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Abstract	
This	 report	 describes	 the	 yearlong	 project	 aimed	 at	 exploring	 a	 novel	 approach	 to	
integrate	complex	health	data	from	different	sources	without	the	need	of	building	a	data	
warehouse.	 The	 approach	 allows	 preprocessing	 data,	 creating	 an	 analytic	 file	 and	
applying	 analytic	 algorithms	 while	 data	 are	 still	 distributed	 in	 their	 respective	 data	
sources.	 It	relies	on	using	data	semantic	mapping	 into	a	common	ontology	needed	for	
data	 to	 be	 queried	 on	 conceptual	 level,	 rather	 than	 requiring	 users	 to	 know	 physical	
location	and	coding	of	the	data.	

To	test	the	method,	it	has	been	applied	to	creation	of	computational	model	for	predicting	
30-day	 post	 hospital	 discharge	 mortality.	 The	 Computational	 Length	 of	 stay,	 Acuity,	
Comorbidities	and	Emergency	visits	(C-LACE)	is	an	attempt	to	improve	accuracy	of	popular	
LACE	model	 frequently	 used	 in	 hospital	 setting.	 The	model	 has	 been	 constructed	 and	
tested	using	MIMIC	III	data.	The	model	accuracy	(AUC)	on	testing	data	is	0.74.	The	model	
is	 available	 in	 the	 form	 of	 online	 calculator	 which	 is	 available	 in	 two	 versions:	 user-
oriented	based	on	20-most	important	mortality	indicators,	and	API-based	which	uses	over	
300	patient	characteristics.			
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1. Introduction	
We	live	in	a	post-EHR	era.	Electronic	health	records	(EHRs),	personal	health	records	(PHRs)	
and	 consumer-generated	 data	 are	 facts,	 and	 in	many	 cases	 are	 required	 by	 laws	 and	
regulations.	 This	 is	 true	 for	 the	 Department	 of	 Defense	 (DOD),	 the	 Veteran	 Health	
Administration	(VHA),	other	government-run	healthcare	systems,	as	well	as	for	private	
healthcare.	EHRs	and	health	information	exchange	are	past	the	research	phase	and	are	
being	implemented	(slowly)	by	the	industry	and	used	in	daily	practice.	

The	real	research	questions	arise	once	all	the	systems	are	in	place	and	data	are	collected.	
How	 can	 the	 data	 be	 used	 to	 improve	 health?	 	 This	 question	 can	 be	 looked	 at	 from	
multiple	angles.	A	common	approach	is	to	relate	the	improvement	of	quality	and	cost	of	
care	provided	to	the	patients.	On	the	broader	spectrum	health,	which	is	not	the	same	as	
health	care,	includes	everything	from	nutrition,	exercise,	lifestyle	and	work	all	the	way	to	
the	actual	medical	conditions	and	care.	Improving	health	involves	all	of	these	areas.	

Health	data	is	extremely	complex.	 In	fact,	health	data	is	more	complex	than	any	other	
data	because	of	 its	multimodality,	 large	number	of	 standards	and	coding	systems	and	
most	importantly	extremely	complicated	application	area.	This	complexity	creates	a	gap	
between	 even	 the	 most	 sophisticated	 analytical	 methods	 (including	 those	 used	 in	
machine	learning	and	data	mining),	which	work	off	flat	and	pre-processed	data	files	that	
use	 uniform	 coding	 of	 data	 elements,	 and	 are	 organized	 by	 the	 unit	 of	 analysis	 (i.e.,	
patient).	Surprisingly,	virtually	all	available	methods	“blindly”	analyze	data	without	any	
semantic	knowledge	about	data,	relationships	between	data	elements,	and	“meaning”	of	
what	is	being	analyzed.	This	means	that	all	the	richness	of	what	comes	along	with	data	is	
ignored	(in	fact	only	the	NLP	community	stresses	semantics	of	data	while	the	ML	and	DM	
communities	ignore	it).	

Electronic	data	exchange,	mapping	between	different	terminologies	and	data	elements,	
as	well	as	related	privacy/security	issues	are	widely	addressed	in	the	context	of	a	single	
patient’s	 data.	 For	 example,	 the	meaningful	 use	 of	 electronic	 health	 records	 requires	
systems	 to	 have	 the	 ability	 to	 electronically	 transmit	 data	 of	 a	 patient.	 However,	 the	
existing	 standards,	 including	HL7’s	 CCA,	 CCD	 and	 FHIR	 standards,	 are	 not	 designed	 to	
handle	datasets	comprising	thousands	of	patients’	records	whose	copious	data	is	needed	
for	analytics.	This	makes	traditional	health	information	exchanges	not	adequate	for	large	
scale	data	integration	needed	for	analytics.	

The	goal	of	the	project	was	to	investigate	possibility	of	integration	of	health	data	without	
need	for	building	a	data	warehouse,	loading	data	to	distributed	file	system,	or	building	
federated	 database.	 This	 breaks	 with	 standard	 approach	 in	 health	 data	 analytics:	 (1)	
integrate	 all	 data;	 (2)	 preprocess	 data;	 (3)	 create	 “analytic	 file”;	 (4)	 apply	 analytic	
algorithms	(standard	statistics,	or	ML/DM);	and	(5)	repeat	2-4	if	more	data	or	additional	
variables	are	needed.	In	the	investigated	approach,	there	is	no	need	for	step	1	which	is	
very	time	consuming	and	expensive	(typically	also	impossible	for	a	single	project	or	when	
integrating	 data	 across	 multiple	 institutions).	 Sections	 2	 and	 3	 describe	 design	 and	
implementation	of	the	method.	



	

The	hypothesis	is	that	there	is	no	need	for	constructing	a	data	warehouse	to	integrate	
data	from	multiple	distributed	sources	assuming	that	these	sources	can	map	their	data	to	
a	common	ontology	(i.e.,	the	Unified	Medical	Language	System	(UMLS)	in	case	on	health	
data).	This	hypothesis	is	tested	by	constructing	a	working	prototype	system	that	is	capable	
of	 integrating	data	based	on	 the	 semantic	 relationships.	Conclusion	at	 the	end	of	 this	
report	outlines	some	 limitations	and	discusses	cases	 in	which	 the	presented	approach	
may	be	better	solution	than	traditional	data	integration.		

The	 second	 goal	 of	 the	 project	 is	 to	 test	 the	 developed	 method	 by	 applying	 it	 to	
construction	 of	 computational	 models	 for	 predicting	 30-day	 post-hospital	 discharge	
mortality	for	ICU	patients.	Section	3	of	this	report	describes	construction	and	testing	of	
the	model.	The	model	is	also	made	available	online	as	a	web	calculator	for	researchers	
who	want	to	apply	it	to	own	data.	

Section	 2	 of	 this	 report	 presents	 background	 and	 design	 of	 the	 constructed	 data	
integration	approach.	Section	3	discusses	prototype	implementation.	Section	4	presents	
application	 of	 the	method	 to	 analysis	 of	 clinical	 data	 and	 construction	 of	models	 for	
predicting	 patient	 mortality.	 Finally,	 Section	 5	 summarizes	 the	 project	 efforts	 and	
describes	several	directions	of	future	work.	

2. Distributed	Online	Data	Integration	
The	project	aims	at	creating	a	novel	way	of	integrating	data	and	its	semantics	during	the	
analysis	phase.	This	 is	 in	contrast	 to	 the	currently	used	approaches	 in	which	data	 first	
needs	to	be	transformed	into	a	data	warehouse	(Bache	et	al.,	2015),	loaded	into	Big-Data	
repositories	 such	 as	 the	Hadoop	 File	 System	 (HDFS),	 or	 integrated	within	 a	 federated	
system	(Ghaleb	and	Farag,	2015).	Instead,	the	new	approach	is	based	on	communication	
between	 independent	 systems,	 each	 responsible	 for	 its	own	data	and	 communication	
using	well-defined	sets	of	queries.	Such	an	integration	provides	not	only	a	novel	approach	
of	communication	between	distributed	data	sources,	but	also	changes	the	way	machine	
learning	and	analytics	software	works.	While	several	other	methods	for	model	learning	
from	distributed	data	exist,	they	do	not	follow	semantic	 integration	principles	pursued	
here	(Meeker	at	al.,	2015).	

Traditionally,	data	analytic	methods	are	applied	 to	pre-processed	data	extracted	 from	
operational	systems,	loaded	to	a	warehouse	and	consequently	analyzed	(Figure	1	left).	
While	clean	and	easy	to	use	by	analysts,	this	approach	is	not	feasible	when	dealing	with	
big	data,	nor	should	it	be	used	when	integrating	and	analyzing	complex	healthcare	data.	
In	domains	where	data	needs	 to	be	 secure	and	only	 selected	 information	 is	 shared,	a	
different	approach	is	required.		
	



	

	
Figure	1:	Traditional	(left)	and	new	(right)	approaches	to	learning	from	integrated	data.	
Solid	lines	represent	data	flow.	Dashed	lines	in	the	right	figure	represent	data	request.	

	
This	 project	 investigated	 the	 possibility	 of	 specifying	 analytic	 problems	 first,	 and	 then	
integrating	data	as	needed	(Figure	1	right).	Distributed	systems	“understand”	their	own	
data	and	are	best	equipped	to	pre-process	data,	pre-analyze	and	map	concepts	and	infer	
complex	 relationships.	 In	 fact,	 the	 distributed	 systems	 not	 only	map	 existing	 data	 to	
standardized	formats	and	concepts,	but	can	run	advanced	analytic	algorithms	on	their	
own	 subsets	 of	 data	 and	 transmit	 resulting	 models/relationships.	 Despite	 significant	
progress	in	the	areas	of	Health	Data	Exchange,	Interoperability,	Data	Warehousing,	Big	
Data,	and	Health	Analytics,	to	the	best	of	the	PIs	knowledge	no	such	framework	currently	
exists.	
An	 analytic	module	 depicted	 in	 the	 center	 of	 Figure	 1	 (right)	 starts	with	 defining	 the	
analytic	 problem	 and	 request	 initial	 list	 of	 concepts	 in	 order	 to	 build	 first	 “skeleton”	
dataset.	The	dataset	 is	based	on	 list	of	needed	concepts,	 rather	 than	specific	 fields	 in	
database.	 Based	 on	 the	 initial	 dataset	 the	 module	 can	 start	 application	 of	 analytic	
algorithm	 or	 request	 additional	 data	 from	 distributed	 sources,	 which	 are	 received	 in	
already	pre-processed	 form	 that	 can	be	directly	 plugged-in	 the	 data	 so	 far.	 This	 is	 an	
iterative	process	as	more	data	may	be	needed	during	the	analysis.	This	is	illustrated	from	
the	perspective	of	the	analytic	module	in	Figure	2a.	
	

	
Figure	2a:	Data	request	and	retrieval	from	the	perspective	of	the	analytic	module.	



	

Key	component	of	the	process	is	the	fact	that	the	data	are	pre-processed	by	distributed	
data	sources	and	no	or	minimum	data	manipulation	is	needed	by	the	analytic	module.	It	
is	reasonable	to	assume	that	data	sources	should	understand	own	data,	and	be	capable	
of	mapping	that	data	into	desired	terminology	or	concepts,	as	well	as	inferring	concepts	
not	 explicitly	 available	 in	 the	 data.	 As	 illustrated	 in	 Figure	 2b,	 once	 data	 request	 is	
received,	the	data	source	determines	if	it	is	based	on	existing	data	or	needs	to	be	inferred.	
The	data	request	is	further	delegated	to	database	engine	for	aggregation	or	encoding	or	
to	Machine	Learning/Decision	Support	engine	for	needed	extraction	and	inference	of	data	
that	is	not	readily	available.	Once	inferred,	the	data	can	be	aggregated	and	encoded	and	
returned	as	a	response	to	the	original	request.	One	important	aspect	of	the	method	is	
that	the	data	is	integrated	on	the	level	specified	in	request,	which	typically	corresponds	
directly	to	the	unit	of	analysis	in	the	data	mining	problem.	
	

	
Figure	2b:	Data	request	and	preparation	from	the	perspective	of	distributed	data	sources.	
	
One	important	aspect	of	the	data	sources	is	their	ability	to	infer	data	not	explicitly	present	
in	database.	The	inference	may	include	a	number	of	standard	approaches	such	as	climbing	
hierarchies	or	following	semantic	relationships	in	an	ontology.	For	example,	the	request	
for	data	may	include	concept	of	heart	failure	(HF),	however	the	data	are	encoded	using	
ICD-9	codes.	The	data	source	then	infers	the	HF	concept	by	identifying	all	ICD-9	codes	that	
are	part	of	 the	HF	definition.	Another	possibility	 is	using	Natural	 Language	Processing	
methods	 to	 extract	 information	 from	 unstructured	 data,	 such	 as	 clinical	 notes.	 For	
example,	 the	data	 request	may	 include	 information	about	smoking	status	of	a	patient	
(i.e.,	current	smoker,	past	smoker,	never	smoked)	that	is	not	available	in	the	coded	data.	
Through	NLP	methods	that	information	can	be	extracted	from	clinical	notes,	aggregated,	
coded	 and	 returned	 to	 requestor.	 Finally,	 the	 process	 may	 include	 application	 of	
classification	or	regression	models	(a.k.a.,	predictive	modelling)	to	infer	information	such	
as	predicted	6-month	mortality	or	expected	complications.	



	

2.1. Communication	with	Distributed	Data	Sources	

The	presented	approach	is	based	on	a	set	of	Application	Programming	Interfaces	(APIs)	
and	communication	schema	implemented	over	standard	http/https	protocol.	The	actual	
data	 is	 encoded	and	 transmitted	using	 JSON	 (JavaScript	Object	Notation)	which	easily	
integrates	with	most	modern	programming	languages.	Two	basic	types	of	JSON	messages	
are	passed	requests	(for	concept	lists	or	data)	and	responses	to	these	requests.		
	
The	 concept	 list	 request	 is	 a	 simple	query	 addressed	 to	 /resources/concepts	with	 the	
following	content:	
	
["GetConcepts"]	
	
If	approved,	the	query	results	in	returned	JSON	message	containing	the	set	of	available	
concepts	and	data	fields.	It	is	encoded	the	following	format:	

<resource	name>:{‘columns’:[<list	of	available	data	columns>],		
‘concepts’:	[<list	of	available	concepts>]}	

For	example,	the	message	with	list	of	concepts	returned	by	the	patient	index	server	(See	
Section	4)	is	shown	below.		
	
{'patients':	 {'columns':	 ['ROW_ID',	 'SUBJECT_ID',	 'GENDER',	 'DOB',	 'DOD',	 'DOD_HOSP',	
'DOD_SSN',	'EXPIRE_FLAG'],	'concepts':	['C1717139',	'',	'C0079399',	'C0421451',	'',	'',	'',	'']}}	
	
The	request	for	data	is	more	complicated	as	it	needs	to	include	lists	of	desired	concepts	
or	columns	of	data,	and	constraints	for	obtaining	them.	The	request	for	data	includes	the	
following	elements:	

[‘GetData’,	<resource	name>:{‘columns’:[<list	of	available	data	columns>],		
‘concepts’:	[<list	of	available	concepts>],	

‘conditions’:[<list	of	conditions>]}]	

For	example,	the	request	for	patients’	data	that	include	explicit	request	for	two	columns	
(SUBJECT_ID	and	DOD)	along	with	two	concepts	('C0079399',	'C0421451')	is	generated	as	
follows:	

['GetData',	 'patients',	 {'columns':	 ['SUBJECT_ID',	 'DOD'],	 'concepts':	 ['C0079399',	
'C0421451']}]	



	

	

2.2. Semantic	Data	Mapping	

The	most	important	requirement	for	the	presented	method	to	work	is	mapping	of	all	data	
in	distributed	sources	to	a	common	ontology.	Such	a	mapping	allows	for	data	querying	
based	on	 its	meaning	 rather	 than	 specific	 fields	 and	 coding.	 The	use	of	 ontology	 also	
allows	for	inference	and	use	of	semantic	relationships	used	in	that	ontology.	

In	the	case	of	health	related	data,	a	good	choice	is	the	Unified	Medical	Language	System	
(UMLS).	The	Unified	Medical	Language	System	is	a	common	ontology	that	includes	over	
1	 million	 biomedical	 concepts	 and	 5	 million	 concept	 names;	 it	 contains	 hundreds	 of	
controlled	source	vocabularies	like	SNOMED	CT,	LOINC,	ICD-10,	ICD-9CM,	RxNorm,	HCPT,	
HL7	 and	 many	 others	 as	 the	 “Matatheusaurus”.	 This	 metathesaurus	 are	 connected	
meaningfully	 through	 a	 “Semantic	 Network”,	 which	 assigns	 semantic	 relationships	 to	
concepts	 from	 metatheusaurus.	 The	 ontology	 includes	 a	 “SPECIALIST	 Lexicon”	 that	
includes	information	needed	for	text	processing.	Each	concept	in	the	UMLS	has	a	Concept	
Unique	Identifier	(CUI).	Since	a	concept	may	have	several	different	names,	a	CUI	is	used	
to	explain	the	specific	intended	meaning	of	each	name	in	each	source	vocabulary	to	link	
names	 from	 all	 source	 vocabularies	 that	 has	 same	 meaning	 (synonyms).	
(www.nlm.nih.gov)	

The	following	sections	show	the	mapping	process	of	the	data	to	the	UMLS.	It	uses	the	
example	of	MIMIC	III	data	described	further	in	Section	4	that	describes	details	of	testing	
of	the	developed	method.	

2.2.1. Mapping	Variables	to	MIMIC	data	
Mapping	of	attributes	was	done	within	PostgreSQL	database	system	and	consisted	of	a	
set	of	SQL	queries	combined	with	manual	searches	using	UMLS’	graphical	 interface	as	
needed.	First	step	of	mapping	encompassed	identifying	chosen	attributes	in	the	data,	and	
then	locating	those	attributes	in	associated	tables,	as	shown	in	Table	1	below.	For	each	
attribute	or	concept,	specific	corresponding	codes	(i.e.,	 ICD9	for	diagnosis,	LOINC	code	
for	lab	tests	and	GSN	code	are	codes	given	to	drugs	in	MIMIC	III,	and	they	correspond	to	
NDDF	drug	codes	dictionary	in	UMLS)	were	identified.	

The	 mapping	 process	 is	 a	 combination	 of	 manual	 labor-intensive	 identification	 of	
appropriate	 concepts	 which	 requires	 strong	 domain	 background	 of	 the	 person	
performing	 the	 mapping,	 with	 automated	 search	 for	 concepts	 between	 different	
terminologies	in	UMLS.	The	latter	can	be	done	when	original	data	stored	in	database	are	
coded	using	one	of	standard	terminologies,	but	the	final	results	still	need	to	be	verified	
by	human	experts.	

	



	

	
Table	1:	Illustration	of	the	process	of	locating	attributes	in	MIMIC	III	data,	obtaining	their	
codes	and	mapping	the	codes	to	corresponding	CUIs	in	UMLS.	

	

One	important	issue	concerning	the	mapping	is	disambiguation	of	concepts	and	need	to	
select	 the	 most	 appropriate	 one	 from	 potentially	 large	 number	 of	 concepts	 with	
intersecting	meanings.		

Since	Metathesaurus	aims	at	preserving	meaning,	a	concept	uniquely	explains	a	single	
meaning	in	the	UMLS.	Each	concept	is	uniquely	assigned	a	Concept	Unique	Identifier	(CUI)	
and	it	includes	several	atoms	(terms)	from	all	sources.	While	atoms	may	have	different	
names	and	terms,	they	still	have	the	same	meaning	(Synonyms)	and	they	all	point	(map)	
to	the	same	concept	(Cui)	(www.nlm.nih.gov)	

	
Figure	 3:	 Concepts,	 terms,	 strings	 and	 atoms	 in	 UMLS	 illustrating	 the	 need	 to	 select	
appropriate	identifiers	for	data	elements.	



	

On	the	other	hand,	atoms	may	share	same	name	or	term,	but	point	to	a	different	concept.	
This	would	be	due	to	they	have	a	different	meaning,	semantic	type	or	context.	

	

Mapping	to	UMLS	included	2	parts:	

1.	Mapping	attributes	codes	obtained	from	the	previous	step	to	the	corresponding	CUIs	
in	Unified	Medical	Language	System	(UMLS)	(i.e.,	mapping	ICD9	or	LOINC	obtained	to	the	
corresponding	CUI)	

2.	 Standardized	 mapping	 of	 more	 general	 concepts	 including	 demographic	 and	
administrative	data	to	the	corresponding	CUIs.	The	mapping	was	based	on	selecting	the	
most	general	or	most	clinically	sound	corresponding	CUI.	For	example;	the	concept	“Age”:	

Cui1:	C0001779:	Age:	Semantic	Types:	Organism	Attribute.	

Looking	at	 relationship	of	 semantic	 type:	Parents:	Conceptual	 Entity.	Children:	Clinical	
Attribute	

Cui2:	C1114365:	Age:	Time:	Point	in	time:^Patient:	Quantitative:		Semantic	Types:	
Clinical	Attribute	

Looking	at	relationship:		

Parent:	Organism	Attribute.	

The	general	rule	used	in	selecting	concept	was	to	use	the	most	general,	which	in	the	case	
of	Age	is	CUI1:	C0001779.	

The	following	example	in	Figure	4	shows	selection	of	a	concept	among	similar	terms	that	
share	same	name	but	not	the	same	meaning:	

	

	

	
Figure	4:	Meaningful	mapping	of	concepts;	selecting	the	LOINC	code	that	corresponds	to	
Urea	Nitrogen	in	Blood	over	others	explaining	Urea	Nitrogen	in	other	body	fluids	while	
mapping	Blood	Urea	Nitrogen.	



	

2.2.2. Future	Work	on	Semantic	Mapping:	Automation	
The	 current	 research	 effort	 focuses	 on	 automation	 of	 the	 above	 process	 in	 order	 to	
minimize	expert	 input	needed	during	 the	mapping.	The	general	 idea	 is	 to	use	existing	
terminologies	to	anchor	the	data	inside	UMLS,	and	then	follow	relationships	within	the	
ontology	until	the	most	general	concepts	are	retrieved.	

Such	mapping	done	in	SQL	is	shown	in	the	Figure	5	below.	

	

	

	
Figure	5:	 	 	Applying	a	rule	of	automation	by	mapping	a	concept	that	corresponds	to	a	
certain	drug	dose	 to	 the	general	 concept	of	 the	drug	and	vice	versa	 (child	 concept	 to	
parent	or	parent	to	child)	

	 	

	



	

2.3. Future	Direction:	Query	Language		

We	are	also	investigating	possibility	of	using	SQL-like	query	language	in	the	project.	While	
the	analytic	module	communicates	with	data	resources	through	well-defined	protocols	
and	set	of	APIs,	 it	 is	still	required	for	users	to	specify	what	required	data	elements	are	
needed	for	the	final	analysis.	Our	initial	investigation	suggests	that	a	declarative	SQL-like	
language	has	the	greatest	potential	for	use	in	the	distributed	system.	Users	should	be	able	
to	specify	“columns”	 in	the	final	data	they	are	 interested	 in	along	with	the	method	of	
aggregation.	 The	 scripting	 language	 should	 automatically	 combine	 data	 manipulation	
with	analysis	and	prediction	capabilities.	A	pseudocode	below	illustrates	part	of	such	a	
query.		

	
CREATE	prediction	model	ON		

	 SELECT	admission_id	CUI=C0184666,	age	CUI=C0001779,	gender	CUI=C0079399,	

															death_30	(CUI=1148348	-	CUI=2361123	<=	30)	

	 	 primary_dx	CUI=C00332137,	number_icu	count(CUI=C0583239),	

	 	 abnormal_ekg	CUI=C0522055	OPTIONAL	

	 FROM	admissions,	patients,	icu	

	 GROUP	 BY	 admission_id		
USING	RandomForest	(output_attribute=death_30,	ignore_attributes=admission_id)	

Figure	5:	Example	query	code	for	aggregation	of	distributed	data.		

	

The	above	query	resembles	a	standard	SQL	query,	but	it	includes	constructs	and	methods	
that	go	beyond	simple	data	manipulation.	The	three	sources	(admissions,	patients,	icu)	
are	not	tables/views	like	in	SQL,	but	rather	distributed	data	sources	accessible	through	
APIs.	The	requested	values	given	by	CUIs	may	not	be	explicitly	stored	in	these	systems,	
but	 rather	 can	 be	 calculated	 from	 data.	 Each	 requested	 data	 element	 (column)	 is	
identified	by	 its	name	and	corresponding	CUI.	The	column	abnormal_ekg	 is	marked	as	
optional,	meaning	 that	 data	 is	 requested	 only	when	 needed	 by	 the	 learning	 process.	
Finally,	the	selected	data	is	used	by	the	RandomForest	algorithm	to	create	a	model	for	
predicting	30-day	mortality.	

3. Implementation	&	Testing	
The	developed	method	has	been	implemented	in	a	prototype	software	application	and	
tested	 on	 real	 clinical	 data.	 This	 resulted	 in	 an	 open-source,	 platform	 independent	
implementation	 that	 follows	 the	 microservice	 programming	 paradigm.	 The	
implementation	 of	 servers	 and	 analytical	 module	 (client)	 was	 done	 using	 Python	 3	
programming	 language.	However,	additional	servers	or	clients	can	be	 implemented	on	
any	platform	using	virtually	any	programming	 language	as	 long	as	 they	are	capable	of	
communicating	 with	 already	 implemented	 parts	 of	 the	 system	 using	 standardized	



	

interfaces.	The	following	main	libraries	were	used	in	the	implementation:	

pandas	(servers,	client)	that	provides	data	structures	and	querying	capabilities	for	data.	

psycopg2	(servers)	that	provides	interface	to	PostgreSQL	database	from	Python.	

json	(servers,	client)	that	encodes	data	needed	for	transmission.	

flask	(servers)	that	is	responsible	for	retrieving	and	parsing	http	requests	(web	server).	

requests	(client)	which	is	a	http	client	used	to	query	data	sources.	

matplotlib	(client)	which	is	used	to	visualize	results.	

In	addition,	a	number	of	standard	Python	libraries	were	used.		

During	the	implementation,	Spyder	environment	has	been	used	for	coding	as	shown	in	
Figure	6.	The	development	was	done	using	Anaconda	Python	Distribution.	

	

	
Figure	6:	Spyder	environment	used	in	programming	of	the	prototype	system.	The	
window	shows	part	of	the	client	source	code.	

In	the	created	implementation,	neither	servers	nor	analytic	client	were	equipped	with	
graphical	interface.	Figure	7	below	shows	console	windows	indicating	readiness	of	
servers	to	receive	data	requests.	

	
Figure	7:	Servers	indicating	readiness	to	receive	data	requests.	



	

4. Prediction	of	30-day	Post-Hospitalization	Mortality	
4.1. Background	

Risk	Adjusted	Mortality	Rates	and	prediction	of	mortality	are	important	indicators	for	care	
outcome.	 The	 applications	 of	 risk	 adjusted	 mortality	 are	 vast.	 Administrators	 use	
mortality	rate	to	compare	effectiveness	of	care	among	different	facilities	and	hence	utilize	
results	 in	 quality	 improvement	 efforts.	 Policy	 makers	 and	 organizations	 including	
government	 agencies,	managed	 care	 companies	 and	 consumer	 groups	 (Inouye	 et	 al.,	
1998)	 use	 them	 to	 evaluate	 health	 policy	 and	 plan	 programs.	 Clinicians	 are	 mostly	
interested	in	accurate	and	valid	mortality	prediction	models	for	many	reasons;	they	can	
be	a	strong	tool	for	evaluation	of	medical	effectiveness	among	treatment	groups	while	
controlling	 for	 patients’	 baseline	 risk.	 Prediction	 of	mortality	 index	 helps	 clinicians	 to	
decide	if	a	patient	may	benefit	from	intensive	care	units	and	when,	and	to	provide	better	
planning	of	 care.	 From	patient’s	 family	perspective,	 discussing	outcome	of	 critically	 ill	
patients	is	always	welcomed	and	appreciated	(Rocker	et	al,	2004).		

Several	Traditional	burden	of	illness	indices	are	used	and	adapted	to	calculate	probability	
of	mortality	in	ICU	patients.	This	includes	advanced	life	support,	physical	and	cognitive	
functional	status	of	patient	(Davis	et	al,	1995)	and	intensive	care	clinicians	and	bedside	
nurse	estimated	probability	of	intensive	care	unit	survival.		

Some	illness	severity	scoring	systems	that	are	primarily	used	to	measure	severity	of	illness	
early	in	the	course	of	critical	illness	and	its	prognosis	had	been	widely	used	to	calculate	
in-hospital	mortality.	 The	 Simplified	 Acute	 Physiology	 Score	 (SAPS),	 and	 the	Mortality	
Prediction	Model	(MPM)	use	data	collected	within	one	hour	of	ICU	admission.	Sequential	
Organ	Failure	Assessment	 (SOFA)	scoring	uses	data	obtained	24	hours	after	admission	
and	 then	 every	 48	 hours.	 Logistic	 Organ	 Dysfunction	 Score	 and	 the	 Multiple	 Organ	
Dysfunction	Score	[MODS]	and	the	Sequential	Organ	Failure	Assessment	Score	also	had	
been	used	 recently	 to	measure	 severity	of	 illness	at	 the	 time	of	 ICU	admission.	Acute	
Physiologic	 and	 Chronic	 Health	 Evaluation	 (APACHE)	 scoring	 system	 is	widely	 used	 to	
predict	 risk	 of	 in	 hospital	 mortality	 of	 ICU	 patients.	 The	 instrument	 uses	 the	 worst	
physiologic	values	measured	within	24	hours	of	admission	to	the	ICU	and	requires	a	large	
number	 of	 clinical	 variables	 including	 age,	 diagnosis,	 some	 laboratory	 results,	 prior	
treatment	location,	and	other	clinical	variables.	A	computer	generated	logistic	regression	
model	is	run	using	the	resulting	score	to	calculate	risk	of	in-hospital	mortality.	Most	of	
these	illness	severity	measures	gave	a	baseline	assessment	of	patients	and	have	helped	
in	estimating	prognosis	and	mortality	rate.	However,	the	use	of	these	scoring	systems	as	
prognostic	tools	to	predict	risk	of	mortality	for	individual	patients	is	still	limited	for	low	
accuracy.	

Other	 prediction	 models	 using	 less	 number	 of	 variables	 had	 been	 used	 to	 predict	
mortality	within	30	days	of	hospital	discharge.	The	most	commonly	used	is	LACE	index.	
LACE	 index	 can	 use	 both	 primary	 and	 Administrative	 data.	 The	 name	 LACE	 explains	
variable	 used	 in	 the	 instrument:	 length	 of	 stay	 (“L”);	 acuity	 of	 the	 admission	 (“A”);	
comorbidity	 or	 diagnoses	 of	 the	 patient	 (uses	 Charlson	 comorbidity	 score)	 (“C”);	 and	



	

emergency	department	visits	(the	number	of	visits	in	the	six	months	before	admission)	
(“E”).	Scores	using	the	LACE	index	range	from	0	(2.0%	expected	risk	of	death	or	urgent	
readmission	within	30	days)	to	19	(43.7%	expected	risk).	(Walraven	et	al,	2010)	

A	recent	study	added	an	extension	of	the	LACE	(LACE+)	which	uses	same	4	items	of	LACE	
added	 to	 age	 and	 items	 unique	 to	 Canadian	 administrative	 databases	 (such	 as	 the	
Canadian	 Institute	 for	Health	 Information	Case	Mix	Groupings	and	number	of	hospital	
days	awaiting	alternate	level	of	care	arrangements).	LACE+	had	shown	more	accuracy	in	
predicting	death	within	30	days	of	hospital	discharge	(c	statistic	0.77)	while	LACE	index	(c-
statistic	0.68).	(Walraven	et	al,	2010).	However,	both	instruments	didn’t	show	sufficient	
accuracy	besides	it	is	not	always	possible	to	obtain	data	on	the	4th	item	of	LACE	(”E”),	as	
emergency	room	visits	are	not	necessarily	recorded	in	available	data.	

4.2. Data	

The	primary	dataset	used	to	test	the	research	question	is	MIMIC	III	(Johnson	et	al.,	2016)	
which	is	part	of	PhysipNet	project	(Goldgerger	et	al.,	2000).	The	dataset	includes	a	variety	
of	patient	and	clinical	information	about	hospitalizations,	ICU,	and	patient	history.	MIMIC	
III	comprises	over	58,000	hospital	admissions	for	38,645	adults	and	7,875	neonates.	The	
data	spans	June	2001	-	October	2012.	The	rationale	of	using	MIMIC	III	in	this	project	is	
that	it	includes	much	more	complex	and	diverse	information	than	typically	found	in	claims	
data.	 One	 of	 our	 goals	 is	 to	 illustrate	 that	 learning	models	 from	 such	 data	 using	 the	
described	method	 leads	to	better	results	than	those	that	can	be	obtained	from	claims	
only	data.		

From	the	MIMIC	III	data,	we	selected	only	admissions	for	patients	at	least	65	years	old.	
This	results	 in	selection	of	21,651	admissions.	The	distribution	of	selected	attributes	in	
the	data	is	presented	in	Table	2.	Within	the	data,	the	majority	of	patients	were	treated	in	
Medical	Intensive	Care	Units	(MICU),	followed	by	Cardiac	Surgery	Recovery	Units	(SCRU),	
Cardiac	 Care	 Units	 (CCU),	 Surgical	 Intensive	 Care	 Units	 (SICU)	 and	 Trauma	 Surgical	
Intensive	 Care	Units	 (TSICU)	 as	 depicted	 in	 Figure	 8.	 It	 can	 also	 be	 observed	 that	 the	
majority	of	patients	were	hospitalized	only	once	(Figure	9).	

	
Figure	8:	Distribution	of	types	of	Intensive	
Care	Units	usage	in	the	data.	

	
Figure	 9:	 Distribution	 of	 numbers	 of	
hospitalizations	 per	 patient	 over	 the	
analyzed	period	June	2001	-	October	2012.	



	

	

Table	2:	Distribution	of	selected	patient	characteristics	in	the	analyzed	subset	of	MIMIC	
III	data.	The	distributions	are	calculated	per	admission.	

	
	

	

Died in 30 days Not died in 30 days 
N = 1425 N = 20226

Age (mean, SD) 79.33 years (7.26) 76.93 years (7.16)
Length of Stay
   Hospital 13.73 days (11.33) 10.52 days (9.15)
   CCU (mean, SD) 121.22 days (115.56)   19.79% 72.45 days (86.18)      19.02% 1.05
   CSRU (mean, SD) 262.05 days (322.26)   10.74% 92.67 days (132.29)    27.16% 0.32
   MICU (mean, SD) 106.10 days (122.87)   57.89% 85.32 days (119.07)    36.14% 2.43
   SICU (mean, SD) 143.88 days (222.66)   17.54% 111.51 days (170.28)  16.64% 1.07
Admission Location

Emergency Room Admit 53.75% 39.22% 1.80
Clinic Referral/Premature 18.95% 19.93% 0.94
Phys Referral/Normal Deli 6.95% 21.73% 0.27
Transfer From Hosp/Extram 18.04% 18.39% 0.98
Transfer From Skilled Nur 1.75% 0.61% 2.89
Transfer From Other Healt 0.49% 0.10% 4.75
Info Not Available 0.07% 0.00% 14.20

Comorbidities
Cardiac dysrhythmias 42.25% 36.73% 1.26
Acute and unspecified renal 
failure 37.05% 21.12% 2.20
Essential hypertension 39.16% 52.57% 0.58
Respiratory failure; 
insufficiency; arrest (adult) 33.40% 17.88% 2.30
Congestive heart failure; 
nonhypertensive 22.60% 16.28% 1.50
Pneumonia (except that 
caused by TB or STD) 25.40% 12.66% 2.35
Urinary tract infections 24.70% 16.20% 1.70
COPD 24.84% 17.75% 1.53
Diabetes mellitus without 
complication 25.47% 24.55% 1.05
Deficiency and other anemia 29.19% 22.87% 1.39
Fluid and electrolyte 
disorders 27.93% 20.52% 1.50
Disorders of lipid 
metabolism 26.95% 39.20% 0.57
Coronary atherosclerosis and 
other heart disease 18.67% 23.09% 0.76

Variable LR



	

As	 expected,	 only	 small	 fraction	 of	 patients	 died	within	 30	 days	 after	 discharge.	 	 The	
distribution	of	mortality	among	patients	who	were	treated	in	specific	ICU	units	is	shown	
in	Figure	10.		

	 	
Figure	10:	30-day	survival	(left	bar)	vs.	mortality	(right	bar)	among	patients	in	the	data.	
The	three	charts	correspond	to	MICU	(left),	all	patients	(center),	SICU	(right)	patients.		

	

The	 data	 has	 also	 been	 processed	 by	 resolving	missing	 values,	 converted	 to	 numeric	
variables,	and	split	between	training	(80%)	and	testing	(20%).	The	final	dataset	has	been	
processed	and	passed	to	machine	learning	module.	All	learning,	attribute	selection,	and	
other	operations	have	been	done	using	only	training	data.	Testing	data	has	been	used	
only	to	calculate	final	accuracy	of	the	model.	

This	work	 reports	accuracy	of	models	 in	 terms	of	Area	Under	 receiver-operator	Curve	
(AUC),	often	referred	to	in	as	c-statistic.	

4.3. Results	

4.3.1. Method	Selection	
The	first	set	of	results	concern	selection	of	the	most	appropriate	method	that	can	handle	
the	data.		A	number	of	methods	have	been	investigated	as	well	as	different	settings	of	
these	methods.	Table	3	shows	comparison	of	accuracy	of	six	methods	applied	to	complete	
dataset.	 The	 results	 indicate	 that	 Support	 Vector	 Machine	 (SVM),	 Decision	 Tree	 and	
Random	 Forest,	 perfectly	 describe	 training	 data.	 However,	 it	 is	 clear	 that	 all	 three	
methods	suffer	from	overfitting.	Naïve	Bayesian	model	seems	inappropriate	for	the	data,	
and	Logistic	regression	provide	reasonable,	but	low	accuracy.		

Despite	 overfitting,	 Random	 Forest	 significantly	 outperforms	 other	 methods	 when	
applied	to	testing	data.	Thus,	in	the	further	set	of	experiments	Random	Forest	is	used.	

	

	

	

	

	

	

	



	

Table	3:	Comparison	of	Methods	applied	to	complete	dataset	

Method	 AUC	
(training)	

AUC	
(testing)	

Logistic	 0.73	 0.663	

SVM	 1.0	 0.5	

Linear	SVM	 0.522	 0.512	

Bayesian	 0.514	 0.512	

Decision	Tree	 1.0	 0.543	

Random	
Forest	

1.0	 0.743	

	

4.3.2	Use	of	Administrative	and	Clinical	Data	

In	 the	 second	 set	 of	 experiments	we	 tested	 if	 addition	 of	 clinical	 data	 (lab	 values)	 to	
administrative	 data	 (coded	 diagnoses)	 improves	 accuracy	 of	 prediction	 of	 30-day	
mortality.	Inclusion	of	lab	values	is	consistent	with	existing	models	such	as	APACHE	II.	

The	results	indicate	that	addition	of	clinical	data	makes	small	difference	in	the	accuracy.	
The	AUC	increases	from	0.72	to	0.74.	The	ROC	for	combined	administrative	and	clinical	
data	is	consistently	above	the	one	for	administrative	data	only,	as	shown	in	Figure	xxx.	
Interestingly,	when	applied	to	Medical	Intensive	Care	Unit	(MICU)	and	Surgical	Intensive	
Care	Unit	(SICU)	patients	only,	the	accuracy	worsens.	While	contradictory	to	the	fact	that	
these	are	two	distinct	types	of	patients	and	separate	modeling	should	improve	accuracy,	
this	discrepancy	can	be	explained	by	the	amount	of	data	available	and	thus	overfitting	of	
models.	

	

	
Figure	11:	Receiver-operator	curves	 for	models	 trained	using	administrative	data	only,	
administrative	and	clinical	data,	and	specialized	models	for	MICU	and	SICU	only.			



	

4.3.3	Minimum	C-LACE	Model	

Finally,	we	investigated	possibility	of	reducing	number	of	attributes	needed	to	accurately	
predict	30-day	mortality.	Such	a	reduction	is	important	for	simplification	of	model	and,	as	
described	 in	 Section	 5,	 allows	 for	 creation	 of	 online	 calculator	 in	 which	 data	 can	 be	
entered	manually.	

All	308	attributes	used	in	the	full	model	were	ranked	based	on	their	weight	in	the	Random	
Forest	model.	We	created	a	set	of	models	while	increasing	number	of	attributes	until	the	
accuracy	became	comparable	to	one	 in	 full	model.	This	resulted	 in	selection	of	top	20	
attributes	listed	in	Table	4	along	with	their	weights.		

	

Table	4:	Top	20	most	predictive	attributes	in	the	data	ordered	by	importance	calculated	
by	Random	Forest.	

Feature	 Importance	
age	 0.0452	
HOSPITAL_LOS	 0.0346	
MICU_LOS	 0.0320	
CCU_LOS	 0.0177	
CCS	106	 0.0176	
CCS	157	 0.0169	
CCS	98	 0.0159	
ADMISSION_LOCATION	 0.0157	
CCS	131	 0.0152	
CCS	108	 0.0145	
CCS	122	 0.0133	
SICU_LOS	 0.0130	
CCS	159	 0.0129	
CCS	127	 0.0127	
CCS	49	 0.0127	
CSRU_LOS	 0.0126	
CCS	59	 0.0123	
CCS	55	 0.0123	
CCS	53	 0.0110	

	

The	AUC	of	model	based	only	on	age	was	0.516	which	is	basically	a	random	guess	based	
on	 prior	 class	 distribution.	 Similarly,	 the	 AUC	 of	 model	 based	 on	 Age	 and	 Length	 of	
Hospital	Stay	was	0.576.	Interestingly	models	based	on	5	and	10	top	attributes	performed	
very	close	to	each	other	with	AUC	values	of	close	to	0.7.	Finally,	the	model	based	on	20	



	

attributes	performed	only	slightly	worse	than	one	based	on	all	308	attributes	(AUCs	about	
0.74).	Figure	12	below	illustrates	ROC	for	these	models.	

	

	
Figure	12:	Accuracy	of	models	for	different	selection	of	attributes	given	as	ROC.	

	

5. Online	Calculator	
In	 order	 for	 other	 researchers	 to	 test	 the	 developed	mortality	 prediction	models,	we	
developed	 an	online	 calculator	which	 includes	Minimum	and	 Full	 C-LACE	models.	 The	
minimum	model	is	available	through	a	web	form	that	can	be	used	by	entering	data,	as	
well	 as	 Application	 Programing	 Interface	 (API)	 for	 automated	 use.	 The	 full	 model	 is	
available	only	through	an	API,	since	it	is	unlikely	for	anyone	to	answer	308	questions	on	a	
web	form.	At	this	stage,	the	online	calculator	is	intended	only	for	research	purposes	and	
not	for	clinical	use,	since	additional	validation	is	needed.	

Simple	online	form	(Figure	13)	is	used	to	enter	patient	and	hospitalization	characteristics.	
The	entry	is	split	into	sections	related	to	length	of	stay	in	hospital	and	specific	ICUs,	age,	
admission	 location	 and	 selected	 conditions	most	 predictive	 of	 30-day	mortality.	 After	
submitting	 the	 form,	 user	 is	 provided	with	 estimated	 probability	 of	 30-day	mortality.	
Because	of	the	way	the	data	was	analyzed,	the	calculator	is	intended	to	be	used	at	the	
time	of	hospital	discharge.		

Within	the	scope	of	this	project	it	was	impossible	to	completely	test	the	calculator	and	in	
particular	assess	its	impact	on	patient	care.	Thus,	the	site	contains	a	disclaimer	that	the	
calculator	is	intended	to	be	used	only	for	research	purposes.	

	



	

	
Figure	 13:	 Design	 of	 the	 simple	 form	 used	 to	 enter	 patient	 and	 hospitalization	
information.	

	

6. Conclusion	
The	 presenter	 report	 described	 results	 of	 the	 project	 in	 which	 a	 new	 method	 for	
integrating	data	has	been	developed	and	implemented	in	a	prototype	computer	software.	
The	method	relies	on	the	idea	that	there	is	no	need	to	create	data	warehouse	or	integrate	
or	 invest	 in	 large	data	infrastructure,	but	rather	data	can	be	pulled	together	ad-hoc	as	
needed.	

The	 obtained	 results	 indicate	 that	 it	 is	 possible	 to	 learn	 from	 distributed	 health	 data	
without	 prior	 construction	 of	 data	 warehouse	 or	 large	 scale	 integration.	 The	 team’s	
experience	within	the	project	shows	that	analysis	of	data	in	the	distributed	system	was	
easy	and	did	not	require	more	effort	than	within	a	centralized	data	warehouse.	In	fact,	
some	aspects	of	the	analysis	were	easier	due	to	the	use	of	semantic	concepts	and	reduced	
need	to	rely	on	specific	field	names	and	coding	used	in	various	systems.	Organizations	
that	rely	on	analysis	of	data	from	multiple	distributed	sources	are	most	likely	to	benefit	
from	the	use	of	the	presented	methods.	

On	 the	 other	 hand	 the	 team	 recognizes	 that	 there	may	 be	 situations	 in	 which	more	
traditional	 approach	 to	 first	 integrate	data	and	 then	analyze	 it	may	be	more	 suitable.	
Large	organizations	that	rely	on	heavy	analysis	of	own	data	that	can	afford	construction	
of	a	warehouse	are	most	likely	better	off	with	the	centralized	approach.		

6.1. Project	Timeline	and	Accomplishments	

The	project	was	completed	over	period	of	one	year	 from	October	2015	 to	September	
2016.	Figure	14	shows	main	stages	of	the	project	as	well	as	deliverables.	The	first	stage	of	
the	project	was	to	perform	a	detailed	review	of	existing	technologies	for	data	integration	
and	warehousing.	It	also	included	selection	of	application	area	along	with	dataset	suitable	



	

for	 testing	 the	 method.	 In	 the	 second	 stage	 of	 the	 project	 the	 data	 integration	
methodology	was	created.	At	the	same	time,	data	access	and	permissions	were	obtained,	
and	the	dataset	was	downloaded	to	GMU	site.	The	third	main	stage	consisted	of	software	
implementation	and	semantic	mapping	of	data.	Finally,	 the	 implemented	method	was	
applied	to	the	obtained	and	mapped	data	and	prediction	results	were	obtained/analyzed.		

	

	
Figure	14:	Project	stages	and	deliverables.	

6.2. Future	Research	

The	current	efforts	of	the	team	can	be	divided	into	three	main	directions:	

- Methodological	 aspects	 of	 machine	 learning	 in	 distributed	 environments.	
Specifically,	the	plan	is	to	work	on	methods	that	request	data	“on	the	fly”	while	
the	learning	algorithm	is	being	executed.	The	method	starts	with	partial	data	and	
limited	information	and	requests	additional	information	(new	attributes)	for	cases	
for	which	it	is	needed.	

- Migration	of	the	developed	methodology	into	standard	computing	platform	such	
as	Hadoop.	High	performance	computing	platforms	allow	for	analysis	of	very	large	
datasets	and	may	allow	for	scalability	of	 the	proposed	solution	beyond	what	 is	
possible	 with	 simple	 prototype	 implementation	 presented	 in	 this	 report.	 The	
solution	will	rely	on	some	combination	of	Hadoop’s	map-reduce	paradigm,	with	
API-based	approach	presented	here.	

- Application	of	 the	method	 to	 large	 scale	 data	 analysis.	 The	work	 is	 specifically	
intended	 to	 target	 analysis	 of	 extremely	 large	 claims	 databases,	 such	 as	 those	
maintained	by	the	Centers	of	Medicare	and	Medicaid	Services	(CMS),	or	clinical	
data	from	large	organizations	such	as	the	Department	of	Veteran’s	Affairs.	
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