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Abstract: To trust and use machine learning (ML) models in health settings, decision-makers need to understand the 

model's performance. Yet, there has been little agreement on what information should be visualized to present 

models' evaluations. This work presents an approach to construct a dashboard used to visualize supervised 

ML models for health care applications. The dashboard shows the models' statistical evaluations, feature 

importance, and sensitivity analysis.  

1. INTRODUCTION 

The use of machine learning (ML) in healthcare 

domains has grown massively over the last decade. 

To increase the trust of ML models in healthcare, the 

decision-makers need to understand if the model 

works and why. However, most people treat the 

model as a black box and report the performance 

without explaining how it works (Fekete, 2013; Liu 

et al., 2017). In healthcare, understanding the effect 

of the predictors is crucial to trust the model (Apley 

& Zhu, 2020). For example, Krause et al. (2016) 

explain the experience of a stakeholder who struggled 

whether to employ a model that predicted diabetic 

risk or not. The model had high accuracy, but the 

analysts could not explain how the features impacted 

the prediction. In health care, understanding the effect 

of the predictors is crucial to trust the model (Apley 

& Zhu, 2020). Visualization methods are among the 

most useful tools for understanding a ML model 

(Alsallakh et al., 2014). Tonekaboni et al. (2019) 

emphasize that carefully designed visualizations 

increase the clinicians’ understanding.  

This paper designed a dashboard that aims to help 

decision-makers understand the strength and 

weaknesses of the model and uncover the relationship 

between features and predictions, which lead to an 

increase in the decision-makers’ trust by visualizing 

any classification model performance. The dashboard 

takes the model and the training and testing data and 
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displays three main sections: statistical measures, 

feature importance, and sensitivity analysis. The first 

two sections display some well-known measures, 

while the third section goes deeper into the 

relationship between each attribute and the prediction 

to identify any existing pattern.  

This paper is taken from my master’s thesis, 

"Dashboard for Machine Learning Models in Health 

Care," done in Summer 2021 at George Mason 

University under the direction of Dr. Janusz 

Wojtusiak (Bagais, 2021). 

2. RELATED WORKS 

While a considerable amount of literature has been 

published on explaining the performance of ML 

models, most studies focus on one measure, a specific 

ML method, or interactive presentation of ML results. 

Works on interactive ML are closely related to 

aspects of this study. In interactive ML, “the model 

gets updated immediately in response to user input” 

(Amershi et al., 2014, p. 106). Most model 

explanation systems that use interactive ML ask the 

user to input a hypothetical scenario and display the 

model performance for that scenario. In contrast, this 

paper focuses on model global explanation and 

features effect rather than the local explanation (per 

patient scenario). 
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Several related visualization and model 

explanation systems developed over the past years, 

including: 

The what-if tool (WIT) is “an open-source 

application that allows practitioners to probe, 

visualize, and analyze ML systems, with minimal 

coding” (Wexler et al., 2020, p. 56). WIT has four 

main functions: exploring data using statistics and 

distributions of all features; investigating user test 

hypotheses shows model performance based on 

finding counterfactuals and observing partial 

dependence plots; evaluating fairness, analyzing and 

compare model performance based on slices of data; 

comparing two models, which compares all supported 

measures and partial dependence plots between the 

two models (Wexler et al., 2020). As the name 

suggests, the WIT is an interactive system that shows 

the model behavior based on user input scenarios. In 

comparison, this paper focuses on displaying the final 

model behavior without diving into the local 

sensitivity analysis. 

Manifold is “a generic environment for 

comparing and debugging a broad range of machine 

learning models” (Zhang et al., 2019, p. 9). Manifold 

compares ML models using two main visuals: 

summary statistics at feature level and a comparison 

of model pairs (Zhang et al., 2019). Both Manifold 

and this paper display the features' distribution per 

classification category to explain the relationship 

between the prediction and the attributes.  

Prospector provides interactive partial 

dependence diagnostics to understand the effect of 

features on prediction. Prospector visualizes patient 

selection (a list of patients based on prediction and 

ground truth), Patient inspection (the change of 

prediction based on the change of feature values for 

the selected patient), and partial dependence plots 

(which demonstrate the effect of a feature on the 

prediction) (Krause et al., 2016). Both Prospector and 

this work include the visualization of partial 

dependence plots. However, Prospector focuses more 

on patient-level analysis while this work focuses on 

the overall feature effect.  

Similarly, several systems focus on prediction 

explanation as part of decision support. The two most 

notable of the systems are: 

LIME is “a modular and extensible approach to 

faithfully explain the predictions of any model in an 

interpretable manner” (Ribeiro et al., 2016, p. 114). 

LIME explains the predictors for a specific case, 

while this paper focuses on the global explanation for 

the model and its features.  

SHAP stands for “Shapely Additive explains 

Explanations." SHAP explains the output of any ML 

model using a game theory approach. SHAP also 

focuses on local explanations (Lundberg & Lee, 

2017).  

Some other papers focus on a specific type of data 

or measures. For example, FeatureInsight, which 

focuses on defining dictionary features for 

classification models (Brooks et al., 2015), Samek et 

al. (2017) paper focus on visualizing deep neural 

network DNN, Adams & Hand (1999) proposed LC 

index as an alternative for the ROC curve. 

Additionally, Raymaekers et al. (2020) advised using 

a mosaic plot instead of the confusion matrix. 

3. METHOD 

Presentation of ML models and their results plays an 

essential role in analysts' and decision-makers' 

understanding and, consequently, trust the models. 

This work evaluates any classification supervised ML 

model by visualizing the model’s results in one place 

using a dashboard represented in a website built using 

Flask. The website's inputs are the model and the 

attributes for both testing and training sets. The output 

is the dashboard which contains the following parts: 

statistical measures to provide an overview of the 

model performance, features important to show the 

strength of the attributes, and features sensitivity to 

Identify the relationship between the attribute and the 

prediction.  

A survey was used to obtain user feedback 

about the dashboard. The survey was distributed by 

email to faculty members and graduate students in 

data analytics, informatics, or health sciences 

programs at George Mason University, and 15 people 

responded to the survey. The respondents were 

provided with three study cases’ dashboards to 

evaluate the dashboard’s three sections (the 

dashboards are available in the examples section in: 

https://students.hi.gmu.edu/~wbagais/dashboard). 

First, the survey asked about the position and area of 

work. Then the survey asked the user to evaluate the 

usefulness of the three sections of the dashboard. The 

survey was approved by George Mason University 

IRB number 1766037-1. 

To demonstrate the use of the dashboard, a 

random forest model was built to predict if the patient 

has Heart Disease using UCI Machine Learning 

Repository (1988) data set. The output attribute is the 

status of having heart disease: one if the patient had 

heart disease and 0 if the patient did not have heart 

disease (UCI, 1988). 



3.1 Statistical Measures 

This section shows the overall model performance by 

visualizing the statistical measures and prediction 

distribution using four visuals: overall model 

performance, ROC curve, confusion matrix, and 

prediction distribution.  

3.1.1 Overall Model Performance 

Accuracy, precision, recall, f-score, and AUC 

measures are most frequently used to evaluate ML 

model performance. This section compares them for 

both training and testing data in a heatmap to show 

the strength and weaknesses of the model. The 

heatmap in figure 1 shows that the heart disease 

predicting model has very good performance in all 

measures. 

The color scales (from white to dark blue) are 

mapped to performance measurements scaling from 

0.5 to 1. (White for value 0.5 and darkest blue for 

value 1).  0.5 is selected as the lowest score since 0.5 

is random.  

 

 

Figure 1 Example of heat map for the statistical measures. 

3.1.2 Receiver-Operator Curve (ROC) 

The ML model gives a score from 0 to 1 and based on 

the selected threshold (the default threshold is 0.5), 

the prediction class is assigned. In other words, if the 

model prediction score is greater than or equal to 0.5, 

the model predicts that the patient has heart disease, 

and when the predicted score is less than 0.5, the 

model predicts that the patient does not have heart 

disease. However, a threshold of 0.5 is not always the 

best. The ROC shows all possible values of true 

positive rate (recall) and false positive rate as the 

classification threshold varies. Figure 2 shows the 

curve for the heart disease model; in the curve, the red 

points represent the best-selected threshold. 

3.1.3 Confusion Matrix 

After identifying the best threshold, the confusion 

matrix is visualized to show classification 

performance. Usually, the confusion matrix is 

visualized using a heatmap. Yet, Raymaekers et al. 

(2020) suggested using a stacked mosaic plot that 

adds the area perspective to show the proportion of 

cases in each class. This additional information 

indicates if the data is skewed or not. The mosaic plot 

shows the actual classes on the horizontal axis and the 

predicted classes on the vertical axis. Figure 3shows 

an example of a stacked mosaic plot for the confusion 

matrix with two classes. As seen below, the data set 

has a higher number of heart disease patients than the 

number of patients without heart disease. The 

accuracy is 100% for the training data, which 

indicates that the model overfitted the training data.  

 

 

Figure 2 Example of ROC curve. 

 

 

 

Figure 3 Example of the stacked mosaic plot. 

3.1.4 Prediction Distribution 

The model level of confidence is shown using the 

prediction distribution using a bar chart with color 

representing the actual classes. A good model will 

have more cases near 0 and 1 and fewer cases in the 

middle near the threshold. The larger number of cases 

near the threshold means that the model is not 

confident about the decision. Figure 4 shows the 

prediction distribution for the heart disease prediction 
model. The training plot shows that the classes are 

split at 0.5. However, there are some overlaps 

between 0.4 and 0.6 prediction percentages in the 

testing set. Additionally, most patients with heart 



disease were predicted correctly as cases between 0.8 

and 1 are high.  

 

 

 

Figure 4 Example of prediction distribution. 

3.2 Features’ Importance 

Understanding the relationship between the attributes 

and the output gives some explanation of the model 

decision, which can be compared with our 

knowledge. This section visualizes the features’ 

importance by the following visuals: correlation 

heatmap, results of LASSO regression, random 

forest, and premutation bar chart, learning curve 

based on the number of cases using a line chart, and 

learning curve based on the number of features using 

a line chart. When the number of attributes used in a 

model is large, it is hard to display them all; therefore, 

the number of displayed attributes is limited to the top 

20 to avoid cluttering. The top 20 attributes were 

selected based on the average of LASSO, random 

forest, premutation scores after normalizing them 

between 0 and 1.  

3.2.1 Correlation Plot 

The first step is to represent the correlation between 

the features to show how they relate to each. Figure 5 

shows an example of the correlation graph using a 

heatmap. The first column is larger than the others 

because the relationship between all independent 

attributes and the output attribute is more important 

than the relationship between all attributes.  

3.2.2 Lasso, Random Forest, and 
Premutation  

Correlation is based on linear relationships and does 

not consider the model; therefore, features selection 

techniques are plotted to explain the feature 

importance. The selected supervised feature selection 

methods are Lasso, random forest (embedded 

methods), and permutation (wrapper method). the 

scores were displayed using a vertical bar chart to 

show the difference between each method judgment. 

For example, figure 6 shows that all methods agree 

that number of major vessels is the most important 

feature. However, the random forest gives a high 

score for age compared to the other methods.  

 

 
Figure 5 Example of correlation between attributes. 

 

 

 

Figure 6 Example of feature importance bar chart. 

3.2.3 Learning Curve 

The two learning curves used here represent the 

relationship between the number of cases with the 

model AUC and the number of attributes with the 

model AUC. Figure 7 shows the first learning curve 

for the number of the heart disease model. The testing 

score line stops increasing after 90. The second 

learning curve (number of attributes curve) is shown 



in figure 8. The AUC did not improve after 13 

attributes. In the deep learning community, the term 

learning curve is also used to visualize convergence 

of learning as a neural network is learned. However, 

this meaning of the term is not used here. 

Figure 7 Example of the learning curve for the number of 

attributes. 

 

 

Figure 8 Example of the number of cases learning curve. 

3.3 Sensitivity Analysis 

The purpose of this section is to identify the 

relationship between an attribute and the model 

prediction. This analysis is done for the top 20 

predictors only. Using a selection button, the 

dashboard visualizes the impact of a single input 

attribute into the output attribute using sensitivity 

measures. The type of plots depends on the data type; 

therefore, the first step is to identify the categorical 

and numeric attributes using a default threshold of 10. 

If the number of unique values for an attribute is less 

than 10, then the attribute is identified as categorical. 

Otherwise, the attribute is specified as numeric.  

After selecting the attribute, four visuals are 

displayed: the attribute distribution; the mean 

prediction based on the chosen attribute; the mean 

prediction when the attribute value is fixed; and the 

difference between the original AUC and the AUC 

when the selected attribute changes slightly.  

A random dataset is needed to check the attribute 

behavior regardless of the correlation with other 

attributes for some of the visuals. For numeric 

attributes, the random data has the same minimum, 

maximum, mean, and standard deviation as the 

original data. In addition, the random data have the 

same probabilities as the original data for the 

categorical attributes.  

For the third visuals (the mean prediction when 

the attribute value is fixed), an edited version of the 

partial dependency plots (PDP) is used. Partial 

Dependence Plots (PDP) show the marginal effect of 

the selected attribute on the prediction. (Jerome H. 

Friedman, 2001). The Prospector system uses this 

concept to examine the impact of an attribute by 

fixing the value of the selected attribute while 

keeping all other attributes as they were (Krause et 

al., 2016). However, this approach ignores the effect 

of the interaction between other attributes. Wojtusiak 

et al. paper added the results using randomly 

generated data to show the interaction between the 

selected attribute and predictions (2018).  

The second visual (the mean prediction based on 

the selected attribute) shows a similar plot that 

visualizes the mean prediction for each selected 

attribute value.   

For the second plot, for each unique value, i in the 

selected attribute X: the first plot selects the cases 

with the selected value (where X=i). In the dashboard, 

this plot is referred to as "Mean Prediction for X." In 

the third plot, all values in the selected attribute 

(column) X are set to i. In the dashboard, this plot is 

referred to as “Mean prediction based on fixed values 

for X.” Figure 9 shows an example when X is age, 

and i is 63. Figure 9.a shows the original data, figure 

9.b shows the selected cases for Mean prediction for 

age, and figure 9.c shows the cases for Mean 

prediction based on fixed values for age.  

 

 

Figure 9 An illustration of how partial dependence is 

computed for age 63. 



3.3.1 Distribution Plot 

The distribution plot provides a general idea about the 

attribute trend for testing, training, and random data. 

For numerical attributes, the distribution is shown 

using a line plot and colored by the data type. Figure 

10 shows the distribution of age attribute for the heart 

disease data set. Since the data set is small, the testing 

data did not follow the training data trend. The peak 

number of patients in the training and random data is 

in the late 50s.  

 

 

 

Figure 2 Example of distribution plot for age. 

For categorical attributes, the distribution is 

shown using a bar chart. Figure 11 shows the 

destruction of the number of major vessels. Most 

patients had a value of 0, and a very small number of 

patients had a value of 4. 

 

 

Figure 3 Example of the destruction of the number of major 

vessels. 

3.3.2 Mean prediction based on the selected 
attribute values  

For numerical attributes, the plot shows the 

predictions' means per each value of the selected 

attribute using training and testing data. The 

horizontal axis represents the attribute values, and the 

vertical axis represents the predictions' means. The 

training and testing trends show the model behavior 

for each value in the selected attribute. Figure 12 

shows the predictions' means based on age, showing 

no clear trend between age and heart disease. The 

training and testing data trends show a drop in the 

AUC percentage around age 60.  

 

 

Figure 4 Example of mean prediction based on age. 

For categorical variables, the prediction 
distribution is visualized for each selected attribute 
value. Figure 13 shows the prediction distribution for 
the number of major vessels. From the training data, 
the number of vessels is positively correlated with 
having heart disease when its value is 0 and 
negatively correlated with heart disease when its 
value is 1, 2, or 3.  

 

 

Figure 5 Example of prediction distribution for the number 

of major vessels. 



 

3.3.3 Mean Prediction Based on Fixed 
Values 

To check the effect of an attribute ignoring the 

interaction with other attributes, this work uses the 

method introduced by Wojtusiak et al. (2018) when 

examining models for predicting 30-day post-

hospitalization mortality. For numeric attributes, the 

selected attribute values are set to a fixed value, then 

the mean AUC is calculated. This calculation is done 

for all unique values of the selected attribute as a fixed 

value. The result of the random dataset shows the 

effect of that attribute regardless of all other attributes 

changes (Wojtusiak et al., 2018). Figure 14 shows the 

mean prediction when age is fixed for all cases. 

Training, testing, and random data have the same 

trend. The plot shows a correlation between age and 

having heart disease. Patients at age 60 have the 

lowest AUC probability of having heart disease. 

While this drop needs more investigation, explaining 

the trend is beyond the dashboard scope.  

 

 

Figure 14 Mean prediction when age is fixed for all cases. 

For categorical attributes, for each value for 

the selected attribute, all data is set to that value, and 

the prediction distribution is visualized using a 

histogram plot. Figure 15 shows the prediction 

distribution for the number of major vessels. When 

the number of major vessels is set to 0 for all patients, 

the data is skewed to the lift. For the other types, the 

training data were skewed, but the random data were 

symmetric. Therefore, the trend might be caused by 

the correlation between the number of major vessels 

and other attributes. 

 

 

Figure 6 Number of major vessels prediction distribution 

based on fixed values. 

3.3.4 Original AUC vs. AUC when the 
selected attribute change slightly 

The prediction should not change dramatically when 

the attribute value changes slightly. For example, in 

the prediction of the heart disease model, if the 

patient’s age increases or decreases by two years, the 

change percentage of getting heart disease should not 

change significantly. To ensure that the model is 

stable, the prediction comparison is visualized for 

numeric attributes only.  

For numeric attributes, the data changed by 

adding or subtracting the standard deviation. The 

closer the data to the diagonal line, the less sensitive 

the model is to the small change. Figure 16 shows the 

age AUC vs. Age minus/plus standard deviation 

using test data. Most data are around the diagonal 

line; therefore, the model is not sensitive to small 

changes to age.  

 

 

Figure 7 Age AUC vs. Age plus/ minus standard deviation 

AUC. 



4. RESULTS 

4.1 Survey Results 

Fifteen people evaluated the dashboards. Most people 

agreed that the dashboard visuals give a better 

understanding of the model behavior than other 

methods they have experienced.  

The comments were divided into positive, 

natural, and negative comments. In general, the 

positive comments were related to the comprehensive 

understanding of the model and clarity of the graphs.  

The negative comments suggested reducing the 

number of visuals, and two comments considered that 

the dashboard is not useful. 

Statistical measures section. Most of the 

comments agreed that this section is important to 

understand how the model performs. This section was 

the most interesting section for one of the reviewers 

in terms of understanding. However, for “Prediction 

Distribution and Classification Reports,” one of the 

comments suggests that they are unnecessary.  

Features’ importance section. Several reviews 

mentioned that this section is important to give an 

idea about the data. The correlation plot got the most 

attention; however, the size of the plots was too small 

to read. 

Sensitivity analysis section. Most of the 

comments agreed that selecting a variable is very 

helpful to understand the performance. However, one 

of the comments found it hard to understand the 

categorical attributes plots. 

Finally, most of the comments were positive. 

Comments related to the size of plots, typos, and 

rewording were reflected on the dashboard. The other 

suggestions would be considered as future work due 

to time limitations.  

5. CONCLUSION AND 

DISCUSSION 

The present work was designed to demonstrate an 

approach to visualizing classification model 

performance in a dashboard with three sections: 

statistical measures, which provide an overview of 

the model performance; feature importance which 

gives an overview of the data; and sensitivity analysis 

which identifies the relationship between the attribute 

and the prediction. The dashboard adds to a growing 

body of literature on understanding and evaluating 

classification learning. The advantages of the 

dashboard are that it visualizes any classification 

model, uses visuals that are simple and easy to 

understand, and summarizes all the results in one 

place. Yet, unlike interactive dashboards, this 

dashboard does not react to user changes. 

5.1 Limitation and Future Work 

The survey results cannot be generalized due to 

sample size limitations. However, the purpose of the 

survey was to understand how people interact with 

the dashboard, and the most interesting part was the 

reviewers’ comments. Second, some design-related 

changes like the colors and sizes of the plots are 

recommended. For example, when the names of the 

columns are long, the size of the figures in the feature 

importance section becomes small, which requires 

zooming in to read. Third, visualizing the regression 

model results and comparing models is considered a 

future work. 
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