3)).

The initial order price is thereby computed as follows:

price(order) = d · (c0 + r · distance(order)) (2.2)

The constant c0 thereby denotes fixed costs for the operation of a semi-trailer truck, while the constant
r denotes variable operating costs per kilometer. In the experiments described in Section 4, these
parameters have been chosen as c0=110,00e and r=1,42e. The length of a transport tour, i. e.
the distance(order) from pickup to delivery point is measured in kilometers3. Finally, in order to
accommodate the two considered ’types’ of containers which are associated with transport orders –
those with regular content and those which are due to be returned empty to their original storage facility
– the dampening factor d has been introduced. It is set to 1 for full and 0.25 for empty containers.

So, for instance, the initial price for transporting a full container from Bremerhaven to Bremen (64 km)
amounts to 200,88e.

prior+(order, t) is a function which increases the value of a container depending on the time it has
already been waiting. The idea is that for containers which are kept waiting for a longer period of time,
the term prior+(order, t) at some point begins to dominate the initial order price significantly such
that due to their addition in Equation (2.1), such containers receive preference over those which have
only recently been prepared for shipping. While in general the function prior+(order, t) can be very
sophisticated and use prediction of travel times, time windows used in contracts, penalties, and the like,
a comparatively basic version shown below has been used for the initial set of experiments.

prior+(order, t) = wc(order) · tα (2.3)
3The distances between vertices in the transport network used in simulation experiments are based on Google StreetMap
distances which have been entered as attributes of edges in the graph. Thus, even though the employed transport network
uses a simplified model of the German motorway system, the distances between modeled track segments are a close
approximation of the real distances
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The constant weight wc has thereby been selected as follows: wc(orderfull)=0.3 for full and wc(orderempty)
= 0.05 for empty containers. The power is selected as 2.0.

So, for example, the value of an order for the transport of a full container which was left waiting 10
hours exceeds the real order price by about 30,00e. However, if the container is left waiting for 2 days
(48 hours), its value already exceeds its original price by 691,20e.

2.2 Selection of Transport Orders

The transport management agents which have been briefly introduced in the preceding sections are
routinely faced with the challenge to autonomously render decisions that determine their respective
operative transport planning. Although this report concentrates on a particular transport planning
approach based on an evolutionary optimization method, a simple non-planning type of transport agent
which effectively employs a greedy order selection strategy has been implemented as a baseline for
the measurement of transport management performance. Sections 2.2.1 and 2.2.2 outline both order
selection strategies.

A common assumption, which is deemed reasonable within the bounds of a single freight forwarding
agency, is that the transport management has access to the entire momentary order situation which
comprises the pending orders which are waiting for processing at the distinct storage facilities. The
data is conditioned as a lookup table indexed by transport endpoint pairs which point to a priority
queue of orders which belong to the given transport relation. The priority is measured in the respective
order value as introduced in the preceding section which is updated in regular intervals by the order
management agents.

2.2.1 A Baseline Approach to Order Selection

The baseline transport management agents which have been implemented as part of the freight forwarding
agency employ a greedy order selection strategy. Upon initialization, they scan the full set of pending
transport orders and identify the most profitable order as calculated by

bestOrder(t) = arg max
Orders(t)

[

gains︷ ︸︸ ︷
(value(order, t) (2.4)

− (cost(start(order), dest(order)) + cost(pos(truck), start(order)))︸ ︷︷ ︸
costs

) ]

where Orders(t) is the set of all pending transport orders at time t. Once the best order has been
identified, the resulting actions which need to be executed by the managed truck can be immediately
derived. Two cases can be distinguished:

1. The most profitable order is associated with a transport relation whose starting point corresponds
to the momentary position of the truck. In this case, no separate pickup tour is required and it
holds that costPick(pos(truck), order) = 0.00e; and

2. a real pickup tour is required in order to subsequently handle the selected transport order.

The choice of the next transport order to be handled is repeated each time a truck that is managed by
a greedy transport management agent reaches a storage facility, either upon completion of its most
recent delivery or a pickup tour. The latter case has significant potential negative implications with
regard to the efficiency of the greedy-based operation, as without further restrictions, the agents are
actually allowed to reconsider their previous delivery choice, either due to the fact that the originally
desired orders have been assigned over the course of the pickup tour or other more lucrative options
have materialized. Thus, in order to prevent that greedy order selection leads to a behaviour where
the agents primarily keep performing pickup tours without ever getting to execute the transports that
led to these pickup tours in the first place, the following restriction has been introduced for the greedy
strategy: If a truck has just completed a pickup tour which corresponds to an empty ride between
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storage facilities and the originally planned delivery cannot be executed from there, choose the most
profitable order whose transport starts at the current location of the truck. Only if no such orders exist
in the system, fall back to the standard greedy behaviour.

2.2.2 A Planning Approach to Order Selection

Planning transport management agents are routinely faced with the challenge to autonomously render
decisions that determine their respective transport plans. These decisions thereby pertain to a choice of
adequate action alternative, the options being for each decision point 1) choosing a transport order
whose pickup point is the currently considered storage facility, or 2) postponing that choice and relocate
to another storage facility.

In essence, the transport agents need to choose which transport order to pick at a specific time and
location. That choice is thereby guided by the gains and costs of transporting the container associated
with the order. Therefore, by choosing orders in an optimized way, an agent can maximize its financial
balance. The behavior of the transport management agents is thus the result of series of constitutive
decisions. This initial situation calls for provident planning in which a transport agent considers several
steps ahead.

The transport management agents seek an optimized pickup and delivery plan with a planning horizon
of size n. Formally, such a plan is defined as:

plann = (action1, action2, . . . , actionn) : actioni ∈ Deliveries ∪ EmptyRides (2.5)

Deliveries thereby refers to the set of possible delivery actions as determined by the pending transport
orders which have previously been acquired by the transport forwarding agency. EmptyRides by contrast
refers to the set of possible empty journeys between storage facilities. Thus, a transport plan as defined
above can blend deliveries and empty drives where the latter can often be interpreted as pickup tours.

The space of valid transport plans is specified by means of constraints.

1. Let start : Deliveries∪EmptyRides→ SF define a function which returns the source location
of a particular plan step (i. e. in the case of proper orders, the pickup site). Let further dest :
Deliveries ∪ EmptyRides→ SF define the complementary function which returns the target
location of a plan step (for proper orders, the delivery site). In both cases, SF thereby constitutes
the set of storage facilities in the given scenario.
As a first constraint that must hold in admissible transport plans is that:

∀i = 1 . . . n : start(actioni) 6= dest(actioni). (2.6)

The rationale here is that hitherto both types of actions that can be carried out as plan steps,
i. e. empty relocation from one storage facility to another and execution of a delivery, comprise a
non-circular movement of the truck in question. Thus, a single plan step may neither consist of a
round-trip nor of a rest or waiting period at a particular storage facility.

2. A further constraint ensures that the tour specified by a valid plan is contiguous which means that
short cycles are precluded by this constraint which thus acts as a sub-tour elimination constraint.

∀i = 1 . . . (n− 1) : dest(actioni) = start(actioni+1) (2.7)

where the actioni denote the tuple elements of a plan as defined in Equation (2.5).
It is however possible for transport tours to revisit certain locations since loops are allowed by the
formulation. For instance, let Loca, Locb ∈ SF , then
plan3 = (Del(Loca, Locb), Empty(Locb, Loca), Del(Loca, Locb)) is an admissible plan with a
first delivery from A to B, followed by an empty return trip and another delivery from A to B.

The short example provided with the last constraint thereby shows, that in contrast to common traveling
salesman formulations, admissible plans in our context may but not necessarily need to be round trips
beginning and ending at a dedicated home depot.
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The value of a particular transport plan as defined above is thereby determined as follows, based on
Equation (2.1):

value(plann) =
n−1∑
i=0

value(actioni+1) · (n− i)α (2.8)

value(action) =
{
value(order, t)− cost(start(action), dest(action)) : action ∈ Deliveries

−cost(start(action), dest(action)) : action ∈ EmptyRides

Equation (2.8) shows that the value of the complete transport plan is a weighted sum of the values of
the respective plan steps actioni. The parameter is thereby used to determine a concrete weighting
scheme. For instance, if α = 0, all plan steps are given equal weight in the calculation of the value for
the complete plan.

For the scope of the experiments however, the value has been chosen as α = 2.0. As a consequence,
the initial steps of the plan are given a much higher weight. This is due to the fact that, the transport
agents reconsider their current transport plan each time they reach another storage facility during their
pickup and delivery tours. Thus, it is expected, that plans are changed on a regular basis which increases
the importance to optimize in particular the plan steps immediately ahead.

2.2.3 The Guided Evolutionary Approach to Planning

The learnable evolution model (LEM) is an evolutionary optimization method that employs machine
learning to direct the evolutionary process [Mic98,Mic00]. Specifically, LEM creates general hypotheses
indicating regions in the search space that likely contain optimal solutions and then instantiates these
hypotheses to generate new candidate solutions. In order to apply machine learning, LEM creates two
groups of individuals that are respectively high- and low-performing according to the fitness function
being optimized. These individuals can be selected from the current population or a combination of
current and past populations of individuals. The group of high-performing individuals is called H-Group
and the group of low-performing individuals is called L-Group. Once the groups are selected, LEM applies
concept learning to create a general hypothesis describing the H-Group in contrast to the L-Group. The
hypotheses are then instantiated to create new candidate solutions. In the final step, a new population
is assembled from old and new individuals, and the process is repeated until stopping criteria are met.

Very successful initial implementations of the learnable evolution model sparked development of the
third generation of LEM software, called LEM3. It extends many ideas found in the original LEM
methodologies, some of which are unique in the field of evolutionary computation. The general flow
diagram of LEM3’s algorithm is presented in Figure 2.1 on the following page. In addition to components
found in standard evolutionary computation methods, such as generation of an initial population,
evaluation of individuals, and selection of individuals, LEM3 includes several novel components. It
dynamically selects one or more innovation methods to create new individuals. These methods are:

1. Learn & Instantiate, the aforementioned main mechanism for creating new individuals in LEM3;
2. Adjust representation, to change the discretization of numeric attributes;
3. Probe, to apply traditional operators such as mutation and crossover;
4. Search locally, to apply a user-defined local search method;
5. Randomize, to add to the current population a number of randomly created individuals, or restart

the evolutionary process.

One of the major novelties of LEM3 is the ability to automatically adjust the representation space
through constructive induction [Woj07,Woj08].

Theoretical and experimental work indicates that LEM is particularly suitable for optimization problems
in which the fitness evaluation is costly. This is because of the trade-off between significantly shorter
evolution length [Mic00,WM06], and more complex learning and instantiation when compared to simple
operators used in evolutionary computation. Moreover, the use of machine learning to guide evolutionary
computation extends the applicability of LEM. For example, because of the use of AQ21 as a learning
module in LEM3, it is able to handle optimization problems naturally described using different types
of attributes (nominal, structured, ordinal, cyclic, interval, ratio, and compound) and background
knowledge provided to the learning program [Woj09].
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Select population

CONTROL MODULE
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Randomize
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Stop

Figure 2.1: A top-level flowchart of LEM3, adapted from [MWK07].

In addition to general LEM implementations, a class of LEM-based systems for heat exchanger optimiza-
tion has been developed. These include the ISHED system for optimizing evaporators [YDWK10] and
ISCOD system for optimizing condensers [DYKM04,KM00]. These specialized systems combine LEM’s
learning and instantiation operators with specialized probing operators that are specifically designed to
work with heat exchangers. Based on the ISHED and ISCOD systems, Michalski and Kaufman proposed
a general LEMd methodology for optimizing complex systems [MK06].

2.2.4 Employing LEM3 for Transport Planning

In the presented research, transport agents use LEM3, the newest implementation of the learnable
evolution model [WM06], to search plan space. Since LEM3 is a multipurpose library for evolutionary
optimization, its application for a particular planning problem in a target application-domain presupposes
both an adequate representation of the planning problem and the provision of a problem-specific weighting
function which allows LEM3 to determine the significance of candidate solutions which are created over
the course of the evolutionary optimization process. The problem definition for the application of LEM3
in the presented context currently incorporates:

1. the storage facility where the truck for whom the planning is conducted is located at the time of
planning,

2. a complete list of storage facilities where transport orders may be pending (i. e. this list comprises
both such facilities where pending orders are momentarily in stock and those which are effectively
unused at the moment), and

3. the size of the plan horizon.

It is very basic for the time being as the additional encoding of further domain knowledge, such as the
structure of the transport network where the passed storage facilities are geographically located, has
been postponed in order to focus initially on the engineering of a stable and extensible coupling of LEM3
and the system components using the library. Based on the problem definition, as given by a list of
possible locations to visit, and background knowledge, LEM3 searches for the best plan as illustrated in
Figure 2.1. It starts with an initial population of candidate plans, which is randomly generated. Due to
the aforementioned reduced problem definition these candidates constitute what has been referred to as
plan skeleton rather than a fully-fledged transport plan. This concept can be formalized and related to
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the definition of proper transport plans in Equation (2.5) as follows, assuming a plan horizon of size n:

planSkeleton(plann) = (dest(action1), dest(action2), . . . , dest(actionn)) (2.9)
≡ (storage1, storage2, . . . , storagen)

A plan skeleton is thus a n-tuple of storage facilities. However, with regard to the planning problem,
only a sub-set of the set of all plan skeletons of size n is admissible in terms of compliance with the
following constraints:

1. ∀i = 1 . . . (n− 1) : storagei 6= storagei+1 since all actions in proper plans involve a relocation of
the truck between two distinct storage facilities, either via an empty ride or a proper delivery of a
container.

2. pos(truck) 6= storage1 where pos(truck), storage1 ∈ SF . In particular, the storage facility
where the truck is located at planning time must not be identical with the first storage facility in
the plan skeleton.

For application in plan optimization, the aforementioned constraints have been implemented as part
of the problem-specific LEM3 integration. As a consequence, after the creation of new candidate
solutions, LEM3 is enabled to detect the number of constraint violations and filter inadmissible solutions
immediately.

Since these plan skeletons without additional processing do not describe directly any particular plan which
can be evaluated, an unequivocal conversion into a proper transport plan needs to be established. This
conversion is possible due to two assumptions. First, transport plans always have as origin the current
location of the associated truck which corresponds to a storage facility (pos(truck)). In addition, as the
transport agent seeks to maximize its financial balance for each plan step, it is rational to choose the
most profitable action alternative using a function bestAction : SF ×SF → Deliveries∪EmptyRides
which accepts transport end points as input and returns either most profitable real transport order, or,
as a fall-back if no orders with the specified transport endpoints currently exists in the system, the
empty drive order. Then, based on a plan skeleton, the corresponding plan is:

plann = (bestAction(pos(truck), storage1), . . . , bestAction(storagen−1, storagen)) (2.10)

The transformation from plan skeletons which constitute the plan suggestions created iteratively by LEM3
into proper candidate plans from the point of view of the planning agent is a mandatory prerequisite in
order to apply the domain-specific weighting function which is used to evaluate candidates and thus
drives LEM’s search in the space of possible plans. The approach which is currently applied with the
integration of LEM3 is basically to out-source the weighting function from the library to the planning
agent as user of the library which is also equipped with the required domain-specific knowledge to
execute the candidate valuation.

In order to directly calculate the value of a suggested plan skeleton, the following Equation (2.11) can
be applied:

value(planSkeletonn) = balance(bestAction(pos(truck), storage1)) · nα (2.11)

+
n−1∑
i=1

[balance(bestAction(storagei, storagei+1)) · (n− 1)α]

The function balance : SF × SF → Euro thereby takes the current order value (which for all orders
that have been kept waiting for some time is higher than the initial order price, cf. Section 2) and
subtracts the operation costs for the execution of these orders.

Once plans have been evaluated, LEM3 checks stopping criteria (reached desired value of plan or the
maximum length of evolution is reached).

In learning mode, LEM3 employs machine learning in a three-tier process of creating new candidate plans.
First, high- and low-scoring candidate plans are selected according to their value to serve as positive
examples (H-Group) and negative examples (L-Group) for learning, respectively. Then, machine leaning
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Listing 1 Example for the basic ontological modelling of the employed transport agents and their
respective managed truck.

1 <!-- http://plasma.informatik.uni-bremen.de/owl/lem_germany.owl#TZI_Logistics -->
2 <tlo:Company rdf:about="#TZI_Logistics">
3 <tlo:isOwnerOf rdf:resource="#Truck_TZI_001"/>
4 ...
5 </tlo:Company>
6 ...
7 <!-- http://plasma.informatik.uni-bremen.de/owl/lem_germany.owl#TZI_Operator_001 -->
8 <tlo:SoftwareAgent rdf:about="#TZI_Operator_001">
9 <rdf:type rdf:resource="&tlo;ObjectAgent"/>

10 <tlo:operatesFor rdf:resource="#TZI_Logistics"/>
11 <tlo:representsObject rdf:resource="#Truck_TZI_001"/>
12 </tlo:SoftwareAgent>
13 ...
14 <!-- http://plasma.informatik.uni-bremen.de/owl/lem_germany.owl#Truck_TZI_001 -->
15 <lem_shared:LEMTruck rdf:about="#Truck_TZI_001">
16 <rdf:type rdf:resource="&tlo;StorageFacility"/>
17 <tlo:storageCapacity rdf:datatype="&xsd;float">1.0
18 </tlo:storageCapacity>
19 <trans:maximumVelocity rdf:datatype="&xsd;integer">100
20 </trans:maximumVelocity>
21 <tlo:maximumPossibleVelocity rdf:datatype="&xsd;integer">120
22 </tlo:maximumPossibleVelocity>
23 <tlo:hasOwner rdf:resource="#TZI_Logistics"/>
24 <tlo:positionedAt rdf:resource="&graph;Kassel"/>
25 </lem_shared:LEMTruck>

is applied to induce a general hypothesis differentiating between these two groups of candidate plans.
Specifically, LEM3 uses the AQ21 rule learning system [WMKP06] to create a set of rules describing
high-value plans. Finally, the rules are instantiated to produce new candidate plans that are likely to
have high value. In addition, LEM3 optionally employs a probing mode, in which candidate plans are
created using traditional evolutionary operators such as mutation and recombination.

The detailed description of the algorithm and its specific elements is presented by Wojtusiak and
Michalski [WM06,WM05], and Wojtusiak [Woj09,Woj07].

3 Multiagent-based Implementation with PlaSMA

The following section is dedicated to a description of the multiagent system (MAS) which represents the
freight forwarding agency whose operative transport planning is in the focus of this report. The distinct
agent types that comprise the multiagent system are introduced and their description is related with the
order revaluation and transport planning approaches detailed in Section 2. The multiagent system has
been implemented for analysis within the PlaSMA simulation system4. For background information on
PlaSMA, the reader is referred to [WPG+10] and the PlaSMA user guide [GWB+10]. The following
sub sections outline the design of the freight forwarding MAS as used in the experiments, including an
in-depth description of the integration of the LEM3 system. Section 5.1 highlights architectural changes
to the forwarder implementation in a future revision of the introduced multiagent system.

3.1 Transport Management Agents

As the first type of agent that constitutes the freight forwarder MAS, the transport management agent
is designed to authoritatively act on behalf of one particular truck within the transport fleet of the
forwarding agency such that there exists a one-to-one management relation between agent and physical

4PlaSMA web site: http://plasma.informatik.uni-bremen.de

http://plasma.informatik.uni-bremen.de
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object. This relation is kept invariant over time. Listing 1 on the preceding page outlines the ontological
modelling of the freight forwarding company considered in this report, the modelling of one particular
truck from the homogeneous transport fleet and finally the modelling of the transport management
agent itself. Agents of this type are in the focus of this report as they decide on an individual basis
which transport orders they would like to commit to and subsequently execute. Within this report two
sub-types of transport agents have been realized which differ exclusively in their respective strategy for
order selection. That is to say, that both 1) greedy transport agents which implement order selection
according to the specification in Section 2.2.1 and 2) planning transport agents which leverage the
learnable evolution model (cf. Section 2.2.3 on page 9) for the computation of multi-step transport
plans as specified in Section 2.2.2, share a common behaviour architecture whose structure is depicted
in Figure 3.1 on the next page. The top-level behaviour for theses agents is derived from the standard
JADE finite state machine behaviour where individual behaviours that concern specific agent sub-tasks
that frequently occur over the agent life-time, such as the acquisition of information about pending
orders to be handled by the freight forwarder, are encapsulated in dedicated behaviours and the overall
behaviour of the agent is specified by the result-dependent transitions between these behaviours (cf. the
PlaSMA user guide [GWB+10, Chapter 5.5.4] for further details).

The design of the transport management agent can be conceptually partitioned into a planning stage
and an operative stage which are traversed alternatingly. The transport management agents enter the
planning stage whenever their current queue of operative tasks, such as performing an empty ride or a
delivery, has been worked off. In such a situation, the agent actively needs to find a new engagement.
To that end, it starts with an order acquisition process in which it pulls all order-related information
that is required for order selection (cf. Section 2.2) from the company-owned order information service
(OIS) which is described later in Section 3.3. The communication with the OIS thereby follows the
FIPA Query Interaction Protocol [fIPAF02b]. The agent then enters its strategy-specific order selection
behaviour which has been derived from a common planning behaviour base class (cf. Figure 3.1 on
the following page). After a successful planning session which can be conducted without the need for
further communication with external sources, the immediately following activity which may be either an
empty ride or a delivery has been identified. In the latter case, the truck associated with the transport
management agent needs to deliver a container from its current location to a target storage facility as
specified by the transport order.

In the current version of the presented system concept, both types of transport agents adopt a lazy
commitment strategy with respect to the handling of transport orders. This means, that the actual
binding commitment to execute a particular transport order is consciously deferred until the truck
arrives at the pickup point, i. e. the storage facility where the container the order refers to is currently
taken to stock. This strategy was chosen in order to retain for the transport management agent the
flexibility to reconsider and potentially revise earlier transport plans in case more profitable action
alternatives arrive. Thus, before taking action, the order must of course been formally assigned to
the transport agent. Thus, using a later commitment strategy, the transport agent initiates a FIPA
Propose Interaction Protocol [fIPAF02a] with the responsible order management agent to have its order
assignment confirmed and signed.

Once this operation is completed, the agent can switch from the planning back to the operative stage.
Herein, the agent sees to it, that its current queue of operative task defined by its planning stage is
carried out properly. This two-tiered behaviour architecture for the transport management agent has
been chosen deliberately in order to promote reusability of significant parts of the agent code-base
across a variety of scenarios. Even in scenarios where the planning stage of the transport agents needs
to be exchanged due to, for instance, another scheme for order acquisition and planning such as an
iterative multi-tier process, the operative stage may still be reused. Further versions of the transport
management agent architecture will seek to allow an even greater flexibility in the implementation of
the planning stage.

The operative stage of the transport management agent also entails all interaction with the simulation
world model via appropriate world model actions, as described in [WPG+10]. The set of actions used
entails the standard drive action distributed together with the PlaSMA system and additional load- and
unload actions.

From a visual inspection of Figure 3.1 on the next page, it is rendered clear that the current generation
of transport management agents acts independent from peers which are also active within the same
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Figure 3.1: Behaviour specification for planning transport management agents.

environment. That is, event though multiple instances of transport management agents may - and in
the experiments described in Section 4 do - operate under the umbrella of one and the same freight
forwarding agency, these agents can for the time being be thought of as acting in their own best interest.
It should be stated clearly that the focus of this report is to investigate the advantages of a planning
group of transport agents compared to a non-planning base line. However, effective coordination schemes
for the described transport agents are worth studying in the future.

Both implemented types of transport agents may be employed either exclusively for the management of
the whole transport fleet or jointly in what may then be considered a competitive setting. Both have
been employed for the experiments described in Section 4.

3.1.1 Integrating PlaSMA with the Learnable Evolution Model (LEM)

For the planning-enabled transport management agents, section 2.2.4 on page 10 already described
the employment of the multi-purpose evolutionary optimization approach LEM for the specific task of
creating transport plans for the trucks of the considered freight forwarding agency. This section will now
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Listing 2 Definition of the generalized Rosenbrock function in LEM3 source code. Adapted from [Woj04,
p. 21].

1 class rosenbrock_significance : public compute_significance
2 {
3 double compute( Event const & );
4 };
5

6 double rosenbrock_significance::compute( Event const & event )
7 {
8 int i;
9 double re, val, val1;

10 re = 0;
11

12 event.check_value( 0, val1 );
13

14 for( i = 0; i < event.positions()->size() - 1; i++ ){
15 if( event.check_value( i + 1, val ) == true ) {
16 re += 100*(val-val1)*( val-val1 )+(val1-1)*(val1-1);
17 val1 = val;
18 }else{
19 cout << "error computing significance" << endl;
20 }
21 }
22 return 1 / ( re + 1 );
23 };

discuss the technical aspects of the coupling of the newest member of the LEM system, named LEM3,
with PlaSMA agents.

The user guide for the LEM3 implementation of the Learnable Evolution Model [Woj04] offers two
methods which may be applied to employ LEM3 as a general-purpose system in the context of a
particular application. Both methods thereby involve the definition of a problem-specific fitness function.
The first method relies on an external dedicated program which is used to calculate the fitness function
and is due to communicate with LEM3 running as additional standalone program via structured text
files. In the second method, the user extends the vanilla LEM3 code-base with an additional class which
implements the custom fitness function as shown in Listing 2. This extra class is linked with LEM3
into one executable file. For the LEM3 integration considered for this report, the first option, i. e. a
simplistic, file-based communication between standalone programs was considered as to inefficient due
to the I/O-overhead, in particular in the light of application scenarios where large groups of transport
management agent employ LEM-based planning within the same scenario. The second extension option
was not directly applicable in the intended planning scenario as well. This is to some extent due to the
technical constraint that the problem-specific significance function which is required for the transport
planning problem is by no means as self-contained as for instance the paradigmatic significance functions
shown in the LEM3 user guide (cf. [Woj04, p. 21]). It rather depends on domain-specific knowledge
supplied by and an interpretation of candidate solutions (candidate plans) performed by the actual users
of the LEM3 system in the application scenario, namely the respective transport management agents.

Therefore, a third methodology to embed LEM3 as a planning sub-system into PlaSMA agents has
been adopted which retains the general extension scheme introduced by the former methods, that
is to out-source the significance function from the main LEM3 code by basically 1) extending the
class compute_significance, 2) provide the means to configure LEM3 runs using a custom problem
description and parameterization, and finally 3) invoke the execution such carefully prepared LEM3 runs,
thus obtaining the desired optimized transport plans.

The technical approach has been to compile the LEM3 C++ code base as a shared library which
can be dynamically loaded by individual Java-based transport agents upon startup as a native library.
Communication with this LEM3 library is thereby established via a custom-tailored API built on top
of the Java Native Interface (JNI) [Lia99]. The realized Java/C++ bridge which couples agent and
LEM3 code thereby reflects the distinct task areas which have already been outlined briefly in the
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Listing 3 Native LEM3 invocation method used in the planning behaviour.
1 public native int runLEM(final String currentPosition,
2 final String[] locationsList,
3 String[] optimizedPlan);

preceding paragraph. As a new LEM3-API, it can be effectively distinguished in two sub-APIs for the
actual LEM-based optimization of transport plans (LEM3-Pl) and the preceding configuration of a
LEM-invocation which is internally referred to as LEM3Run (LEM3-Conf ). LEM3-Pl comprises 1) a
native method which can be called in the planning behaviour of LEM-enabled transport agents; and
2) a callback method which can be invoked from the C++ LEM3 side in order to determine the value of
particular candidate plans. Thus, the API allows both calling LEM3 from the agent Java code and -
entwined - call agent Java code from LEM3. LEM3-Conf additionally provides a set of getter function
that can be used by LEM3 to query details of the LEM3 parameterization. That is, by means of the
agent-specific configuration within the scenario configuration as shown in Listing 4 on the next page, it
is possible to specify the most important parameters for the LEM3 system.

An invocation of the LEM3 sub-system is realized via a call of a native function within the planning
behaviour of the transport management agents. Technically, the LEM3 binding on the Java side is
realized via a dedicated class LEM3Bridge which encapsulates the native function declaration and
exposes callback methods which later allow the LEM3 C++ code to retrieve configuration parameters
and call the method which effectively constitutes the custom significance function. The signature for
the latter function is thereby defined via a Java interface LEM3Callback which is implemented by the
planning behaviour that employs the LEM3 sub-system. Upon its instantiation at the very beginning
of the agent life cycle, a new LEM3Bridge instance is created which is passed the callback for the
significance computation and an additional object of class LEM3Configuration which stores all the
information required to prepare a concrete LEM3 run. In order to describe the LEM3 bridge in more
detail, it is probably best to explain step-by-step. At the start of a LEM3 operation, the planning
behaviour of the respective transport management agent calls the native method with the signature as
shown in Listing 3.

It provides both the current storage facility for the managed truck and an array of storage facilities
active within the considered scenario as primary input parameters. Both are encoded as plain string
representations of the respective ontology individuals used in PlaSMA to define the physical world
model. The additional array optimizedPlan is initially empty and is filled by LEM3 with the best
computed candidate plan encoded as a plan skeleton as introduced in Section 2.2.4 on page 10. Once
the native function has been invoked by the agent, a new LEM3Run is instantiated which represents
the configuration for a LEM experiment. First an internal representation of the problem domain is
constructed. The domain contains the names of the storage facilities as nominal values. The next step
is to produce a number of attributes, one for each step in the candidate plans5. The next step in the
preparation of the LEM3Run is its proper parameterization. In the standalone LEM3 executable detailed
in the LEM3 user guide, parameters are passed as command line arguments. In the presented use of
the system the respective parameters are rather set directly via the respective functions exposed by the
LEM3Run object. For a complete list of regular LEM parameters, the reader is referred to the LEM3
user guide [Woj04]. For the concrete optimization problem considered in this report, only a sub set of
available public parameters was used6, namely:

lem_population_size [50] the overall population size of active candidate solutions (or rather candi-
date plans) (cf. LEM3 user guide [Woj04, p.6]);

lem_no_children [30] the number of children which are brought to life in each iteration (cf. LEM3
user guide [Woj04, p.6]);

lem_no_generations [20] the maximum number of generations which may be created in finding an
optimized candidate solution (cf. LEM3 user guide [Woj04, p.6]);

lem_selection_method [POPULATION_BASED] the selection method for choosing members of the
groups of high- and low-performing individuals (cf. LEM3 user guide [Woj04, p.9])

5These attributes are consequently labeled Step_1 to Step_n for a candidate plan of length n.
6Default values are given in square brackets.
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Listing 4 Example configuration for a LEM-enabled transport management agent with all optional LEM
parameters redefined explicitly. Below, for comparison, a configuration for a simple greedy transport
agent.

1 <MAPPINGS>
2 ...
3 <SIM_OBJECT description="Transport Management Agent (1)" enabled="true">
4 <CREATION_DATE>1230883200000<!-- Fri, 02 Jan 2009 08:00:00 GMT --></CREATION_DATE>
5 <ONT_INSTANCE>TZI_Operator_001</ONT_INSTANCE>
6 <CLASS> org.tzi.plasma.toolkit.truck.agent.Agent_TruckManagement</CLASS>
7 <!-- Agent Mode Selection -->
8 <ATTRIBUTE description="order selection strategy"
9 key="run_mode" value="simulation_lem"/>

10 <!-- LEM Parameterization -->
11 <ATTRIBUTE key="lem_population_size" value="50"/>
12 <ATTRIBUTE key="lem_no_children" value="20"/>
13 <ATTRIBUTE key="lem_no_generations" value="30"/>
14 <ATTRIBUTE key="lem_selection_method" value="FITNESS_BASED"/>
15 <ATTRIBUTE key="lem_sel_not_included" value="SELNI_P"/>
16 <ATTRIBUTE key="lem_random_events" value="0"/>
17 <!-- Planning Parameterization -->
18 <ATTRIBUTE description="Desired length of plan sequence generated by LEM"
19 key="lem_plan_length" value="3" />
20 <ATTRIBUTE description="Whether or not to log LEM performance to DB"
21 key="lem_log_performance" value="true"/>
22 <ATTRIBUTE description="Absolute file system path to LEM3 library"
23 key="lem3_lib_path" value="~/SFB/scenarios/lem3_lib/Release/liblem3.jnilib"/>
24 </SIM_OBJECT>
25 <SIM_OBJECT description="Transport Management Agent (2)" enabled="true">
26 <CREATION_DATE>1230883260000<!-- Fri, 02 Jan 2009 08:01:00 GMT --></CREATION_DATE>
27 <ONT_INSTANCE>TZI_Operator_002</ONT_INSTANCE>
28 <CLASS> org.tzi.plasma.toolkit.truck.agent.Agent_TruckManagement</CLASS>
29 <!-- Agent Mode Selection -->
30 <ATTRIBUTE description="order selection strategy"
31 key="run_mode" value="simulation_greedy"/>
32 </SIM_OBJECT>
33 ...
34 </MAPPINGS>

In order to have the chance to introduce a more explorative character to LEM’s search of the plan space,
it was further decided, also to consider the following non-public parameter:

lem_random_events [0] The number of random candidate solutions, for diversification of the search
process (not documented in LEM3 user guide)

Besides these two sets of parameters which are used to shape the evolutionary search to be executed by
the LEM system, the following more general parameters were introduced as well:

lem_plan_length the desired length of candidate plans/plan skeletons that are generate throughout
the search process; and indirectly

lem_random_seed the random seed which passed to LEM3 before the start of the search for an
optimized candidate plan.

All of the aforementioned parameters but the lem_random_seed can be defined by the experimenter
on a per-agent basis via the configuration of the transport management agents in the XML-based
scenario configuration (cf. the PlaSMA user guide [GWB+10, Chap. 4] for details). An example for
such a configuration is presented in Listing 4. All of the LEM parameters are optional. If skipped in
the configuration of a particular planning transport management agents, the LEM3 sub-system will
be configured with default parameters. lem_random_seed is the only parameter which is effectively
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configured on a global basis within the scenario configuration. The relevant configuration excerpt
is shown in Listing 5. Each PlaSMA agent may query its local container manager for this explicitly
configured random seed value. It is worth mentioning here, that this seed is specific to particular
simulation runs. That is, for simulations with multiple repeats as shown in the example, a new derived
random seed is generated for each subsequent run.

Listing 5 Configuration of the initial global random seed for a particular scenario (line 8).
1 <SIMULATION xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
2 xmlns:xi="http://www.w3.org/2001/XInclude"
3 xsi:noNamespaceSchemaLocation="config.xsd"
4 name="lem_germany_greedyfleet"
5 simStartTime="1230796800000"
6 repeats="10"
7 maxSimLength="50d"
8 seed="1230796800000">
9 ...

10 </SIMULATION>

All parameters that are relevant for a LEM run are stored in the LEM3Configuration object which is
passed to the LEM3Bridge upon instantiation. The bridge then provided a set of callback functions
(i. e. the LEM3-Conf API) such that after the initial problem definition LEM3 can actively query the
calling transport agent for the desired configuration of the LEM run to be configured. Besides the
configuration of the LEM3 system itself, it is also possible to configure the entailed AQ21 rule learning
system [WMKP06], which as mentioned before, is employed in the context of LEM to discriminate low-
and high-performing candidate plans and thus guides the evolutionary search process. However, for the
scope of experiments presented in this report, a standard AQ21 parametrization has been employed.

The final step in the configuration process is to pass the desired problem-specific significance function to
be used for the LEM run. For transport planning, the new class route_significance has been derived
from the the abstract LEM base class compute_significance. However, in terms of functionality with
regard to the actual computation of the significance of candidate plans, the C++ class constitutes only
a thin wrapper which uses the evaluation function

Listing 6 Signature of LEM3 callback method used for valuation of candidate plans.
1 /** The evaluation function called by LEM
2 * @param plan The plan which needs to be evaluated.
3 * @return The value of the plan. */
4 double evaluatePlan(final String[] plan);

declared by the LEMCallback and implemented by the calling transport agent planning behaviour to
calculate the value of the passed candidate plan or plan skeleton according the the specification presented
in Section 2.2.4 on page 10.

The same section also presented prerequisites for admissible candidate plans which need to be enforced by
the LEM3 sub system. The system does that by means of a filter process for newly generated candidate
plans. To that end, the class plan_significance also overrides the default compute_constraints
method which is passed a new candidate plan and is then by specification supposed to compute its
number of domain-specific constraint violations. The filter for candidate plans consequently eliminates
all plans for which any constraint violations have been detected. The concrete implementation of the
compute_constraints method used for the experiments presented in this report is shown in Listing 7
on the next page.

3.2 Order Management Agents

Besides the transport management agents which have been described thus far, the second major type of
agent which acts in the context of the freight forwarding agency, is the order management agent. Agents
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Listing 7 Constraint computation on candidate plans in LEM3.
1 double route_significance::compute_constraints(Event const & event) {
2

3 double constraint_violations = 0; // returns number of constraints violated
4

5 string val1;
6

7 // Step 1: Initial position should be distinct from first location in
8 // solution sequence.
9

10 if(event.size() >= 1){
11 event.check_value(0,val1);
12 if(val1 == this->currentPosition){ constraint_violations+=1.0; }
13 }
14

15 string val2;
16

17 // Step 2: Consecutive locations in the solution sequence should be distinct.
18

19 for (uint32_t i = 0; i < event.size() - 1; i++) {
20 event.check_value(i, val1);
21 event.check_value(i + 1, val2);
22 if (val1 == val2){ constraint_violations+=1.0; }
23 }
24

25 return constraint_violations;
26 }

of this type are short-lived dedicated managers overseeing both the initial and the reverse transport for
particular containers. Both transports are thereby represented by self-contained transport orders. Order
management agents are instantiated on an on-demand basis whenever a new container is introduced
into the system.

They are responsible to register their respective transport orders with a company-wide order information
service described in the following section. Subsequently, they control the revaluation of their transport
orders as a function of waiting time, as described in Section 2.1, thus ensuring that their orders will be
delivered eventually.

Besides actively managing the prioritization of their respective orders via revaluation, the transport
management agents are passive in that they wait for transport management agents to initiate a transport
contract negotiation via a FIPA Propose interaction Protocol [fIPAF02a]. When approached by a
transport management agent, it is first checked within the scope of the interaction protocol whether
appropriate storage space is currently available at the transport delivery site. This kind of information
is acquired from an agent managing the respective storage in a dedicated FIPA Request Interaction
Protocol [fIPAF02c] interlaced with the enclosing interaction protocol. In case storage space is available,
it is reserved immediately which means that the prerequisites for haulage by the enquiring transport
agent are fulfilled and a binding transport agreement is reached. If, however, the storage space at the
destination site is currently unavailable, the inquiring transport management agent is given a negative
response. Also, the transport management agent temporarily suspends its transport order from the list
of pending orders held by the order information service of the transport agency and stalls the order
revaluation. The order management agent than waits for a notification from the agent managing the
destination site that space has become available once more before re-entering its order into the system
and resuming normal operation.

During container transport, the load management agent has a monitoring behaviour which in future
iterations of the freight forwarder implementation may be extended to supervise the transport progress
of the managed container. So far, the transport management agents remains passive during transport.
However, once the initial transport of the full container has been completed, the agent initiated the
unloading of the container contents by request to the location management agent for the respective
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container location by means of an FIPA Request Interaction Protocol [fIPAF02a]. Once notification
from the latter agent has been received, indicating that the unloading has succeeded, the transport
management agent internally creates the follow-up transport order for the recirculation of said container.
Besides the implications for order-revaluation outlined in Section 2.1, the handling of this new order is
analogous to the first case.

3.3 Order Information Service

The order information service, in the following abbreviated as OIS constitutes a comparatively simple,
reactive agent which provides a company-wide data base of pending transport orders that need to be
handled by the forwarding agency.

If an order management agent wants its container to be delivered, it can register with the OIS as
explained before. When a shipment contract with a transport management agent to deliver the container
has been agreed upon, the aforementioned transport order will be unregistered and taken off the list.
Transport management agents can gain access to this list - the momentary oder situation - by means of
engaging into a FIPA Request Interaction Protocol [fIPAF02c]. In response, the OIS will inform the
truck agent about the momentarily pending transport orders. The data structure which is provided by
the OIS is a hash map which uses tuples of transport endpoints as keys. Stored for each key is then a
priority queue of orders with the transport endpoints specified by the respective key. Priority is thereby
determined by the value (prioritization) of the transport orders.

In the initial phase of creating the multiagent-based freight forwarding agency, it was a conscious design
decision to indeed implement a dedicated agent as central point of contact for transport management
agents that seek to obtain an overview of the global order situation of the freight forwarding agency as
their starting point for individual active order acquisition. Since transport management agents, order
management agents and the OIS are operated by one and the same company, privacy concerns can be
neglected. On the other hand, the information acquisition process performed before each planning step
is reduced to a single interaction with the OIS, rather than having to approach the load management
agents individually.

3.4 Location Agent

The location agent manages all storage facilities within the scenario. Upon initialization, this agent
creates dedicated handling behaviours for each location. The location management behaviour handles
both registration and de-registration requests from load and truck agents when a truck or a container
arrives at or departs from the location. New containers will be generated by the load generation
behaviour. If a container was successfully delivered and returned, it must be removed from the scenario
by the load consumption behaviour. The trans-loading process (unloading content from the container) is
simulated by simply wasting some time in the trans-loading behaviour before responding to the request.

Besides acting as representative of storage facilities and thus partaking in the presented scenario as a
proper simulation actor, the location agent additionally also plays the role of a load generator. In this
role, it is responsible for the fabrication of containers in the simulations, their initial inventarization
into the stock of storage facilities, the creation of the respective transport order and the transport
management agent to manage the handling of this order.

4 Simulation Experiments and Evaluation

In order to thoroughly evaluate the performance of the transport management agents which employ
LEM3 for their respective route planning relative to the greedy transport management agents as baseline,
the multiagent-based freight forwarding implementation was tested with different transport planning
strategies and two different order inflow scenarios within the multiagent-based simulation environment
PlaSMA.
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Listing 8 Paradigmatic ontological modelling for a storage facility located at the city of Bremen.
1 <!-- http://plasma.informatik.uni-bremen.de/owl/lem_germany.owl#Bremen_Storage -->
2 <tlo:StaticStorageFacility rdf:about="#Bremen_Storage">
3 <!-- Asserted Concepts -->
4 <rdf:type rdf:resource="&trans;ISOContainerStorage"/>
5 <!-- Scenario-agnostic Modelling -->
6 <tlo:representedBy rdf:resource="#LocationManager"/>
7 <tlo:positionedAt rdf:resource="&graph;Bremen"/>
8 <tlo:storageCapacity rdf:datatype="&xsd;float">100.0</tlo:storageCapacity>
9 <!-- Scenario-specific Modelling -->

10 <lem_shared:loadGeneration rdf:datatype="&xsd;string">PERIODIC
11 </lem_shared:loadGeneration>
12 <lem_shared:loadGeneration rdf:datatype="&xsd;string">ONETIME
13 </lem_shared:loadGeneration>
14 <lem_shared:stockReceiptRate rdf:datatype="&xsd;int">1
15 </lem_shared:stockReceiptRate>
16 <lem_shared:loadGenerationInterval rdf:datatype="&xsd;string">6h
17 </lem_shared:loadGenerationInterval>
18 </tlo:StaticStorageFacility>

As a common basis for all simulation experiments, where experiment in this context refers to the
batch-execution of multiple repetitive runs of a particular simulation with the same environmental setup,
order inflow parameterization and forwarder configuration and parametrization, a basic but nevertheless
realistic traffic network has been employed which is specified as an annotated directed graph. This graph,
which is distributed as part of the PlaSMA releases, covers the federal area of Germany and contains
359 nodes and 1044 edges. The nodes comprise, besides pure traffic junctions and path subdivisions
(309 nodes) the major cities of Germany (50 nodes). The edges constitute a traffic network which
represents a significant excerpt of the German motorway network (750 edges). Federal roads (152 edges)
and inner-city roads (28 edges) are implemented to a much lesser degree in order to connect motorway
sections or cities to the motorway network.

4.1 Distribution and Configuration of Storage Facilities

Such a generic traffic network can be integrated into specific scenario specifications due to OWL’s
modularity and import mechanisms. Therefore, in modelling the scenario infrastructure for the simulation
experiments in this report, it was rendered possible to concentrate on the specification of stationary
logistic resources, in particular the allocation of static storage facilities at the cities modeled by the traffic
networks graph. For the scope of the presented experiments, the assumption was made, that each city
should host exactly one storage facility. Listing 8 shows the detail modelling of one paradigmatic storage
facility which is located at Bremen. As the focus of the simulation experiments was on the analysis of
the performance of the LEM3-based planning approach employed by the transport management agents
and the system behaviour which emerges in respective settings rather than creating a highly detailed
and accurate representation of a particular, real logistic environment, the decision was rendered to keep
the modelling of the storage facilities generic with respect to specializations such as inland- or sea ports,
pure distribution centers, manufacturing industry sites, warehouses run by end customers and the like.

Instead, the only relevant modelling parameters are the overall storage capacity of a particular storage
facility which was specified as 100 container units for all storage facilities in the scenario, and scenario-
specific parameters which are used to control the external intake of new orders on a per-facility basis.

loadGeneration specifies whether or not there exists an external intake of new transport orders. If an
intake actually exists for the storage facility, it is possible to further specify the characteristics of
the order intake. Allowed values are:
NONE The storage facility does not feature an external intake of new orders. Thus, it may only

act as a destination facility for full container transports and subsequently source facility for
the respective empty reverse transports.
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Figure 4.1: Germany-wide traffic network with allocated storage facilities employed in experiments.
Facilities with blue or green-colored roofs are active facilities with an external intake of transport orders.

ONETIME The storage facility features an external one-time intake of new transport orders at the
beginning of a simulation scenario.

PERIODIC The storage facility features a continuous external intake of new transport orders every
n hours.

It is also possible to configure storage facilities such that they have both an ONETIME and a
PERIODIC intake of new transport orders.

stockReceiptRate This parameter indicates how many new containers and transport orders should
emerge at the storage facility, each time the order generation is invoked.

loadGenerationInteval This parameter defines the time interval in hours between back-to-back
periodic order generations.

For the concrete experiments which have been conducted for the report, a sub-set of 10 storage facilities
has been configured as facilities with an external intake of transport orders. These have been chosen
based on their geographic location in the transport network such that a good distribution of order intake
could be established in the scenarios. In Figure 4.1, these active storage facilities have been highlighted
in the scenario visualization via blue and green roofs instead of the beige roof used for passive storage
facilities.

The two different colors for the active storage facilities are a visual marker that allows the distinction
between such storage facilities with low order intake (blue roof in Figure 4.1, e.g. Berlin_Storage)
and high order intake (green roof in Figure 4.1, e.g. Bremen_Storage). For the concrete experiments
presented in this report, two different base configurations have been used as shown in Table 4.1 for the
respective order intake parameterization which has been encoded in adapted scenario ontology files.

4.2 Configuration of the Forwarder Transport Fleet

Besides the configuration of the storage facilities and their characteristics in the scenarios to be used
over the course of the experiments reported here, it is also necessary to configure a concrete transport
fleet for the considered freight forwarding agency. All experiments feature a homogeneous transport fleet
of 16 trucks which can transport a single container at a time as shown in Listing 1 on page 12. Due to
the ontological modelling the trucks are all located in Kassel and start their operations from there.
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Parameter Active, Low Order Intake Active, High Order Intake Passive, No Order Intake

Base Scenario 1: scenario_germany_prod.5h.12h.owl

# Facilities 4 6 36
lem_shared:loadGeneration onetime,periodic onetime,periodic none
lem_shared:stockReceiptRate 1 container/order 1 container/order –
lem_shared:loadGenerationInteval 5 hours 12 hours –

Base Scenario 2: scenario_germany_prod.6h.12h.owl

# Facilities 4 6 36
lem_shared:loadGeneration onetime,periodic onetime,periodic none
lem_shared:stockReceiptRate 1 container/order 1 container/order –
lem_shared:loadGenerationInteval 6 hours 12 hours –

Table 4.1: Employed parameterizations for the external transport order intake at storage facilities.

For the experiments, three types of configuration with respect to the transport management agents that
are employed to act on behalf of the trucks in the transport fleet have been considered. First, there is a
baseline configuration where all 16 trucks are managed by greedy transport agents. Second, there is
a configuration where all 16 trucks are instead managed by transport agents which employ LEM3 for
individual route planning. Finally, a third, if you like ’competitive’ scenario, has been created where 8
trucks respectively are managed by agents of either type. The latter scenario was chosen specifically to
analyze the emergent effects of mixing order selection strategies of different complexity.

With regard to the parameterization of the LEM3 sub-system, the decision was rendered to run the
initial experiment with generic default parameters as shown in Listing 9 so as not to have the greedy
baseline approach compete with a LEM3-based route-planning which has not been specifically tuned
for the task at hand. It is thus possible to focus on standard, off-the-shelf LEM performance for the
first iteration of experiments. Details of all LEM3 parameters are described in the program’s user’s
guide [Woj04, Section 2.2, pp. 6].

Listing 9 LEM3 Parametrization which has been used throughout the entire the experiment series.
1 # population_sizes=(20 50 100)
2 population_sizes=(50);
3 # no_children=(20 50 100)
4 no_children=(20);
5 # no_generations=(10 20 50 100)
6 no_generations=(30);
7 # selection_methods=("POPULATION_BASED" "FITNESS_BASED")
8 selection_methods=("POPULATION_BASED");
9 # sel_not_included=("SELNI_P" "SELNI_H" "SELNI_D")

10 sel_not_included=("SELNI_P");
11 # random_events=(0 5 10)
12 random_events=(0);
13 # plan_lengths=(3 5 7)
14 plan_lengths=(3);

4.3 Experiment Configuration and Execution

For the final experiment setup, given the degrees of freedom introduced in the two preceding sections,
namely two base scenarios which differ in terms of the amount of orders that need to be handled by
the freight forwarding agency, three different configurations of transport management agents, and an
invariant set of parameters for the LEM3 sub-system, therefore comprised six individual experiments. Each
experiment features ten back-to-back simulation runs where each run simulates the freight forwarder’s
operation over a time period of 60 days. In the following, the results of these experiment runs is
presented which have been conducted via a batch-operation of the PlaSMA simulation system in roughly
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Unit: Euro/60d Mixed Transport Fleet LEM Transport Fleet Baseline Transport Fleet

LEM3 Route Planning

Σ Costs (µs ± σs) 604.538, 72± 739, 14 1.201.645, 21± 1.458, 77 –
Σ Gains (µs ± σs) 925.267, 01± 11.488, 05 1.812.161, 93± 11.188, 17 –
Σ Balance (µs ± σs) 320.728, 29± 10.748, 91 610.516, 72± 9.729, 40 –

p.A. Bal. (µs ± σs) 40.091, 03± 4.158, 33 38.157, 29± 4.398, 14 –

Baseline Order Selection

Σ Costs (µs ± σs) 612.301, 91± 353, 71 – 1.212.916, 38± 670, 98

Σ Gains (µs ± σs) 878.460, 30± 7.207, 34 – 1.788.508, 59± 10.634, 67

Σ Balance (µs ± σs) 266.158, 39± 6.853, 63 – 575.592, 21± 9.963, 69

p.A. Bal. (µs ± σs) 33.269, 80± 5.160, 81 – 35.974, 51± 4.794, 69

Fleet Bal. (µs ± σs) 586.886, 68± 17.602, 54 610.516, 72± 9.729, 40 575.592, 21± 9.963, 69

Table 4.2: Financial results of the employment of different transport management approaches, measured
in Euros per 60 days.

ten hours of real time on a standard PC with a 2.8 GHz Intel Core i7 CPU (with four cores) running the
Linux-version of PlaSMA under Ubuntu Linux 10.04 (64bit).

4.4 Experiment Results

This section presents experimental results divided by the two considered scenarios that have been
introduced above. The evaluation of the particular experiments is based on a sub-set of a comprehensive
system of performance indicators7 which have been logged by the transport management agents (20
indicators), the order management agents (7 indicators) and the order information service agent (3
indicators).

The presentation of the experiment results comprises different tiers. In the first tier, Table 4.2
(Section 4.4.1) and Table 4.6 on page 31 (Section 4.4.1) present a financial view upon the operations of
the freight forwarding agency, both from a global company perspective and also the individual agent
perspective. Thereby, these tables oppose the three considered transport management configurations
introduced in Section 4.2. The data in the tables 4.3 (Section 4.4.1) and 4.7 (Section 4.4.2 on page 30)
provide a supplemental analysis which allows for the detailed breakdown of the allocation of possible
types of transport orders which is of particular interest in a competitive setting where both transport
management approaches that have been introduced in previous chapters are employed concurrently.

In the second tier, the focus of the analysis is shifted towards the pickup times for those containers
associated with different types of transport orders. The incentive here was to get a feeling for the
processing times given different order inflow scenarios. The results of this part of the evaluation are
documented in Table 4.4 (Section 4.4.1) and Table 4.8 (Section 4.4.2 on page 30). Besides the statistical
parameters which present highly accumulated results additional graphics plot the inventory levels at the
active storage facilities as well as a global overview of pending orders and their breakdown in transport
orders for full containers and less valuable empty reverse transports, both over the full course of the
simulation runs. The plots are thereby examples which belong to a single simulation run.

The final tier of the analysis finally is concerned with the distribution of truck operations, that is empty
rides and deliveries, by the transport fleets. The data is presented in Table 4.5 (Section 4.4.1) and
Table 4.9 (Section 4.4.2 on page 30).

4.4.1 Experiment Series I: Scenario with Low External Order Inflow

Fleet-Level Financial Analysis As highlighted in the preceding section, the multi-tier analysis of the
simulation experiments conducted for this report begins with an examination of the financial performance

7internally referred to as keymeasures in PlaSMA, cf. [GWB+10, Chapter 5.5.9]
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Unit: Euro Mixed Transport Fleet LEM Transport Fleet Baseline Transport Fleet

LEM3 Route Planning

Order Price, full (µs ± σs) 677, 58± 279, 03 757, 39± 291, 97 –
CIα : α = 0.05 [672, 18 ; 682, 99] [753, 27 ; 761, 51] –

Order Price, empty (µs ± σs) 183, 5± 70, 81 188, 91± 73, 05 –
CIα : α = 0.05 [182, 26 ; 184, 73] [187, 87 ; 189, 96] –

Baseline Order Selection

Order Price, full (µs ± σs) 847, 98± 279, 10 – 757, 98± 291, 47

CIα : α = 0.05 [842, 22 ; 853, 75] – [753, 85 ; 762, 11]

Order Price, empty (µs ± σs) 201, 58± 76, 25 – 189, 62± 72, 95

CIα : α = 0.05 [199, 60 ; 203, 57] – [188, 56 ; 190, 7]

Table 4.3: Order-level financial results of the employment of different transport management approaches.

of the respective compositions of transport fleets. The data supporting this examination is shown for all
tested fleet configurations in Table 4.2 on the preceding page.

When considering the fleet balance (Fleet Bal. (µs ± σs) in Table 4.2 on the facing page) first, the
direct comparison of the performance of the heterogeneous transport fleets shows a significantly higher
mean overall revenue when using the planning approach, i. e. 610.516,72e vs. only 575.592,21e for
the baseline approach where for both the standard derivation falls short of 10.000e (< 2 %µs). When
broken down to the level of single means of transports, this translates on average to an individual
revenue of 38.157,29e for the planning approach compared to 35.974,21e for the baseline approach.
The data for costs and gains also provided in Table 4.2 on the preceding page also shows that planning
leads to a reduction of operations costs and at the same time an increase in earnings.

When considering the competitive scenario where both the baseline and the planning approach were
employed to equal proportion, the mean overall revenue of 586.886,68e falls between the homogeneous
cases with a tendency towards the weaker fleet performance measured for the baseline fleet. Thus,
while the insertion of planning transport management agents is an effective means to increase baseline
performance, from a purely macro-financial point of view, the pure planning approach is still clearly
preferable. This is especially true as the standard deviation from the mean increases significantly
to 17.602,54e compared to the roughly 10.000e measured for both other fleet configurations. It
is also interesting to note in the competitive scenario that on average, the transport management
agents which employ planning outperform their less provident counterparts with a mean revenue of
40.091,03e compared to 33.269,80e while the standard deviation is also reduced from 5.160,81e down
to 4.158,33e.

Order-Level Financial Analysis Having analyzed the economical performance of the respective
transport fleets on a global level, the focus is now shifted towards an investigation on the level of earnings
from handling individual regular or reverse transport orders. The corresponding data is presented in
Table 4.3.

In a side-by-side comparison of the two cases of heterogeneous transport fleets, the data shows that
the mean per revenues for orders related to the handling of regular and reverse transports are nearly
identical as should be expected given one and the same applied order generation mechanism throughout
the simulation experiments. The mean order price resides at ∼757e with a high standard deviation
of ∼291e for regular transports. The numbers for reverse transports are ∼189e in the mean with a
standard deviation of ∼73e.

In the competitive scenario, the data in Table 4.3 shows that the competition for transport orders across
the two distinct transport sub fleets effectuates an unequal distribution of acquired orders such that
the mean per-order revenue for both regular and reverse transports is significantly higher for the group
of agents that employ the baseline order selection. To be more precise, while the agents that employ
LEM-based planning pocket 677,58e in the mean per regular and 183,50e per reverse transport –
numbers largely consistent with those measured in the planning-only case, the baseline agents manage
to increase their per-order performance significantly compared to the baseline-only case, pocketing
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Unit: hours Mixed Transport Fleet LEM Transport Fleet Baseline Transport Fleet

Wait for Pickup, full (µs ± σs) 7, 317± 8, 011 6, 556± 7, 359 14, 715± 12, 960

CIα : α = 0.05 [7, 204 ; 7, 431] [6, 452 ; 6, 661] [14, 532 ; 14, 900]

Wait for Pickup, empty (µs ± σs) 68, 565± 34, 092 40, 259± 25, 935 98, 730± 32, 640

CIα : α = 0.05 [68, 070 ; 69, 062] [39, 886 ; 40, 632] [98, 254 ; 99, 217]

Table 4.4: Waiting times until a container is picked up.
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Figure 4.2: Distribution of pickup times for containers for the 10 simulation runs with a homogeneous
greedy transport fleet.

847,98e in the mean per regular and 201,58e per reverse order. Taking into consideration the results
presented in Table 4.2 which have been discussed in the preceding paragraph, it is highlighted, that
planning amounts to higher overall revenues, yet lower revenues on the level of individual orders. This is
in fact an effect of the planning evaluating complete transport plans with their multiple tiers in which it
may be acceptable to tolerate lower revenues for certain plan steps when this in return leads to more
attractive follow-up orders.

Pickup Times The data in Table 4.4 and the supplementary plots in figures 4.2, 4.4, 4.3 show that
the LEM-based planning approach leads to a significant improvement of waiting times both for the
pickup of containers for regular and reverse transports.

For the pickup of containers for regular transports, the mean waiting time and the standard deviation is
roughly cut in half, i. e. 6, 556h± 7, 359h for the planning approach compared to 14, 715h± 12, 96h
for the baseline approach. The plots of the distribution of pickup times show in addition, that the
planning has the effect of sliding the distribution of pickup times towards desirable shorter response
times. In particular, the tail of the distribution is rendered much less pronounced. The effect is also
clearly visible in the curve progression of the respective cumulative distribution functions. While in
general, the measured effect of the proposed planning approach is thus substantiated. Figure 4.3 on
the next page also shows that single outlier cases exist for which the pickup times are worse than for
those measured in the baseline (Figure 4.2) or mixed case (Figure 4.4 on the next page). This effect,
namely a significant improvement for the vast majority of cases and, at the same time, the emergence
of detached particularly bad cases, is replicated as well with the pickup times for reverse transports
analyzed next.
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Figure 4.3: Distribution of pickup times for containers for the 10 simulation runs with a homogeneous
planning transport fleet.
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Figure 4.4: Distribution of pickup times for containers for the 10 simulation runs with a heterogeneous
transport fleet.

First, consulting Table 4.4 on the facing page, it is shown that the reduction in waiting time is
pronounced with respect to the mean (40, 259h vs. 98, 73h), yet less pronounced for the respective
standard deviation (25, 935h vs. 32, 64h) – a result backed by the data from the scenario with higher
order inflow, as shown in Table 4.4 on the preceding page. The introduction of planning agents into
the system both erodes and moves the pronounced peak in the distribution of pickup times of ∼ 120h
for the homogeneous baseline fleet down to ∼ 90h for the heterogeneous transport fleet and finally
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Figure 4.5: Top row : Inventory Levels of pending orders at active storage facilities (where h means high
order inflow and l low order inflow) on the left, and global development of pending orders in the system
over the course of a simulation run, here for the greedy transport management approach. Middle row :
The same plots for the mixed transport management, and finally in the bottom row : the results using
LEM3-based transport planning exclusively. For all scenarios, the plotted results are taken from the first
out of ten simulation runs.

∼ 60h for the homogeneous planning fleet. In the process, the pickup times become much more evenly
distributed and a peak for very low pickup times is taking shape. Therefore, the planning shows a
significant positive effect on the handling times of the transport fleets which is again highlighted in
the curve progression of the cumulative distribution functions. Yet, pure planning produces even more
pronounced cases, seldom as they may be, with vastly substandard pickup times.

The data from the simulation experiments therefore seems to suggest, that actually a well-adjusted
combination of both employed approaches to transport management yields a satisfactory system behaviour
with regard to the pickup times. Otherwise, the planning approach would need to be enhanced such
that outlier cases can be effectively handled.

Stock Levels and Active Orders In contrast to the evaluation of the conducted experiment with
respect to the total revenue, the pickup times or the handling operations which are based on a table-based
presentation of condensed data, the analysis of both the inventory levels at active storage facilities
and the total amount of active orders within the system is based on paradigmatic plots in Figure 4.5,
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sampled from single simulation runs.

The plots clearly show that with the planning approach the inventory levels of the storage facilities can
be kept significantly lower than as compared to the baseline approach. In that planning case, in the
beginning of the scenario, the stock levels reach the highest values which coincides with the initial high
amount of regular transports in the system generated at the begin of the simulation scenarios. Hereafter,
the system settles down quickly and does not produce further notable spikes over the remaining course
of the scenario. For the baseline case, the stock levels settle down at significantly higher values and the
variability in stock is far more pronounced. The plot for the mixed scenario is basically a middle ground
between the aforementioned cases which underlines the stabilizing effect of the planning transport agents
on the emerging overall system behaviour.

The right set of plots in Figure 4.5 on the preceding page depicts the number of unassigned orders
which need to be handled by the respective transport fleets over the course of a simulation. For all
three configurations of the transport fleet, it holds that the high amount of unassigned orders for regular
transports of full containers is soon, i. e. within the first few days of the simulation, dissipated while at
the same time the number of unassigned reverse transport grows to a multitude of the remaining regular
transports. This is due to the prioritization of the former type of transport via the invariant experiment
parameterization. It was assumed that delivery of goods has premium priority for the freight forwarding
agency while the recirculation of empty containers is less time-critical.

The plots show, that the planning approach to operative transport management leads to a significantly
lower stack of unassigned orders oscillating around 60 compared to roughly 145 for the baseline case.
Also, only in the former case, after the steep initial rise in the number of unassigned orders for empty
container transports, the number can be reduced once more before settling down on a lower level. The
baseline approach leads to significant oscillations for both order types while the planning approach
effectively mitigates to some extent the oscillations in the case of transport orders for full containers, an
effect which is also visible in the mixed scenario.

In all the considered cases, the plots suggest that the order situation which was taken as a basis for
the first conducted set of experiments could be handled effectively in that the amount of unassigned
orders settles down on a certain, although different level rather than growing unboundedly. However, the
planning approach must be considered more efficient in handling orders and thus seems to be able to
handle larger amounts of orders; a hypothesis, which could be confirmed in the second set of conducted
experiments which featured a higher order inflow (cf. Figure 4.9 on page 35).

Transport Operations The data presented in Table 4.5 on the next page shows that the LEM-based
planning approach let to a significant increase in the overall amount of successfully operated container
transports (3.761, 80± 5, 02) compared to the baseline approach (3.661, 20± 5, 49). Even though both
regular and reverse transports were handled by the planning fleet, the data also suggests a tendency
of this approach towards a reduced fraction of regular transports (50, 8 % compared to 51, 8 %) which
becomes more pronounced in more buzzing order situations (cf. Table 4.9 on page 36 in Section 4.4.2).

In spite of the dominance in the raw amount of handled transports highlighted thus far and a slightly
increased total length of delivery tours, the fraction of container transports on all truck operations is in
the mean notably smaller for the planning transport fleet (47, 2 %) than for the baseline fleet (54, 9 %).
These pieces of data seem to suggest that due to the foresight (i. e. always planning three steps ahead),
the agents of the planning fleet are more inclined to interleave regular transport operations with empty
relocations if such a mode of action leads to an increase in individual revenue as shown in Table 4.2 on
page 24. Therefore, the results affirm the expectations given the considered order selection strategies.

When shifting the focus from the analysis of the homogeneous settings where either only baseline or
planning agents were operating in the scenario towards the mixed setting with an equal amount of
both agent types, the first thing to notice in the data presented in the left column of Table 4.5 is the
significant difference in overall operated container transports across both fleets. Both with regard to
regular and reverse container transports, the planning fleet clearly outperformed the baseline, resulting
in 2.267± 15, 93 deliveries for the former vs. only 1.452, 3± 15, 12 deliveries for the latter.

More interesting than the plain amounts of deliveries are the results for the respective fractions of regular
transports on all transport operations and of transports on all truck operations. If only considering data
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Mixed Transport Fleet LEM Transport Fleet Baseline Transport Fleet

LEM3 Transport Operations

Σ Deliv (µs ± σs) 2.267, 00± 15, 93 3.761, 80± 5, 02 –
CIα : α = 0.05 [2.255, 59 ; 2.278, 40] [3.758, 20 ; 3.765, 39] –

Σ Deliv full (µs ± σs) 1.016, 80± 14, 67 1.911, 00± 1, 71 –
CIα : α = 0.05 [1.006, 31 ; 1, 027.29] [1.909, 78 ; 1.912, 22] –

Σ Deliv empty (µs ± σs) 1.250, 20± 12, 59 1.850, 80± 3, 88 –
CIα : α = 0.05 [1.241, 19 ; 1.259, 21] [1.848, 02 ; 1.853, 58] –

Σ Fraction Full (µs) 0, 448 0, 508 –
Σ Fraction: All (µs) 0, 657 0, 472 –

Σ Length Del. (µs ± σs) [km] 960.992, 42± 7.490, 42 1.725.801, 60± 13.041, 15 –
CIα : α = 0.05 [955.634, 1 ; 966.350, 7] [1.716.472, 5 ; 1.735.130, 7] –

Baseline Transport Operations

Σ Deliv (µs ± σs) 1.452, 30± 15, 12 – 3.661, 20± 5, 49

CIα : α = 0.05 [1.441, 49 ; 1.463, 11] – [3.657, 27 ; 3.665, 13]

Σ Deliv full (µs ± σs) 893, 10± 13, 98 – 1.898, 60± 3, 22

CIα : α = 0.05 [883, 10 ; 903, 10] – [1.896, 29 ; 1.900, 91]

Σ Deliv empty (µs ± σs) 559, 20± 12, 36 – 1.762, 60± 7, 28

CIα : α = 0.05 [550, 36 ; 568, 04] – [1.757, 39 ; 1.767, 81]

Σ Fraction: Full (µs) 0, 615 – 0, 518

Σ Fraction: All (µs) 0, 495 – 0, 549

Σ Length Del. (µs ± σs) [km] 746.629, 48± 7.348, 29 – 1.684.940, 17± 11.136, 89

〈CIα : α = 0.05 [741.372, 8 ; 751.886, 1] – [1.676.973, 3 ; 1.692.907, 0]

Table 4.5: Overview of transport operations for trucks managed by different transport agents.

from the mixed scenario, the data shows that the mean fraction of deliveries on all truck operations
is higher for the planning sub fleet (65, 7 %) than for the baseline analogon (49, 5 %). This suggests
that the former fleet actually profits from the competitive setting at the expense of the baseline fleet.
A related result is the planning fleet steals a significant amount of individually less profitable reverse
transports from the baseline fleet. However, as previously documented in Table 4.2 on page 24, given
the specification of the considered simulation model, this does not have a negative effect on the revenue
generated by the planning fleet. On the contrary, it documents the positive effect of planning in a
competitive setting with regard to both capacity utilization and profitability.

4.4.2 Experiment Series II: Scenario with High External Order Inflow

The preceding section discussed the results for the deployment of all three considered approaches to
operational transport planning for a first particular order inflow scenario as introduced in Table 4.1 on
page 23, the focus is now turned toward the alternative order inflow scenario specified in that same table.
The analysis will highlight in particular divergencies from the observations highlighted hitherto which
should provide an understanding of the overall system behaviour under changing economic conditions.

Fleet-Level Financial Analysis Taking up the analysis approach from Section 4.4.1, the multi-tier
analysis of the simulation experiments conducted for this report begins again with an examination of the
financial performance of the respective compositions of transport fleets as a whole. The data supporting
this examination is shown for all tested fleet configurations in Table 4.6 on the facing page.

When considering the fleet balance (Fleet Bal. (µs ± σs) in Table 4.6 on the next page) first, the
direct comparison of the performance of the heterogeneous transport fleets shows a significantly higher
mean overall revenue when using the planning approach, i. e. 866.038,94e vs. only 708,409,97e for the
baseline approach. In comparison to the results for the first set of experiments outlined in Section 4.4.1
on page 24 however, this time the standard deviation – even though still residing at ∼ 3% is notably
higher for the baseline approach (i. e. 10.051,49e for the planning fleet and more than double that
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Unit: Euro/60d Mixed Transport Fleet LEM Transport Fleet Baseline Transport Fleet

LEM3 Route Planning

Σ Costs (µs ± σs) 606.931, 42± 415, 90 1.213.175, 10± 930, 35 –
Σ Gains (µs ± σs) 1.096.546, 40± 15.878, 41 2.079.214, 04± 10.981, 84 –
Σ Balance (µs ± σs) 489.614, 98± 15.462, 51 866.038, 94± 10.051, 49 –

p.A. Balance (µs ± σs) 61.201, 87± 3.856, 59 54.127, 43± 4.415, 25 –

Baseline Order Selection

Σ Costs (µs ± σs) 609.229, 46± 920, 48 – 1.212.536, 08± 885, 16

Σ Gains (µs ± σs) 966.137, 90± 10.248, 10 – 1.920.946, 05± 22.450, 69

Σ Balance (µs ± σs) 356.908, 44± 9.327, 62 – 708.409, 97± 21.565, 53

p.A. Balance (µs ± σs) 44.613, 56± 5.062, 45 – 44.275, 62± 4.347, 73

Fleet Bal. (µs ± σs) 846.523, 42± 24.790, 13 866.038, 94± 10.051, 49 708.409, 97± 21.565, 53

Table 4.6: Financial results of the employment of different transport management approaches, measured
in Euros per 60 days.

value, namely 21.565,53e for the baseline fleet). The data for costs and gains which is also provided in
Table 4.6 shows that this increase in the standard deviation is caused by more variation in the revenue
generated by handling transport orders. Therefore, the data seems to suggest that the planning approach
exhibits better stability in a more demanding market situation. It should be noted further, that in the
considered scenario the planning approach generates slightly higher costs than the baseline approach
which are, however, compensated by the higher revenues.

When considering the competitive scenario where both the baseline and the planning approach were
employed to equal proportion, the mean overall revenue of 846.523,42e comes very close to the
866.038,94e for the homogeneous planning fleet. Thus, compared to the results for the first sets of
experiments, discussed in Section 4.4.1 on page 24, the insertion of planning transport management
agents into an otherwise non-planning baseline fleet yields even more notable positive results in a scenario
with a comparatively strong inflow of transport orders. However, the effect of an increased standard
deviation compared to a fleet operated by planning transport management agents alone which has been
observed before is evident once more in the data presented in Table 4.6.

Also in line with the previously discussed set of experiments, it is again the case that in the competitive
scenario, the transport management agents which employ LEM-based planning on average significantly
outperform their less provident counterparts with a mean revenue of 61.201,87e compared to 44.613,56e
and a lower standard deviation of 3.856,59e compared to 5.062,45e.

More interesting than those raw numbers is a comparison of the per agent performance between
the homogeneous and the mixed setting. Here, the data shows that the baseline agents retain their
performance values with respect to mean revenue while the standard deviation rises, from 4.347,73e up
to 5.062,45e. The planning agents, however, manage to thrive in a situation with less peer competition
and the insertion of baseline agents to compete against. This is documented in the fact that the per
agent revenues rise significantly from a mean of 54.127,43e up to 61.201,87e while at the same time
the standard deviation is reduced from 4.415,25e down to 3.856,59e.

Order-Level Financial Analysis Having analyzed the economical performance of the respective
transport fleets on a global level, the focus is now shifted towards an investigation on the level of earnings
from handling individual regular and reverse transport orders. The corresponding data is presented in
Table 4.7 on the following page.

The side-by-side comparison of the two cases of heterogeneous transport fleets can be neglected as the
data measured for this second set of experiments is concurrent with the corresponding data discussed in
Section 4.4.1 on page 31.

In the competitive scenario, the data in Table 4.7 on the next page shows that the competition for
transport orders across the two distinct transport sub fleets effectuates an unequal distribution of
acquired orders such that the mean per-order revenue for both regular and reverse transports is higher for
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Unit: Euro Mixed Transport Fleet LEM Transport Fleet Baseline Transport Fleet

LEM3 Route Planning

Order Price, full (µs ± σs) 695, 20± 272, 49 758, 93± 291, 44 –
CIα : α = 0.05 [690, 40 ; 700, 00] [755, 09 ; 762, 77] –

Order Price, empty (µs ± σs) 187, 19± 71, 73 189, 18± 72, 95 –
CIα : α = 0.05 [185, 93 ; 188, 44] [188, 20 ; 190, 16] –

Baseline Order Selection

Order Price, full (µs ± σs) 843, 85± 295, 08 – 758, 87± 291, 99

CIα : α = 0.05 [837, 96 ; 849, 75] – [754, 91 ; 762, 83]

Order Price, empty (µs ± σs) 193, 57± 75, 28 – 189, 50± 73, 24

CIα : α = 0.05 [191, 92 ; 195, 23] – [188, 42 ; 190, 58]

Table 4.7: Order-level financial results of the employment of different transport management approaches.

Unit: hours Mixed Transport Fleet LEM Transport Fleet Baseline Transport Fleet

Wait for Pickup, full (µs ± σs) 12, 597± 11, 899 7, 926± 8, 706 40, 820± 24, 855

CIα : α = 0.05 [12, 439 ; 12, 755] [7, 812 ; 8, 042] [40, 482 ; 41, 158]

Wait for Pickup, empty (µs ± σs) 90, 029± 33, 761 53, 832± 30, 718 141, 564± 46, 675

CIα : α = 0.05 [89, 566 ; 90, 493] [53, 418 ; 54, 246] [140, 874 ; 142, 254]

Table 4.8: Waiting times until a container is picked up.

the group of agents that employ the baseline order selection. To be more precise, while the agents that
employ LEM-based planning pocket 695,20e in the mean per regular and 187,19e per reverse transport,
the baseline agents manage to increase their per-order performance compared to the baseline-only case,
pocketing 843,85e in the mean per regular and 193,57e per reverse order. Taking into consideration
the results presented in Table 4.6 which have been discussed earlier paragraph, it is highlighted that
planning amounts to higher overall revenues, yet lower revenues on the level of individual orders. Thus,
the effect already found in the analysis of the low order inflow experiments is affirmed and, given
the increased mean per agent revenues for planning transport management agents, rendered more
pronounced. However, in a market situation with a higher overall inflow of transport orders, the effect
of baseline agents succeeding to earn higher mean revenues from reverse transports is mitigated, while
the tendency of the planning agents to prefer lower-priced regular transports is substantiated and should
therefore be investigated in greater detail in future analyses of the overall system behaviour.

Pickup Times The data in Table 4.8 and the supplementary plots in figures 4.6, 4.8, 4.7 show that
the LEM-based planning approach leads to a significant improvement of waiting times both for the
pickup of containers for regular transports and reverse transports.

For the pickup of containers for regular transports, the mean waiting time and the standard deviation are
both reduced significantly, with 7, 926h± 8, 706h for the planning approach compared to 40, 820h±
24, 855h for the baseline approach. Thus, while the higher inflow of transport orders in this second set
of experiments amounts to an increase in the mean pickup time of under two hours for the case of a
planning transport fleet, compared to the situation with lower order inflow (cf. Section 4.4.1, page 26),
the measured mean time is increased by a factor of ∼ 2.8% for the baseline transport fleet. The plots
of the distribution of pickup times also depict vastly different characteristics. In Figure 4.6 on the next
page, it is shown that for the baseline approach, the distribution of pickup times is quite regular with
only two shallow peaks, the first around minimal pickup times (orders handled just-in-time) and the
second peak around the measured mean. Both peaks are also reflected in the respective cumulative
distribution function. In Figure 4.7 on the facing page, by contrast, there is only a single peak at ∼ 1
hour which is the followed by a very steep incline which leads to 95% of the regular transports being
picked up within 30 hours and thus before the mean measured for the baseline approach. The surplus
value generated through the employment of a planning approach is thus evident in the plots. What is
also rendered obvious in the plot for the planning transport fleet is the long tail of the distribution due
to a very low amount of outlier cases for whom the pickup takes significantly longer than for the vast
majority of cases. This effect has already been described in the analysis of the first set of experiment
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Figure 4.6: Distribution of pickup times for containers for the 10 simulation runs with a homogeneous
greedy transport fleet.
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Figure 4.7: Distribution of pickup times for containers for the 10 simulation runs with a homogeneous
planning transport fleet.

and it is also replicated for the case of reverse transports. It is thus a general side-characteristic with the
planning approach used in the experiments which calls for in-depth causal research in order to enhance
the approach for future experiments. When considering the case of a mixed transport fleet, the plot in
Figure 4.8 on the next page shows that the insertion of planning agents has the effect of ablating the
second peak in the baseline-only distribution and accumulating more weight at the initial peak, thus
bringing the distribution closer to the planning-only case. It is also shown, that the effective value range
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Figure 4.8: Distribution of pickup times for containers for the 10 simulation runs with a heterogeneous
transport fleet.

of the distribution is cut in half.

As a next step of the analysis, focus is shifted from the examination of regular transport towards the
reverse transports. Here, the data presented in Table 4.8 on page 32 shows that in the baseline case,
the mean pickup time for reverse transport is now 141, 564h – an increase of 43 % from the first set
of experiments, with the standard deviation growing significantly as well. The plot in Figure 4.6 on
the previous page also shows, that in the face of the higher order inflow used for the second set of
experiments, the characteristics of the distribution of pickup times for reverse transports deviates from
its analog in the first set of experiments (cf. Figure 4.2 on page 26). The latter was characterized by a
single significant peak around 120 hours with highly uneven slopes, the left featuring a particular long
outlet while the right measured only a fraction thereof. In Figure 4.6 however, the single peak of the
distribution is shifted to the right and the width of both slopes, left and right, amounts to more than
120 hours. What is more, the right outlet bears an even greater weight than the left. This data is an
indication that the number of order which needed to be handled in this set of experiments exceeded the
capacities of the baseline approach. This assessment is backed by the ever growing stock levels and
pending orders within the system, shown paradigmatically in the plots in Figure 4.9 on the next page.

For the case of the planning transport fleet, the mean time for the pickup of reverse transports is 53, 83h
– an increase of 33 % from the first set of experiments. The plot in Figure 4.7 on the preceding page
thereby shows that the basic characteristics of the distribution of pickup times is retained.

The effect of combining both approaches – baseline and planning – to equal fractions in the mixed
transport fleet can, according to the plot in Figure 4.8 be succinctly described as follows: While retaining
the single peak at about 120 hours also found in the baseline case, the majority of the slope from that
case is cleared away, the respective weight of the distribution being transferred to the left slope. As
already noted in the analysis of the first set of experiments, the mixture of approaches also helps to
suppress the undesirable outlier cases which were once again observed when employing only planning
transport management agents.

Stock Levels and Active Orders In contrast to the evaluation of the conducted experiment with
respect to the total revenue, the pickup times or the handling operations which are based on a table-based
presentation of condensed data, for the analysis of both the inventory levels at active storage facilities
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Figure 4.9: Top row : Inventory Levels of pending orders at active storage facilities (where h means high
order inflow and l low order inflow) on the left, and global development of pending orders in the system
over the course of a simulation run, here for the greedy transport management approach. Middle row :
The same plots for the mixed transport management, and finally in the bottom row : the results using
LEM3-based transport planning exclusively. For all scenarios, the plotted results are taken from the first
out of ten simulation runs.

and the total amount of active orders within the system is based on paradigmatic plots in Figure 4.9,
taken from single simulation runs.

For the inventory levels of the storage facilities, the plots clearly show that for the case of planning,
these levels can be kept low. While in the scenario with high order inflow considered here, stock levels
max out at 6–8 containers at a time (cf. Figure 4.5 on page 28), in the low order case the max stock
levels after the initial level-off are at 5–6 containers. In addition, the plots for the respective scenarios
are very similar in their overall characteristics. The plot for the baseline approach in Figure 4.9 shows a
different picture. The transport fleet cannot manage the amount of orders introduced into the system
which leads to linear growth in stock levels at the considered storage facilities. This finding is also
backed by plot of the global number of pending transport orders within the system where the steady
growth of orders is replicated both for regular and reverse transports. Taking also into account the
findings from the preceding section it can be said that the applied load on the forwarding agency was
too much to be handled effectively when employing the baseline approach to transport planning.

With these results in mind, it is interesting to see in Figure 4.9, that the mixed transport fleet in which
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Mixed Transport Fleet LEM Transport Fleet Baseline Transport Fleet

LEM3 Transport Operations

Σ Deliv (µs ± σs) 2.478, 90± 17, 06 4.301, 30± 5, 88 –
CIα : α = 0.05 [2.466, 70 ; 2.491, 10] [4.297, 09 ; 4.305, 51] –

Σ Deliv full (µs ± σs) 1.231, 20± 12, 93 2.194, 50± 1, 92 –
CIα : α = 0.05 [1.221, 94 ; 1.240, 45] [2.193, 13 ; 2.195, 87] –

Σ Deliv empty (µs ± σs) 1.247, 70± 17, 60 2.106, 80± 5, 29 –
CIα : α = 0.05 [1.235, 11 ; 1.260, 29] [2.103, 02 ; 2.110, 58] –

Σ Fraction Full (µs) 0, 497 0, 510 –
Σ Fraction: All (µs) 0, 808 0, 655 –

Σ Length Del. (µs ± σs) [km] 1.074.057, 25± 8.437, 06 1.974.968, 34± 12.396, 29 –
CIα : α = 0.05 [1.068.021, 7 ; 1.080.092, 8] [1.966.100, 6 ; 1.983.836, 1] –

Baseline Transport Operations

Σ Deliv (µs ± σs) 1.740, 70± 12, 80 – 3.824, 70± 80, 48

CIα : α = 0.05 [1.731, 54 ; 1.749, 86] – [3.767, 13 ; 3.882, 27]

Σ Deliv full (µs ± σs) 954, 80± 12, 54 – 2.074, 20± 22, 40

CIα : α = 0.05 [945, 83 ; 963, 77] – [2.058, 17 ; 2.090, 23]

Σ Deliv empty (µs ± σs) 785, 90± 15, 18 – 1.750, 50± 58, 53

CIα : α = 0.05 [775, 04 ; 796, 76] – [1.708, 63 ; 1.792, 37]

Σ Fraction: Full (µs) 0, 549 – 0, 542

Σ Fraction: All (µs) 0, 562 – 0, 574

Σ Length Del. (µs ± σs) [km] 868.476, 87± 6.993, 96 – 1.759.706, 48± 30.745, 97

CIα : α = 0.05 [863.473, 7 ; 873.480, 0] – [1.737.712, 1 ; 1.781.700, 8]

Table 4.9: Overview of transport operations for trucks managed by different transport agents.

baseline and planning transport management agents work side by side leads to a stable system where
both the stock levels at the individual storage facilities and the total amount of pending transport orders
tunes in on a certain level. However, the plot of the stock levels suggests significantly increased peak
amplitudes compared to the planning case. In addition, although the total amount of pending transport
orders levels of after the initial phase of the simulation it does so as already seen in the first set of
experiments at higher levels, i. e. at ∼ 20 regular transport orders (compared to ∼ 15 in the planning
case) and ∼ 140 reverse transport orders (compare to ∼ 90).

Concluding the analysis with regard to pending orders and inventory levels, the superiority of the planning
approach to operative transport planning could be affirmed. While this result for itself bears little
surprise, with this second set of experiments it could also be shown where the baseline approach used in
the experiments has its limits and, in particular, how these limits may be extruded by mixing in planning
transport management agents into a baseline transport fleet.

Transport Operations The data presented in Table 4.9 shows that the planning approach led to a
significant increase in the overall amount of successfully operated container transports (4.301, 30±5, 88)
compared to the baseline approach (3.824, 70± 80, 48). Even though both more regular and reverse
transports were handled by the planning fleet, the data also suggests a tendency of this approach towards
a reduced fraction of regular transports (51, 0 % compared to 54, 2 %).

In addition to the dominance in the raw amount of handled transports highlighted thus far and an slightly
increased total length of delivery tours, the fraction of container transports on all truck operations is in
the mean notably higher for the planning transport fleet (65, 5 %) than for the baseline fleet (57, 4 %).
When comparing these results with their counterparts measured in the first series of experiments with a
lower order inflow (cf. Table 4.5 on page 30), the data suggests that given a higher amount of orders
in the system, the planning transport fleet can substantially improve its truck utilization. To be more
precise, the former fraction of 47, 2 % of transports on all truck operations – the rest being empty
rides – is brought up to 65, 7 %. The data allows for the formation of the assumption, which needs
to be affirmed or disproved by further experiments, that the planning fleet performs particularly well
in scenarios with a high order inflow, potentially even a higher inflow as simulated in the experiments
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conducted for this report. However, the data acquired from the two considered series of experiments
also shows that the goals of high truck utilization, increasing the freight forwarders profitability, and
low pickup times, improving the quality of offered services, are related such that one is faced with a
multi-criterial optimization problem.

When shifting the focus from the analysis of the homogeneous settings where either only baseline or
planning agents were operating in the scenario towards the mixed setting with an equal amount of
both agent types, the first thing to notice in the data presented in the left column of Table 4.9 is the
significant difference in overall operated container transports for both fleets. Both with regard to regular
and reverse container transports, the planning fleet clearly outperformed the baseline fleet, resulting in
2.478± 17, 06 deliveries for the former vs. only 1.740, 70± 12, 80 deliveries for the baseline fleet.

More interesting than the plain amounts of deliveries are the results for the respective fractions of regular
transports on all transport operations and of transports on all truck operations. If only considering data
from the mixed scenario, the data shows that the mean fraction of deliveries on all truck operations is
higher for the planning sub fleet (80, 8%) than for the baseline sub fleet (56, 2%). This suggests that
the former sub fleet actually profits from the competitive setting at the expense of the baseline sub
fleet. A related result is that the planning fleet steals a significant amount of individually less profitable
reverse transport from the baseline fleet. However, as documented in Table 4.6 on page 31, given the
specification of the considered simulation model, this does not have a negative effect on the revenue
generated by the planning fleet. On the contrary, it documents the positive effect of planning in a
competitive setting with regard to both capacity utilization and profitability.

4.4.3 LEM3 in Transport Planning

For both sets of experiments which have been conducted for this report, the LEM3 library has been
employed for the optimization of transport plans as outlined in Section 2.2.4 on page 10 and, with
regard to the technical realization, in Section 3.1.1 on page 14. In particular, as stated in the description
of the experimental setup, LEM3 was run with a standard parameterization throughout the experiments,
i. e. the experiments were not designed as a means to identify a particularly optimized parameterization
for LEM3 but rather to establish the basic feasibility of the approach for autonomous route planning as
new application domain.

As this could be affirmed in the series of experiments conducted for the report, the next step with
regard to the deeper integration of LEM3 is an in-depth analysis of the evolutionary searches which
are performed in order to find optimized route plans for specific means of transport. Figure 4.10 on
the following page shows plots of several showcase searches which have been sampled from a single
simulation run for the high order inflow scenario and a planning transport fleet. These plots render the
computed values for new solution hypotheses (denoted as plan skeletons in Section 2.2.4 of this report)
which are generated by the LEM system during a single optimization process on the Y-axis, with the
X-axis referring to the respective generations, starting at 0. The individuals drawn at an x-value of −1
thereby constitute the initial population created right at the beginning of the search process.

The plots seem to suggest that in all sampled cases, relatively good solutions are found immediately with
the initial instantiation of the solution population. Throughout the following generations improvements
occur, yet they do so very infrequently and seldom bring about significant gains as in the two examples in
the upper right of Figure 4.10. Follow-up experiments must now clarify whether LEM3 actually efficiently
manages to search the solution space or whether it gets stuck with local optima and thus consistently
fails to find better solutions. Another open question is raised by the strong persistence in creating the
same solution hypotheses across back-to-back generations. It needs to be investigated whether this is
due to the application domain or rather an indicator that more variation must be introduced in the
search process by recourse to, for instance, classical mutation operators. Alternatively, it can be an
indicator, that the representation space needs to be extended, using for instance, structured attributes.
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Figure 4.10: Paradigmatic examples for the LEM3 search for an optimized pickup and delivery plan.

5 Conclusion and Future Work

This report presented a methodology for order pickup and delivery planning by autonomous agents. The
agents use the learnable evolution model to create sequences of the most optimal container deliveries.
In the presented model, each container has an assigned value which is updated based on waiting time of
containers. Implementation details of the method also have been presented.

Experimental results indicate that the method performs superior when compared to greedy approach
in which each agent selects the best container at its given location. This result was obtained when
greedy and LEM agents were simulated separately, and in a mixed scenario that combined both types of
agents. These experiments were performed using the PlaSMA multiagent system. The modeled scenario
included 50 major cities in Germany, and a German motorway network with 750 edges.

5.1 Directions for Future Research and Development

Revision of LEM Planning and Provision of Additional Knowledge Besides an in-depth analysis of
LEM3 performance as discussed in Section 4.4.3 on the previous page, future research in the integration
and exploitation of the LEM3 system for the application domain of individual transport planning will
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consider a revision of calculation of the value of transport plans as introduced in Section 2.2.2 on page 8,
namely a normalization of plans with respect to 1) (estimated) plan execution time, or 2) haulage
distance.

In addition, further research should investigate possibilities to change the format of the solution which
are generated by the LEM3 library such that they are more expressive than the plan skeletons used
thus far. For instance, one plan step could be represented as a tuple 〈Loca, action, Locb〉. The concrete
embodiment of this revision will be determined by the representational means of the LEM3 system.

Also, as pointed out in Section 2.2.3 on page 9, LEM3 excels in comparison to other systems for
evolutionary optimization when additional domain knowledge can be provided which is suitable to
guide and focus the search process. Therefore, it is worthwhile to identify such knowledge in the
given application domain and provide it to the LEM system. In a comparative evaluation, it is then
rendered possible to measure the influence of the availability of the aforementioned knowledge on the
plan quality and thus on the logistics performance of individual transport management agents and the
freight forwarding agency as a whole.

Architectural Changes to the Forwarder Implementation The multiagent-based realization of the
freight forwarding agency as described in Section 3 on page 12 has proven to be a suitable basis to
conduct series of experiments to compare approaches to autonomous compilation of transport routes as
shown in Section 4 on page 20. However, the implementation will be adapted in the future in order to
better encapsulate agent roles and provide for a more explicit modeling of the outer boundary of the
forwarding agency.

To that end, the existing location management agent (cf. Section 3.4) will be partitioned such that both
the storage facility management role and the - simulation-specific - load generation role are played by
dedicated agents. The former agents may thereby operate either for the forwarding agency (management
of company-owned storage facilities) or third parties. The latter agent(s) become simulation-specific
infrastructure agents that do not belong to the freight forwarding agency.

The instantiation of order management agents will be detached from the container and respective
order generation process by the dedicated order generation agent. This is due to the fact, that the
aforementioned delegation of the supervision of order handling to the order management agents lies
within the power of decision of the freight forwarding agency. Therefore, the model of the freight
forwarding agency will be extended with what may be thought of as an explicit company boundary.
To that end, the order information service (cf. Section 3.3) will be extended to provide an interface for
the receipt of transport orders either from the load generation agent or explicitly modeled customer
agents. Therefore, the agent so far referred to simply as order information service - that being its sole
function - will play an important additional role whose importance is envisioned to grow if, for instance,
real contract negotiations between customers and the forwarding agency are enabled. The OIS is thus
turned into a forwarding agency representative similar to the TSA concept described by Bloos et al.
in [BSK09].

Side by Side Comparison of LEM Planning with a Centralized Approach In order to more
accurately appraise the performance of approaches, whether or not they may be based on LEM3,
for agent- rather than the still more common fleet-level planning of transport routes, the forwarder
implementation will also be extended in such a way that it is rendered possible to configure both
centralized or decentralized planning and test both approaches in the same scenarios. It is expected that
the execution of such experiments would allow to pinpoint the performance of LEM3-based planning
between the extremes of the presented baseline order selection on a per-agent basis and traditional
centralized planning.
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