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Abstract— Many factors limit researchers from access-
ing studies’ original data sets. As a result, much medical 
and healthcare research is based off of systematic re-
views and meta-analysis of published results. However, 
when research involves the use of aggregated data from 
multiple studies, traditional machine learning-based 
means of analysis cannot be used. This paper describes 
diversity of data and results available in published man-
uscripts, and relates them to a rule learning method that 
can be applied to build classification and predictive 
models from such input. The method can be used to 
support meta-analysis and systematic reviews.  Two ap-
plication areas are used to illustrate the discussed issues: 
diagnosis of liver diseases in patients with metabolic 
syndrome, and detection of polycystic ovary syndrome. 
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I.  INTRODUCTION 

Systematic reviews along with secondary data analysis are 
an important way of gaining medical and healthcare 
knowledge.  They often require significantly less resources 
than performing randomized clinical trials.  The goal of 
preforming systematic reviews is to bring together evidence 
from multiple published studies (often contradictory) and 
arrive at general conclusions.  Large groups of people within 
the Cochrane Collaboration, Campbell Collaboration, and 
similar collaboratives use strict methodologies and 
guidelines in performing systematic reviews.  This is because 
the original data used in studies are rarely available due to 
patient privacy, confidentiality, and reluctance for data 
sharing among research groups [17], and only the contents of 
the published work are available. 

Despite the significant growth of machine learning, 
methods developed have not traditionally been used to 
support systematic reviews. One important reason for this is 
that the majority of machine learning algorithms are 
designed to work with data on an individual level (i.e. 
representing individual patients), but not with summaries, 
results, and aggregates in various forms (like those used in 
systematic reviews). Therefore, the analysis of published 
results and data requires a new specialized class of machine 
learning methods able to deal with non-homogenous inputs.  

The goal of the presented research is to develop a 
methodology for building classification or predictive models 
from results and aggregated data present in published papers. 
It is sufficient that these papers contain aggregated data 
and/or results related to the problem.  
 This paper aims at presenting different forms of data 
within healthcare publications, and discusses challenges 
related to learning from them. It also briefly discusses 
modifications to the AQ21 rule learning system that enables 
learning from several of the discussed forms of data.  
Although the focus of this paper is on machine learning of 
attributional rules, and in particular the AQ21 system, most 
of the presented methods are applicable to other knowledge 
representations (decision trees, Bayesian networks, etc.).  

Two applications of the AQ21 system on aggregated 
clinical data collected from studies on patients with 
metabolic syndrome (MS) and polycystic ovary syndrome 
(PCOS) are presented in this paper. The areas were chosen 
for both methodological and medical reasons. The 
methodological reason being that numerous publications are 
available in these two areas making it relatively easy to 
access. The medical reason being that not only do these 
conditions affect very large populations of patients, but there 
is no consensus on their causes and the best practices. 
 The central objective of this paper is to summarize types 
and forms of data that can be derived from publications, as 
well as present how machine learning can be used to analyze 
the data. It is not the intention of this paper to discuss how 
the data can be automatically derived from publications, nor 
how machine learning can help in selecting relevant 
publications for systematic reviews. 

II. RESULTS AS DATA 

One of the key challenges in using machine learning to 
analyze results is the diversity of the published studies.  
Publications include tables that summarize data, figures 
illustrating trends among cohorts of patients, correlation 
coefficients among selected (usually not all) variables, study 
inclusion criteria, definitions, and others. These data are very 
different from individual examples for which machine 
learning methods are designed to work with. This section, 
illustrated by MS and PCOS applications, briefly 
characterizes types of data/information/knowledge present in 
healthcare publications, and presents the process of using 
them to prepare the input data for machine learning.  
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A. Literature selection 

Published literature is represented in a wide array of different 
research studies including clinical trials, observational 
studies, and comparative effectiveness studies. Having 
different types of research studies creates two major 
distinctions between the data obtained from the studies – the 
type of data (qualitative/quantitative or baseline/outcome) 
and the number of cohorts, participants, and data variables 
obtained from each. Additionally, it is important to consider 
how the data were collected (i.e., through randomized trial, 
observationally, or existing medical records) which affects 
the reliability and the biases within the data. 
 The selection of works to be used is a widely discussed 
issue [7], which applies to all systematic reviews and meta-
analyses.  It is usually conducted by a panel of experts and is 
based on criteria such as relevance of studies, quality of 
publications, cohort sizes, and others. 
 For example, of the twenty-five PCOS-related papers 
analyzed, eight of them could be classified as comparative 
effectiveness studies that compared drug treatments, tests, 
surgeries, environmental/genetic factors, or life style changes 
in correlation with PCOS. Another eleven of the papers 
could be identified as clinical trials. These contained the 
most significant amounts of data used in the analysis in terms 
of the number of patient cohorts and measured attributes. 
The majority of the papers included information identifying 
and addressing PCOS as well as the medical developments 
within treatment.   However, six of the twenty-five papers 
were eliminated during the prepping of data for machine 
learning because they contained no relevant qualitative or 
quantitative variable values that could be used. 

 

B. What is included in publications 

There is no standardization in what data are included in 
publications and in what forms.  Although some journals 
require structured manuscripts with specific sections, there 
are no standard formats in which data and results are 
presented.  This is mainly because it is not possible to create 
one standard template that fits the wide range of topics 
covered by journals.  The data and results generally come in 
tables, plots (that are usually equivalent to tables), and as a 
free text. Preparing them for machine learning-ready is time 
consuming, and requires expertise in the subject and 
knowledge of machine learning methods. 
 One challenge faced when applying machine learning to 
published data is in developing common representation of 
data and results.  For example, there may be available 
aggregated data tables and inclusion criteria for twenty 
patient cohorts, two predictive models, and a small 
individual patient dataset. Each provides unique inputs to the 
learning problem and  should not be disregarded. Results and 
data include quantitative and qualitative information - 
definitions, individual patient data, aggregated patient data, 
inclusion criteria, predictive/classification models, 
correlation coefficients, and statistical significances. 

1) Definitions  
Often there is no consensus on the definitions of symptoms 
and diseases.  For example, there is no one consistently used 
definition of MS - it is usually defined as a combination of 
obesity, insulin-resistance, hypertension, elevated 
triglycerides, as well as a decreased level of high-density 
lipoprotein cholesterol (“good cholesterol”). Similar situation 
applies to PCOS. Specific definitions of syndromes,diseases, 
and their variations need to be included in data, as illustrated 
in Table 1 for the PCOS case. 
 
Table 1:  Excerpt of article description & PCOS definitions  

ID Tit le Year
oligo/ano
vulat ion

HA PCO O IR IGT DM 2 DYS CVD SA M .IR IN

ST1
1. Diagnosis and M gmt of 
PCOS A Pract ical Guide

2006 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

ST2
2. Polycycst ic Ovarian 
Syndrome: Diagnosis and 
M anagement

2003 Yes Yes Yes Yes Yes Yes Yes Yes Yes

ST3

3. Effect of  a low glycemic 
index compared with a 
convent ional healthly diet on 
PCOS

2010 Yes Yes Yes Yes Yes Yes Yes Yes Yes

ST4

4. Levels of  lipoprotein and 
homocysteine in non-obese 
and obese pat ients with 
PCOS

2005 Yes Yes Yes Yes Yes Yes Yes Yes Yes

Other Features of PCOSDefinit ion of PCOSIndex

 
HA - Hyperandrogenism, PCO - Polycystic Ovary, O – Obesity IR - Insulin resistance, IGT - Impaired 
Glucose Tolerance, DM2 - Diabetes Mellitus 2, DYS - Dyslipidemia, CVD - Cardiovascular Disease, 
SA - Sleep Apnea, M.IR - Menstrual Irregularity, IN - Infertility 

 
2) Individual patient data 

A majority of machine learning algorithms are designed to 
work with individual level data points.  For the reasons 
described in the introduction, and additional ones discussed 
by Wojtusiak et al. [17], such data are often not available for 
multiple studies.  In some situations, however, there may be  
limited individual datasets accessible for one or few studies, 
but not for others. 
 The most common form of individual data is attribute-
value pairs.  Because each patient is often described using 
the same set of attributes, the actual input data is in the form 
of a flat data table (it is important to note that some machine 
learning methods can deal with relational data [13], and 
predicates [6]). The usual situation is that each patient is an 
individual data point described using a set of attributes Al … 
Ak.  Typical machine learning programs use such individual 
data points in the form of attribute-value examples (1) where 
v1, v2, …, vk are values of attributes A1, … Ak. 

 (v1, v2, …, vk) (1) 

 Each example is described using the same attributes, 
thus the input dataset used for learning is in the form of a flat 
attribute-value table.  In the case when some attributes are 
not present in a description of a specific example, meta-
values (a.k.a. missing values) can be used. This form of data 
is, however, almost never included in published papers for 
reasons outlined in the introduction. 
 In the presented PCOS experimental results, no 
individual patient datum were used to create models (no such 
datum was available). Conversely, models for predicting MS 
liver complications were consequently tested for accuracy on 
an individual patients’ dataset.  



3) Aggregated patient data (tables and figures) 
Aggregated data are the most common way of describing 
cohorts of patients [16][17].  Aggregated values of attributes 
are given in the form of pairs (μA, σA), where A is a 
measured attribute, and μA and σA denote its mean and 
standard deviation measured over a group, for which the 
aggregation was done.  Given that means and standard 
deviations for several parameters are available, each group 
can be described by an aggregated example given as (2). 

 ((μA1, σA1), (μA2, σA2), …, (μAk, σAk)) (2) 

 For non-numerical attributes, a typically used 
aggregated form lists the frequencies of values in a group, 
explicitly showing the distribution of examples.  For 
example, a group of patients may include 70% White 17% 
Black, 2% Asian patients, and so on. 
 Aggregated data presents a significant challenge when 
using machine learning to analyze published results [16][17]. 
 
Table 2: Excerpt of aggregated data from PCOS study. 

ID Cohort Occurance Subjects (n)

ST3CH1 Baseline 50 31 0.7 91.1 2.7 kg 34.3 1.0 kg/m² 4.8 0.1 mmol/L 1.3 0.1 mmol/L

ST3CH2 Baseline 46 29.3 0.8 94.4 2.6 kg 34.7 0.9 kg/m² 4.8 0.1 mmol/L 1.2 0.1 mmol/L

ST3CH1 Outcome 29 86.7 3.2 kg 32.7 1.2 kg/m² 4.7 0.2 mmol/L 1.3 0.1 mmol/L

ST3CH2 Outcome 20 90.4 3.4 kg 33.2 1.2 kg/m² 4.5 0.2 mmol/L 1.1 0.2 mmol/L

ST4CH1 Baseline 85 23.2 4.92 25.82 3.44 kg/m² 169 31.4 mg/dl 103 34.4 mg/dl

ST4CH2 Baseline 50 23.98 6.08 26.15 4.89 kg/m² 163 34.5 mg/dl 87.8 43.3 mg/dl

ST4CH3 Baseline 38 23.51 6.18 31.55 5.78 kg/m² 186 53.3 mg/dl 126 76.5 mg/dl

ST4CH4 Baseline 25 24.01 6.89 30.79 4.16 kg/m² 170 34.4 mg/dl 88.7 43.3 mg/dl

ST4CH5 Baseline 47 22.95 5.49 20.99 2.14 kg/m² 155 30.8 mg/dl 85.4 20.8 mg/dl

ST4CH6 Control 25 23.96 5.68 21.49 3.48 kg/m² 164 28.3 mg/dl 85.6 43.8 mg/dl

ST6CH1 Outcome 209 27.9 4 36 8.9 kg/m²

ST6CH2 Outcome 209 28.3 4 34.2 8.4 kg/m²

ST6CH3 Baseline 418 28.1 4.02 94.33 24.66 kg 35.23 8.66 kg/m²

Weight  

ST6

Identif icat ion 

ST3

ST4

Study Variables (mean±std dev)

C TBM I    Age

 
C – Cholesterol, T– Triglycerides 
 

 Of the twenty-five PCOS-related papers analyzed 
eighty-three different cohorts were identified. Seventy-two 
different qualitative and quantitative variables were 
identified and organized into one table, whose excerpt is 
presented in Table 2 above. The table contained qualitative 
data associated to study participant’s characteristics and 
treatment. The table also contained quantitative data 
associated with study participants physiological and 
biochemical states.  

 
4) Inclusion criteria 

Another type of data that describes entire groups in medical 
or social publications is inclusion criteria for a specific study. 
It provides important facts about study’s participants. Often 
exclusion criteria are provided instead of explicit inclusion 
criteria.  Aggregated attributes, apply to all individual 
patients in the described groups.  For, example if a study is 
performed among white males, then each individual subject 
in the data has precisely these values for attributes describing 
ethnicity and gender. This is in contrast to aggregated 
attributes outlined in the previous section. Table 3 depicts 
part of the inclusion criteria in the PCOS studies. 
 In contrast to traditional meta-analysis, in the presented 
method inclusion criteria do not need to match between 
studies, but rather need to be explicitly listed and are used as 
part of the input in  the learning program.  

Table 3: PCOD study inclusion/exclusion criteria excerpt. 

AH HPA CS AAA AOA TD KD H DM CVD OC AD LLM

ST8 w/ PCOS 61 2
Cohort 1 - M ,                
Cohort 2 - CC

? No ? No No No ? ? No ? ? ? ?

ST9
w/ & w/o 
PCOS

50 2
Cohort 1 - w/  PCOS,    
Cohort 2 - w/o 
PCOS

No No ? No No No No No No No No No No

ST10
w/ & w/o 
PCOS

120 3
Cohort 1 - M +LOD, 
Cohort 2 - M +CC, 
Cohort 3 - M

? ? ? ? ? ? ? No No ? ? ? ?

ST12
Obese w/ 
PCOS

69 1
Cohort 1 -  
Baseline/Outcome

No No No No No No No No ? ? ? ? ?

ST13
w/ & w/o 
PCOS

66 2
Cohort 1 - w/  PCOS,    
Cohort 2 - w/o 
PCOS

No ? ? ? ? No ? No ? ? ? ? No

StudyID
#  of  

Cohorts

Inclusion Criteria
Cohort  Descript ion

Subjects 
(N)

 
M – Metaformin, CC - Clomiphene Citrate, LOD - Laparoscopic Ovarian Drilling, P- Pioglitazone, 
AH - Adrenal Hyperplasia, HPA - Hyperprolactinemia, CS - Cushing's syndrome, AA - Acromegaly 
Adrenal Androgen-producing Tumors, AOA- Acromegaly Ovarian Androgen-producing Tumors, TD 
- Thyroid disorder, KD - Kidney Dysfunction, H - Hypertension, DM - Diabetes Mellitus, CVD - 
Cardiovascular Disease, OC - Oral Contraceptives, AD - Anti-Depressants, LLM - Lipid-Lowering 
Medication 

 
5) Predictive/classification models 

Published results may include existing classification or 
predictive models related to the learning task. Although 
complete models are rarely included, they may be obtained 
from authors (if not proprietary). Typically various kinds of 
regression models, decision trees, Bayesian networks, neural 
networks, and rule-based models are used.   
 Different approaches can be used in order to incorporate 
existing models: incremental learning, which requires 
existing models to be in the same form as the target model; 
sampling; using existing models to weight examples; and 
using existing models to label data in “interesting” cases (a 
form of active learning). In general, the problem of learning 
from existing models is not properly addressed in ML. 
 

6) Correlations 
Correlation coefficients, often reported in publications, can 
be used to better estimate quality (based on estimated 
coverage/accuracy) of a learned hypotheses.  Virtually all 
methods for calculating quality of hypotheses (rules as well 
as other representations) are based on their coverage. When 
learning from published results, particularly from aggregated 
data, the numbers of individual patients satisfying candidate 
hypotheses (coverage) are not known, and need to be 
estimated.  Additional information in the form of correlation 
coefficients can be used to better calculate the coverage. 

 
Table 4: Excerpt of PCOD study correlation coefficients.  

ID Cohort Cohort

r = 0.323 p < 0.022 r = 0.319 p < 0.024 r = 0.689 p < 0.001

ST14CH1 r = 0.41 p = 0.01 r = 0.33 p = 0.03 r = 0.4 p = 0.01

ST14CH3 r = 0.59 p = 0.01 r = 0.54 p = 0.01 r = 0.67 p = 0.005

r = -0.654 p < 0.005 r = -0.615 p < 0.005 r = -0.639 p < 0.005

r = -0.4 p = 0.072 r = -0.445 p = 0.043 r = -0.471 p = 0.031

ST16 ST16CH1

ST23 ST23CH2-B ST23CH2-O

ST9 ST9CH1 ST9CH2

Study Variables Correlat ion Coeff icients

Omentin-1 & BM I Oment in-1 & WHR Omentin-1 & Glucose

ST14

BM I & Adiponect in HOM A-IR & Adiponect in Insulin & Adiponect in

Prept in & Fast ing Insulin Preptin & HOM A-IR

FSH & Fasting Insulin FSH & HOM A-IR Adiponectin & FSH

Prept in & Ferriman-Gallwey 
Score

 
 

7) Statistical significance (p-values) 
Statistical significance usually given as p-values is another 
form of data present in publications.  It can be used to weight 
data points and attributes when learning.  Cohorts of patients 
and attributes from studies whose results are significant are 
more important for learning, thus are weighted higher.  



Table 5: Excerpt of PCOD study statistical significance. 

ID Cohort Cohort

ST3CH1 ST3CH2 = 0.76 = 0.96 = 0.48 = 0.14 = 0.67 = 0.53 = 0.82 = 0.25 = 0.57

ST3CH1 ST3CH2 = 0.61 = 0.43 = 0.51 = 0.48 = 0.99 = 0.41 = 0.67 = 0.6 = 0.74

ST3CH1 ST3CH2 = 0.63 = 0.73 = 0.74 = 0.59 = 0.93 = 0.16 = 0.59 = 0.74 = 0.7

ST3CH1 ST3CH2 0.61 = 0.63 = 0.68 = 0.94 = 0.18 = 0.53 = 0.71 = 0.77

ST7CH1 ST7CH2 = NS = NS < 0.01 < 0.01 < 0.01 < 0.01 = NS

ST7CH3 ST7CH4 = NS < 0.01 < 0.01 < 0.01 < 0.01 = NS < 0.01

ST7CH5 ST5CH6 = NS = NS = NS < 0.05 = NS < 0.05 = NS

ST8 ST8CH1 ST8CH2 = 0.13 = 0.12 = 0.24 = 0.7

ST18CH1 ST18CH2 = 0.1 = 0.9 = 0.2 = 0.2 = 0.8 < 0.001 = 0.001 = 0.7 = 0.05

ST18CH3-B ST18CH3-O = 0.5 = 0.6 = 0.9 = 0.6 = 0.7 = 0.5 = 0.6 = 0.9 = 0.9

ST18CH4-B ST18CH4-O = 0.8 = 0.2 = 0.1 = 0.4 = 0.05 = 0.02 = 0.4 = 0.3 = 0.01

Ident if icat ion Study Variables

ST18

BM I

ST7

FG FIT HDL-C      LDL-C      C

ST3

TE SHBG

 
C – Cholesterol, T– Triglycerides, TE – Testosterone, SHGB – Sex Hormone Binding Globulin, FG – 
Fasting Glucose, FI – Fasting Insulin     

 

C.  Preparation of data for rule learning 

Before data can be prepared for input, it must be collected 
from the selected publications and organized into a relational 
database. The database consists of the aforementioned tables 
with definitions, inclusion criteria, aggregated patient data, 
correlation coefficients, and other statistical results (Table 6).  
 The majority of machine learning software, including 
AQ21 used in this study, takes input data in the form of data 
tables in which each example is represented using equal 
number of attributes.  The major difference between AQ21 
and other rule learning software is that it can use aggregated 
and individual examples. Because of the variance in what 
attributes are reported in different publications, missing 
values need to be extensively used (note the semantic 
distinction between unknown, not-applicable and irrelevant 
missing values described by Michalski and Wojtusiak [9]).  
For example, out of 152 attributes collected in the MS study, 
only one was reported in all publications.  Similarly, in the 
PCOS study, about 78% of data values were missing – many 
of the attributes were present in  only a single study. 
 Results are also reported in different units among the 
various studies. Appropriate conversions need to be done. 
Finally, all data are checked for consistency. This includes 
checking for normal or reasonable ranges of values, typos, 
and variable usefulness for the application at hand. An 
excerpt of the final data table used is shown in Table 6. 

III. RULE INDUCTION FROM PUBLISHED RESULTS 

A. AQ algorithm 

Many algorithms are available for inducing rules from 
individual data.  Despite their differences, the algorithms 
have two common elements: rule construction, and rule 
evaluation. The described method for learning from 
published results and aggregated data focuses on these two 
algorithm elements, thus, it is applicable beyond the AQ-
based systems described here. AQ is a family of rule learning 
systems, including the newest AQ21 [15], developed in the 
GMU Machine Learning and Inference Laboratory 
(www.mli.gmu.edu). AQ21’s elements are designed 
specifically to deal with clinical data. In the core of all AQ 
systems is a simple version of Aq algorithm for generating 
attributional rules [8][15][17]. Attributional rules are more 
expressive than typical IF…THEN… rules because they may 
include a variety of constructs, including internal conjunction 
and disjunction, comparison of attributes, counting attributes, 
simple arithmetic expressions, exceptions, preconditions, and 
many others [8]. Rule learning usually results in more than 
one rule in the systems output (rulesets and ruleset families) 
– these rules usually should be interpreted together).  
 The AQ learning works in two main stages: rule 
construction and rule optimization.  At the core of the first 
stage is a star generation algorithm, which creates multiple 
generalizations (in the form of attributional rules), called 
stars, of a selected positive example. These rules do not 
cover negative examples (except for noise).  A combination 
of rules selected from one or more stars is used as a 
generated hypothesis. More detailed description of the AQ21 
system is available in another ICMLA 2011 paper [18].  
 The rule generation stage can be extended to deal with 
aggregated examples and published results. This is done by 
operators that combine the logic of rule learning with 
statistical information derived from publications [16][17].  

The most important issue within rule learning is the 
evaluation/estimation of coverage. Rule selection and 
optimization criteria are, to a large extent, based on how 

Cohort Occurance PCOS Weight BM I (kg/m²) TE (ng/dL) SHGB (ug/mL) FG (mg/dL) FI (uIU/mL) FGS E (pg/mL)

ST6CH1 Outcome Yes ? 36 +/- 8.9 61.3 +/- 32 3.4 +/- 18.7 89.2 +/- 16.5 22.6 +/- 20.7 14.7 +/- 8.2 ?

ST6CH2 Outcome Yes ? 34.2 +/- 8.4 63.1 +/- 28.4 3.6 +/- 20.3 88.9 +/- 18.6 22.4 +/- 30 14.4 +/- 7.4 ?

ST6CH3 Baseline Yes 94.33 +/- 24.66 35.23 +/- 8.66 62.03 +/- 28.63 3.4 +/- 18.0 ? 22.99 +/- 26.63 14.4 +/- 7.88 ?

ST8CH1 Baseline Yes ? 29.7 +/- 6.13 119 +/- 84 ? 91.71 +/- 9.45 15.62 +/- 18.13 12.67 +/- 7.66 49.59 +/- 25.37

ST8CH2 Baseline Yes ? 27.3 +/- 5.9 86 +/- 44 ? 86.58 +/- 13.24 8.77 +/- 5.43 9.71 +/- 6.19 38.73 +/- 17.02

ST9CH1 Baseline Yes 53.04 +/- 5.32 22.53 +/- 5.31 62.79 +/- 27.13 5.2 +/- 5.0 90.84 +/- 11.14 20.55 +/- 13.4 15.4 +/- 5.16 42.01 +/ - 16

ST9CH2 Control Yes 54.33 +/- 12.3 20.54 +/- 1.95 49.06 +/- 16.8 6.1 +/- 2.0 90.96 +/- 14.88 12.6 +/- 5.92 9 +/- 2.41 109 +/- 85.8

ST19CH1 Control Yes 80.5 +/- 4.3 30 +/- 0.6 37.4 +/- 5.7 7.6 +/- 0.5 82.8 +/- 3.5 7.2 +/- 3 4.8 +/- 1.2 ?

ST19CH2 Baseline Yes 80.2 +/- 3.7 30.7 +/- 1.2 103.7 +/- 11.5 4.9 +/- 0.5 97 +/- 9.6 21.3 +/- 5.9 15 +/- 1.9 ?

ST19CH2 Outcome Yes 79.6 +/- 8.4 ? 92.2 +/- 14.4 6.2 +/- 1.3 85.4 +/- 6.1 11.6 +/- 1.4 16 +/- 3 ?

ST22CH1 Outcome Yes ? 30.2 +/- 1.6 75 +/- 49 ? ? 19.4 +/- 2.9 21.5 +/- 1.5 42.1 +/- 5.8

ST22CH1 Outcome Yes ? 28.5 +/- 1.8 57.2 +/- 32 ? ? 13.8 +/- 1.9 14.6 +/- 0.7 66.4 +/- 11.1

Ident if icat ion Study Variables (mean±std dev)

Table 6: Except of PCOD standardized data ready for AQ21 rule learning. 

TE – Testosterone, SHGB – Sex Hormone Binding Globulin, FG – Fasting Glucose, FI – Fasting Insulin   , E - Estradiol   



many positive and how many negative examples in the 
training/evaluation data satisfy the rules. The method used in 
AQ21 estimated rules’ coverage of individual patients is 
based on published results included in the data. Information 
on the distribution of patients, correlation coefficients, and 
statistical significance is used to provide better estimation. 

 

IV. EXAMPLE APPLICATIONS 

A. Metabolic Syndrome-related liver complications 

The goal of this application was to create models for 
diagnosing liver complications in metabolic syndrome (MS) 
patients. MS and its secondary complications pose a 
significant challenge for practicing diagnosticians. The 
syndrome is associated with a resistance to insulin, and 
predisposes patients to non-alcoholic fatty liver disease 
(NAFLD) and its more severe manifestation, nonalcoholic 
steatohepatitis (NASH). Currently, it is not possible to make 
an accurate diagnosis of NAFLD and/or NASH without a 
liver biopsy (an invasive and costly procedure with 
complications including the death as a result of bleeding or 
infection). Therefore, simple “rules” that can aid physicians 
at diagnosing NAFLD are of great importance. 
 Below we present two example rules derived from 
aggregated data by the previously described method.  The 
first rule states that there is presence of non-alcoholic fatty 
liver disease or its subtypes, if body-mass index is greater or 
equal 26.85, except for when aspartate aminotransferase 
level is less or equal 27.2 units/L and adiponectin level is at 
least 7.25 mg/ml.  Numbers following the conditions and 
rules represent numbers of patients or groups of patients 
supporting/contradicting the rules (see the AQ21 User’s 
Guide for more annotation information [14]). 
 

[Class=NAFLD] 
   <== [BMI>=26.85: 8,2] 
      |_ [AST<=27.2] &    
          [Adiponectin>=7.25] 
       : p=8,n=0,cx=25 

[Class=NAFLD]  
   <== [Adiponectin<=6.18: 8,1] 
         :p=8,nmin=0,nmax=1,cx=5 

 
Similar rules have been obtained for predicting simple 

steatosis and nonalcoholic steatohepatitis [16]. The rules are 
easy to interpret and are consistent with experts’ existing 
knowledge.  Additional testing validated these rules for 
predicting NAFLD and resulted in a positive predictive value 
(PPV) of 85-87%, reflecting relatively high “rule-in” 
characteristic of the algorithm. The best rule for the 
prediction of NASH has an accuracy of 78%, with PPV of 
71%, and negative predictive value (NPV) of 37%. 

B. Diagnosing Polycystic Ovary Syndrome 

PCOS is an endocrinopathic disorder – a hormone condition 
effecting fertility - that impacts 5 to 10% of females ages 18 
to 44 [4]. As a result, copious amounts of diverse aggregated 
data are available in medical journals. While there is no 
consensus the exact cause of PCOS (though genetic and 

environmental factors have been suggested), researchers 
have found that there is a strong correlation between PCOS 
and obesity, type 2 diabetes, and insulin resistance.  
 The initial application of the AQ21 system revealed 
several rules that can be used to diagnose PCOS.  Because of 
the initial status of the research, we do not claim any medical 
significance of the rules and further analysis is needed. 

 
[ PCOS = Yes ] 
   <== [ Thyroid_Disorder = Yes] 

    : p = 392, on = 58, cx = 7 
  <== [ Testosterone >= 56.169552] 

    : p = 304, on = 148, cx = 5 
  <== [ DHEA_sulfate >= 2321.65] 
       : p = 118, on = 122, cx = 5 
  <== [ Free_Testosterone >= 2.285] 
        : p = 19, cx = 5 

[ PCOS = No ]  
  <== [ HDL_C >= 40.830116] 
       : p = 116, cx = 5 
  <== [ BMI = 17.25..24.525 ] 
       : p = 61, on = 134, cx = 7 
   <== [ Thyroid_Disorder = Yes] 

: p = 48, cx = 7 
  <== [ Testosterone <= 41.815734]  
      & [SHBG >= 4.3076307] 

: p = 10, cx = 10
 
Left column lists selected rules for classifying patients as 

having PCOS and right column lists those as not having 
PCOS. Note that for some cases these sets of rules may not 
provide a definitive answer because the sets of rules are 
partially intersecting, and do not fully cover a complete 
patient space. This follows the idea that it is better to give no 
answer than an incorrect one that misleads a diagnostician. 

 

V. RELATED RESEARCH 

The problem of analyzing results of published studies is well 
known.  Meta-analysis methods, often used in systematic 
reviews, calculate statistical descriptions that characterize 
data used in multiple studies.  Extensive theory has been 
built on how to aggregate results of multiple studies and 
derive at statistically valid conclusions [7].  These 
methodologies are used in preparing systematic reviews such 
as those by the Cochrane Collaboration [1] in healthcare, and 
the Campbell Collaboration [3] in public policy and law. 

Rule learning is the most popular method for discover-
ing relations between variables in large databases.  Possibly 
the most straight-forward approach to learning from pub-
lished aggregated data is to create individual instances by 
sampling and then use them in the learning process.  This 
approach, however, does not work well in rule learning be-
cause artificial sampling introduces random relationships 
between attributes that mislead learning algorithms [10].  

Two machine learning areas that are closely related to 
the described method are statistical relational learning [13] 
and inductive logic programming [6].   Both areas deal with 
the more general problem of learning from datasets with 
complicated structures, rather than the specific problem of 
learning from published results. Also, recently Bayesian 
networks are also used to support meta-analysis [11][12]. 
Despite the extremely fast growth of machine learning, ma-
chine learning has been used in systematic reviews mainly 
to help researchers select the most appropriate studies [2], 
not to create models, not to develop models from results. 



A related field called Literature-based discovery (LBD) 
concerns methods for identifying unknown relationships in 
data drawn from published results [5].  By bringing together 
results published in several papers, new relationships that 
were not considered in the original studies can be found.  
While the general framework of LBD is somewhat similar 
to the described rule learning method, its goal is to discover 
relationships, rather than build models.  
 

VI. DISCUSSION AND CONCLUSION 

Published medical studies include a wide range of data that 
is not properly utilized by traditional systematic reviews. 
The described methodology for analyzing published results 
is intended to complement currently used techniques in 
systematic reviews and meta-analyses.  With rapidly 
changing clinical knowledge, automated methods with the 
ability to incrementally update knowledge may prove to be 
the needed method to keep reviews up to date. This is 
particularly important because evidence-based medicine 
requires clinicians to access the newest results.  

Preliminary applications of the method in the two areas, 
has shown that it is capable of producing simple rules that 
can aid physicians in diagnostic tasks. Though the method 
seems promising, further work is needed to accurately test 
and implement the created rules in clinical practice.  

While the research on the methodology is still in 
progress, the envisioned extension of the AQ21 system will 
allow for the use of all types of data and results mentioned in 
this paper. Currently, AQ21 supports individual-level and 
aggregated data, and weights of attributes and examples. The 
system is envisioned to be a platform for human-oriented 
machine learning in medical and healthcare applications. 

Systematic investigation and testing of the described 
methods is beyond scope of the short conference paper.  
However, we are in the process of using Monte Carlo 
simulation methods to prepare large number of simulated 
datasets that can be used to test the methods in diverse 
number of situations. In addition to the experimental testing, 
theoretical investigation of the method is being prepared. 
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