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ABSTRACT 

Motivation:  Bio-ontologies are becoming increasingly im-

portant in both knowledge representation and machine learn-

ing fields. Bio-ontologies are used to model the healthcare 

knowledge using a set of concepts and relationships among 

those concepts. Meanwhile, mainstream machine learning fo-

cuses on the ability to process massive amounts of data and 

build accurate models, but few methods provide intelligent as-

sistance to address challenges in the biomedical data analy-

sis such as the complexity, heterogeneity, and semantics of 

healthcare data. In this paper, an ontology-guided machine 

learning method is described and applied to discovery of pat-

terns of patients’ characteristics affecting their ability to per-

form activities of daily living. Bio-ontologies are used to pro-

vide computable knowledge for machine learning methods to 

“understand” biomedical data. SEER-MHOS data mapped to 

UMLS are analyzed to discover the patterns. 

1 INTRODUCTION  

1.1 Bio-ontologies 

An ontology formally represents domain knowledge as a set 

of concepts and relationships between those concepts. In Ar-

tificial Intelligence (AI), ontologies have been applied as ar-

tifacts to represent human knowledge and as critical compo-

nents in knowledge management such as the Semantic Web 

and business-to-business applications. In the biomedicine 

field, ontologies have been widely adopted and used in 

knowledge management, data integration, and decision sup-

port & reasoning (Bodenreider 2008, Madsen 2010). Cur-

rently bio-ontologies are used in the emerging data-driven 

science including data mining and machine learning 

(Hoehndorf 2015).  

    There are many existing bio-ontologies but each one has a 

scope, purpose and role of its own. Therefore, there are com-

munication barriers between various information systems or 

applications if different vocabularies are used in different in-

formation systems and users. In order to solve these barriers, 

the Unified Medical Language System (UMLS) was devel-

oped by the National library of Medicine (NLM) in 1986 

(Lindberg 1990) and it’s being constattly updated since. It is a re-
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pository of medical vocabularies and has three major compo-

nents: Metathesaurus, Semantic Network, and SPECIALIST 

Lexicon. The 2015AB version of the UMLS contains more 

than 3 million concepts (CUIs) and 12 million unique concept 

names (AUIs) from over 150 source vocabularies. The 

UMLS establishes mappings between those bio-ontologies 

by assigning a concept unique identifier (CUI) to names from 

various vocabularies that have the same meaning. The map-

pings among these vocabularies allow computer systems to 

translate data among the various information systems. The 

rich relationships (22 million) among concepts in the UMLS 

also provide a solid foundation for reasoning the medical 

knowledge. 

1.2 Machine Learning  

Precision Medicine is an emerging approach for disease pre-

vention and treatment that takes into account people’s indi-

vidual information including genomics, environment, and 

lifestyle (https://www.nih.gov/precision-medicine-initiative-

cohort-program). This new era requires advanced methodol-

ogies for analyzing, synthesizing, and disseminating hetero-

geneous data and knowledge in order to discover relation-

ships and create computational models for improving care 

and wellbeing. The focus on the Big Data analysis in the bi-

omedical field creates an even greater need of advanced com-

putational methodologies for turning data into computer-in-

terpretable forms and using them to promote patient-centric 

healthcare. Machine Learning (ML) is widely used in creat-

ing predictive models on Big Data analysis and it is gaining 

popularity in medical and health applications.  

    One major challenge in machine learning is to communi-

cate the meaning of attributes and their values to the learning 

algorithm. While many machine learning researchers focus 

on the ability to process massive amounts of data and build 

accurate models, the complexity, heterogeneity and seman-

tics of biomedical data, along with transparency of created 

evidence, are often outside of the mainstream research. Even 

fewer methods allow for aiding data analysis by using ontol-

ogies. Two important existing machine learning areas that 

deal with complex data are statistical relational learning (De 

Raedt 2008, Getoor and Taskar, eds. 2007) and inductive 

logic programming (Lavrac and Dzeroski 1994). Both areas 
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are concerned with the more general problem of learning 

from datasets with complicated structures (relational data-

bases or predicates). However, the majority of ML methods 

(including the most popular Support Vector Machines, Ran-

dom Forests, Logistic Regression, etc.) work with data stored 

in flat tables (or extracted into flat tables), and almost exclu-

sively focus on numeric data, while ignoring semantic rela-

tionships (meaning) of data elements. Few methods allow for 

additional ad-hoc encoding of ontologies, hierarchies and 

other coding systems. Machine learning methods should be 

able to take advantage of the known complex relationships 

between attributes and values given by bio-ontologies rather 

than solely rely on simple structured data.  Healthcare is par-

ticularly rich in knowledge, but few methods can use it.      

1.3 AQ21 Rule Learning and Applications 

AQ21 is a multi-task machine learning and data mining sys-

tem for attributional rule learning, rule testing, and applica-

tion to a wide range of classification problems (Wojtusiak 

2004). It was developed by the Machine Learning and Infer-

ence Laboratory (MLI) at the George Mason University 

[http://www.mli.gmu.edu/software]. The program has been 

recently extended to include features specific for processing 

biomedical data (Wojtusiak 2012). 

    AQ21 implements the Quasi‐optimal (Aq) algorithm for 

constructing rules, and includes a number of features for han-

dling multi-type data& ontologies, optimizing rules, and pre-

senting results in transparent forms. AQ21 is a natural induc-

tion system that seeks patterns represented as attributional 

rules (Michalski 2004). The basic form of an attributional 

rule is:  CONSEQUENT <= PREMISE where both 

CONSEQUENT and PREMISE are conjunctions of attribu-

tional conditions. Additionally AQ21 can learn rules with ex-

ceptions given by the formula CONSEQUENT <= 

PREMISE |_ EXCEPTION. Here, EXCEPTION can be 

either an attributional conjunctive description or a list of ex-

amples constituting exceptions to the rule. In the medical da-

tasets, the exceptions are always negative examples such as 

recurrence and disease progression.  

   This paper aims at describing ontology-guided machine 

learning method that involves the use of knowledge embed-

ded ontologies to effectively analyze the complex and heter-

ogeneous biomedical data.  The AQ21 is extended by adding 

ontologies (i.e., UMLS) that enables it to interpret the seman-

tic meaning of data attributes. The purpose of the UMLS is to 

provide medical domain knowledge for ML methods to “un-

derstand” the meaning of biomedical data. The combination 

of the UMLS and the AQ21 provides an advanced computa-

tional and quantitative methodology to analyze biomedical 

data with the aid of the UMLS. 

1.4 SEER-MHOS Dataset 

This dataset links two large population-based data that pro-

vide detailed information about elderly persons with cancer 

(Clauser 2008). The SEER contains clinical, demographic 

and cause of death information for persons with cancer while 

the MHOS provides information about the health-related 

quality of life (HRQOL) of Medicare Advantage Organiza-

tion (MAO) enrollees. In this paper, predictive models of 

QoL (especially for activities of daily living) are created for 

individual patients with different cancer diagnosis including 

prostate, breast, colorectal, lung and bronchus, uterus, blad-

der, head and neck, melanomas – skin, stomach, and pan-

creas.    

2 METHODS 

2.1 Source of Data  

SEER-MHOS data was used to extract comorbidities and ac-

tivities of daily living (ADLs) (self-reported), as well as can-

cer characteristics (SEER registry). The total number of  

patients in the SEER-MHOS is 1,849,311. First, patients with 

multiple cancers were excluded, then patients who completed 

surveys 3-years before and 2-years after the cancer diagnosis 

were extracted. If a patient had multiple surveys, one survey 

before and one survey after were used. The final dataset con-

tains 4,583 cancer patients.  

Dependent Variables: the primary outcomes were six 

ADLs (walking, dressing, bathing, moving in/out chair, toi-

leting, and eating) after the cancer diagnosis. 

Independent Variables: the potential predicators were se-

lected based on the literature (Vissers 2013, Taneja 2013, 

Agborsangaya 2013, Amemiya 2007) as follows: 

(1) Patient demographic such as age, race and marital 

status 

(2) Six ADLs before cancer diagnosis  

(3) Twelve comorbidities including Angina Pectoris/Cor-

onary Artery Disease (ANGCAD), Arthritis of 

Hand/Wrist, Arthritis of Hip/Knee, Congestive heart 

failure (CHF), Emphysema/Asthma/Chronic obstruc-

tive pulmonary disease (COPD_E), Diabetes, Crohn's 

Disease/Ulcerative Colitis/Inflammatory Bowel Dis-

ease (GI_ETC), Hypertension, Myocardial Infarction 

(AMI), Other Heart Conditions, Sciatica, and Stroke, 

(4) Six cancer characteristics such as grade, staging, tu-

mor size, histology, tumor extension, and behavior 

(5) Cancer radiation and surgery treatment indicators  

2.2 Analyze the SEER-MHOS data with AQ21 

and AQ21 extension 

The rule-based machine learning system was applied to de-

rive rules (or create models) from the SEER-MHOS dataset. 

We randomly divided the dataset into training (80%) and val-

idation (20%) sets and used the training set to create predic-

tion models and the validation set to assess model discrimi-

nation. Models were created in order to find the predictor or 

a set of predicators that can be used to predict the outcome 

(i.e., ADLs). Two machine learning methods were used to 
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create ADL models: (1) AQ21 and (2) ontology-guided 

AQ21.  

The ontology-guided AQ21 can optimize ADL rules by 

using UMLS knowledge (Min 2012). For example, a rule in-

dicates that cancer diagnosis is a predictor for ADL impair-

ment. The output of the AQ21 is as follows: ADL <= [Cancer 

Diagnosis = CUI1, CUI2], where CUI1 and CUI2 are cancer 

codes from the UMLS. The extended AQ21 can generalize 

the rule into their direct common parents (CUI3). Then the 

rule will be simply to ADL <= [Cancer Diagnosis = CUI3]. 

The program continuous to generalize rules until we find a 

negative data or block by medical knowledge. The advantage 

of the generalization include (1) Simplified the rules and 2. 

Cover more data in the model. 

3 RESULTS 

3.1 Patient Cohort 

This retrospective SEER-MHOS study included 4,583 cancer 

patients. The average age was 74.6 (Standard deviation 

=6.76) years. The summary of our dataset is shown in Table 

1. Table 2 shows the number of patients who reported ADL 

problems before and after cancer diagnosis. Cancer diagnosis 

has an impact on patient reported ADLs since the percentage 

of patients increased from 38.1 to 64.1 after cancer diagnosis. 

The walking was the most affected ADL among older cancer 

patients. 

Table 1.  Characters of Patients in the SEER-MHOS dataset (n=4,583) 

 Number %  Number % 

Age   Cancer Type   

    <65 169 3.7     Bladder 310 6.8 

    65-74 2,269 49.5     Breast 1,018 22.2 

    75-84 1,814 39.6     Colorectal 659 14.4 

    >=85 311 7.2     Head Neck 134 2.9 

Top 5 Comorbidities     Lung 542 11.8 

    Arthritis Hip 1,745 38.1     Melanoma 330 7.2 

    Sciatica 1,040 22.7     Pancreas 60 1.3 

    Other Heart 971 21.2     Prostate 1,311 28.6 

    Diabetes 953 20.8     Stomach 61 1.3 

    ANGCAD 654 14.3     Uterus 158 3.4 

 

Table 2. Number of patients with ADL disabilities before and after cancer 

diagnosis  

ADLs No. of patients before 

Cancer Diagnosis 

% No. of patients after 

Cancer Diagnosis 

% 

Bathing 256 5.6 477 10.4 

Dressing 200 4.4 380 8.3 

Eating 87 1.9 217 4.7 

Chairing 417 9.1 642 14.0 

Walking 637 13.9 933 20.4 

Toileting 150 3.3 290 6.3 

Total 1,747 38.1 2,939 64.1 

3.2 Rule Induction from the SEER-MHOS 

Application of the AQ21 software to SEER-MHOS data 

mapped to UMLS resulted in a number of models (rulesets) 

for predicting patients’ deficiencies in performing activities 

of daily living. The class-weighted accuracy of the models 

ranged between 57.1% and 69.19%. Similarly, class-

weighted accuracy of models derived from the same data 

without the use of UMLS ranged from 54.18% to 57.10%. 

The class-weighted accuracy was calculated by the formula 

w = p/(p+n), p is number of positive examples and n is the 

number of negative examples (Wojtusiak 2004). On average, 

the class-weighted accuracy improvement was 2.44% when 

using UMLS. 

The program derived multiple rules that constitute ADL 

prediction models. These rules are highly transparent and 

easy to understand.  Below is an example rule that was part 

of model for predicting decline in ability to bathe inde-

pendently. 

 

[Bathing Impairment] <=  

              [Marital status = 1,4,5,3: 183, 585,23%] 

[Stage = 2,7,9: 156, 472, 24%] 

[Cancer site = C0346647, C0153490, C0153492, 

C0024623, C0153437, C0007102, C0153350, 

C0496779, C0153434, C0242787, C0949022, 

C0153550, C0153553, C0153555, C0153435, 

C0153491, C0153433, C0153436, C0024624: 175, 

437, 28% ] 

: p = 58, n = 72, q = 0.262, cx = 67 

The rule has three conditions (the overall rule needs to be 

interpreted as a conjunction of these conditions). The first one 

indicated that among the patients whose marital status were 

single (Code 1), divorced (Code 4), widowed (Code 5), or 

separated (Code 3), 185 of them have bathing disability while 

585 patients have not. The consistency of this prediction is 

23%. The second line showed that patients’ staging condition 

was a predictor for bathing disability (Code 2, 7, 9 stands for 

Regional by Direct Extension, Distant Sites and/or Distant 

Nodes and Unknown respectively). There were 19 detailed 

cancer sites (UMLS CUIs) in this rule. The quality of this rule 

set is 26.2% and complexity is 67. For description of the pa-

rameters, please refer to AQ21 User’s Guide (Wojtusiak 

2004). 

4 DISCUSSIONS 

The ontology-guided AQ21 is highly configurable and robust 

system with features especially useful in learning from bio-

medical data such as individual patient data, learning from 

aggregated data, and using medical knowledge. One major 

advantage is that it can optimize attributional rules with the 

assistance of medical knowledge from the UMLS. For exam-

ple, rule generalization based on the hierarchical relation-

ships. The advantages of the generalization include: (1) sim-

plified rules and (2) more covered data. The rule generaliza-

tion procedure (travel along the path) continues until we 
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found a negative data or data against medical knowledge. For 

example, radiation therapy can be applied to prostate cancer 

and lung cancer, but if the system generalizes to other types 

of cancer (i.e., leukemia) the therapy does not apply anymore. 

One big challenge for the ontology-guided machine learn-

ing method is the performance issue. This issue comes from 

two sources: (1) UMLS as well as other medical ontologies 

are extremely large and complex, thus standard search meth-

ods cannot be applied and (2) size of the SEER-Medicare. In 

this paper, we limited our study to patients whose diagnosis 

was with only one cancer. The restriction reduced the sample 

size from 1,849,311 to 4,583. The majority of SEER-MHOS 

patients have more than one cancer diagnoses. The associa-

tions between multiple cancer diagnoses, comorbidities, and 

ADLs are complicated.   

Although we worked on a small set of SEER-MHOS, the 

hierarchical structure from the UMLS was already large and 

complicated. For example, our SEER-MHOS data contains 

572 distinct ICD-O codes in 4,583 individual patient records. 

All those codes are mapped to UMLS CUIs and 15,983 hier-

archical records (path form those leaves to their roots) are ex-

tracted from the UMLS.  

In the future, we will optimize machine learning algo-

rithms, utilize supercomputers, and implement parallel pro-

cessing.  

5 CONCLUSIONS 

In this paper, we apply an ontology-guided AQ21 method to 

promote the effectiveness and efficiency of machine learning 

in healthcare. The UMLS is used to provide the medical 

knowledge for the machine learning algorithms. It has been 

proved that the ontology-guided AQ21 can be applied to an-

alyze the SEER-MHOS dataset.  
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