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Abstract:   
 
The current supervised training of deep neural networks on medical image diagnosis 
requires typically large pools of labeled data, which is scarce, expensive, and limited by 
types of annotations. There are enormous medical demands that require the detection of 
subtle differences in the medical images, such as recognizing the severity of pulmonary 
edema or diagnosing complications of multiple diseases, etc. To enable and minimize the 
cost of medical images auto diagnosis based on user-defined criteria, we proposed an 
innovative system of active learning to maximize the usage of annotations effect, precisely 
connecting the medical images to corresponding patients' history records and provide a 
variety of resolutions of medical imaged similarities and differences. The system supports 
distributed training across multiple locations and periods. This paper proposed a new active 
learning method taking the cost value for each specific misdiagnosis and annotation into 
consideration. When selecting records for queuing, this application will effectively reduce 
the overall cost for annotation and reduce the cost for high-risk misdiagnosis. The system 
also shows the regression between the percentage of annotated images and the AUC results 
on different diseases.  
 

Introduction:     
      
Chest x-ray images are commonly used in patients for assessment and diagnosis, including 
the condition of lungs, heart-related lung problems, the size and outline of heart, blood 
vessels, calcium deposits, fractures, postoperative changes, a pacemaker, defibrillator or 
catheter, etc.; and certain combinations among them. Current public available labeled 
Chest X-ray datasets have driven deep learning methods to achieve expert-level 
performance on diagnosing common related diseases. CheXpert design a labeler to 
automatically detect the presence of 14 observations in radiology reports[Irvin 2019], 
including Enlarged Cardiom, Cardiomegaly, Lung Lesion, Lung Opacity, Edema, 
Consolidation, Pneumonia, Atelectasis, Pneumothorax, Pleural Effusion, Pleural Other, 
Fracture, Support Devices, and No Finding. CheXNet detects 14 diseases similar to 
CheXpert outperforms the state of the art database[ [Rajpurkar2017].  

The current supervised training of deep neural networks requires typically large pools of 
labeled data. In medical imaging, however, available datasets tend to be limited in size due 
to privacy issues. Labeled research image data is scarce since manual annotation requires 
tedious, a time-consuming effort by professional radiologists and physicians. Although 
some large labeled datasets are available, they can be severely imbalanced by the over-
representation of common problems and under-representation of rare conditions. The 
resolution of differential diagnosis in these diseases are generally low so that the fine 
detection and classification for diagnosis among images is not feasible. Two largest Chest 
x-ray images databases currently available, the NIH Chest x-ray database and MIMIC 
CXR, both labeled with 14 different diagnoses.  

However, there is a gap between the current deep learning-based methods and the medical 
demands that require the detection of subtle differences in the medical images.  For 
example, pulmonary edema is one of the most direct symptoms of Chronic Heart Failure 



 

 

(CHF) [Mahdyoon1989]. Heart failure patients have extremely heterogeneous responses 
to treatment  [Francis, 2014]. The assessment of pulmonary edema severity will enable 
clinicians to make better treatment plans based on prior patient responses. It will facilitate 
clinical research studies that require quantitative phenotyping of the patient status [Chakko 
1991]. Quantifying pulmonary edema is extremely important but more challenging than 
detecting pathologies in chest x-ray images[Rajpurkar2017][Wang2017]. The grading of 
pulmonary edema severity relies on much more subtle image findings.  

To fill the gap between the current deep learning-based methods and the medical demands 
of detecting subtle differences in the medical images, we proposed a distributed, scalable 
system enabling a user-defined target for specific specialty areas through active learning.  

There has been an increasing amount of application in semi-supervised learning and active 
learning in the medical and healthcare sectors. In [Smailagic 2018], a novel sampling 
method was proposed that queries the unlabeled examples that maximize the average 
distance to all records in training set in a learned feature space. In [Wu2018], a low-rank 
modeling-based multi-label active learning method for effective medical image annotation 
was developed. In a recent work by Kim [2020], an active learning method, confident 
coreset, which considers both uncertainty and distribution for effectively selecting 
informative samples were proposed. The development in this area has increased the 
annotation procedure's efficiency and enabled more applications in medical image analysis.  
There hasn't been much direct application on using active learning in medical image 
diagnosis due to the computation complexity in semi-supervised learning and active 
learning in image recognition to reach certain accuracy. However, if we could extract the 
features from CNN precisely and apply the features to semi-active learning,  it is possible 
to develop a lightweight medical image diagnosis system.  

In our proposed system, we leverage the general medical domain knowledge through the 
labeling of common 14 different diagnoses and existing CNN based supervised deep 
learning trained model, introduces specified domain knowledge through label propagation, 
enables user-defined target, maximizes the value of labeling through active learning by 
introducing the concept of records resolution, and precisely connects the medical images 
to corresponding patients history records. The purpose of leveraging an existing CNN 
model is to extract the necessary information from the medical images, and other CNN 
based models can replace it. The system supports distributed training across multiple 
locations and time frames and joints the efforts together. It can be used by specialists in 
different fields to detect subtle differences in the medical images. It also provides an 
alternative approach for tracking the progression of certain diseases through medical 
images.   

The rest of the paper is organized as follows. We will first provide an overview of the 
design, followed by a system architecture description. After that, we will discuss the details 
of the model and its results. Conclusion and future work are shown at the end of this paper. 

Design Overview and System Architecture:  

An inference modeling for our proposed system can be described in Figure 1. We first need 
to construct features representation learned through CNN based CheXNet model and 
include the initial labeling in the database. In [Selvaraju2019], a generalized Class 
Activation Mapping(CAM), which is called Grad-CAM, was first introduced for ‘visual 



 

 

explanations’ for decisions from a large class of Convolutional Neural Network (CNN)-
based models. And we have adopted a similar approach to present the features of each 
sample.  

 

Figure 1: Inference Model 

As shown in Figure 1, there are four stages for constructing the proposed system: 

1. (C): Preprocessing: extract images information from the cheXnet model or other 
CNN based models. The purpose of the extraction is to add generic domain 
knowledge of each image into the proposed model. The information extracted 
from the existing CNN model, including the last layer of the convolution layer 
and the previous full connection layer before the softmax.  

2. (D): Cross-referencing: as radiologists and physicians labeling the primary seeds 
of initial labeled data, it is essential to set up a framework that is based on 
information from the initial labeling to automatically link information 𝑝 ∈ {𝑝!}!"1#  
from patients’ history records for further enhancement learning where 𝑝! is the ith 
patient’s record and patients are indexed by numbers of 1 to 𝑛. 

3. (L): Semi-supervised learning: a selected set of 𝑥 ∈ {𝑥!}!"1$  is labeled to 𝑦	 =
{𝑦!}!"1

$!  by professional radiologists or physicians, where 𝑥! 	is the ith record and 
the records are indexed by number from 1 to 𝑁. Using Semi-Supervised Learning, 
the model mix all labeled data 𝑥 ∈ {𝑥!}!"1$  and unlabeled data 𝑥 ∈ {𝑥!}!"$%1# , 
through the process of label propagation to predict the labeling for unlabelled 
data. 

4. (G) Active Learning: the models select the most desirable medical images 
𝑥& , 𝑤ℎ𝑒𝑟𝑒	𝑘 ∈ {𝑘!}!"1'  for professional radiologies to label. The selection of 𝐾 is 
essential to the performance of the model.  



 

 

 
Preprocessing sets up the ground information of samples and domain knowledge and the 
initial definition of the targets. The definition of the targets is determined by {𝑦!}!"1

$!  
initially in this step. The selection of {𝑦!}!"1

$!  is from professional radiologists and not 
necessarily the optimal choice for step two semi-supervised learning algorithms to 
understand and follow in execution. Semi-supervised learning identifies each sample by 
following the definition of the targets. Label propagation is used in the experiment session, 
and other methods can be used as well. This step predicts the label for all images, as well 
as the confidence level of each prediction. The confidence level is used in step 4 for active 
learning. With the prediction result, a cross-referencing step can directionally search the 
patient's historical record related to the target definition, which can enhance the learning. 
This step also depends on the accessibility of the history data record associated with the 
specific image. This step is not implemented in the experiment session currently.  Step4, 
active learning is essential to the proposed model. As stated in [Tarvainen 2017]:  Mean 
teachers are better role models; the target definition is the key to the success of the model. 
The initial selected labeled image may not be the best role models for students (unlabeled 
images) to learn. The model chose the images with the highest return value or contribution 
to the following up prediction and present them to the professional radiologists to add 
labels. The extended labeling group became a better definition of the targets.  With a better 
description of the target, step 2 will be able to provide high accuracy.  Figure 2 shows the 
architecture of implementation for the proposed model. 

 

 
Figure 2: System Architecture 

 



 

 

The training of discriminative models for a specific specialty area is also hardware 
expensive and time-consuming.  By contrast, generative modeling facilitates semi-
supervised training with limited labeled data. A generative model can be described as a 
conditional probability of the observable 𝑋, given a target 𝑦, symbolically 𝑃(𝑋|𝑌 = 𝑦). A 
discriminative model is a model of the conditional probability of the target 𝑌, given an 
observation𝑥 , symbolically, 𝑃(𝑌|𝑋 = 𝑥) . In the scenario of limited labeled data,  a 
generative model can guide the model towards the interested area and a more efficient way 
of leveraging labeled data. 

We describe and demonstrate semi-supervised learning based multi-iteration generative 
model to guide medical images diagnosis according to labeled medical images in the 
targeted direction. It combines domain knowledge through the labeling and machine 
learning method. It also provides physicians and researchers the flexibility of defining the 
categories of diagnosis. 

The approach leverages the feature extraction from a comprehensive discriminative model 
cheXNet and utilizes the characteristic features of CheXNet as the input. CheXNet is a 
121-layer convolutional neural network trained on ChestX-ray14, the largest publicly 
available chest X-ray dataset [Rajpurkar2017].  Other than CheXNet, additional CNN 
based medical image recognizing systems can be used for feature extraction. In Table 1, 
the 121-layer CheXNet structure was shown. 

    Table 1: Dense Net-121 based CheXNet 

Layers Dense Net-121 

Convolution 7 × 7	𝑐𝑜𝑛𝑣, stride 2 

Pooling 3 × 3	𝑚𝑎𝑥	𝑝𝑜𝑜𝑙, stride 2 

Dense Block 1 
>
1 ∗ 1	𝑐𝑜𝑛𝑣
3 ∗ 3	𝑐𝑜𝑛𝑣? ∗ 6 

Transition Layer 1 1 × 1	𝑐𝑜𝑛𝑣 

2 × 2	𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑝𝑜𝑜𝑙 

Dense Block 2 
>
1 ∗ 1	𝑐𝑜𝑛𝑣
3 ∗ 3	𝑐𝑜𝑛𝑣? ∗ 12 

Transition Layer 2 1 × 1	𝑐𝑜𝑛𝑣 

2 × 2	𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑝𝑜𝑜𝑙 

Dense Block 3 
>
1 ∗ 1	𝑐𝑜𝑛𝑣
3 ∗ 3	𝑐𝑜𝑛𝑣? ∗ 24 



 

 

Transition Layer 3 1 × 1	𝑐𝑜𝑛𝑣 

2 × 2	𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑝𝑜𝑜𝑙 

Dense Block 4 
>
1 ∗ 1	𝑐𝑜𝑛𝑣
3 ∗ 3	𝑐𝑜𝑛𝑣? ∗ 16 

Transition Layer 4 1 × 1	𝑐𝑜𝑛𝑣 

2 × 2	𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑝𝑜𝑜𝑙 

Classification Layer 1 × 1	𝑔𝑙𝑜𝑏𝑎𝑙	𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑝𝑜𝑜𝑙 
14𝐷	𝑓𝑢𝑙𝑙𝑦	𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑, 𝑒𝑙𝑒𝑚𝑒𝑛𝑡	𝑤𝑖𝑠𝑒	𝑠𝑖𝑔𝑚𝑜𝑖𝑑 

 

 

For calculation convenience, we first resize images in the dataset to be 𝑛 × 𝑛pixels. There 
are no restrictions on the original images' size as long as the resolutions are high enough to 
detect the features we need. Let x ∈ 𝑅#×# be a 2D x-ray image and y ∈ {𝑐), 𝑐*, 𝑐+, 𝑐,,…,𝑐&} 
be the corresponding label that contains information of diagnosis, severity, complication, 
or other categories.  A dataset includes a set of N images 𝑥	 = {𝑥!}!"*$ , in which 𝑁- images 
annotated with labels 𝑦	 = {𝑦!}!"1

$!  Then, a probabilistic feature representation 𝑍 to predict 
the label 𝑦 information was constructed.  

The domain-specific features from CheXNet are leveraged to construct the feature 
representation. Instead of identifying pre-defined diagnoses, the proposed system enables 
a user-defined target through the labeling of images. The labeling can have multiple 
sources:  medical experts, cross sourcing patient's history EHR records or referencing other 
models, etc. Through active learning, the labeling is not a prerequisite but an ongoing 
process with the utilization of the model. The system evaluates the uncertainty and other 
aspects of each record and marks the images that, if labeled, will be most valuable to the 
application of the model. During the utilization of the model, the algorithm can select the 
images for labeling. The labeled image improves model performance by guiding the 
direction of the model. 

 

Model Description:   
 

Before getting into the detailed description, there are some variables need to be defined 
first: 

𝑔 : number of elements in the last convolution layer 

𝑓 : number of elements in the last full connection layer 

𝑝 : the union array of last convolution layer and full connection layer 



 

 

𝑦 : the labeled records 

 

Let p ∈ 𝑅.%/be a one-dimensional array that is derived from the CheXNet model. 

𝑝	 = {𝑝!}!"*
. ∪ {𝑝0}0".%*

/%.    

Where {𝑝!}!"1
. represent the calculated array of results of the last layer of convolution layer, 

and {𝑝0}0".%1
/%. represents the calculated array of results of the last full connection layer 

before the softmax. 

Let 𝑦	 = {𝑦!}!"1
$!   be the labeled samples. The samples are defined based on demand for a 

particular specialty or defined target. For example, it can be labeled as predicted pulmonary 
edema severity[Liao2019]. 

The last convolution layer {𝑝!}!"1
. represents how sensitive each part of an image is to the 

classification result[Selvaraju2019][Zech2018]. Figure 3 shows an example of the last 
convolution layer. We can see that throughout CNN based CheXNet training model, the 
focused area is highlighted in the purple color. This area has a higher sensitivity level to 
the predicted result compared to the rest of the area. 

a): Original Chest X-Ray Diagnosed as 
Pneumonia 

 
 

(b) Image with Grad-Cam Integrated 

   Figure 3: Example for Grad Cam based on CheXNet model 

 

The sensitive area is positively correlated to the model itself. The prediction accuracy in a 
given model will affect the focused, sensitive area. To work across different chest X-ray 
reading CNN models and depend less on the accuracy of the select chest X-ray reading 



 

 

CNN models, it is necessary to include the last full connection layer, which represents the 
decision made from a particular model. In summary, by adding both the last convolution 
layer and the last layer of full connection,  we obtained the information data from both the 
decision matrix and the reasoning matrix.  

The parameters of last full connection layer before softmax is {𝑝0}0".%1
/%. . This is the layer 

that is linearly used to predict the probability of each diagnosis. The relationship between 
them can be seen as follows, where A is the character matrix of each image: 

𝑦1 =	 {𝑝0}0".%1
/%. ,	 

the gradient backpropagation is:  

𝑔𝑏	 = 	 23
"

24#$
%     (1) 

𝛼&1 =
*
5
∑ ∑ 23"

24#,$
%0! (2) 

𝐿6789:;4<1 = 𝑅𝑒𝐿𝑈(∑ 𝛼&1𝐴&& ) (3) 

𝑝 = 	 {𝑝!}!"1
.  = 𝐿6789:;4<1  (4) 

In (2), *
5
∑ ∑ 	0! is the global average pooled over the width and height dimensions to obtain 

the neuron importance weights 𝛼&1 . 23
"

24#$
% is the gradients via back propagation. 1

=
 is a 

proportionality constant that is used for normalization, and 𝑍 =	∑ 1',( . 

Thus, through the convolution model training, we can transfer the domain knowledge of 
each image, and we use it here as the input to component 𝐷 in Figure 2.  

The target of an application is reflected by the labeling of a small percentage of the images. 
The target is defined as 𝑦. The labeling came from professional radiologists' input, or it 
could come from a guided searching of a patient's historical record. It is a continuous effort 
to enrich the database and make the model more accurate or, more specifically, towards 
the target of application. 𝑦	 = {𝑦!}!"1

$!   is the labeled samples. As 𝑁-  increases, the accuracy 
will improve as well. However, there is a cost function associated with the number of 
labeling and a cost for low accuracy. The goal here is to minimize the overall cost.  The 
cost model can be summarized as: 

min	(𝑓0(𝑁-) 	+	∑ 𝑓!,0𝐶!,0&
!,0"1 )   (5) 

In function (5), 𝑓0(𝑁-) is the cost of labeling 𝑁-samples. 𝑓!,0is the cost for misdiagnosis 
type 𝑖 to type 𝑗where (𝑓!,0= 0 when 𝑖 = 𝑗) using the current model.  𝐶	is the confusion 
matrix where 𝐶	!,0 is the number of samples for each misdiagnosis.  The cost model is 
integrated as the loss function with Z in figure 2, which is the model of a semi-supervised 
based learning model to shape the feature extraction towards the fields of the applications.  
When the benefit of  increasing the accuracy of the model brought by the number of 
annotated records is less than the cost of  annotation itself, the model is stabilized and stops 
generating new records for physicians to diagnose.  When setting 𝑓0(𝑁-)= 0, the model will 



 

 

always be in the query model, and keep on increasing the accuracy by generating new 
records for physicians to diagnose. When a particular misdiagnosis is set to have a high 
price, this type of misdiagnose records takes a larger percentage over the generated records 
for querying.   

The semi-supervised learning algorithm maximizes the log probability 𝑙𝑜𝑔(𝑝𝑟𝑜𝑏())  of the 
sample with respect to parameters 𝜃, and the objective is:  

𝑀𝑎𝑥(𝑃), 𝑤ℎ𝑒𝑟𝑒	𝑃 = 	∑ 𝑝𝑟𝑜𝑏(𝑥!,𝑦!,𝜃)
$!
!"1 	+ 	∑ 𝑝𝑟𝑜𝑏(𝑥!,𝜃)$

!"$!)1  (6) 

A label propagation algorithm(LPA) based algorithm was implemented to achieve the goal. 
The process includes five steps: 

1. Initialize the labels 𝑦 at all samples. For a given sample	𝑥!, 𝑦!(0) = 	𝐶0  
2. Set 𝑡	 = 1	. 
3. Arrange the samples in the network in random order and set it to 𝐶0. 
4. For each 𝑥 ∈ 𝑋    chosen in that specific order, let 𝐶@(𝑡) 	=
	𝑓(𝐶@!1(𝑡), . . . , 𝐶@!A(C), 𝐶@!(A%1), . . . , 𝐶@!&(𝑡 − 1)). 𝑓 here returns the label occurring with 
the highest frequency among neighbors. Select a label at random if there are multiple 
highest frequency labels.  
5. If every node has a label that the maximum number of their neighbors have, then stop 
the algorithm, else, set 𝑡 = 	𝑡 + 1	 and go to (3). 
In contrast with other algorithms, label propagation can result in various community 
structures from the same initial condition. The range of solutions can be narrowed if some 
nodes are given preliminary labels while others are held unlabelled. Consequently, 
unlabelled nodes will be more likely to adapt to the labeled ones.  The selection of semi-
supervised learning also depends on the type of application and available data set. During 
implementation, the component 𝐿 is an exchangeable module that allows replacing other 
semi-supervised learning algorithms without affecting the overall architecture.  
 
Component 𝐺 in Figure 2 is an essential part of the proposed model.  𝑥	output the predicted 
result and point out the weak point of the current target definition. In component 𝐷 , 
profession radiologies or physicians cherry-picked the cases that they would like to 
identify. The message of definition was delivered to the algorithm and component 𝐿 
interpret the definition and make the judgement. In component 𝐺, not only it delivers the 
result, but also tries to ask the right question for more accurate understanding of the target 
definition. The selecting of samples 𝑞 ∈ {𝑞0}0"1E that need to be reassured by the 
professional radiologists is the process of asking the right question and calibrating itself. 
Multiple methods have been proposed in the literature for selecting the records for 
querying. Here, we proposed targeting on lowering the overall cost. In equation (5), the 
overall cost includes the labeling cost and the cost for misdiagnosis type 𝑖 to type 𝑗. We 
adopted a simplified and valid assumption that the least uncertain records in the test result 
has the most information, which has been used in many active learning models.  𝑛1is the 
total number of selected records for querying. We take 𝑛2most untain records R, where 
𝑛2 ≥ 𝑛1 .By sorting the misdiagnosis weight  matrix,  	𝐹 = [𝑓!,0]	, 𝑤ℎ𝑒𝑟𝑒	𝐹[0]	 =



 

 

	𝑚𝑎𝑥(𝑓!,0) 	= 	 𝑓A,& , we can get that type 𝑘 is the most expensive cost if the ground truth 
is 𝑚 for that record. If a record that is predicted to be 𝑘 is in 𝑅, we select a random records 
from R that is predicted as  𝑘. If there is no record in of 𝑘, we will look for the second most 
expensive one where 𝐹[1]	 = 	𝑚𝑎𝑥(	𝐹 − 𝑚𝑎𝑥(𝑓!,0)) 	= 	 𝑓A,&.  If the ground truth after the 
physician’s diagnosis is 𝑚, then, we will continue to look for records predicted as 𝑘. If not, 
we will update 𝑚 and 𝑘 to be 𝐹[1]	 = 	𝑚𝑎𝑥(𝑓!,0) 	= 	 𝑓A,&, and follow the same steps. The 
searching stops when the select number of records equals to 𝑛1.   
Recall equation (5),  if 𝑛2	 = 	𝑛1, then the expected cost is 

𝑓0(𝑛1) 	+	 a 𝑓!,0 	
&

!,0"1

 

The loop among 𝐷, 𝐿, 𝐺 forms a process of active learning or interactive learning. The time 
scale between loops can be distributed through the utilizing of the system. The geographic 
location can also be distributed among any medical organizations and shared through the 
cloud. 
 
Experiment and Result:   

Approximately 6,000 chest x-ray images and their associated radiology reports were 
collected as proof of concept in this work. A relatively small sample to evaluate the system 
performance was included considering the use case when less data is available. We extract 
the features of the images based on the CheXNet model. The NIH label is used for the 
labeling.  Due to lack of interaction with physician’s on evaluating the cost for 
misdiagnosis, we simplified our model cost equation (5)  to be 𝑐!,0 = 	0	𝑤ℎ𝑒𝑛	𝑖 ≠ 𝑗.  In 
future research, we will run expert interviews and other format of survey to determine the 
values of 𝑐!,0 	𝑤ℎ𝑒𝑛	𝑖 ≠ 𝑗. 

The algorithms were evaluated based on several aspects: model accuracy over various 
percentages of labeled samples, model accuracy over several categorized diagnoses.  The 
model accuracy is evaluated by the average value of F1 scores in all categories. 

Figure 4 shows that the recall value varies by the percentage of labeled samples in the 
overall samples. In Figure 4, Cardiomegaly Detection is used as an example. As the 
percentage of the labeled sample increases, the recall value also increases. 

Figure 5 shows that the average F1 score varies by the percentage of labeled samples in 
overall samples. In Figure 5, Cardiomegaly Detection is also used as an example. As the 
percentage of the labeled sample increases, the F1 score also increases. 

 



 

 

 

Figure 4: Recall score vs. labeled sample percentage for Cardiomegaly Detection 

 

Figure 5: Average F1 score vs. labeled sample percentage for Cardiomegaly Detection 

 

Cardiomegaly Detection in CNN based Chest X-Ray Diagnosis has relatively higher 
accuracy. For a more comprehensive evaluation of the system, given the current 
constrained on labeled data,  we also compared the curve among different disease detection.  



 

 

The total number of samples is the same for each disease detection in the experiment shown 
in Figure 6.  We can see that given the total number of samples, two factors are affecting 
the performance of the system: type of disease, percentage of labeled data.  For some 
diseases, the percentage required is higher than others in order to achieve precise accuracy. 

 

 

 

Figure 6: Comparison between different diseases and diagnosis 

In the clinical application, the classification is not restricted to a predefined disease. It could 
be a select type of Pneumonia. With certain labeled data, the model is customized as 
demand and provides an effective method with low computation complexity. In Figure 7, 
we make the diagnosis that Effusion and Infiltration simultaneously appeared, and try to 
identify these images. From the recall rate, it shows a better performance compared to when 
only Effusion or only Infiltration is diagnosed. 



 

 

 

 Figure 7: Performance for a complication of Effusion and Infiltration 

Conclusion: 

With approximately 2 billion procedures per year, chest X-rays are the most common 
imaging examination tool used in practice, critical for screening, diagnosing, and managing 
a variety of diseases(Raoof2012). There is a shortage of experts who can interpret X-rays, 
leading to increased mortality from treatable diseases (Kesselman2016). For example, 
ChestNet detects Pneumonia from frontal-view chest X-ray images and detects multiple 
conditions and outperforms the previous state of the art on ChestX-ray14[Rajpurkar2017]. 
This technology increases access to medical imaging expertise, however, is limited by the 
pre-defined 14 types of diseases.  It is challenging for a generative model to learn distinct 
data clusters for the labels that rely on subtle image features. This paper demonstrates that 
Generative Semi-Supervised Active Learning could be an effective way for user-defined 
chest X-Ray diagnosis identification. We proposed a label propagation approach that relies 
on features abstracted from existing CNN based models and guided by medical domain 
knowledge through user-defined labeling. With a limited percentage of labeling among a 
large image dataset, the system can identify the chest X-ray types defined by the labeled 
data. 

Our results suggest learning compact feature representations jointly from image 
information and limited labels can help inform prediction by capturing structure shared by 
the image distribution and the conditional distribution of labels given images. Subtle details 
on a patient's status captured in medical images and labels can be extracted, enabling 
clinicians to deliver better care by quantitatively clustering and summarizing large scales 
of patients' medical quality, even in the appearance of a new or undefined type of disease.  
Given the consideration of high labeling cost, the model works effectively with limited 
amounts of labels. Furthermore, without the limitation of a pre-defined category or 



 

 

diagnosis, more valuable information can be abstracted from a patient's medical chart and 
use the labeling information, which significantly reduces the cost of manually labeling. 

Training on CNN based Chest X-ray diagnosis is both hardware and technically intensive. 
It requires high power GPU stations and expertise in machine learning. A lightweight 
solution for user-defined diagnosis was provided. It leverages the trained model of 
ChestXNet or other CNN based models, guided by the expertise labeling, and reshapes the 
model to fit user needs. The low requirement of training cost and labeling cost enables its 
application in fast spread disease detection. 

Discussion and Future Work: 

Uncertainty sampling is the most commonly used in actively learning framework and is 
used in the data experiment. The shortcoming is the assumption that all samples in the set 
are roughly equal size [ElRafey 2017].  Other models are proposed and need to be 
compared with the current result.  For an imbalanced dataset, we will explore anomaly 
detection based methods and compare the performance.  

Generative Adversarial Networks (GAN)  have gained a lot of attention in the computer 
vision community due to their data generation capability without explicitly modeling the 
probability density function. The discriminator's adversarial loss provides a creative way 
of incorporating unlabeled samples into training and imposing higher-order consistency. 
This has proven useful in many cases, such as domain adaptation, data augmentation, and 
image-to-image translation[Yi 2019]. One of the focuses of future work is to integrate 
GAN into the system.  

Cross-referencing can directionally search the patient's historical record related to the 
target definition, which can enhance learning. The implementation of this step will be 
implemented in future work.   

A thorough investigation of labeling cost optimization is essential. Policy, regulation, the 
labor cost need to be added into consideration. 

The comparison between LPA and other semi-supervised learning models, including 
"Label Propagation for Deep Semi-supervised Learning" [Iscen2019], is needed in future 
work. The adaptivity, association, and matching between the semi-supervised learning 
models and medical applications need further investigation.  

We have proposed to associate the uncertainty with the cost of misdiagnosis for active 
learning. The implementation will be included in future work. 

As part of field tests and calibration is an essential part. Combining patients' history charts 
and collaborating with physicians on testing, tuning, and expanding the model will be 
performed. 

We also plan to compare the constraint-based and metric-learning methods.  The two semi-
supervision ways individually improve clustering accuracy and build a multi-interaction 
label propagation approach that integrates their strengths. 
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