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Abstract   In many application domains, particularly in healthcare, an access for 
individual datapoints is limited, while data aggregated in form of means and 
standard deviations are widely available.  This limitation is a result of many fac-
tors, including privacy laws that prevent clinicians and scientists from freely shar-
ing individual patient data, inability to share proprietary business data, and inade-
quate data collection methods.  Consequently, it prevents the use of the traditional 
machine learning methods for model construction.  The problem is especially im-
portant if a study involves comparisons of multiple datasets, where each is derived 
from different open-access publications where data are represented in an aggregat-
ed form.   This chapter describes the problem of machine learning of models from 
aggregated data as compared to traditional learning from individual examples.  It 
presents a method of rule induction from such data as well as an application of this 
method to constructing of the predictive models for diagnosing liver complications 
of the metabolic syndrome – one of the most common chronic diseases in humans. 
Other possible applications of the method are also discussed. 

1 Introduction 
Open – access publications are one of the most important sources of scientific 

data vital for healthcare research and industry. These publications can be automat-
ically searched and retrieved from the internet and in many instances they are used 
to build foundation for further studies. Unfortunately, it is often not possible to ob-
tain the original datasets on which the published studies were performed.  This is 
because more often than not, scientists are reluctant or not allowed to share their 
original data. This is particularly the case in medical, behavioral, and social stud-
ies in which data are protected by patients’ privacy laws.  Many studies also use 
confidential financial, management or security datasets that cannot be shared out-
side an organization. The most common reasons for which data are not available 
are: 

‐ Patient privacy.  Privacy laws preventing sharing and using individual 
patient data are enforced in most countries.  While particulars may differ, 
the privacy laws often require informed consent of each patient for his or 
her personal data to be used for a specific study. Examples of such laws 
are the U.S. Health Portability and Accountability Act of 1996 [1], and 
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the Directive 95/46/EC of the European Parliament and the Council of 24 
October 1995 that cover the protection of individuals with regard to the 
processing of personal data and the movement of such data [29]. 

‐ Confidentiality.  In many cases collected datasets remain confidential as 
they include information that cannot be shared due to business or other 
reasons.  This is often the case with financial information (i.e. hospital 
billing datasets) or existing patients’ records (i.e., electronic medical rec-
ords) that a company keeps protected from competitors. To attain access 
to such data, special agreements are required, and these are often impos-
sible to arrange. 

‐ Keep data within a research group for further use. All aspects of col-
lecting data take enormous efforts. Those who have access to reliable da-
tasets have better chances of publishing their research results and, there-
fore, better performance reviews and possibility of funding.  However, 
while most researchers do agree that all research data should be shared, 
not many are actually willing to share their own datasets.  

‐ Lack of public trust in sharing data. People are concerned about stor-
age and sharing of their personal information as data by public sector and 
private organizations. This includes but is not limited to data like DNA 
fingerprints and electronic medical records.  

‐ No individual data are recorded.  In many cases no individual data are 
collected, recorded, or reported in the final dataset(s).  Some examples of 
this type of datasets include public health data that combine reports from 
multiple local governments or organizations that communicate to public 
only summaries for each area of assessment, and results of large scale 
experiments in which datasets are simply too large to store and, therefore, 
need to be immediately processed and aggregated before storing.  Such 
datasets are found, for instance, in astronomy and physics. 

Recently, some research funding agencies, including the National Institutes of 
Health, implemented a policy requiring that data collected in supported studies, 
mainly clinical trials, be available to others for research purposes.  This policy, 
however, covers only a small fraction of studies performed worldwide. 

Most publications, for many of the above reasons, will include only summar-
ies of data in aggregated forms.  This is partially due to public health surveillances 
and data collection systems, which rely on aggregated data collected by distributed 
institutions [7].  Traditional machine learning methods are not suited for such da-
tasets, as they are designed to work with individual data points.  This chapter fo-
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cuses on the use of aggregated data extracted from medical publications. Howev-
er, the methodology is translatable and can be applied in other domains. 
 
 
2 Mission, Objections, and Contributions 

 Analysis of published aggregated data requires a new class of machine learn-
ing methods.  Aggregated data are most often presented as means and standard 
deviations for several parameters measured over a group of observations (i.e., in 
certain cohort of patients).  This chapter introduces a concept of a learning process 
based on aggregated data, and describes a rule-based approach to creating predic-
tive models from such datasets. Specifically, the approach employs an AQ-based 
learning process that uses aggregated data to derive attributional rules that are 
more expressive than standard IF … THEN rules. This knowledge representation 
is briefly described in Section 5, and the learning algorithm in Section 6. 

There are several requirements for successful application of machine learning 
to aggregated data.  Many of these criteria are also applicable to traditional ma-
chine learning from individual examples. 
 

‐ Accuracy. Models have to provide reliable predictions, which is in most 
cases their main function.  Although models are learned from aggregated 
data, their accuracy is measured using individual datapoints within a tra-
ditional type of validation datasets.  Multiple measures of accuracy are 
available, all of which perform some form of accounting of correct and 
incorrect predictions and combinations thereof.  The most commonly 
used measures of accuracy include precision, recall, sensitivity, specifici-
ty, F-score, and others.  When only aggregated data are available, these 
measures can be estimated as described in Section 6.3. 
 

‐ Transparency. Medical and healthcare studies require models to be un-
derstood easily by people not trained in machine learning, statistics, and 
other advanced data analysis methods. In this sense, providing just the re-
liable predictions is not sufficient, as models should also “explain” why a 
specific prediction is made and what the model actually does. The con-
cept of understandability and interpretability is very well known in expert 
systems and early work on artificial intelligence, but has been largely ig-
nored by many modern machine learning methods. 

 
‐ Acceptability. Models need to be accepted by potential users. While par-

tially related to transparency, acceptability requires that the models don’t 
contradict the knowledge of existing experts or are otherwise “reasona-
ble.” 
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‐ Efficiency.  Both model induction and model application algorithms need 
to be efficient.  Although machine learning from aggregated data in many 
cases does not involve very large datasets, data that is derived from rele-
vant publications can represent between tens and thousands of cohorts.  
Although much smaller than considered for data mining algorithms, ag-
gregated datasets should not be subjected to analysis by inefficient algo-
rithms with very large computational complexity. 

 
‐ Exportability. Results of machine learning should be directly transfera-

ble to decision support systems. It is not unusual that these learned mod-
els will work along with other existing models and need to be compati-
ble.  For example, learned models can be translated or directly learned in 
the form of rules in Arden Syntax [14], a popular representation language 
in clinical decision support systems. 

3 Related Work 
The problem of analyzing results of published studies is well known.  Sys-

tematic reviews are used to gather, process, and analyze findings within a collec-
tion of closely related studies.  Their goal is to arrive at conclusions supported by 
many other studies.  Meta-analysis methods, often used in systematic reviews, are 
used to calculate statistical descriptions that characterize data used in multiple 
studies. Systematic reviews and meta-analysis of published studies are important 
research tools, and are particularly popular in healthcare, policy, social sciences, 
and law.  By combining the results of multiple studies, meta-analysis is able to in-
crease the confidence in study conclusions and cross-validate the results of the 
particular study.  Extensive theory has been built on how to aggregate results from 
multiple studies and derive statistically valid conclusions [15].  These methodolo-
gies are used in preparing systematic reviews such as those by the Cochrane Col-
laboration [13][4] in healthcare, and the Campbell Collaboration [5][9] in public 
policy and law. 

In addition to other disciplines concerned with identifying knowledge in pub-
lished studies, although other forms exist including rarely use the same sets of at-
tributes.  Literature-based discovery (LBD) seeks to identify unknown relation-
ships in data drawn from published results [12][30].  By bringing together results 
published in several papers, new relationships that were not considered in the orig-
inal studies can be found.  Several methods have been created to support LBD [3].  
While the general framework of LBD is somewhat similar to the described meth-
od, its goal is to discover relationships, rather than build models.  

Significant work has been done to develop methods for finding and classify-
ing publications to be included in systematic reviews [18].  These include both re-
search and commercial systems working with publication databases. 



5 
 

Surprisingly, despite the extremely fast growth of machine learning, a disci-
pline that developed powerful data analysis and knowledge discovery tools, little 
work has been done to use advanced learning methods to support systematic re-
views and meta-analysis. Two machine learning areas that are closely related to 
the described method are statistical relational learning [11] [6] and inductive logic 
programming [16].   Both areas deal with the more general problem of learning 
from datasets with complicated structures, rather than the specific problem of 
learning from published results. 
 
4 Aggregated Data 

In this chapter we assume a usual situation in which each patient is an indi-
vidual datapoint described using a set of attributes Al … Ak.  Typical machine 
learning programs use such individual datapoints in the form of attribute-value ex-
amples (1) where v1, v2, …, vk are values of attributes A1, … Ak. 

 
(v1, v2, …, vk)                                                                                                    (1) 

 

Typically each example is described using the same attributes, thus the input 
dataset used for learning is in the form of a flat attribute-value table.  In the case 
when some attributes are not present in a description of a specific example, meta-
values (a.k.a. missing values) can be used. This form of data is, however, almost 
never included in published manuscripts for reasons outlined in the introduction. 

The most typical form of data available in publications is “aggregated tables,” 
although other forms including correlations coefficients, regression models, and 
others.  An aggregated table includes a summary of data aggregated for one or 
more group of examples (i.e., patient cohorts), usually given as means and stand-
ard deviations or frequencies of attributes’ values in that groups.  Some papers re-
port standard errors, variances, or confidence intervals that can be usually con-
verted into standard deviations.  In this chapter we assume that G1, …, Gn are 
groups of patients described in publications P1, … Pp. One publication often in-
cludes more than one group of patients (i.e., disease and healthy controls, or be-
fore and after treatment).    Usually, all patients within one group are described us-
ing the same set of attributes, although patient groups described in different 
publications rarely use the same sets of attributes.  

Table 1 illustrates example data derived from multiple publications related to 
metabolic syndrome.  It includes means and standard deviations of several attrib-
utes in two groups (NAFLD and controls) derived from studies about non-
alcoholic fatty liver disease (NAFLD).  
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Table 1: Example aggregated data derived from multiple publications. It is a sub-
set of datasets used to induce rules described in Section 7.  

NAFLD NAFLD SS NASH SS C_NASH 

M/F 15–2 155–19 ? ? 11–10 10–9 

Age 44+/-3 41+/-11 ? ? 41+/-13 43+/-14 

Weight 86.2+/-3.5 ? ? ? ? ? 

BMI 27.4+/-0.8 27.3+/-3.2 ? ? 33+/-45 31+/-4 

Height 1.77+/-0.02 ? ? ? ? ? 

FG 107.1+/-7.56 98.2+/-26.0 108.90+/-9.09 108.18+/-8.72 93+/-13 91+/-11 

FI 13.4+/-1.5 15.1+/-7.9 13.9+/-2.0 12.7+/-2.2 23.98+/-16.78 12.94+/-9.6 

TC 208.07+/-11.92 ? 211.53+/-19.23 199.61+/-7.69 207+/-36 280+/-50 

HDL 48.36+/-3.9 47+/-11 44.85+/-7.8 50.31+/-10.92 36+/-6 47+/-14 

LDL 126.36+/-11.15 ? 121.68+/-11.7 128.31+/-12.09 135+/-26 131+/-41 

T 181.56+/-31.15 138+/-93 191.35+/-40.05 178+/-26.7 230+/-85 165+/-75 

HOMA 3.61+/-0.55 ? 3.30+/-0.40 3.75+/-0.60 7.0+/-5.4 3.2+/-3.0 

FG = Fasting Glucose (mg/dl), FI = Fasting Insulin (mUI/l) , TC = Total Cholesterol, T = Triglycerides 

 

Aggregated values of attributes are given in the form of pairs (μA, σA). Where 
A is a measured attribute, and μA and σA denote its mean and standard deviation 
measured over a group, for which the aggregation was done.  Given that means 
and standard deviations for several parameters are available, each group can be 
described by an aggregated example given as (2). It can be simplified into (3) 
when order of attributes is defined. 

 

(A1 = (μA1, σA1), A2 = (μA2, σA2), …, Ak = (μAk, σAk)) (2) 
 

((μA1, σA1), (μA2, σA2), …, (μAk, σAk)) (3) 

 

For non-numerical attributes, a typically used aggregated form lists frequen-
cies of values in a group, explicitly showing distribution of examples.  For exam-
ple, a group of patients may include 20% smokers and 80% non-smokers. 

Another type of data describes entire groups.  In medical or social publica-
tions these can be related to inclusion criteria for a specific study and additional 
facts about participants.  Although describing groups of data, these attributes refer 
directly to individual examples.  For, example if a study is performed among 
white males, then each individual subject in the data has precisely this value for 
attributes describing ethnicity and gender.  

Sample sizes (numbers of examples in groups) are always provided. Although 
they do not provide any information about the subjects themselves, but rather 
about groups, sample sizes constitute important information crucial during model 
induction and its coverage estimation.  Given both aggregated and not aggregated 
data, examples take the form (4).  
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(size, (μA1, σA1),(μA2, σA2),...,(μAk, σAk)),vk + 1,...v1) (4) 
 

Note that in one study an attribute can be in the aggregated form, in the 
second study the same attribute can be in non-aggregated form (i.e. used as 
inclusion criteria), and completely not available in the third study.  

The forms of data outlined above differ from those typically used in machine 
learning from examples, dominated by learning from individual attribute-value 
examples in the form (1).  Although handling qualitative statements and back-
ground knowledge, which is a part of structured machine learning [8], and has 
been well studied in inductive logic programming [16] [25] and statistical rela-
tional learning [11], no special methods for learning from published results that 
stress aggregated data are available.  Furthermore, although relational learning as-
sumes using aggregates [26] [28], they deal only with individual examples with 
additional characteristics that are being aggregated.  This is in contrast to the pre-
sented method in which an aggregated example represents a group. 
 
5 Attributional Rules as Knowledge Representation 

An earlier part of this chapter discussed requirements for models induced 
from aggregated data.  Rule-based knowledge representation is known to satisfy 
several of the criteria. However, standard IF…THEN rules are using only con-
junctions of simple statements and have limited expression power. Therefore, 
more expressive forms of rules are used in the presented work. 

The main representation of knowledge used in the described method is attrib-
utional rules [21] whose one form is given by (5). Both CONSEQUENT and 
PREMISE are conjunctions of attributional conditions (6). The symbols <=, and |_ 
denote implication and exception operators, respectively. EXCEPTION is either an 
exception clause in the form of a conjunction of attributional conditions or an ex-
plicit list of examples constituting exceptions to the rule. ANNOTATION is an ad-
ditional statistical description, including, for example, the rule’s coverage. 

 
CONSEQUENT <= PREMISE |_ EXCEPTION : ANNOTATION (5) 
 

[L REL R : A] (6) 

  

An attributional condition corresponds to a simple natural language statement. 
Its general form is (6), in which L is an attribute, a counting attribute (derived 
from other attributes), or a simple arithmetical expression over numerical attrib-
utes; R is an attribute value, internal disjunction or conjunction of values, a range, 
or an attribute; REL is a relation applicable to L and R; and A is an optional anno-
tation that provides statistical information characterizing the condition. The anno-
tation includes numbers of cases satisfied by the condition and its consistency. 
When L is a binary attribute REL and R may be omitted. Several other forms of at-
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tributional rules are available, all of which resemble statements in natural lan-
guage, and thus are interpretable by people not trained in machine learning [21]. 

The above choice of rule-based knowledge representation is based on the fact 
that it satisfies transparency and exportability criteria for models stated in Section 
2.  It can also provide accuracy comparable with other representations, without the 
need to employ special procedures that convert black-box representations to hu-
man-oriented explanations [2]. 

The following section describes an algorithm for inducing attributional rules 
from data, and its extension needed to handle aggregated data. 

6 Rule Induction 
6.1 AQ Algorithm 

Many algorithms are available for inducing rules from data.  Despite their dif-
ferences, the algorithms have two common elements: rule construction, and rule 
evaluation.  Although the described method for learning from aggregated data can 
be adapted to most rule learning systems, in this chapter the focus is on the AQ 
approach to rule learning [19] [20] [32]. This focus is important because the meth-
od has several advantages that make it suitable for learning from aggregated data.   
AQ generates attributional rules described above, deals with multiple data types 
[23] and meta-values [22], includes different generalization and reasoning meth-
ods, and is fairly flexible due to the large number of parameters that control the 
learning process.  The method follows the popular separate-and-conquer approach 
to rule learning that is summarized by [10], and is capable of using powerful sta-
tistical measures of rules quality that incorporate aggregated data found in pub-
lished results. 

The AQ learning works in two main stages: rule construction and rule optimi-
zation.  At the core of the first stage is a star generation algorithm, which creates 
multiple generalizations (in the form of attributional rules), called stars, of a se-
lected positive example that do not cover negative examples.  A combination of 
rules selected from one or more stars is used as a generated hypothesis.  Within 
the star generation, AQ applies an extension-against operator [20] whose goal is 
to find all possible rules that distinguish a given positive example, called seed, 
from a given negative example.  In the original method, the extension-against is a 
purely logical operation and it is denoted by the --| symbol.  In its simplified form 
for non-aggregated data, a seed s = (a1,…ak) extended against a negative example  
n = (b1,…bk) is a set of one-condition rules shown in (7) for all attributes for 
which values in the seed and the negative example are different. 

 

s --| n =  ⋁ [Ai ≠ bi] for all i such that ai ≠ bi (7) 
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For example, (7, 5, 3) --| (2, 5, 4) = [A1 ≠ 2] ⋁  [A3 ≠ 4]. Here, the attribute A2 is 

not used because it takes the same value in the seed and the negative example. The 
operator works the same way for symbolic (nominal, structured, etc.) and numeric 
(interval, ratio, etc.) attributes. 

Multiple applications of the operator allow for the creation of rules that cover 
the seed and exclude negative examples.  Intersection of all such rules covers the 
seed and rule out any negative example. 

At this stage of rule construction, AQ applies a beam search to filter out poten-
tially large number of generated rules. The method allows for multiple criteria of 
rule evaluation, most of which are based on statistical evaluation and complexity 
of rules.  In the second stage, rules/hypotheses are optimized to maximize their 
predictive accuracy while maintaining simplicity.  This process is somewhat simi-
lar to pruning, which is frequently done by learning programs. In AQ, rules are not 
only pruned, but can also be extended through a set of optimization operators 
working on attribute, condition, rule, and hypothesis levels. 

When learning from aggregated data, information about distributions of values 
in aggregated examples is used. Consequently, the extension-against operator is 
no longer purely logical.   

 
6.2 Rule Induction from Aggregated Data    

A general schema of learning from published results is presented in Figure 1.  
Aggregated and individual data are used for rule generation and evaluation, while 
qualitative/quantitative results and background knowledge are used to constrain 
the generation of models.  Each rule is evaluated not only for coverage-based 
quality (statistical measures), but also by its simplicity and given constraints.       
There are several possible approaches to the problem of rule induction from ag-
gregated examples.  This section briefly overviews these approaches, with the fo-
cus primarily on the third method that directly uses aggregated information within 
the AQ rule induction algorithm.  

 

 
Figure 1: A flowchart describing the process of model development based on pub-
lished aggregated data. 
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Sampling. One simple approach for learning from published results is to ap-
proximate the original datasets by sampling.  An initial study [24], in which ag-
gregated examples were sampled, indicated, however, that the method does not 
work well due to deficient information of interrelationships between attributes.  
An important advantage of the method is that any machine learning method from 
examples can be applied, because individual examples are created during the sam-
pling process. 

Weighting. Another simple method is to use aggregated examples in the form 
(8) which includes only mean values. Standard deviations are used to weight ex-
amples [33][34].  

 

(μA1, μA2,…,μAk) (8) 

  

By doing so, there is no need to significantly modify rule learning algorithms. 
However, the method ignores important information of “overlaping” groups. 

It is important to note that when using this method the rule induction algo-
rithm treats aggregated examples as individual subjects and de facto learns rules 
that describe weighted groups.  Despite its simplicity, the method gave good re-
sults in an initial study presented in Section 7. 

Limitations of the above methods show the importance of using an algorithm 
that directly induces rules for classifying individual examples based on aggregated 
examples.  Such algorithm needs to effectively use information about distributions 
and “recognize” the fact that it is dealing with aggregated examples representing 
groups not with individual subjects. 

Extension-against. The AQ rule learning algorithm can use directly the form 
(4) of aggregated examples, and effectively incorporate the information about 
standard deviations when comparing aggregated examples. Assuming normal dis-
tribution, N(μAi, σ²Ai), over 95% of data described by the aggregated examples lay 
in the range given by condition (9).  

  

[μAi – 2σAi , μAi + 2σAi] (9) 

 

Thus, when comparing two aggregated examples, a reasonable assumption is 
that two aggregated values are indistinguishable if the ranges (9) in the examples 
are intersecting. The modified extension against operator is defined by the formula 
(10) for numeric attributes.  

 

 s – – | n = V [xi ≠ (μAi 
n – 2σAi

n μAi
n + 2 σAi

n)] (10)  

for all i=1..k such that [μAi 
s – 2σAi

s μAi
s + 2 σAi

s] ∩ [μAi 
s – 2σAi

s μAi
s + 2 σAi

s]. 
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For aggregated discrete attributes the extension-against operator is defined by the 
formula (11). 

 

s --| n =  V [Ai ≠ v1..vk], i = 1..n (11) 

fs(Ai, vj) < fn(Ai,vj) + ε 

 
Here, fs denotes distribution of values in s and fn denotes distribution of ex-

amples in n. For example, if D(A1)={a,b,c,d}. D(A2) ={r,g}, 
s=(A1=(0.3,0.05,0,0.65), A2=(0.2,0.8)) and n=(A1=(0.5,0,0.3,0.2), A2=(0.27,0.73)), 
and ε=0.1, then  s --| n = [A1 ≠ a, c].  The attribute A2 is not used at all, because the 
difference between distributions for that attribute is within the margin ε. 

For non-aggregated attributes, i.e. attributes that describe entire groups, the 
extension-against operator is not modified.   
 
6.3 Calculating Coverage 

A key component to any rule induction algorithm is the calculation of rules’ 
coverage. Positive and negative coverage needs to be estimated for individual ex-
amples using aggregated examples representing groups. This is needed during 
both rule creation and rule optimization.  In order to estimate numbers of exam-
ples from a group satisfying a condition [A=a...b] learned from aggregated data (A 
is a continuous attribute), the probability (12) of an individual example satisfying 

the condition can be multiplied by the number of examples in the group. Ф цσ² (A) 

is the cumulative distribution function, μ is mean value of A in the group, and σ is 
standard deviation of A in the group.  

 

p(A = a...b) = Ф ц,σ² (b) – Ф ц,σ² (a) (12) 

 

In order to estimate the numbers of examples satisfying a rule an independ-
ence of attributes is assumed.  The rationale behind the assumption is that if two 
attributes were dependent, the rule learning program would not need to use both of 
them in the rule (as the value of one implies the value of another). Thus, probabili-
ties (12) for all conditions in the PREMISE can be multiplied. The resulting joint 
probability is then multiplied by one minus the joint probability of the 
EXCEPTION, which gives the probability of an example in the group satisfying 
the rule. Finally, the estimated number of examples from the group satisfying the 
rule is calculated by multiplying the joint probability by the number of examples 
in that group.  The operation is repeated for all groups for which aggregated data 
are available. 

In the presence of additional information such as covariance between attrib-
utes, it is possible to calculate a better estimation of the joint probability than 
when assuming independence of conditions. 
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Using learned rules to classify new examples is straightforward, because they 
are intended to classify individual examples, not aggregated examples represent-
ing groups.  Rules for classifying individual examples are learned from aggregated 
examples.  
 
7 Evaluation    

The initial methodology [33][34] for learning from aggregated data has been 
applied to a small database derived from clinical research publications in a number 
of well-known peer-reviewed journals.  Part of the database was presented in Ta-
ble 1. The application was concerned with creating predictive models for diagnos-
ing liver complications in metabolic syndrome (MS). Metabolic syndrome and its 
secondary complications pose a significant challenge for practicing diagnosticians. 
Abdominal obesity appears to be its predominant underlying risk factor. Metabolic 
abnormalities associated with MS, particularly a resistance to the insulin, predis-
pose people to non-alcoholic fatty liver disease (NAFLD) and its more severe 
manifestation, nonalcoholic steatohepatitis (NASH). The health-related costs as-
sociated with these complications are substantial, thus early prediction and pre-
vention of these conditions are of significant importance. Currently, it is not pos-
sible to make an accurate diagnosis of NAFLD and/or NASH without a liver 
biopsy. It is an invasive and costly procedure that is prone to complications, some 
minor, such as pain, and some more severe, including possibility of death as a re-
sult of bleeding or infection [27].   

An attractive alternative, pursued in the research, was to use panels of the se-
rum markers, because blood samples could be collected in a minimally invasive 
way.  However, the predictions made in prior studies using currently available 
prediction algorithms lack consistency. Typically, clinical studies of MS and its 
complications are performed on single groups of patients collected in one hospital, 
and use only simple statistical measures for group comparisons and correlation 
plotting. No large datasets concerning metabolic syndrome are available and data 
describing measurables in each patients are not available, either. Thus, only meth-
ods that deal with results published in papers are applicable.   

The data used for this study were in the aggregated form (3).  They were col-
lected from articles published in peer-reviewed journals including Hepatology, 
Obesity Research, International Journal of Obesity, and some others.  For the pilot 
study, we retrieved aggregated clinical data from 20 separate hospital cohorts that 
included 12 groups of patients with present liver disease symptoms and 8 control 
groups of healthy subjects.  Every single group of patients was described in terms 
of the mean of attributes measured for this group of patients.  The total number of 
different attributes retrieved from papers was 152.  In each study however, differ-
ent attributes were measured, which added additional complexity to the problem.  
In fact, none of the attributes were present in all studies, even though these very 
similar studies were dealing with exactly the same clinical problem.   

The goal was to construct a set of rules for predicting non-alcoholic fatty liver 
disease (NAFLD), simple steatosis (SS), and Nonalcoholic Steatohepatitis 
(NASH). Data also included a number of healthy cohorts, represented as control 
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groups serving as a contrast set for learning.  It should be noted that NAFLD is the 
most general condition that comprises both SS and NASH cases. Therefore, we 
first sought rules that differentiate NAFLD from healthy cases and then rules 
characterizing NASH, the most severe form of NAFLD.  

Below we present two example rules derived by the method.  The first rule 
states that there is presence of non-alcoholic fatty liver disease or its subtypes, if 
body-mass index is greater or equal 26.85, except for when aspartate aminotrans-
ferase level is at most 27.2 units/L and adiponectin level is at least 7.25 mg/ml.  
The rule’s condition is satisfied by eight groups of patients belonging to NAFLD 
or its subtypes, and two control groups. The exception part of the rule which con-
sists of two conditions filters out both control groups. The entire rule is satisfied 
by eight groups of patients belonging to NAFLD or its subtypes and non-control 
groups. The rule’s quality is 0.816, and its complexity is 25.  The second rule can 
be interpreted in an analogous way. 

 
[Class=NAFLD] 

   <== [BMI>=26.85: 8,2] 
      |_ [AST<=27.2] & [Adiponectin>=7.25] 
       : p=8,n=0,Q(w)=0.816,cx=25 

[Class=NAFLD]  
   <== [Adiponectin<=6.18: 8,1] 
     : p=8,nmin=0,nmax=1,Q(w)=0.695,cx=5 

 

Similar rules have been obtained for predicting simple setatosis and nonalco-
holic steatohepatitis [34]. The rules are easy to interpret and are consistent with 
experts’ existing knowledge. An explanation of the parameters is in the AQ21 Us-
er’s Guide [31], the system that was used to implement the initial methodology.  

Validation of these rules for predicting NAFLD resulted in a positive predic-
tive value (PPV) of 85-87%, reflecting relatively high “rule-in” characteristic of 
the algorithm. The best rule for the prediction of NASH relied on combination of 
fasting insulin, HOMA and adiponectin values with an accuracy of 78%, with 
PPV of 71% and negative predictive value (NPV) of 37%. 

The models generated by AQ21 are presented in the form of attributional 
rules, a highly transparent representation which is easy to understand by people 
not trained in advanced statistics, machine learning, and other computational tech-
nologies. Additionally, these kinds of models could be readily imported into exist-
ing clinical decision support systems and useful in the settings of point-of-care 
(POC) initial health assessment.  Simplicity of the developed models allows for 
the use of them on “the back of envelope” in settings where advanced diagnostics 
are not available (i.e. in developing countries). 
 
8 Discussion 

The presented methodology for learning from aggregated data has been de-
veloped within the well known AQ rule induction algorithm.  The algorithm is 
able to induce from aggregated data attributional rules for classifying individual 
examples. The process is depicted in Figure 2. 
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Figure 2: Induction of models from aggregated data and application to individual 
data. 

 
Traditional machine learning from examples methods are able to deal with 

aggregated data when using the sampling method described in Section 6.  It is also 
possible to extend some the methods to deal directly with aggregated data, howev-
er, such extension depends on how the specific algorithm works and how it treats 
individual examples. 

Data used in the presented study were manually retrieved from selected publi-
cations.  It’s been recommended that this very labor-intensive process be per-
formed by at least two independently working people and then the results com-
pared and discrepancies discussed in a panel.  The selection process of 
publications to be included in the analysis should also be done by the panel [17].  
With the use of currently available technology the process cannot be fully auto-
mated, because it depends on the understanding of the publications. However, it is 
possible to aid personnel in performing this time consuming task.  Relevant publi-
cations can be pre-selected using advanced search tools available for databases 
such as PubMed.  Data tables can be automatically identified in publications and 
derived in a tabular form.  Ontologies and dictionaries can be used to discover dis-
crepancies in terminology and units.  Finally, text mining methods can be used to 
identify and retrieve data not present in tabular forms (i.e. inclusion criteria).  
 
9 Conclusion 

New methods are needed to create accurate and transparent predictive models 
from de-individualized published clinical data in aggregated forms.  Machine 
learning of attributional rules from published data, including aggregated clinical 
parameters, inclusion criteria, demographic information and target diagnoses, is 
able to derive such models.  

This chapter described a methodology for machine learning or attributional 
rules from aggregated published data. The described methodology may comple-
ment current systematic reviews and meta-analyses such as Cochrane Reviews.  
With rapidly changing clinical knowledge, such an automated method with the 
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ability to incrementally update knowledge can prove to be the needed method to 
keep reviews up to date. 

Preliminary application of an early implementation of the method resulted in 
a set of attributional rules for predicting non-alcoholic fatty liver disease and its 
subtypes in patients with metabolic syndrome. It illustrated validity of the method 
on a real-world important problem.  Machine learning software applied to the me-
ta-analysis of the published data may provide an easy, non-invasive way to diag-
nose most patients with NAFLD and NASH. Clinical parameters highlighted by 
machine learning process can be combined with other non-invasive biomarkers for 
NASH to increase their accuracy and test characteristics. 
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