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Abstract. Successful application of machine learning in healthcare re-
quires accuracy, transparency, acceptability, ability to deal with complex 
data, ability to deal with background knowledge, efficiency, and exporta-
bility.  Rule learning is known to satisfy the above criteria. This chapter 
introduces rule learning in healthcare, presents very expressive attribution-
al rules, briefly describes the AQ21 rule learning system, and discusses 
three application areas in healthcare and health services research. 
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8.1 Introduction 

Healthcare requires modern computational tools to handle the complexity 
of data and workflows. The healthcare environment is dynamic and fre-
quently changing: New knowledge is published on a daily basis, new drugs 
are constantly available, and the best practice guidelines change. Moreo-
ver, healthcare is a critical area in which success is measured by patient 
survival and wellbeing. Unfortunately, many existing treatment and reim-
bursement systems used in healthcare treat individual patients as “average” 
cases without tailoring to patient characteristics. 

The above reasons call for machine learning methods to manage the com-
plexity and automatically adapt to frequent changes. This chapter focuses 
on one of the best known and most important methods in machine learning 
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in healthcare: rule learning.  It briefly describes rule learning methods, 
discusses their use in healthcare delivery, research, administration and 
management, and presents advantages of using rule learning rather than 
traditional computational approaches and other machine learning methods. 

In order to fully justify the use of rule learning in healthcare, the following 
sections briefly outline aspects of machine learning that are particularly 
important in this application area. 

8.1.1 What is Needed in Healthcare and Health Services 
Research? 

Machine learning methods have a wide range of applications in healthcare 
delivery, research, administration, and management. Many of these appli-
cations are slowly emerging as the healthcare community becomes more 
familiar with machine learning and its immense potential.  On the other 
hand, most machine learning researchers are not familiar with healthcare 
settings and over-trivialize them. This mutual lack of understanding be-
tween healthcare and machine learning communities results in the lack of 
advanced machine learning methods adoption. 

Among the healthcare areas that benefit the most from machine learning 
are those that rely on automated processes or that can be automated.  The 
ability of machine learning methods to adapt to dynamically changing en-
vironments, previously unseen situations, and new challenges make them 
ideal for these types of applications. Two of the most common applications 
of machine learning in healthcare are: decision support systems and 
knowledge discovery. Decision support systems rely on computational 
models that aid decision makers in a variety of situations. These models 
can be constructed and maintained using machine learning.  In addition, 
knowledge discovery, which primarily derives from medical datasets, can 
be used to study patterns of healthcare delivery systems, management, 
billing, etc.  Machine learning has, thus, great potential when correctly 
applied to hard problems that cannot be solved with more traditional com-
putational methods or manually without the use of computers. 



However, for machine learning to be adopted in healthcare, methods need 
to fulfill several requirements. These requirements are eminent and appli-
cable to virtually all domains in which machine learning is or can be used. 
However, some of these requirements are particularly important in 
healthcare when the adoption of new technologies and results are excep-
tionally challenging. 

₋ Accuracy. Models have to provide reliable predictions and/or reliably 
describe data, which is, in most cases, their main function.  Multiple 
measures of accuracy are available, all of which perform some form of 
counting/scoring of correct and incorrect predictions and combinations 
thereof.  Some commonly used measures of accuracy include precision, 
recall, sensitivity, specificity, F-score, and others.   

₋ Transparency. Medical and healthcare studies require models to be 
easily understood by people not trained in machine learning, statistics, 
and other advanced data analysis methods. In this sense, providing just 
the reliable predictions is not sufficient, as models should also “explain” 
why a specific prediction is made and what the model actually does.  
This corresponds not only to methods that lead to creation of new 
knowledge, but also to autonomous systems that because of their critical 
role need to leave an “audit trail” and be analyzed/verified periodically. 
  
   The concept of understandability and interpretability has been well 
known since early work on expert systems and artificial intelligence, but 
has been largely ignored by many modern machine learning methods.  
One reason for this is that it is very hard to measure the complexity of 
created models and hypotheses, and use that measurement as one of 
knowledge representation selection criteria. It is virtually impossible to 
consistently measure and compare the transparency of models learned in 
different representations. (How do we compare transparency of specific 
SVM-based, NN-based, and rule-based models for diagnosing liver dis-
eases?  How do we generalize the measure?)  Moreover, compound 
knowledge representations, which are natural to people, tend to be diffi-
cult to learn through machine learning methods.  One such representa-
tion, called attributional calculus consists of attributional rules, which 
are briefly outlined in Section 8.3.1. 



₋ Acceptability. Models need to be accepted by their potential users. 
While partially related to transparency, acceptability requires that the 
models that do not contradict the knowledge of existing experts are oth-
erwise “reasonably” congruent with what is currently being done, and 
correspond to existing workflows. Acceptability is a key issue in 
healthcare, more than in any other industry.  Clinicians, administrators, 
and supporting staff do not want to change the way they work, even if 
the developed models being used are accurate and superior to methods 
currently being used.  The use of ML algorithms should immediately 
lead to improved work and provide incentives to participants; otherwise 
results may not be adopted. 

₋ Ability to handle complex types of data. Healthcare data are complex. 
Even relatively simple applications of machine learning to healthcare 
data require making numerous conversions, data pre-processing, encod-
ing of variables, and so on.  In order to have widespread acceptance in 
healthcare, machine learning methods should be able to operate directly 
with healthcare data without the need to artificially encode. Healthcare 
data are not, and should not be, treated by ML tools as a collection of 
numbers without meaning.  Although more advanced ML methods rec-
ognize a wide range of data types (nominal, structured, ordinal, interval, 
ratio, absolute, compound, etc.), prevalent standards such as ICD-9, 
ICD-10, CPT, SNOMED, and HL7 are currently not directly supported 
by ML tools.   

₋ Ability to handle background knowledge. Computers require massive 
amounts of data to make simple decisions or discover simple facts. Hu-
mans do exactly the opposite -- we are able to make important decisions 
and discover important facts based on minimal information.  Although 
there are many differences in human and computer inference/learning 
processes, one of the most important is the ability to use background 
knowledge to place problems into the appropriate context.  Similarly, 
machine learning algorithms that are provided with large knowledge ba-
ses and a wealth of background knowledge need not have access to huge 
amounts of data. This allows machine learning algorithms to focus on 
the discovery of novel facts and not what is already known to experts.  
Extremely large repositories of medical and healthcare knowledge (is 



often not coded and in many cases only available as text of published 
manuscripts) can be incorporated into the machine learning process. 

₋ Efficiency. Both model induction and model application algorithms 
need to be efficient. Machine learning algorithms applied in healthcare 
should be able to cope with very large amounts of data.  The data may 
have many examples (sometimes called records or datapoints), attributes 
(sometimes called variables or features), or both.  The theoretical esti-
mates of algorithm complexity are often available for many methods.  
More importantly users want the methods to be executed in a specific 
period of time, even if it means that results are only approximate or 
“good enough.” 

₋ Exportability. Results of machine learning should be directly transfer-
able to decision support and other systems where they can be immedi-
ately applied. It is not unusual that the learned models will work along 
with already existing models and thus need to be compatible. For exam-
ple, learned models can be translated or directly learned in the form of 
rules in Arden Syntax, a popular representation language in clinical de-
cision support systems. If models are learned in completely different 
representations, they need to be translated (usually approximately) to 
the target form. 

This chapter focuses on the use of rules and rule learning methods in dif-
ferent healthcare areas.  Rules are known to be one of the most transparent 
knowledge representations that also conform to other criteria outlined 
above. 

8.2 Rule Learning 

Over the past few decades multiple rule learning algorithms and software 
have been developed. Multiple types of rules are considered in machine 
learning research depending on their use and form, including: association 
rules (which are used to represent regularities in data), decision rules 
(which are used to support decisions) and their subtype classification rules 
(used to classify examples into concepts), rules with exceptions (that in-
clude part describing when the rule does not apply), m-of-n rules (used to 



count true values or statements), and attributional rules (the most expres-
sive form of rules considered here). 

The AQ21 system is particularly suitable for problematic healthcare situa-
tions because of its flexibility, ability to deal with multiple types of attrib-
utes, handle both large and small datasets, use background knowledge in 
different forms, learn from individual and aggregated data, manage meta-
values, cope with noise, perform constructive induction, generate alterna-
tive hypotheses, and many other features. AQ21 uses attributional rules as 
the main form of knowledge representation. The following subsections 
briefly introduce attributional rules, and outlines AQ21 main algorithms. 

8.2.1 Attributional Rules 

Healthcare applications require rules that are more expressive than typical-
ly used 

CLASS IF CONDITION                      (8.1) 

Most software creates rules in which CONDITION is a conjunction of 
simple conditions in the form ATTRIBUTE = VALUE. Many such rules are 
needed to describe even simple concepts. Attributional rules are currently 
the most expressive form of rules induced by machine learning algorithms. 
They are the main knowledge representation in a formal language called 
attributional calculus, AC [9]. AC has been created to support natural 
induction, an inductive learning process which has results that are natural 
to people because of their form and content.  

Natural induction requires that knowledge be equivalent to statements in 
natural language (i.e. English), so those who are not experts in machine 
learning or knowledge mining, or do not have a technical background may 
understand it.  Thus, medical doctors, healthcare administrators, nurses, 
and researchers should be able to understand, interpret, modify, and apply 
knowledge learned by computer systems.  Such a goal requires that 
knowledge discovery programs use a language that can either be automati-
cally translated to natural language or easily understood on its own.   



Learned knowledge is represented in attributional calculus in the form of 
attributional rules, which consist of attributional conditions.  An attribu-
tional condition takes the form: 

   [L rel R:A],                  (8.2) 

where L is an attribute, an internal conjunction or disjunction of attributes, 
a compound attribute, a counting attribute, or an expression. rel is one of 
=, >, <, ≤, ≥, :, or ≠. R is an attribute value, an internal disjunction of at-
tribute values, an attribute, an internal conjunction of values of attributes 
that are constituents of a compound attribute, or an expression. A is an 
optional annotation that may list statistical information describing the con-
dition. The annotation often includes |p| and |n| values for the condition, 
defined as the numbers of positive and negative examples, respectively, 
that satisfy the condition, and the condition’s consistency defined as 
|p|/(|p|+|n|). 

There are several forms of attributional rules allowed by attributional cal-
culus.  Three important forms of attributional rules are presented below:  

  CONSEQUENT<==PREMISE            (8.3) 

 CONSEQUENT<==PREMISE   ë   EXCEPTION          (8.4) 

 CONSEQUENT<==PREMISE    é   PRECONDITION          (8.5) 

where PREMISE, CONSEQUENT, EXCEPTION, and PRECONDITION 
are complexes, that is, conjunctions of attributional conditions.  An 
EXCEPTION can also be an explicit list of examples that constitute excep-
tions to the rule.  The rules without exception or preconditions are inter-
preted as the CONSEQUENT is true whenever the PREMISE is true.  The 
rules with exceptions are interpreted that the CONSEQUENT is true when-
ever the PREMISE is true, except for when the EXCEPTION is true.  The 
rules with preconditions are interpreted that the CONSEQUENT is true 
whenever the PREMISE is true, provided that the PRECONDITION is 
true.  The symbols ë and é are used to denote exception and precondition, 
respectively.  Each rule may be optionally annotated with several parame-



ters such as numbers of covered examples (positive and negative), the rule 
complexity, etc. 

One class of the data is usually described using several rules, called a 
ruleset.  Rules considered here are independent, i.e., the truth status of one 
rule does not affect interpretation of other rules. This is in contrast to many 
other rule learning programs that learn sequential rules that need to be 
evaluated in a specific order.  A set of rulesets that describe all considered 
classes in the data (often defined by possible values of an output/dependent 
attribute) is called a ruleset family, a.k.a. classifier. Depending on the 
problem at hand, the goal may be learn a complete classifier, a ruleset for 
one class of interest, or individual rules representing regularities/patterns 
in the data. 

Table 8.1 Table with example conditions and rules 

[Length>7.3] 

The length of an entity is greater than 7.3 units (as defined in the attrib-
ute’s domain). 

 

[Color=red v blue: 40,2] 

The color of an entity is red or blue. The condition is satisfied by forty pos-
itive and two negative examples. 

 

[Length & Height≤12] 

An entity’s length and height are both smaller or equal to 12 units. The 
units are defined in the attributes’ domains. 

 

[Weather: sunny & windy] 

The weather is sunny and windy. This is an example of a condition that 



includes a compound attribute Weather. 

 

[Part=acceptable] <== [Width=7..12] &[Length<3] &[Material=steel v 
plastic] 

A part is acceptable if its width is between 7 and 12, its length is less than 
3 and its material is steel or plastic. 

 

[Activity=play] <== [Condition=cloudy v sunny: 7,8] & [Temp= medium 
v high] 

                ë [Condition=cloudy] & [Wind=yes] & [Temp= high] : 
p=7,n=0,q=1 

An activity is play if the condition is cloudy or sunny and temperature is 
medium or high, except for when the condition is cloudy, there is wind and 
temperature is high.  The rule covers 7 positive and no negative examples. 
Its quality of the rule is 1. 

8.2.2 AQ21 

The well-known family of AQ programs originated with the simple ver-
sion of the Aq algorithm for solving the general covering problem used at 
the core of rule learning [5].  Numerous implementations and extensions of 
the method were developed over the years.  Among the best known AQ 
implementations are AQ7 [6], AQ11 [7], AQ15c [11], AQ17 [1], AQ19 
[8], and most recently AQ21 [12][13][14]. 

The AQ21 system consists of two main modules for learning attributional 
rules, and for their application (Figure 8.1). The learning module consists 
of data and background knowledge, a pre-processing module, a rule gener-
ation module, and a post-processing module. Similarly, the testing module 
consists of a pre-processing module which converts data and rules to 



common representation, a rule application module which matches exam-
ples against rules, and a post-processing which calculates summaries and 
statistics. 

 

Fig. 8.1 AQ21 system architecture 

Rule learning starts with the pre-processing of data and background 
knowledge which both need to be converted into the right representation 
and then prepared for rule generation.  The process may involve simple 
steps such as encoding of attribute values, and/or more complex ones in-
cluding constructive induction.  The goal for the latter is to automatically 
determine the representation space (a set of attributes, their types, and do-
mains). This method is best suitable for the learning problem at hand.  
AQ21 implements two of three known classes of constructive induction 
(data-driven (DCI) [3], knowledge-driven (KCI), hypothesis-driven (HCI) 
[10], and multi-strategy [2]), DCI and KCI.  The methods include opera-
tors such as attribute selection, attribute generation, and attribute modifica-
tion. 

At the core of the AQ learning is its rule generation module. The method 
pioneered the separate-and-conquer approach to rule learning, in which 
data representing a target class being learned are sequentially covered in a 
way that avoids negative examples. The AQ21 rule generation module 
starts by focusing on a single example and generates possible generaliza-
tions of that example that are consistent or partially consistent with the 
data and background knowledge.  This process, called star generation, 
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results in a rule or set of rules that describe part of the data. Multiple stars 
may be generated in parallel, in order to prevent erroneous generalizations 
due to noise in the data.  The process of star generation is repeated until all 
data or a significant portion of data are covered (explained) by generated 
rules. The quality of rules in AQ21 is evaluated using lexicographical 
evaluation functional (LEF), a method which sequentially evaluates rules 
through multiple criteria.  Numerous variants of the AQ rule generation 
algorithm have been investigated over the years and are widely described 
in literature. 

The rule post-processing method includes rule optimization, selection of 
the final rules to be used in a hypothesis or a set of alternative hypotheses, 
and calculation of statistical parameters describing these rules. The final 
rules are presented to the user or transferred to the testing and application 
module.  

The rule testing and application module starts with the pre-processing of 
hypotheses and examples in order to match their representation and pre-
pare for the actual application process. Each considered example (applica-
tion case) is evaluated against rules. In the case of application of rules in 
decision support, only one example is usually considered.  Rules can be 
evaluated strictly (when an example either matches a rule or not) and flex-
ibly (when a degree of match, DM, ranging from zero to one is calculated). 
Multiple schemas [9] are available on how to flexibly evaluate individual 
conditions, rules, and entire rule sets.  

Unlike most classifiers that always give one definitive answer, the AQ21 
application module may either provide multiple possible answers, or simp-
ly answer “don’t know.” In this philosophy, it is better to provide users 
with more than one plausible answer with high confidence, or not answer 
at all, than give a likely incorrect definitive answer. 

8.3 From Rule Learning to Decision Support 

Decision support systems are broadly defined as computer systems that aid 
decision makers. This definition can include everything from simple 



spreadsheet applications, through simulation models, to rule-based expert 
systems.  In this chapter, we focus on knowledge-based decision support 
systems in which computers provide support to their users based on the 
content of their knowledge bases.  

Traditionally, decision support systems are static in the sense that their 
knowledge does not change over time without explicit intervention by the 
user.  Machine learning-based decision support systems can, however, 
evolve and adapt to dynamically changing environments in which they 
operate. Adaptability is, thus, one of two important areas in which machine 
learning can help in decision support.  

Consider an alert system which provides clinicians with messages inform-
ing them about important events related to a specific patient, i.e., allergies, 
drug-drug interactions, abnormal results.  An oversensitive alert system 
that displays too many messages causes a well-known phenomenon called 
alert fatigue. In such a case, physicians no longer read alerts, but rather 
ignore all of them. A typical approach to the problem is to create a system-
wide policy/threshold so that alerts do not overwhelm users.  This one-
size-fits-all approach ignores all the differences between physicians and 
the way they practice.  A machine learning-based solution is able to adapt 
to specific users (physicians) and show only alerts that have the lowest 
chance of not being overwritten. 

The second important area in which machine learning can be used in 
healthcare is knowledge generation.  The majority of decision support sys-
tems are based on rules. These rules, sometimes called Medical Logic 
Modules (MLMs), are prepared by panels of experts based on the best 
practice and known evidence.  Their creation is a long and difficult pro-
cess.  One of the important applications of machine learning is knowledge 
generation – the knowledge if present in the right forms can help in prepa-
ration of MLMs. 

Because rules created by the AQ21 system are independent (i.e. unor-
dered), they can be easily incorporated into decision support systems. For 
example, attributional rules described above can be directly written in 
ARDEN syntax [4].  The actual rules are written in the “logic” slot of 
MLMs while the “data” slot is used to derive attribute values and translate 



then into the required format. Because one MLM corresponds to a com-
plete decision, it includes multiple rules forming a complete ruleset family.  
Attributional rules can be also manually inspected by experts and modified 
as rules and compliance requirements change. 

8.4 Review of Selected Applications 

This section describes three recent studies that applied rule learning in 
diverse areas of healthcare.  They span over medical, comparative effec-
tiveness, and managerial datasets. 

8.4.1 Hospital Bills Classification 

The purpose of the described study is to improve billing by advancing 
healthcare provider operations and performance through the use of ma-
chine learning methods [16].  Across the country, healthcare providers are 
experiencing ongoing pressure from declining revenues. Payers are under 
increasing pressure to contain costs. The implementation of healthcare 
reform through the Patient Protection and Affordable Care Act (Public 
Law 111-148) will further exacerbate this issue. These and additional de-
mands to combat waste, fraud, and abuse are creating mounting pressures 
to achieve ‘perfection’ in all phases of healthcare billing and reimburse-
ment authorization for hospitals and independent healthcare providers (e.g.  
physicians and medical group practices).  In order to ensure that payments 
are appropriate, payers must ascertain that there is proper documentation 
of care prior to reimbursement. Providers must be diligent in maintaining 
proper documentation to receive the correct payment and avoid loss of 
revenue.   

The opposing pressures from payers and providers call for the use of deci-
sion support/screening methods, to better manage the billing and revenue 
cycle and detect inconsistencies in coverage, care/service documentation 
and payments, and to guide financial and clinical personnel through this 
process.  Specifically, we are using machine learning to create models for 



screening billing information for inconsistency.  The initial, proof-of-
concept, study presented here is based on the batch processing of obstetrics 
data collected from a one year period in 2008.  

In the first step, the data are pre-processed to match requirements of the 
machine learning application used.  Data available in multiple tables in the 
hospital information system need to be converted into a flat file.  Addition-
al processing of variables needs to be done. In the second step, the AQ21 
machine learning system [13], which creates predictive models in the form 
of highly transparent attributional rules, is used.  In order to apply the 
method to create models, the data is classified as “normal payment” and 
“abnormal payment” which correspond to payments consistent and not 
consistent with contractual agreements, respectively. Finally, after the rule 
learning phase, the models are used to predict whether a specific bill is 
likely to receive normal payment in advance to its submission to the payer. 

Initial application of the method in analyzing billing information for ob-
stetrics patients covered by Medicaid achieved promising results. The pre-
sented method provides two strong benefits in analyzing billing infor-
mation.  First, the use of machine learning allows one to automatically 
create models for predicting bill payments before their submission.  The 
models allow screening of billing information before the bill is sent to 
payees, therefore maximizing the chance of receiving full payments, and 
reducing unnecessary denials. Second, the use of highly transparent repre-
sentations of models in the form of attributional rules, allows for the detec-
tion of regularities in bill denials which may lead to potential workflow 
improvement. 

8.4.2 Comparative Effectiveness Research 

The gold standard for biomedical research is randomized clinical trials 
(RCT).  In many cases, RCTs are impossible or unethical to perform, and 
only secondary analysis of existing data form clinical records is possible.  
Rule learning is an attractive approach to comparative effectiveness re-
search of alternative treatments or medications. The latter are often pre-
scribed based on trial and error. 



The problem considered in comparative effectiveness research is substan-
tially different from one considered in typical concept learning in which 
examples are labeled with classes. Here, the data are in the form of rows 
including Ci, Ti, and Oi, where Ci are the ith patient case characteristics, Ti 
is the applied treatment or combination of treatments, and Oi indicates 
outcomes [15]. Models are created and tested using the following three 
steps, also illustrated in Figure 8.2. 

1) For each treatment or combination of treatments, T, select PT cases from 
the database for which therapy T was successful and NT cases for which 
therapy T was unsuccessful. 

2) Apply rule learning to induce general models, MT, based on PT and NT to 
predict whether therapy T will be successful given a patient’s character-
istics. A collection of such models for all considered combinations of 
treatments will be the final model M. Similarly, create models MNT to 
predict that a given therapy will not be successful. The reason for creat-
ing both positive and negative models is that using both models allows 
for better control of the level of generalization, and thus increases the 
confidence in the final models. 

3) Given a set of patient characteristics <c1, …ck>, model M will return a 
set of possible combinations of treatments {T1, …Tn} that are likely to 
be successful, M(<c1, …ck>) = {T1, …Tn}. It is possible that for a given 
case more than one combination of treatments is returned, i.e. n>1, or no 
considered combination of treatments is returned, i.e. n=0. Similarly, 
models MNT are applied, to create a list of potentially improper combina-
tions of treatments. 

4) Test model M on a subset of “unused” data consisting of P “successful” 
cases and N “unsuccessful” cases. Results of the testing are reported in 
terms of specificity, selectivity, and statistical significance of individual 
models and all models together. 



Fig. 8.2 Creation of models for comparative effectiveness research 
 

The created models define groups (or clusters) of patient characteristics 
that are likely to have positive or negative outcomes. Note that the groups 
may be intersecting i.e., more than one combination of treatments may 
appropriate in a specific case, and not exhaustive, i.e., there may be cases 
for which none of the examined combinations of treatments is predicted to 
be successful. In the latter case, a flexible interpretation of rules may be 
used to select the closest potentially successful combination of therapies.  
Within groups of patients selected by machine learning, traditional com-
parative effectiveness can be performed. 

8.1.1 Aggregated Data 

There is a growing need to combine data originated from multiple clinical 
studies.  A majority of published studies describe relatively small cohorts 
and produce platform-dependent results that often lack consistency. Indi-
vidual measurements of the clinical parameters are protected by The 
Health Insurance Portability and Accountability Act (HIPAA), thus pre-
cluding a combination of multiple cohorts into the large database to per-
form secondary analyses. A combination of multiple studies, which is the 
goal of systematic reviews, relies on meta-analysis methods to statistically 
combine results of the studies. Traditional meta-analysis, however, does 
not perform knowledge discovery or build predictive/classification models 
from aggregated data [14]. 
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The problem addressed here is how to learn rules from aggregated data 
published from multiple studies, rather than from individual examples 
(subjects). The goal of the method is to discover a model M for diagnosing 
diseases D, from published results in which data satisfy a set of criteria C.  
One important characteristic of the method is that the studies do not need 
to describe diagnostic methods for diseases D, but to only include relevant 
data summaries. Common inclusion criteria that are prerequisites for the 
traditional meta-analysis methods are not required either.  It is sufficient 
that the criteria are disclosed, so they can serve as inputs to the model 
along with the aggregated data. The process of the model development is 
depicted in Figure 8.3. 

 

Fig. 8.3. Steps in rule learning from published aggregated data 

The rule learning problem considered here induces a rule-based classifier  
M(X) à D that can be used to diagnose X patients into diseases from D.  
The model is induced using aggregated data describing groups of patients, 
not individual datapoints as typically handled by machine learning algo-
rithms.  Specifically, the method uses aggregated data A, inclusion criteria 
C, and other groups’ information G to create model M. This process ex-
tends learning from aggregated data that deals with multiple cohorts of 
patients described as mean +/- standard deviation of each clinical parame-
ter. 

The method has been applied to deriving diagnostic models for metabolic-
syndrome related liver complications from summarized (aggregated) de-
scriptions of the small cohorts of patients available from published manu-
scripts. The significance of this topic is large because approximately 47 
million people in the United States have metabolic syndrome (MS) and 
this number is on the rise.  The aggregated clinical data were retrieved 
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from articles published in leading peer-reviewed journals. By applying the 
developed rule learning methodology, we arrived at several different pos-
sible rulesets (sets of rules that together form a model to make a specific 
diagnosis) that can be used to predict three considered complications of 
MS, namely non-alcoholic fatty liver disease (NAFLD), simple steatosis 
(SS), and nonalcoholic steatohepatitis (NASH). It should be noted that the 
NAFLD group comprises both SS and NASH cases, which means that 
values of the output attribute form a hierarchy. 

Seven NAFLD or NASH predicting rulesets were generated using the 
AQ21 system executed with different parameters.  Resultant rulesets pre-
dicting NAFLD or NASH were blindly validated using a well- defined 
NAFLD database containing 489 patients with biopsy-proven NAFLD, 
NASH or SS with extensive clinical and laboratory data. 

An example of typical automatically learned rule states that patients with 
BMI>26.85 are likely to have NAFLD, except for when AST is at most 
27.2 and adiponectin level are at least 7.25 [14]. The rule is formally 
shown as: 

                [Group=NAFLD]    <==   [BMI > 26.85] (8.6) 

                                                     ë  [AST ≤ 27.2] & [Adiponectin ≥ 7.25].  

Validation of this rule for predicting NAFLD resulted in a positive predic-
tive value (PPV) of 85-87%, reflecting relatively high “rule-in” character-
istic of the algorithm. The best rule for the prediction of NASH relied on 
combination of fasting insulin, HOMA and adiponectin values with an 
accuracy of 78%, with PPV of 71% and negative predictive value (NPV) 
of 37%. 

8.5 Summary 

This chapter briefly presented rule learning and its uses in healthcare and 
health services research.  The focus of this paper was on the AQ21 rule 
learning and testing system because of the system’s applicability to 
healthcare problems. AQ21 can be viewed more like a laboratory for ex-



perimentation with healthcare data rather that a single computer program, 
which can be executed on data and produce rules. Rule learning performed 
by AQ21 is particularly suitable for healthcare applications because its 
high transparency increases the chance that models will be accepted by 
users. 

Acceptability of machine learning methods is a central criterion among 
those listed in Section 8.2.  Other criteria (accuracy, transparency, etc.) 
lead to the acceptability of models, which in healthcare community is very 
hard to achieve.  While other types of models, such as decision trees and 
Bayesian networks, are known to be highly transparent, attributional rules 
follow most of the criteria listed in Section 8.2. 

Among the numerous current and potential applications of rule learning in 
healthcare and health services research, three diverse applications were 
briefly presented in this chapter. Each application demonstrates that rule 
learning has great potential and can give good results.  The application of 
rule learning is, however, always straight-forward, and significant work 
and preparations need to be done before rule learning can be effective-
ly/efficiently used. 

Future work on rule learning should focus on four directions. (1) Richer 
and more natural (to people) rule-based knowledge representations can be 
created by extending attributional calculus to capture concepts that are 
natural to healthcare practitioners and researchers. (2) Easy to use tools 
that deal directly with healthcare data can be developed.  One attempt to 
make computational intelligence and machine learning (CIML) tools ac-
cessible to the healthcare community was through CIML Virtual Organiza-
tion [17]. The VO’s goal is to provide the healthcare community with ac-
cess to CIML tools, advice, educational materials, and networking. (3) 
Efficiency of rule learning methods can be improved. High complexity or 
rule based representations require long computation times, particularly 
when advanced methods, such as constructive induction, are used. (4) Ma-
chine learning, in particular rule learning, can be popularized as an attrac-
tive approach to data analysis and systems’ adaptability, to healthcare 
community. 
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