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ABSTRACT 

A Study of Administrative Data Representation for Machine Learning 

Negin Asadzadehzanjani, Ph.D. 

George Mason University, 2022 

Dissertation Director: Dr. Janusz Wojtusiak 

 

Administrative data, including medical claims, are frequently used to train machine 

learning-based models used for predicting patient outcomes. Despite many efforts in using 

administrative codes (medical codes) in claims data, little systematic work has been done 

in understanding how the codes in such data should be represented before model 

construction. Traditionally, the presence/absence of these codes representing diagnoses or 

procedures (Binary Representation) over a fixed period (typically one year) is used. More 

recently, some studies included temporal information into data representation, such as 

counting, calculating time from diagnosis, and using multiple time windows. However, 

these methods were not able to comprehensively capture temporal information in data and 

much of temporal information such as the exact time of the occurrence of an event, and the 

exact sequence of an event are missed. This dissertation presents the results of development 

and investigation of two additional methods of administrative data representation 

(Temporal Min-Max and Trajectory Representation) specific to diagnoses extracted from 
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claims data before applying machine learning algorithms. It then presents a large-scale 

experimental evaluation of these methods by comparing them with traditional Binary 

Representation using four classification problems: one-year mortality prediction and high 

utilization of medical services prediction, prediction of chronic kidney disease and 

prediction of congestive heart failure. It was shown that the optimal way of representing 

the data is problem-dependent, thus optimization of representation parameters is required 

as part of the modeling. 
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INTRODUCTION 

Machine Learning in Healthcare 

Machine Learning (ML) as a subfield of Artificial Intelligence (AI) is one of the 

fastest growing fields in computer science. According to Samuel, machine learning is “a 

field of study that gives computers the ability to learn without being explicitly 

programmed” (Samuel, 1959). The learning is often done by identifying patterns in data, 

which can subsequently be used as models for predicting the future, assessing unknown 

properties, controlling equipment, or making recommendations. Machine learning 

combines concepts from different fields such as computer science, statistics, logic, and 

optimization and aims at developing algorithms for creating models that are hard or 

impossible to build using traditional computer science methods (Wiens & Shenoy, 2018). 

In a sense, building models can be treated as formulating hypotheses (building new 

knowledge or skills) that can later be tested with traditional hypothesis testing statistical 

approaches. 

When learning to solve specific tasks, machine learning algorithms can detect 

patterns in very large datasets, which makes them often suitable for health applications. 

ML-based models can be used to diagnose diseases, make effective treatment decisions 

and improve patient’s healthcare quality as well as safety (Nithya & Illango, 2017). There 

are several spectacular successes achieved by ML methods in health care. IDx-DR is the 

first FDA-approved of machine learning tool with actual application in health care. In this 

software, the machine learning-based model analyzes retinal images and diagnoses if the 
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patient has diabetic retinopathy or not (Abràmoff et al., 2018). Other interesting works 

include applying a deep neural network to classify prostate cancer using ultrasound images 

(Azizi et al., 2017) and detecting lymph node metastases from breast cancer (Golden, 

2017). Researchers also applied machine learning methods to medical claims and 

Electronic Health Records to predict myopia prognosis with accuracy of up to 99% (Lin et 

al., 2018), septic shock (Henry et al., 2015), lung cancer severity (Bergquist et al., 2017) 

to name a few. 

The wide-spread use of Electronic Health Records (EHRs) in healthcare systems 

and the emergence of registries and claims data have provided the opportunity to apply ML 

methods to very large health data in terms of scope and size (Shah et al., 2018). In the 

United States, the significant investment into Health Information Technology (Health IT) 

infrastructure as part of Health Information Technology for Economic and Clinical Health 

(HITECH) Act in 2009, opened the possibility of using ML methods on a large scale. At 

the same time, the majority of medical claims processing has been shifted to electronic 

form that resulted in the creation of very large datasets that can be used in ML research and 

practice. This dissertation relies on such large medical claims datasets. 

One important drawback in applying ML methods to EHR, claims and other types 

of health care data is that the data cannot be readily analyzed in their raw form. Significant 

preprocessing of data is needed to arrive at what is acceptable by ML algorithms. This 

dissertation attempts to address some of these challenges by studying representations of 

claims data appropriate for ML methods. 
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Machine learning Methods 

Machine learning methods can be classified into three groups: Supervised 

Learning, Unsupervised Learning, and Reinforcement Learning (Figure 1). The latter is 

out of scope of this dissertation and the former two are described below. 

 

 
              Figure 1: Graphic representation of machine learning methods classification. 

 

Supervised Learning 

Supervised Learning refers to the process of associating known inputs and outputs. 

This represents a situation in which examples are provided with ‘true’ answers or solutions 

to the problem. In most cases, the ‘supervision’ comes in the form of historical data for 

which the outputs (in health domain often referred to as outcomes) are known. For 

example, an algorithm may be applied to solve a problem of predicting high utilization of 

medical services. The algorithm is provided with examples of past patients for whom the 
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output (here high utilization or not) is known. By analyzing these cases, the algorithm 

learns how to solve the problem, and the results of learning are stored in a form of a model 

that can be applied to classify new cases. As a result, the trained model can predict the 

output/outcome for new cases that are different from ones on which the model was trained.  

There are two types of Supervised Learning methods: classification and regression. 

Classification method has categorical outcomes with two or more groups (i.e., benign and 

malignant tumors), while regression problems have continuous outcomes (i.e., a dollar 

amount on a medical bill) (Sidey-Gibbons J. & Sidey-Gibbons C., 2019; Uddin et al., 

2019). Some of the most important algorithms in supervised learning include Logistic 

Regression (LR), Decision Tree (DT), Random Forest (RF), Gradient Boosting (GB), 

Decision Rules (DR), Naïve Bayes and K-nearest Neighbors (KNN). The first four are used 

as example algorithms in the experimental section of this dissertation. In addition to these 

‘traditional’ ML methods, there is a growing interest in Deep Learning approaches to data 

analysis, discussed later. 

Selected supervised learning algorithms  

Logistic Regression (LR) (Kleinbaum & Klein, 2010) is a type of linear regression 

in which the outcome in binary. The core of Logistic Regression is a logistic (sigmoid) 

function. It is basically an S-shaped curve and is formulated at Equation 1. Logistic 

function is continuous, differentiable, and non-decreasing which makes it suitable for 

gradient descent to find optimal solution. Logistic function can take any numbers and map 

it to values between 0 and 1. 
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Equation 1: Logistic Function Equation 

𝑓(𝑧) =
1

1 +  𝑒−𝑧
 

 

The logistic function takes the input in the form of a linear regression from all 

attributes of the regression line and returns the probability belonging to a class after training 

the data. The Logistic Regression equation is shown at Equation 2. In this equation, y 

corresponds to output probability, b0 up to bn are the coefficients related to the underlying 

linear model, and b0 is the intercept of the linear regression Logistic Regression can output 

the probability based on one or more input attributes. 

 

Equation 2: Logistic Regression Equation 

𝑦 =
𝑒𝑏0+𝑏1𝑥1+𝑏2𝑥2+⋯+𝑏𝑛𝑥𝑛

1 + 𝑒𝑏0+𝑏1𝑥1+𝑏2𝑥2+⋯+𝑏𝑛𝑥𝑛
 

 

These probabilities would take one value of 0 or 1 in final prediction; the cases with 

a probability greater than 0.5 is classified as class 1, and 0 otherwise (Uddin et al., 2019).  

Decision Tree (DT) (Quinlan, 1986) is a popular model representation used in 

machine learning that works by classifying data into a tree-like structure. A Decision Tree 

consists of internal decision nodes and terminal leaves. Each internal node applies a test 

function on an attribute, with each branch taking a possible value of that attribute. The tree 

classifies instances by starting from the root node and applying a test function to the 

attribute represented by an internal node and then moving down based on the values of the 
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corresponding attribute. The splitting is continued within different internal nodes creating 

smaller subsets until reaching the terminal node (terminal leaf) representing the 

outcome. Decision Trees are constructed using different algorithms to decide how to split 

nodes into two or multiple sub-nodes including ID3, CART, C4.5. Each of these algorithms 

uses different criteria in selecting and ordering the attributes in each node including 

Entropy, Information Gain, Gini Index, Gain Ratio etc. (Mitchell, 1997; Alpaydin, 2020). 

 ID3 is a greedy top-down algorithm that uses Entropy as an impurity measure 

parameter and Information Gain computed to place the attributes within the tree. The 

algorithm works by constructing the tree through attributes with the highest information 

gain and smallest Entropy. CART (the algorithm used in in dissertation) is another 

Decision Tree algorithm that works for both classification and regression problems. CART 

uses Gini Impurity (GI) as a criterion in splitting a node to sub-node. Gini Impurity is the 

probability of incorrect classification of a particular attribute when selected randomly. It is 

calculated by subtracting the sum of the squared of the probabilities of for each class from 

1. The formula to calculate the GI is given below: 

 

Equation 3: GINI Impurity Equation 

GI = 1-  ∑ 𝑝𝑖
2𝑛

𝑖=1  

 

In the above equation, pi represents the probability of an attribute belonging to a 

class.  
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 The GI is calculated for each attribute and the attribute with the smallest Gini 

Impurity is placed as the root node. The calculation is then continued for other internal 

nodes until the tree is structured (Mitchell, 1997; Alpaydin, 2020).  

Random Forest (RF) is an ensemble method that consists of several (typically 

many) Decision Trees, each of which predicts its own outcome (Breiman, 2001). Random 

Forest inferred from randomly selected subsets of data, thus guaranteed to be different on 

sufficiently large data. Random Forests are created by applying bagging (a.k.a., bootstrap 

aggregation) (Breiman, 1996) to both sample and attributes. Standard top-down Decision 

Tree learning algorithms such as CART are used to create individual trees. The process is 

repeated to create multiple trees (typically in the order of tens or hundreds). After a forest 

is assembled, the final classification decision is made by applying all of the trees to new 

examples. When there is a disagreement in prediction, the trees vote on the predicted 

outcome. Random forests output classification scores which are calculated as a proportion 

of trees voting for a given outcome (Olson & Wyner, 2018). Since Random Forest models 

are based on several trees, they are less sensitive to small changes in the data than Decision 

Trees (Uddin et al., 2019).  

Gradient Boosting (GB) (Friedman, 2001) is essentially a group of ensemble 

machine learning algorithms that are used for both classification and regression problems. 

Gradient Boosting is somewhat similar to a classic AdaBoost algorithm (Freund & 

Schapire, 1997). The idea behind AdaBoost is to construct a number of models in a series 

and reducing reduce the errors in previous models. The AdaBoost classifier combines 

multiple weak classifiers into a single strong classifier. In AdaBoost algorithm, a tree is 
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first trained by assigning equal weight to all observations. Then, a second tree is 

constructed by increasing the weight on observations that are difficult to classify and 

decrease the weight to observations that are easy to classify. The goal is to improve the 

classification of the observations that are not well classified in previous trees.  Like 

AdaBoost algorithm, Gradient Boosting trains the models in a sequential manner but the 

difference is that Gradient Boosting uses loss function instead of high weight in improving 

the prediction. In Gradient Boosting, each tree tries to minimize the loss function and the 

result of each step are aggregated in the final model to achieve a stronger learner. 

Naïve Bayes is another supervised learning algorithm that is based on the Bayes 

theorem, which describes the probability of an event based on prior understanding of 

conditions associated with an event. In this classifier, it is assumed that the attributes used 

in the models are independent of each other (Uddin et al., 2019).  

K-nearest Neighbors is one of the simplest classification algorithms in which ‘K’ 

refers to the number of neighbors associated with a data point. In this algorithm, the classes 

belonging to each of the neighbors of a data point are taken and the data point belongs to 

the class for which most votes go to (Uddin et al., 2019).  

Unsupervised Learning 

Unsupervised Learning, on the other hand, refers to methods used to discover 

patterns in data. It is basically an attribute extraction method in which no attempt is made 

to predict outcome (Sidey-Gibbons J. & Sidey-Gibbons C., 2019). The principal method 

used in Unsupervised Learning is called clustering, where objects with similar 

characteristics are grouped together while the heterogeneity is maximized across the groups 
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(Liao et al., 2016). Several studies have used clustering in biomedical field, such as 

grouping psychiatric patients based on their symptoms, grouping genes with similar 

biological functions, and grouping patients in needs of intervention (Liao et al., 2016).   

Clustering can help find the hidden structure of a dataset when there is uncertainty about 

which group the entity belongs to (Liao et al., 2016). 

Some of the most popular clustering methods include K-means Clustering, 

Hierarchical Clustering and Gaussian Mixture Clustering (Jiang et al., 2017). In K-means 

Clustering, ‘K’ data points are selected as clusters centers (centroids). Then ‘n’ 

observations are partitioned into ‘K’ sets in a way that each subject is assigned to a cluster 

with the nearest mean. The recalculation is then performed by changing the position of the 

‘K’ centroids until all observations are separated into groups in which the distance is 

minimized (Liao et al., 2016). Hierarchical Clustering has two categories: Agglomerative 

and Divisive methods; the former assigns a cluster to each data point and then merges them 

into larger clusters, while the latter starts with one large cluster and then it is divided into 

small clusters (Belciug, 2009). 

Deep Learning 

Deep learning has gained a lot of popularity in recent years. Deep learning refers to 

very large, multilayered neural networks that often have the ability to handle a wide variety 

of correlations in data.  It has specifically become popular in clinical informatics by the 

emergence of large amounts of patient data. Deep earning has shown to outperform 

traditional methods by preprocessing and handling attributes in a shorter timeframe 

(Shickel et al., 2017). 
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The most important characteristic of deep learning is data representation. In 

contrast to traditional methods in which attributes are preprocessed manually from raw data 

requiring expertise and knowledge of the task in hand, deep learning methods can discover 

an optimal set of attributes from hidden correlation in the data. Most of the deep learning 

algorithms are designed based on Artificial Neural Network (ANN) (shown in Figure 2), 

which consists of interconnected nodes (neurons) within input, output, and hidden layers. 

The neurons in hidden layers store a number of weights which are updated through model 

training, with ANN weights being optimized until the loss function is minimized (Shickel 

et al., 2017). Recurrent Neural Network (RNN) is a type of ANN which works best for 

temporal data, making them suitable for analysis of claims and EHRs. The output of 

Recurrent Neural Network depends on the previous elements in a sequence, unlike 

Artificial Neural Network that assumes that input and output are independent. It takes 

information from previous input to impact current input and output. In one study, RNNs 

were used to predict all diagnosis and medications of the next visit using a longitudinal 

time stamped data (Choi et al, 2016). In another study, RNN was applied in early detection 

of heart failure risks using EHR data and was shown to perform better than other machine 

learning methods including Logistic Regression, KNN, and multilayer perceptron 

etc. (Choi et al., 2017). 
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Figure 2: A connected Artificial Neural Network. The network consists of neurons within input, 

output, and hidden layers. 

 

Health Data 

Health data can be broadly categorized as those used in clinical, administrative, 

public/population health, and consumer applications.  Health data are valuable source of 

information for medical and health services research. Some major sources of data used in 

health informatics research are: Electronic health records (EHRs), medical claims, 

registries, surveys, wearable sensors, and clinical trials. The following sections outline 

some of the most important types of health data. 

Electronic Medical Records 

Electronic Medical Records (EMRs) or Electronic Health Records (EHRs) are 

defined as “longitudinal electronic record of patient health information generated by one 
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or more encounters in any care delivery setting. Included in this information are patient 

demographics, progress notes, problems, medications, vital signs, past medical history, 

immunizations, laboratory data and radiology reports” (Atherton, 2011). Electronic 

Medical Records are tools to gather, store and represent patients’ information and provide 

access to clinical information of patients. Over the past few years, there has been a growth 

in adaptation of hospitals with EHRs and according to Office of the National Coordinator 

for Health Information Technology (ONC), the adaptation of EHR systems has increased 

by 9-fold since 2008 (Shickel et al., 2017). The use of EHRs can improve patient’s safety 

and healthcare quality and reducing the cost of care (Ajami & Bagheri-Tadi, 2013). 

Patient’s information in EHR systems can also be used to extract medical concepts, 

modeling of patient’s trajectory, disease inference and constructing clinical decision 

support tools (Shickel et al., 2017). 

Medical Claims 

Administrative data is a broad term referring to data that is used to process and 

document the registration and transactions for service delivery. Administrative data are 

collected to document a variety of services including education, healthcare, housing, 

taxation, etc. (Connelly et al., 2016).  In healthcare, the most frequently used type of 

administrative data is medical claims. Often the terms administrative data and claims data 

are used interchangeably. Claims are essentially bills for provided medical services and 

include information required for the healthcare providers to receive payment. Therefore, 

the information included in claims data is limited to what is required by payers and 

typically corresponds to specific forms, such as CMS-1450 or CMS-1500 used by in the 
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United States by Medicare (CMS Forms List, n.d.). Health claims databases keep records 

of interactions that occurred between healthcare providers and patients which include all 

the billing information provided by hospitals, nursing homes, clinics, pharmacies, public 

and private insurance organizations such as Medicare/Medicaid and Blue Cross Blue 

Shield (Ferver, 2009). Claims data are typically generated at every encounter of the patient, 

which could be a procedure, a visit to doctors’ office, admission to a hospital, or 

prescription (Cadarette, 2015).  

For most patients, claims span longitudinally and provide a comprehensive 

summary of provided services when integrated by one payer. However, in certain 

situations, claims are incomplete, i.e., for dual- or triple-eligible patients or those seeking 

out-of-pocket paid services including uninsured. For example, Medicare beneficiaries may 

be also eligible for Medicaid and receive certain services from the Veteran’s Affairs Health 

System for a military service-related disability. For research purposes, claims data are 

typically acquired from a single payer. For example, Medicare claims can be used to study 

populations 65 years and older in the United States. Private-pay claims data are typically 

used to study populations covered by a single insurer. In addition, it is sometimes possible 

to obtain integrated datasets from multiple payers (so-called all-payer data), but such data 

are often very costly and come with other types of limitations.  Another reason for potential 

incompleteness of claims data is the inclusion of only billable items, i.e., those tied to 

reimbursement, which may miss additional services provided or the diagnosis that is not 

covered by insurance. 
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The types of information in claims data vary across different databases, but almost 

all claims datasets include date of claim (that may not be the same as date of service), 

diagnosis and procedure codes, provider information, site of service, charges and cost of 

healthcare delivery. They typically include demographic information including age (or date 

of birth), sex, race, and ethnicity, and sometimes education and income (Stein et al., 2014). 

The claims databases usually provide a list of all variables in a dictionary, yet the 

information is often vague and requires good understanding of coding systems and 

healthcare processes to correctly analyze data. Claims data have information in the forms 

of code, date, text, symbols etc., each of which requires special preprocessing steps for use 

in developing models. Claims data are typically structured, meaning that the data are stored 

in organized format, with little or no information provided as free text. This makes them 

suitable for data analysis and interpretation. In this structured data, there are standard 

healthcare coding systems (administrative codes) including International Classification of 

Diseases (ICD-9 or ICD-10) codes, Current Procedural Terminology (CPT), Healthcare 

Common Procedure Coding System (HCPCS) codes, etc. These standard codes, which are 

the focus of this dissertation, will be explained in detail in the next chapter. 

Differences Between Claims and EHR Data 

Claims data are broad in scope since they include patient information from 

potentially multiple healthcare providers. However, the information is limited to what is 

required to receive payment for services. Consequently, few details are available beyond 

billing codes. In contrast, EHR data are much more detailed and include laboratory values, 

vital signs, clinical notes, and orders. Yet, EHR data are often limited to one EHR system 

and one provider. As shown in Figure 3, while EHR data provide a comprehensive 
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overview of patient’s information they, are narrow in scope; this is in contrast with claims 

data.  

There are also other potential differences. Claims data only limit to insured patients 

whereas EHRs data contain information of both insured and uninsured individuals who 

received services from a given provider. Claims data captures accurate information if 

prescriptions were filled and refilled, while EHRs only contains prescription with no 

information about if it was filled or not (Wilson & Bock, 2012). Further, EHR data are 

typically up to date with most recent patient information available, while claims may be 

submitted with an allowable delay, sometimes months after an encounter.  

 

 
                     Figure 3: Claims versus EHR data 
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Health Registries, Clinical Trials, Surveys 

Registry data is a type of health data collected for a group of individuals with 

specific health conditions such as cancer, heart disease, Alzheimer’s disease, diabetes etc., 

typically collected for public health and epidemiological reasons. Many registries contain 

patient’s information with a specific health condition, some of which are mandatory, such 

as reporting commutable diseases. Other registries focus on seeking volunteers with 

different health status to be involved in research for a particular disease. These registries 

provide valuable information about patients with particular conditions at an individual and 

group-level with the goal of increasing the understanding of that condition. Additionally, 

they can be used to track the prevalence of the diseases and their treatments. Some of the 

national-level registries include Global Alzheimer’s Association Interactive Network 

(GAAIN), National Cardiovascular Data Register (NCDR), the Surveillance, 

Epidemiology, and End Results (SEER) Registries etc. (List of Registries, n.d.). 

Clinical trials data are collected through clinical trial studies. According to national 

Health Institute (NIH), Clinical trial is “A research study in which one or more human 

subjects are prospectively assigned to one or more interventions (which may include 

placebo or other control) to evaluate the effects of those interventions on health-related 

biomedical or behavioral outcomes” ("NIH's definition”, n.d.). Clinical trials are designed 

to determine if a treatment (e.g., drug and medical device) is effective and safe or if it is 

more effective and safer compared to standard ones. Clinical trials are useful in early 

detection of disease, preventing health problem and improving the quality of life for people 

with severe health conditions (“U.S. Department”, n.d.). 
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Surveys are administered to seek information not typically present in claims or 

EHR data. Surveys are designed to systematically gather health and social information on 

a sample of patients in order to examine a larger population. Surveys can be divided into 

two categories: population surveys and provider surveys. Survey data can be collected 

using many different methods, including online questionnaires, mail, phone, and in-person 

interviews, with the majority of surveys are now conducted online. Some survey data 

collected by National Center for Health Statistics include: The National Health Interview 

Survey, The National Health and Nutrition Examination Survey, and The National 

Ambulatory Medical Care Survey (“Surveys”, n.d.). 

Machine Learning Model Construction in Healthcare 

 Although models differ in terms of outcome, dataset and algorithm, they follow 

common construction procedures when starting with raw claims or EHR data. In fact, the 

data preprocessing and preparation typically takes significantly more time than model 

learning and tuning. After defining the prediction problem and its clinical implications, one 

of the first technical steps is construction of the cohort of interest. Technically, the 

construction may be based on availability of data, and most importantly outcome in the 

training data, and include instances (e.g. patients) that have or do not have a target value 

or have target value in a numeric format. The concept of cohort construction is often 

overlooked in more technical ML publications, yet it has important implications for model 

generalization and the types of patients it can be applied to.  

Among other preprocessing steps, one that is particularly related to the presented 

study is defining the observation window, which refers to how much we would like to go 
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back in time to collect information and construct the analytic files. The independent 

attributes are constructed in the observation window and any records occurred out of this 

timeline would be excluded.  

There are two types of outcome prediction: 1. Static or One-time prediction and 2. 

Temporal outcome prediction. Static outcome prediction uses data from one encounter 

(such as heart failure prediction), while Temporal prediction uses time interval or time 

series data (such as predicting heart failure in the next six months) (Shickel et al., 2017). 

The time interval is called prediction window, which refers to how far we would like to 

make prediction in the future.  

After defining cohort, observation and prediction window, the raw data is cleaned 

in order to identify and remove any incorrect or corrupt information in the data. The data 

is then be preprocessed to be suitable for constructing the model.   

The prepared data are then split into train and test sets; the train dataset is used to 

apply the algorithm, learn the model and tune hyperparameters, while test data is used to 

evaluate the final model. The model with the best performance is selected for application. 

Figure 4 illustrates the high-level steps associated with constructing the models in claims 

or EHRs. It should be noted that the steps may overlap or appear in different order. The 

focus of dissertation is the preprocessing step of this framework specific to claims data. 

Later in the dissertation, the preprocessing framework for claims data is discussed in detail, 

which encompasses data cleaning, cohort construction, and observation/prediction window 

construction. 
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       Figure 4: High-level steps in the building machine learning-based models starting from raw claims or EHR data.  

 

Model Evaluation in Healthcare 

There are standard measures in reporting the performance of models in machine 

learning. In classification problems the model quality is reported with Area Under 

Receiver-Operator Curve (AUC), accuracy, precision, recall, while in regression problems, 

Mean Square Error (MSE), Mean Absolute Error (MAE), and correlation coefficient are 

typically used. Accuracy is a metric that measures how many times the model makes 

correct, or incorrect classification, which is defined as total number of correct examples 

divided by the number of cases in the test set.  Recall is defined as the total number of 

correctly classified positive examples divided by the total number of positive examples, 

while precision is the number of true positives divided by number of examples classified 

as positive. AUC measures the continuous relationship between true and false positive rates 

at different classification thresholds. Many authors combine precision and recall into a 
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single F1-score (Goutte & Gaussier, 2005). In the published literature, these measures are 

used to report results of modeling efforts, but also when applying hyperparameter tuning 

to achieve the highest performance (accuracy, AUC, or F1-score). Other metrics are also 

used such as Area Under Precision-Recall Curve (AUCPR) (Boyd et al., 2013), Kappa 

Statistic (McHugh, 2012), relative entropy, mutual information, and others (Baldi et al., 

2000). Another method of model evaluation is Calibration, which refers to measuring how 

much the predicted probabilities differ from the actual probabilities (Chen et al., 2019). 

Calibration of the models can be tested using Calibration Curves, which plot the relative 

frequency of observed values against the frequency of predicted probabilities. 

While all or some of the above statistical measures are used in virtually every 

published work that use ML methods in health applications, some authors argue that it is 

not sufficient. Wojtusiak (Wojtusiak, 2021) argued for more detailed testing of methods 

and specified ten criteria in evaluating models. Luo et al. (Luo et al., 2016) developed 

guidelines for reporting results of machine learning methods in biomedical research. 

Wojtusiak and Asadzadehzanjani (Wojtusiak, & Asadzadehzanjani, 2022) presented 

methods for comparing models (see “Temporal Min-Max Representation” chapter). Many 

other authors argued for the importance of other specific criteria, mainly transparency and 

reproducibility of models. Model transparency is concerned with allowing people to 

understand the internal workings of the constructed model. Transparency can be achieved 

using two main approaches: 1) Construction of models which are transparent in the first 

place and including models such as Decision Rules, Decision Trees, Bayesian Networks 

and linear models; 2) Providing explanation for black-box models (Wojtusiak, 2021). 
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Reproducibility refers to producing the same results from the same input data with a 

specific methodology. Reproducibility can be tested using different methods including 

intraclass correlation (ICC) and ANOVA test (Renard et al., 2020). 

Selected Application Areas 

Many studies have used machine learning to predict and study health outcomes. 

Some of the important works are to predict risk of mortality, readmissions, high utilization 

of medical services, disabilities, as well as many disease-specific outcomes. Depending on 

the application and population considered, the quality of these models varies. The 

following sections summarize the application of ML in predicting four health outcomes, 

which are used to describe methods in this dissertation. In addition, the application of 

machine learning in assessing functional abilities will be discussed in “Temporal Min-Max 

Representation” chapter.  

High Utilization of Medical Services Prediction 

 In the United States, high healthcare spending is a significant burden on the 

economy, and it has grown since the 1980s (Hu et al., 2015). In some studies, a high utilizer 

is defined as a top 5% consumer of healthcare. Such patients consume about 40% to 55% 

of healthcare costs (Roysden & Wright, 2015). While most studies determine high 

utilization by the frequency of visits or the total amount of healthcare costs over a period, 

some studies have applied clustering methods.  (Hyer et al., 2020a; Hyer et al., 2020b). In 

recent years, machine learning algorithms have been used to identify patients who are high 

utilizers of medical services. In one study, Bayesian algorithm was used to predict 

healthcare utilization based on all-cause patient’s hospitalizations as well as predicting 
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associated healthcare costs among patients with Critical Limb Ischemia (CLI) (Berger et 

al., 2020). In another study, Random Forest algorithm was utilized to predict decrease in 

high utilization and ultra-high absolute utilization after patient’s first behavioral visit. The 

utilization was predicted for the two models with AUC of 0.74 and 0.88, respectively 

(Roysden & Wright, 2015).  

 

Mortality Prediction 

 An important metric in assessing a patient’s health and predicting health outcomes 

is patient mortality. In recent years, several illness severity scoring systems have been used 

to evaluate in-hospital mortality. These systems include Simplified Acute Physiology 

Score (SAPS), Mortality Prediction Model (MPM), Organ Failure Assessment 

(SOFA), Multiple Organ Dysfunction Score (MODS), Acute Physiologic and Chronic 

Health Evaluation (APACHE) etc., which use data collected at the first 24 hours of 

Intensive Care Unit (ICU) admission or in longer period of time. The issue with these 

scoring systems is that they are appropriate for generalizing but may not be accurate when 

predicting individual patient’s mortality (Wojtusiak et al., 2017). 

In recent years, with the development of EHRs, a large number of ML-based 

models were developed to predict mortality and have shown better performance compared 

to the standard methods. Wojtusiak et al. constructed models (called C-LACE) to predict 

30-day post-hospitalization mortality based on LACE models by using demographic 

information, diagnoses, laboratory values and medications achieving the AUC of 0.74. It 

was also shown that the model with top 20 attributes performs identical to the model with 
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the full set of attributes (308 attributes) (Wojtusiak et al., 2017). They later constructed 

another model (C-LACE2) to address the limitations of their first model by improving the 

representation of laboratory values, proper use of diagnoses codes, and improving the 

stability of the models resulting in model with AUC of 0.779 (Wojtusiak et al., 2018). In 

another study, note topics were extracted from data and were combined with static 

attributes to predict mortality using MIMIC data, resulting in the AUC of 0.84 (Ghassemi 

et al., 2014). Kim et al. developed a real-time warning score tool to predict real-time 

mortality 6 to 60 hours before death in pediatric ICUs and achieved the AUC of 0.89 to 

0.97, respectively (Kim et al., 2019). 

In addition to EHRs, claims and administrative data have been used in predicting 

mortality. In one study, Medicare claims data was used to predict 6-month mortality among 

patients over 65. It was shown that the ML-based model outperforms the traditional risk 

assessment models by capturing the severity and progression of the disease in constructing 

features (Makar et al., 2015). Aktuerk et. al used national administrative data to predict 1-

year mortality after cardiac surgery, with C-statistic ranging from 72% to 81.6% (Aktuerk 

et al., 2016). In another work, 15-months mortality was predicted among community-

dwelling Medicare beneficiaries. It was shown that the constructed models with the C-

statistic of up to 0.795 had higher generalizability compared to other models developed on 

administrative databases (Berg & Gurley, 2019).  

Chronic Kidney Disease Prediction 

Chronic kidney disease (CKD), which is characterized by lack of kidney function, 

is a lifelong disease. Chronic kidney disease can progress to End Stage Renal Disease 
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(ESRD), which requires the patient to undergo dialysis and a kidney transplant (Segal et 

al., 2020). Considering the large number of patients affected by it, the risk of progression 

to ESRD, and the mortality rate, this disease causes a significant burden to the healthcare 

system (Krishnamurthy et al., 2021). Therefore, it is important to identify patients at risk 

of developing CKD to reduce healthcare expenditure and improve health outcomes. Ren Y 

et al. predicted CKD among patients with hypertension from EHRs using Neural Network 

framework and achieved AUC of 89.7%. In this study, bidirectional long short-term 

memory and auto-encoders were applied to represent the textual and numerical 

information, respectively (Ren et al., 2019). In another study, Logistic Regression was used 

to identify patients with CKD and at risk of kidney failure within 2 years from large claims 

dataset. The model used patients’ demographic factors, CKD stage, patients’ health status 

(history of having diabetes, congestive heart failure, hypertension etc.), and risk group 

score achieving an AUC of 0.844% (Dai et al., 2021). Ilyas et. al. also predicted different 

stages of CKD using J48 and Random Forest algorithms to predict different stages of CKD. 

The results indicated that J48 was performing better than Random Forest in predicting all 

stages with the AUC of 85.5% vs. 78.25% (Ilyas et al., 2021). 

Congestive Heart Failure Prediction 

Heart Failure or Congestive Heart Failure (CHF) is a public health crisis that 

contributes to significant mortality rates, morbidity, and health expense in older 

individuals, particularly those over 65 years of age (Desai et al., 2020). It is estimated that 

1 out of 8 deaths in the United States is caused by heart failure. Many ML-based models 

have been developed to identify patients at risk of CHF or to predict related health 
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outcomes in order to provide better treatment in a timely manner. In one study, Random 

Survival Forest was used to predict cardiovascular events outcome, including heart failure, 

and the model achieved the AUC of 84% (Ambale-Venkatesh et al., 2017). König et al. 

developed models to predict in-hospital mortality rate among patients with CHF and 

showed that different machine learning algorithms outperformed classic regression 

approach specifically among Gradient Boosting and Extreme Gradient Boosting 

algorithms (König et al., 2021). A recent study showed that the incorporation of additional 

continuous variables into binary variables in ML-based models can improve the prediction 

of heart failure outcomes compared to traditional Logistic Regression (Desai et al., 2020). 

The focus of this dissertation is on data preprocessing step specific to administrative 

codes (these codes are discussed in “Administrative Codes Representation Methods” 

chapter) applied to transform raw data into the final analytic file in supervised machine 

learning methods. The concepts discussed in this dissertation are described for claims data 

but can be generalized on any other types of health data. In general, construction of ML-

based models follows two main steps: data preprocessing and hyperparameter tuning. Data 

preprocessing is transformation of data into appropriate format for data analysis (will be 

discussed in detail in the next chapter), but model tuning or hyperparameter tuning is the 

process of finding the best set of settings in model construction. Interestingly, most 

researchers only consider hyperparameter tuning as optimization of learning algorithm, 

while keeping fixed preprocessing steps. It is our experience that data preprocessing is as 

important as algorithm hyperparameter tuning or selection of specific ML methods. In fact, 

this work considers data preprocessing steps as part of model tuning. Changes in the 
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representation space caused by data preprocessing result in very different types of effects 

on the model than those that occur when tuning hyperparameters. 

The concepts discussed in this dissertation will be tested on four learning problems 

using supervised machine learning: 1) Mortality Prediction, 2) High Utilization of Medical 

Services Prediction, 3) Chronic Kidney Disease Prediction and 4) Congestive Heart Failure 

Prediction. 



27 

 

ADMINISTRATIVE CODES REPRESENTATION METHODS 

Preprocessing Definition 

Due to high-dimensionality, heterogeneity, noise, incompleteness, sparseness, and 

errors in the data, modeling of health data, including claims, is difficult (Miotto et al., 

2016). To remedy this problem, data preprocessing is an essential step in developing ML-

based models. The reliability of the preprocessed data should be checked before training 

the model as any errors made in constructing the data would impact the accuracy of the 

models (Ngiam & Khor., 2019).  Data preprocessing refers to several steps required to 

transform raw data into the appropriate format for analysis (Malley et al., 2016). As another 

definition, data preprocessing refers to the methods including constructing new attributes 

(attribute construction), removing irrelevant attributes (attribute selection) and modifying 

the attributes in which the initial representation space is improved (Wojtusiak, 2008). In 

data preprocessing, the goal is to reduce the complexity of the data and extract the relevant 

attributes from the data, which then can be used for further analysis (Castillo et al., 2011).  

Preprocessing of Claims Data 

  Figure 5 shows how the raw claims data are transformed into an ‘analytic file’ for 

training and testing of classification and regression models. Claims data usually consist of 

tables from multiple sources including inpatient files, outpatient files, carrier files etc. 

collected over many years and stored in separate files. Different files/tables correspond to 

types of claims and are separated because they include different fields. Depending on the 

application, relevant information including medical codes, demographic information, 
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patient IDs, claim IDs, various dates etc. is first extracted from claims. Then one or more 

inclusion/exclusion criteria are applied to construct the targeted cohort from data. Once the 

prediction time is defined, the observation and prediction windows are established in which 

input and output attributes are constructed, respectively. The attributes are then processed 

in multiple steps including aggregation, discretization, normalization, and handling 

missing and integrated if needed, resulting in creation of the final analytic file. The analytic 

files are in the matrix format where rows represent instances and columns represent 

constructed attributes in the data. A wide variety of steps are defined for data preprocessing 

in the literature and depending on the application and needs, some or all are used to prepare 

the final analytic table. The focus is on the preprocessing of administrative codes and how 

they are represented before applying ML algorithm.  

 

 
  Figure 5: An example process of transforming raw claims data into the final analytic file. 
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Administrative Codes 

Claims data contain standard healthcare coding systems (administrative codes) that 

are either universally or locally utilized by the healthcare systems. These include 

International Classification of Diseases (ICD-9 or ICD-10) codes, Current Procedural 

Terminology (CPT), Healthcare Common Procedure Coding System (HCPCS) codes. The 

codes refer to procedure or diagnosis codes that are used to report diagnoses, encounters, 

injuries, morbidities etc. withing the healthcare system. Diagnosis and procedure codes 

assigned to medical claims are known to contain errors and inaccuracies. Despite these 

errors, they are popular source of information in predictive modeling and there are many 

successful applications of these administrative codes in predicting health outcomes.  

Types of Administrative Codes 

International Statistical Classification of Diseases (ICD) 

The 9th version of International Classification of Diseases (ICD-9) is used globally 

in healthcare settings to classify disease. In the United States, ICD-9-Clinical Modification 

(CM) which is developed based on the official version of ICD-9 is widely used by the U.S. 

healthcare organizations at any level (federal, state, local) to report diagnoses, encounters, 

injuries, and morbidities.  In 1999, ICD-10-CM and ICD-10-PCS were developed by CMS 

for reporting medical diagnoses and procedure coding systems, respectively. The reason 

for such transition was that the ICD-9-CM coding system were limited and restrictive and 

was not sufficient enough for the needs of healthcare system. The ICD-10-CM codes have 

improved the quality of health data by tracking public health conditions, clinical decision 

making, outcome measurements and devising payment systems. ICD-9-CM has about 
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18000 codes for combined procedures and diagnoses, whereas ICD-10 has about 142,000 

codes. ICD-10 procedure codes are 19 times more detailed than the ICD-9-CM codes and 

ICD-10 diagnoses codes are 5 times as many as the ICD-9-CM codes. In ICD-10-CM, 

more morbidity information is provided, making the coding system more flexible for 

expansion (Cartwright, 2013; “Centers for Disease Control and Prevention”, 2015).  

Current Procedural Terminology (CPT®) 

 The Current Procedural Terminology (CPT®) codes are used to report all kinds of 

healthcare services, such as surgical, radiologic and laboratory. The CPT codes have three 

categories with five digits in either numeric or alphanumeric form: Category 1 refers to 

procedures or services with subcategories dependent on the procedure or the services; 

Category 2 that consists of supplementary codes to measure performance; and Category 3 

codes that are designed for emerging technology, procedure, and services. These codes are 

typically used for data collection, new services payment or any procedures that cannot be 

included in category 1 (“CPT® Overview and Code Approva”l, n.d.).  

Healthcare Common Procedure Coding System (HCPCS)  

HCPCS (Healthcare Common Procedure Coding System)  is another type of coding 

system that has three levels and extends CPTs. Level one is essentially CPT codes, while 

level two refers to all non-physician services, products and supplies such as ambulance 

services, durable medical equipment and prescription drugs codes that are not included in 

CPT codes. Level three codes are local codes that are used when procedures do not fall 

within the first or second categories (Torrey, 2020).  
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Code Groupers  

In many applications, including machine learning modeling, there is often no need 

to keep the original diagnosis codes, or the number of codes is simply too large to handle. 

Code groupers are broader categories of codes that are mapped from the original ICD codes 

into larger categories allowing for significant dimensionality reduction when constructing 

data. Some of the most popular types of code groupers are Clinical Classification Software 

(CCS), Charlson, Elixhauser, etc. 

Clinical Classification Software (CCS) Codes 

Clinical Classification Software (CCS) codes developed by the Agency for 

Healthcare Research and Quality (AHRQ) were created by collapsing ICD-9 codes to 

smaller number of codes. This coding system is used for cost, utilization and outcome 

analysis and comprises of diagnosis and procedure codes. The single-level coding system 

includes 285 diagnosis codes and 231 procedure codes with no hierarchical structure while 

the multi-level system consists of four levels of diagnosis and three levels of procedure 

codes with hierarchical structure (“CCS (Clinical Classifications Software) – Synopsis”, 

n.d.; “Clinical Classifications Software (CCS) for ICD-9-CM Fact Sheet”, n.d.). ICD-10 

codes can also be mapped to CCS codes. At the time of writing this dissertation, the 

mapping of ICD-10 codes to CCS is still under development; however, the ‘beta’ version 

is available to the public. In this version, about 77.000 procedure codes are mapped into a 

limited number of meaningful clinical codes, which are more useful for demonstrating 

descriptive statistics of data (“Clinical Classifications Software (CCS) for ICD-10-PCS 

(beta version)”, n.d.). 
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Charlson and Elixhauser Index 

Charlson Comorbidity Index is another coding system that categorizes the 

comorbidities based on ICD9 codes. This system was first devised to predict one-year 

mortality from a range of comorbidities. It consists of 19 comorbidities including acute 

myocardial infarction, congestive heart failure, peripheral vascular disease, each of which 

is given a score of 1 to 6 based on the mortality risk and resource utilization. Score of zero 

means that the patient has no comorbidities, and higher scores indicate higher risk of dying 

(Charlson et al., 1987; “Concept: Charlson Comorbidity Index”, n.d). 

Like Charlson comorbidity index, Elixhauser is a method of categorizing 

comorbidities according to both ICD-9 and ICD-10 codes. The index started with 30 

comorbidities but expanded to 31 categories (Gasparini, 2018).  

In supervised machine learning, a combination of all coding systems is usually 

applied. Although grouper codes may not provide enough information in supervised 

machine learning, but they do well in preventing model overfitting, which is a common 

issue when a comprehensive coding system such as raw ICD codes are used.  

Standard Methods of Representing Administrative Codes 

Claims data can be viewed as a sequence of claims that include one or more 

diagnosis codes recorded over time. They are irregularity spaced in time. The data are also 

potentially censored on both sides because of benefit eligibility and events such as death. 

Since most machine learning (ML) algorithms cannot handle records with variable number 

of attributes, some summary functions including Boolean representation and counting the 
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occurrence of each event are used to aggregate the data and remove temporality before 

applying ML algorithms. This is not different from other health data such as EHRs.  

The following sections describe increasingly complex approaches for representing 

diagnoses extracted from claims data. While these sections focus on diagnoses, the same 

methods can be applied to procedure codes.  

Binary Representation 

 The simplest and most frequently used method is to represent presence/absence of 

diagnosis codes with a set of binary attributes (sometimes referred to as dummies).  Let 

Codei be the administrative code representing a diagnosis code and C be the claim in the 

patient’s record prior to the prediction time. Sometimes, the presence of codes within a 

certain time window is used instead of entire patient record. Either looking into entire 

records or a specific time frame, the frame is called the observation window. The 

administrative code (Codei) associated with C is represented as 1 if the Codei belongs to 

claim C, 0 otherwise. The equation is given as follows: 

 

Equation 4: Binary Representation 

𝐶𝑜𝑑𝑒𝑖={
  1
 

  0

∃ 𝐶
 

               𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     

: 𝐶𝑜𝑑𝑒𝑖  ∈ 𝐶         
 
 

 

 

The above method however has the risk of information loss. Most health data 

collected during patient care are longitudinal, meaning that the patients are observed over 

a course of time. The health data have time-stamped entities, meaning that much of the 
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information such as emergency visit, hospitalization or blood test are recorded with time. 

Moreover, the time each patient is tracked varies across all patients (Tran et al., 2014). 

Also, the sequences of the events are highly correlated; for instance, a diagnosis could be 

made after a blood test result comes back (Liu et al., 2018). The above Binary 

Representation method cannot capture the heterogeneity and hidden temporal information 

in the data i.e., the severity of illness or the changes in prognosis of the disease over time. 

Therefore, there has been a growing interest to leverage such information in constructing 

the analytic file. Studies have shown that the incorporation of temporal information can 

improve the performance of the predictive models (Xie et al., 2016; Singh et al., 2015). For 

instance, Google proposed a method to learn temporal attributes from all attributes in EHRs 

using long short-term memory (LSTM) that can improve the AUC of three health outcomes 

(mortality, readmission and long hospital stay) by 10% (Rajkomar et al., 2018).  Below, 

several methods used in the literature to introduce temporal information into data 

representation are explained. 

Binary Representation with Multiple Time Bins 

Another standard method to capture temporal attributes is to divide the observation 

window into multiple time bins and apply Binary Representation for each bin separately. 

Assume w is the bin in an observation window and t(C) is the time of claim. As shown, the 

administrative code (Codei) associated with C at time window (bin) w is represented as 1 

if the code belongs to claim C and t(C) falls in bin w, 0 otherwise. The method works as 

follows: 
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Equation 5: Binary Representation with Multiple time Bins 

    𝐶𝑜𝑑𝑒𝑖
𝑤 = {

  1
 

  0
     

   ∃ 𝐶
 

  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     

: 𝐶𝑜𝑑𝑒𝑖  ∈ 𝐶      
 
 

∧   𝑡(𝐶)
 

     

 ∈ 𝑤      
 
 

 

 

The advantage of such representation is that the approximate time of an event is 

incorporated into the code representation and model. Such method was used in a study, in 

which equal time intervals (yearly, quarterly, monthly) were constructed to predict the 

number of hospitalization days in the upcoming year. The results showed that using smaller 

bins added more temporal information to the models, and the yearly model had 

significantly worse performance than the others (Xie et al., 2016).  

Figure 6 graphically compares Binary Representation method with single vs. 

multiple time bins. In single observation window, diagnosis codes are extracted from raw 

data and then Binary Representation is applied to create separate column of each code 

shown as Code1, Code2,…, CodeN. The table shows six records associated with three 

patients. The data is then aggregated resulting in the final file with three records of three 

patients.  However, when multiple time bins are used, the observation window is divided 

into multiple time bins (w bins) and within each bin, the Binary Representation is applied. 

Therefore, the total number of attributes in the final analytic file is w times more than the 

single window. It should be noted that these time bins can have overlap or can be disjoint.  

 



36 

 

 
    Figure 6: Comparison of single vs. multiple time bins in Binary Representation. 

 

Enumeration Representation 

 Enumeration is another method in representing the administrative codes. In this 

method, the number of times a code is present in patient’s medical history within a 

predefined time window is counted. Therefore, instead of using binary indicators, the 

present/non-present codes can be replaced by the number of times they occurred. The 

formula to create these codes are given below. As shown, each code (Codei
cnt) is 

represented as sum of the present codes specific to claim C. 

 

Equation 6: Enumeration Representation 

  𝐶𝑜𝑑𝑒𝑖
𝑐𝑛𝑡 = ∑ {

  1
 

  0𝑐∈𝑐𝑙𝑎𝑖𝑚𝑠

       ∃ 𝐶 𝑖𝑓 𝑐𝑜𝑑𝑒 𝑖 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑜𝑛 𝑐𝑙𝑎𝑖𝑚 𝑐 
 

  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     
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This method of representing data clearly captures more information than simple 

Binary Representation. However, one needs to carefully plan for the specific type of 

classifier to construct models, and specifically how to represent diagnoses that are not 

present in patient’s record. This approach was used to create a set of independent attributes 

that represent the total number of admissions, and total number of each CPT and diagnosis 

codes in predicting readmissions (He et al., 2014).  In another study, the number of 

comorbidities as well as diagnoses were used in predicting high healthcare cost (Kim & 

Park, 2019). 

Representation of Additional Information and Derived Attributes  

In addition to the methods that represent individual diagnoses as attributes in the 

data, combinations of multiple attributes or attributes derived by some other means are 

often included in the data. For example, the total number of claims within a time window, 

time between hospitalizations, and the number of emergency care visits can be extracted 

from claims data to represent each diagnosis code. Further, individual and derived 

attributes can be modified by applying numerical transformation methods. For example, 

instead of considering time from the onset of a chronic condition, one may consider 

log(time) to emphasize recent changes and downplay small changes in distant past. Finally, 

global transformation methods such as those based on kernel methods or principal 

component can be used to transform all attributes in the space.  
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The methods mentioned above are some of the standard methods used in the 

literature to represent administrative codes (here diagnosis codes) in supervised machine 

learning. These methods are being used in limited settings and in some cases on a limited 

set of administrative codes. In this dissertation, two additional methods of representing 

administrative codes called ‘Temporal Min-Max Representation’ (TMMR) and ‘Trajectory 

Representation’ (TJR) will be introduced. The basis of these methods is in capturing more 

temporal information in representing the codes. The two methods are more complex but 

allow data to carry more information (Figure 7)  than the standard administrative codes 

representation methods. Thus, they have a potential to improve the quality of the predictive 

models. 

More importantly, there is no study available that has completed a systematic 

investigation of administrative code representation used in construction of machine 

learning-based models. The methods mentioned above, are used extensively in supervised 

machine learning without knowing if they are the best for the problem at hand. It is assumed 

that the method of representing data can be impacted by many factors including the type 

of algorithm, outcome, size of observation window, the type of administrative code etc. 

Thus, a large portion of this dissertation encompass a comprehensive evaluation and 

comparison of the administrative code representation specific two the two proposed 

methods. A large portion of this dissertation is dedicated to a comprehensive evaluation of 

the two proposed representation methods and its comparison with simple Binary 

Representation method. The concepts presented in this dissertation are described in context 

of four binary classification learning problems including predicting 1-year mortality, high 
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healthcare utilization of medical services, chronic kidney disease, and congestive heart 

failure. Comparison and evaluation of these codes are beyond standard model accuracy 

metrics and focus on the individual differences between the two representation methods, 

which will be thoroughly explained in the following chapters.  

 

 
Figure 7: Administrative Codes Representation Methods 

 

Preprocessing Methods 

This chapter finishes by summarizing some of the general methods used in 

preprocessing of data before applying machine learning algorithm. These steps include 

attribute selection, attribute construction, attribute modification, and handling missing 

values. It should be noted that attribute modification is also explained within the attribute 

construction.  



40 

 

Attribute Selection 

An effective approach to handle high-dimensional data is attribute selection, which 

is widely used in machine learning problems. Attribute selection refers to selecting a subset 

of data by removing the redundant and irrelevant attributes using a specific criterion. There 

are issues with using irrelevant attributes in models. Firstly, using high-dimensional data 

may cause curse of dimensionality meaning that the data gets sparser in space with high-

dimensionality, negatively impacting the algorithms designed for low-dimensional space. 

Secondly, it can cause overfitting of models meaning that even though the models are 

highly accurate during training, they do not perform well on unseen data. Finally, when 

many inputs are used in data analytics, the computational associated cost increases. 

Attribute selection can improve computation time and learning accuracy as well as 

providing simpler and more understandable models (Li et al., 2017; Cai et al., 2018). 

There are three main categories of attribute selection methods: Filter, Wrapper, and 

Embedded methods (Shown in Figure 8). The Filter methods select a subset of attributes 

independent of each other. Essentially, the selected attributes are selected before training 

the model by using information theoretic criteria or the correlation between the attributes 

and the outcome. Some of these methods include information gain, correlation, and chi-

square test, V-score, Fisher Score etc. (Jović et al., 2015; Sondhi, 2009). The Wrapper 

method on the other hand, selects attributes based on learning algorithm; the attributes with 

the highest scores are selected after training the model. Even though the Filter methods are 

faster, scalable, and less computationally expensive than Wrapper methods, the selected 

subset might not be optimal for training the model (Sondhi, 2009). Embedded methods 
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apply attribute selection while training model, meaning that the training and attribute 

selection are applied simultaneously. These methods involve an optimization process in 

which an objective function both rewards the accuracy of the model and penalizes any 

unnecessary attributes (Kotsiantis, 2011; Sondhi, 2009). Some of the most important 

Embedded methods include Decision Tree algorithms such as CART, C4.5, Random 

Forest, Multinomial and Logistic Regression as well as attribute weighting approaches 

such as LASSO (L1 Regularization) (Jović et al., 2015). 

 
        Figure 8: Attribute selection methods in machine learning 

 

Attribute Construction 

Attribute construction plays an important role in data preparation in machine 

learning task. The process involves building suitable attribute from existing attributes or 

transforming them into new forms. It includes handling categorical and continuous 

attributes, discretization, transformation etc. Below, some of the methods used in 

constructing health data are discussed in detail.  

 As discussed in representation of administrative codes, the most common approach 

is constructing structured data is using Boolean values (using 0/1 to represent 
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presence/absence of the value). These attributes can also be represented using enumeration 

representation (total number of visits, prescriptions, or admissions) (Alzoubi et al., 2019). 

Occasionally, variables are measured multiple times over time in health data, 

including body temperature, blood pressure, etc., which can be handled by collapsing 

values into a single value by using the mean, mode, maximum or minimum of the first or 

last record. Selection of any of these methods can impact the models because they 

determine what kind of information to incorporate into the models (Ferrao et al., 2016). 

Another method in constructing attributes is discretization. In discretization, a 

continuous variable is transformed into a discrete one by setting up a number of cut points 

within its range (Lustgarten et al., 2008). For example, a continuous variable such as blood 

pressure could be discretized into ‘High’, ‘Normal’ and ‘Low’ values, or different age 

groups could be determined from a continuous age attribute. Methods of discretization 

include supervised methods, where the output information is used to construct the 

discretized attribute, and unsupervised methods, in which the output information is not 

available or not used. While the unsupervised method has more application, the supervised 

one tends to build more predictive attributes (Maslove et al., 2013).  

Transformation including Principal component analysis (PCA) and Normalization 

is another method of attribute construction. Principal component analysis method uses 

mathematical principles to transform large number of correlated attributes into small 

number of attributes called component principals. This method reduces a large number of 

variables to a small number of variables by using a vector space (Richardson, 2009). It is 

used in biomedical studies to control high-dimensional health data (Guo et al., 2016; 
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Jhajharia et al., 2016; Yang & Xu, 2019). The process of normalization involves scaling 

down values to low values, which is crucial to neural networks and K-nearest neighbors 

algorithms. Some of the most important Normalization methods include min-max 

normalization and z-score normalization (Kotsiantis et al., 2006).  

Missing Values   

Handling missing data is an important task in data preprocessing. There are three 

categories of missingness in data in statistics: Missing Completely at Random (MCAR), 

Missing at Random (MAR), and Missing not at Random (MNAR). Missing Completely at 

Random (MCAR) occurs when the probability of missingness of a data point is unrelated 

to that data point or other points values, while MAR happens when the probability of 

missingness is correlated to the data point controlling for all the other factors. Missing not 

at Random (MNAR) occurs when the probability of missingness really depends on the 

value of the data points or the unmeasured variables (Wells et al., 2013). Michaelski et al. 

categorize missing values differently than what is typically done in statistics. They 

categorized missing values into three different groups: ‘Unknown’, ‘Non-applicable’, and 

‘Irrelevant’. Unknown values are those that exist but are not recorded or not 

measured. Non-applicable means the value is not applicable to the definition of an attribute, 

while Irrelevant means the value is not relevant to a given task (Michalski & Wojtusiak, 

2012). An example of Unknown missing value is date of death or cholesterol level, which 

can exist but is either not recorded or not measured. Prostate-Specific Antigen (PSA) scores 

for women or pregnancy for males fall into Non-applicable category, while the presence 

breast cancer biomarkers among other types of cancer is an example of Irrelevant missing 
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value. The methods for handling missing values are only applicable to Non-applicable and 

Irrelevant values, since they are mainly based on imputation methods (Michalski & 

Wojtusiak, 2012).   

Missing values can be handled by removing records with missing 

information; while this method works on MCAR, it results in power loss and biases the 

results. Another method is to replace or impute missing values with data points (Wells) 

(Wells et al., 2013). Some of the imputation methods include simple mean imputation, Last 

Observation Carried Forward method in which missing value is replaced with the last 

observed values, Worst Observation Carried Forward method in which the missing value 

is replaced with the worst observed values, and multiple imputation method (Jakobsen et 

al., 2017).  
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TEMPORAL MIN-MAX REPRESENTATION 

Definitions 

‘Temporal Min-Max Representation’ (TMMR) represents diagnoses by using 

information about when the diagnosis was made for the first time and when it was made 

most recently (Wojtusiak et al., 2021a). This is possible as medical claims data are time-

stamped and often longitudinal, thus allowing us to understand when an event occurred. In 

this method, the administrative codes are represented by calculating the number of days 

from the first known occurrence of the i-th, diagnosis or procedure code at time (ti) to the 

time of prediction (tp), named as 𝐶𝑜𝑑𝑒𝑖
𝑚𝑎𝑥 (Max), as well as last recorded occurrence of 

the diagnosis or procedure code relative to the time of prediction, named as 𝐶𝑜𝑑𝑒𝑖
𝑚𝑖𝑛(Min).  

This approach results in two values associated with each administrative code represented 

as the number of days. This is formalized using the below formulas.  

 

Equation 7: Temporal Min-Max Representation 

𝐶𝑜𝑑𝑒𝑖
𝑚𝑎𝑥 = max

𝑡𝑖

(𝑡𝑝 − 𝑡𝑖)                                                 

𝐶𝑜𝑑𝑒𝑖
𝑚𝑖𝑛 = min

𝑡𝑖

(𝑡𝑝 − 𝑡𝑖)                                                  

 

This method of representing the administrative codes provides information about 

how long a patient suffers from a given condition as well as if the condition is still present 

at the time of prediction (when was last time the patient diagnosed with the condition?). 
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The rationale behind this approach is that for many chronic conditions such as diabetes or 

cardiovascular disease that affect patients’ health over time, it is important to know how 

long the condition has been present for the patient. Similarly, for many acute conditions 

such as falls and misuse of drugs that affect health status temporarily, only recent 

occurrences are important to consider. The method does not take into consideration what 

happens ‘in between’ the first and most recent occurrence of a diagnosis code, which will 

be later addressed in the “Trajectory Representation” chapter.  

Representing Non-present Diagnoses  

Since diagnoses and their corresponding administrative codes are represented by 

the number of days, special values need to be assigned to indicate diagnoses that are not 

present in patients’ records. It is not reasonable to simply represent non-present diagnoses 

with ‘0’ as codes are represented based on the number of days, and ‘0’ means ‘right now’. 

One assumption to indicate non-present codes is to use a large value (theoretically an 

infinity in time). Therefore, these codes can be represented with a very large positive and 

negative values, such as ±999999.0 (denoted as 6_9), ±99999.0 (denoted as 5_9), and 

±9999.0 (denoted as 4_9) etc. Here, 10n-1 is represented as n_9, where ‘n’ is the number 

of ‘9’s. Positive and negative numbers also can indicate the positive (Max columns) and 

negative (Min columns) correlation between the number of days and predicted outcome. 

The main reason for selecting 10n-1 as special values is that these numbers are easily visible 

when performing manual inspection of the data. In representation of non-present codes, it 

is assumed that the choice of the special value is impacted by the algorithm.  
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Figure 9  graphically shows how the proposed TMMR method works. The raw files 

consist of patient ID, claims ID, the corresponding date with the claim and codes etc. Let’s 

assume that input attributes (diagnosis codes) are derived in year 2021 and the prediction 

time is ‘1/1/2022’. For each of the code, TMMR is applied resulting in two copies of each 

code represented by ‘Min’ and ‘Max’. As shown, the first patient has two claims which are 

180 days apart, while the second and third patients have only one claim. The first patient 

was diagnosed with Code1 180 days prior to the prediction time, and for the first time 365 

days prior to the prediction time. This patient was also diagnosed with CodeN only once, 

180 days prior to the prediction time (𝐶𝑜𝑑𝑒𝑁
𝑚𝑖𝑛 =𝐶𝑜𝑑𝑒𝑁

𝑚𝑎𝑥=180). Similar interpretations 

can be made for the second patient; the patient was diagnosed with Code1 only once 270 

days prior to prediction time. Finally, the third patient was neither diagnosed with Code1 

nor with CodeN, which was represented with 999999.0 -999999.0 for Min and Max 

attributes, respectively.  

 

 
Figure 9: An Example Illustration of Temporal Min-Max Representation. Prediction time is set to 1/1/2022. 
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Initial Application of Temporal Min-Max Representation in Predicting Activities of 

Daily Living 

 Our group developed the TMMR and used it to construct models to predict Activity 

of Daily Living (ADL) up to one year ahead for the first time. Results clearly indicated that 

the representation method significantly affected results, and TMMR outperformed the 

standard Binary representation method (Wojtusiak et al., 2021a). The following sections 

describe how the TMMR was used in predicting ADLs and in constructing a decision 

support system called Computational Barthel Index (CBIT). The promising results that 

obtained from CBIT inspired large portion of this dissertation.  

Assessment of Functional Disabilities 

Understanding functional abilities of patients and their improvement or decline is 

crucial for making decisions about care provided to the elderly. For example, in a study by 

(Fried et al., 2002), it was reported that patients who were unlikely to return to baseline 

functional status were also less likely to comply with hospital treatment. It is also suggested 

that the quality of life matters more than living longer. Quality of life is impacted by many 

factors, one of which is patients’ functional independence. The Functional ability 

assessment of patients in nursing homes is typically performed by a skilled nurse 

practitioner, which is a time consuming and expensive process. Such assessments are often 

reported through the Minimum Data Set (MDS), which is a standardized patient evaluation 

instrument collected by nurses through consultation with other healthcare members. In the 

United States, all Medicare and Medicaid-certified nursing homes collect the assessment 

data and enter them in MDS Section G (“MDS 3.0 Technical Information”, n.d.).   
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Many researchers have attempted to automate the disability assessment or 

prediction of functional status, including Activity of Daily Livings (ADLs). In a study, 

machine learning methods linked to biomedical ontologies were used to predict functional 

status (Min et al., 2017), achieving predictive accuracy of 0.6. Using a Logistic Regression-

based method, researchers predicted mortality and disability following injury for the 

elderly achieving the R2 of 0.86 (Jeffery et al., 2018). In one study, six standard frailty 

indicators (gait speed, physical activity, hand grip, body mass index, fatigue, and balance) 

was examined for assessing ADLs, of which only gait speed was predictive of ADL; 

however, no predictive accuracy was reported (Gobbens & Van Assen, 2014). Wojtusiak 

et al. also constructed a set of models to predict trajectories of ADL improvement or decline 

post hospitalization (Wojtusiak et al., 2016). Even though these studies had model 

performances below ones reported below, but since they were applied different settings, no 

direct comparison is meaningful.  

As an attempt to improve state of the art in ADL prediction, decision support tool 

was constructed that could automatically predict ADLs 3, 6, and 12 months beyond 

prediction time based on a patient’s demographic information and their diagnosis codes. 

The tool, called the Computational Barthel Index Tool (CBIT), was designed to allow for 

assessment of functional status at any moment and up to one year ahead. As mentioned, 

one novelty of this work was in using TMMR method in constructing the CBIT. 

Specifically, this method was used because many diagnoses in medical records correlate 

with a patient's functional ability, either temporarily or permanently. For example, some 

patients who undergo surgery may develop urinary incontinence temporarily, while 
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amputation affects ability to walk permanently.  

Model Construction 

Demographic information including age, race and sex, diagnoses, and functional 

evaluations of patients over a ten-year period were extracted from the Department of 

Veterans Affairs (VA) Corporate Data Warehouse (CDW). Patients with less than two 

evaluations were removed from the data. The data consisted of 18,912,553 inpatient and 

180,123,710 outpatient diagnosis codes based on ICD-9 codes. These codes were 

transformed into CCS codes resulting in 281 distinct CCS codes representing health 

comorbidities. All diagnoses were represented by TMMR method (total of 562 codes), and 

non-present codes were replaced with ±999999.0. The final dataset consisted of total of 

578 independent attributes.  

Patients’ evaluations recorded in Minimum Data Set (Hawes et al., 1995) were mapped to 

the nine Barthel Index categories. The Barthel Index (or Barthel Score) is a measure of 

independence in performing 10 ADLs with the total value ranging from 0 to 100 (feeding, 

bathing, grooming, dressing, bowels, bladder, toilet use, transfers, mobility, and stairs) 

(Collin et al., 1988; Shah et al., 1989). Nine out of these 10 categories (except for using 

stairs) were binarized (indicating any levels of disability vs. no disability) to construct nine 

outcomes. Barthel Score of stairs was eliminated as it was not consistently assessed, 

making it difficult to standardize among nursing home residents.  

The data were split into 90% and 10% training and test sets, respectively. Four ML 

algorithms including Logistic Regression, Decision Trees, Naïve Bayes, and Random 

Forest were applied to construct the models with Random Forest achieving the best 
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performance. Hyperparameters were tuned using 10-fold cross-validation and models were 

calibrated using 5-fold cross-validated isonomic regression.  

A total of 72 models were constructed for predicting functional status using 

Random Forest corresponding to four time points, nine ADLs and two different models 

called Evaluation/Re-Evaluation (ME
d
τ / MRE

d
τ) models. Evaluation/Re-Evaluation models 

refer to models in which the last known functional status is present and unknown, 

respectively.  

Results 

Table 1 reports the performance of the models as the average of the performance of 

all 9 disabilities for each time point and for both Re-Evaluation (ME
d
τ) and Evaluation 

(MRE
d
τ) models. In general, the CBIT showed very high accuracy in assessing ADLs at a 

given time. The models achieved average AUC of 0.94 (0.93-0.95), accuracy of 0.90 (0.89-

0.91), recall of 0.90 (0.84-0.95), and precision of 0.91 (0.89-0.92). When predicting ADLs 

up to one year ahead, the accuracy decreased to average AUC of 0.77 (0.73-0.79), accuracy 

of 0.73 (0.69-0.80), recall of 0.69 (0.34-0.96), and precision of 0.74 (0.66-0.81). Moreover, 

for Evaluation models, the performance decreased by about 16% (p<0.05) in terms of 

AUC.  The average results of these models were AUC 0.79, accuracy 0.74, precision 0.74, 

and recall 0.80.  

 

Table 1: Average+/- standard deviation of accuracy, AUC, precision and recall of models in assessing ADLs. 

 Re-Evaluation Models (MRE
d
τ) Evaluation Models (ME

d
τ) 

Prediction 

Time τ 
Accuracy AUC Precision Recall Accuracy AUC Precision Recall 

Current .900 ± .007 .947 ± .006 .910 ± .011 .907 ± .041 .743 ± .029 .795 ± .010 .743 ± .046 .800 ± .128 
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3 Months .815 ± .020 .876 ± .011 .849 ± .019 .816± .094 .727 ± .037 .761 ± .006 .734 ± .049 .783 ± .161 

6 Months .759 ± .029 .808 ± .014 .784 ± .029 .737± .165 .720 ± .038 .746 ± .009 .721 ± .045 .729 ± .238 

12 Months .737 ± .035 .772 ± .022 .742± .049 .699 ± .226 .716 ± .039 .725 ± .016 .696 ± .073 .701 ± 264 

 

Next, the average GINI Index (Breiman, 2001) produced by Random Forest was 

used to measure the quality of predictors. It was observed that the past functional status are 

the most predictive attributes, followed by the time since the most recent diagnosis of 

delirium, dementia, and amnestic and other cognitive disorders (CCS 653) and patient age. 

These top predictors along with their reported importance (average GINI score over all 

trees in forest and over all models) are depicted in Table 2 (Note that previous functional 

disabilities are not shown in this table). Other most predictive diagnoses/administrative 

codes included: the time since the most recent diagnosis of urinary tract infections (CCS 

159); chronic ulcer of skin (CCS 199); other connective tissue disease (CCS 211); paralysis 

(CCS 82); administrative/social admission (CCS 255); alcohol-related disorders (CCS 

660); aspiration pneumonitis; food/vomitus (CCS 129); and schizophrenia and other 

psychotic disorders (CCS 659). Interestingly, a combination of Min and Max attributes 

were among the top predictors of ADLs, emphasizing the importance of first or last 

occurrence of a disease depending on the type of diagnosis code.  As shown in Table 2, the 

first occurrence of chronic ulcer of skin (CCS 199) and aspiration pneumonitis ulcers (CCS 

129) were important, while for the rest of the top diagnosis codes, the last occurrence of 

the diagnosis seemed more significant.  
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Table 2: Top ranked predictors of functional status. ‘GINI RE-EVAL’ indicates score of a variable in Re-

Evaluation models (MRE
d
τ).  ‘GINI EVAL’ indicates score of a variable in in Evaluation models (ME

d
τ). R are 

potentially reversible or red flag that this person is at risk and needs restorative therapy; Race and Gender 

variables are included at the bottom of the table for comparison but have very low impact on prediction.  

Rank Attr. Min/Max Description GINI RE-EVAL GINI EVAL 

1 CCS653 Min 
Delirium, dementia, and amnestic and other 

cognitive disorders 
0.0216 0.0310 

2 Age  Age at the time of prediction 0.0133 0.0335 

3 CCS159 Min Urinary tract infections 0.0128 0.0217 

4 CCS199 Max Chronic ulcer of skin 0.0071 0.0121 

5 CCS211 Min Other connective tissue disease 0.0065 0.0091 

6 CCS82 Min Paralysis 0.0062 0.0110 

7 CCS255 Min Administrative/social admission 0.0061 0.0107 

8 CCS660 Min Alcohol-related disorders 0.0058 0.0110 

9 CCS129 Max Aspiration pneumonitis; food/vomitus 0.0055 0.0072 

10 CCS659 Min 
Schizophrenia and other psychotic disorders 

 
0.0055 0.0089 

 
… 

 
……………………………………………… 

 
  

337 W  Race White 0.0006 0.0012 

341 UR  Unknown Race 0.0006 0.0011 

365 B  Race Black 0.0004 0.0009 

434 Gender  Gender 0.0002 0.0004 

445 A  Race Asian 0.0002 0.0003 

 

The above models were based on the full set of 578 input attributes. Further, a set 

of simplified models (called MSRE
d
τ and MSE

d
τ) was constructed based on top 50 patient 

characteristics as ranked by feature importance of Random Forest models. These models 

did not perform statistically significantly different than the original full models.  

Properties of Temporal Min-Max Representation in CBIT 

One important advancement of the presented CBIT is the way the diagnosis codes 

were represented. Therefore, a full set of experiments was performed to determine if 



54 

 

TMMR is different from Binary Representation of diagnosis codes. All constructed MRE
d

τ, 

ME
d
τ, MSRE

d
τ, and MSE

d
τ models were compared in terms of AUC at different time points 

up to one year ahead. In one experiment, Random Forest was compared with other 

algorithms including Logistic Regression, Decision Tree, and Naïve Bayes. As described 

earlier, when Temporal Representation is used, one needs to assign special values to 

diagnoses that are not present in data. To understand how these special values would impact 

models, +/- 999999 (6_9) were compared with +/-9999 (4_9), and +/-99999 (5_9) across 

all models. Temporal Representation (6_9) was also compared with Binary Representation 

to determine any significant difference in the performance of models. Two-tailed t-test was 

used to assess all comparisons (p<0.05). 

As summarized in Table 3, both Random Forest and Logistic Regression showed 

significant difference in AUC when TMMR was applied (p<0.05). The results indicated 

that Random Forest with TMMR performs significantly better than Binary Representation. 

With simplified Evaluation models (AUC of 0.79 vs. 0.76 for Random Forest), where there 

is no information about patients' previous health status, the pure effect of representation 

can clearly be seen. Such relationship was, however, opposite for Logistic Regression (the 

Binary Representation was better). Decision Trees and Naïve Bayes results were also 

included in the table, but the performance was inferior. It was also observed that these 

special values did not impact Random Forest, Decision Tree and Naïve Bayes, while the 

performance of Logistic Regression was affected by these values.  
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These results inspired the large experimental evaluation and study of diagnoses 

representation methods that is the main topic of this dissertation. The detailed comparison 

on four example prediction problems is presented in next chapter. 

 

Table 3: Results of valuation of Temporal and Binary Representation of diagnoses as part of CBIT 

construction and evaluation. The results are presented in terms of AUC for the current assessment, and 

prediction up to 12 months ahead.  Full models that include 578 attributes and simplified models with 50 

attributes are shown. Evaluation (no previous known ADL status) and Re-Evaluation (known previous status) 

results are presented. 

4_9 indicates encoding of diagnoses not present in patient’s history as +/-9999, 5_9 as +/-99999 and 6_9 as +/-

999999. * indicates significance (p<0.05) of coding systems compared to ‘6_9’ and + indicates significance 

(p<0.05) of different algorithms compared to Random Forest. 

 

AUC 
Current Assessment  3 Month Prediction  6 Month Prediction  12 Month Prediction 

RF LR DT NB  RF LR DT NB  RF LR DT NB  RF LR DT NB 

M
R

E
d
τ  

TMMR 

4_9 0.95* 0.85*+ 0.92+ 0.87*+  0.88 0.79*+ 0.83+ 0.83+  0.81 0.77*+ 0.74+ 0.78+  0.77 0.74*+ 0.70+ 
 0.74+ 

5_9 0.95 0.78*+ 0.92+ 0.89+  0.88 0.76*+ 0.83+ 0.83+  0.81 0.74+ 0.74*+ 0.78+  0.77 0.71*+ 0.70+ 0.74+ 

6_9 0.95 0.78+ 0.92+ 0.90+  0.88 0.75+ 0.83+ 0.83+  0.81 0.74+ 0.74+ 0.78+  0.77 0.72+ 0.70+ 0.74+ 

Binary  0.94* 0.94* 0.91*+ 0.87*+  0.87* 0.87*+ 0.82*+ 0.80+  0.81 0.81*+ 0.74+ 0.77*+  0.77 0.77*+ 0.70+ 0.74*+ 

M
S

R
E

d
τ  

TMMR 

4_9 0.95 0.94*+ 0.92+ 0.89+  0.88 0.88*+ 0.83+ 0.82+  0.81* 0.81*+ 0.74+ 0.76+  0.77 0.77* 0.70+ 0.72+ 

5_9 0.95 0.93*+ 0.92+ 0.89+  0.88 0.84*+ 0.82+ 0.82+  0.81* 0.79*+ 0.74+ 0.76+  0.77 0.75*+ 0.70+ 0.72+ 

6_9 0.95 0.76+ 0.92+ 0.90+  0.88 0.72+ 0.83+ 0.82+  0.81 0.71+ 0.74+ 0.76+  0.77 0.69+ 0.70+ 0.72+ 

Binary  0.94* 0.94*+ 0.90*+ 0.90+  0.88* 0.87*+ 0.81*+ 0.83+  0.81* 0.81*+ 0.74*+ 0.78*+  0.77 0.77* 0.69+ 0.74*+ 

M
E

d
τ  

TMMR 

4_9 0.79 0.79*+ 0.72*+ 0.73+  0.76 0.76* 0.68+ 0.68+  0.75* 0.75* 0.66+ 0.71+  0.73 0.72* 0.64+ 0.69+ 

5_9 0.79 0.78*+ 0.71+ 0.73+  0.76 0.75+ 0.68+ 0.68+  0.75 0.74*+ 0.66+ 0.71+  0.73 0.71*+ 0.64+ 0.69+ 

6_9 0.79 0.78* 0.72+ 0.73+  0.76 0.75+ 0.68+ 0.68+  0.75 0.74 0.66+ 0.71+  0.73 0.72+ 0.64+ 0.69+ 

Binary  0.78* 0.78* 0.70*+ 0.73+  0.76 0.76* 0.67*+ 0.70*+  0.75 0.75* 0.66+ 0.71*+  0.72* 0.73*+ 0.64+ 0.69*+ 

M
S

E
d
τ  

TMMR 

4_9 0.79 0.77*+ 0.71+ 0.64+  0.76 0.75*
+ 0.68+ 0.63+  0.74 0.73*+ 0.66+ 0.60+  0.72 0.72* 0.63+ 0.58+ 

5_9 0.79 0.76*+ 0.71+ 0.64+  0.76 0.73*+ 0.68+ 0.63+  0.74 0.72*+ 0.66+ 0.60+  0.72 0.71*+ 0.63+ 0.58+ 

6_9 0.79 0.75+ 0.71+ 0.64+  0.76 0.72+ 0.68+ 0.63+  0.74 0.71+ 0.66+ 0.60+  0.72 0.69+ 0.63+ 0.58+ 

Binary  0.76* 0.77*+ 0.68*+ 0.74*+  0.74* 0.74* 0.65*+ 0.71*+  0.73* 0.73* 0.64*+ 0.71*+  0.71* 0.72*+ 0.63+ 0.69*+ 
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Online Decision Support System  

An online decision support system was constructed based on the developed 

CBIT that can automatically assess current and future functional status up to one year 

(Wojtusiak et al., 2021b). Clinical Decision Support Systems (CDSS) are a key 

component of health information systems and integral part of clinical workflows 

(Wasylewicz et al., 2019). While most commercially available CDSS are rule-based 

with sets of rules manually implemented to support guidelines, there is a growing 

interest in integrating models created by machine learning (ML) methods as part of 

CDSS (Peiffer-Smadja et al., 2020). Along with triggering alerts, ML-based models are 

also used to predict likely outcomes and help with diagnosing patients (Belard et al., 

2017).  

As stated before, initial models were created using Random Forest algorithm. 

However, due to large size of models (each being 1GB to 2 GB, totaling about 100 GB 

across all models), it was infeasible to use them as part of the decision support tool. 

Therefore, Gradient Boost (GB)-based Models were selected to be used as part of the tool. 

The GB models were significantly smaller in terms of size and could be easily incorporated 

in the online tool. Experimental results showed that RF ad GB provide comparable results 

with an overall R2 =0.92 and Kappa=0.86 across all 72 models, making GB a proper 

alternative to RF-based models. 

The web-based decision support tool (web calculator) was developed using 

simplified models. The system is publicly available at https://hi.gmu.edu/cbit website. It 

provides Web interface as well as Application Programming Interface (API). Web requests 

https://hi.gmu.edu/cbit
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are submitted from an HTML form, while API requests are submitted as JSON (JavaScript 

Object Notation). The tool consists of the following components: the CBIT models, web 

form to enter data, data consistency check, graphical results presentation, and explanation 

module.  

The Web form (depicted in  Figure 10) used to insert data has two sections that 

correspond to Evaluation and Re-Evaluation models. Previous known functional status is 

pre-set as fully independent, and age is pre-set to 71 indicating the average value of age in 

the data. Time from the first and last occurrence of selected diagnosis codes can be entered 

as number of days or selected from pre-populated list (last week, last two weeks, last 

month, last three months, last six months, last year, last three years, and more than three 

years).  
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Figure 10: Part of CBIT Web Calculator screen used to enter patient characteristics. 

The calculator is available at https://hi.gmu.edu/cbit. 

 

The results or application of CBIT models in the decision support system are 

presented graphically in Figure 11 for a hypothetical patient. The horizontal axis 

corresponds to time up to one year after the time of prediction. The prediction results are 

shown as the probabilities of full functional independence vs. any level of disability.  The 

higher the value is, the more likely the patient is to be independent. As shown, the patient 

is predicted to have a high risk of not being independent in toileting (low probability < 0.3 

of full independence). The probability of full independence slightly increases with time, 

but the risk remains high/medium. In terms of all other ADLs, the patient is predicted to 

https://hi.gmu.edu/cbit
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have low risk of disability (high probability > 0.7 of independence) with the risk slowly 

increasing with time.  

 

 
        Figure 11: Visualization of the predicted ADL independence trajectories for a hypothetical patient. 

 

The above results were among the first efforts in representing the administrative 

codes other than standard methods in the literature. The results clearly indicated that 

TMMR outperforms Binary Representation in predicting ADLs.  In the next chapter, 

TMMR and simple Binary Representation methods will be compared in detail using a 

different dataset and on four different classification problems (predicting 1-year mortality, 

high utilization of medical services, CKD, and CHF). The comparison will be made on 

both population (standard model accuracy metrics) and on individual level. The choice of 
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the two representation methods was based on our preference but the applied concepts could 

be applied on other representation techniques. 
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EVALUATION OF TEMPORAL MIN-MAX REPRESENTAION 

Datasets and Prediction Problems 

The comparison of the representation methods is illustrated in terms of four 

supervised learning problems. Models are constructed to predict patient outcomes using 

medical claims data. For this purpose, four classification problems were established for 

predicting one-year mortality (Problem 1), predicting high utilization of medical services 

(Problem 2), predicting chronic kidney disease (CKD) (Problem 3), and predicting 

congestive heart failure (CHF) (Problem 4). Details of the prediction problems were 

presented in “Introduction” chapter. 

In all models, the outcomes were calculated in year 2013, and all inputs were 

derived from data prior to 2013. The data used to construct the models were 5% control 

sample of Medicare beneficiaries between years 1995 and 2013. The Medicare claims 

collected by the Center for Medicare and Medicaid Services (CMS) provide one of the 

largest longitudinal datasets for the Medicare eligible population (aging population) in the 

United States. More specifically, in this study control group of individuals in SEER-

Medicare prostate cancer data were used to construct the models. Despite its limitations 

(i.e., data from SEER regions, male patients only), this dataset is sufficient for the purpose 

of investigating data representation. The sample should be more representative for the 

construction of models used in clinical practice.  
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The patient cohort included those alive and at least 70 years old on January 1st, 

2013. Excluding patients younger than 70 years guarantees that there are at least 5 years of 

data available prior to the prediction time as Medicare eligibility generally starts at 65.  

For Problem 1 (Mortality), a binary output/outcome attribute was created indicating 

whether or not the patient died in 2013. In Problem 2 (High Utilization), a binary output 

attribute was created to indicate high utilization of services in 2013. Simple approach was 

used in which the patients were classified as high utilizers when their total number of 

claims was above 90-th percentile in 2013. In Problem 3 (CKD), binary output attribute 

was defined based on the first occurrence of ICD-9 codes 585.* (representing CKD) in year 

2013. Finally, for Problem 4 (CHF), binary output attribute was created to indicate the 

presence/absence of congestive heart failure based on first occurrence of ICD-9 428.* in 

2013. For the last two models, patients who were diagnosed with CKD or CHF prior to 

2013 were removed from the cohorts, respectively.  

In addition to the diagnosis codes that are the focus of this work, patient age and 

race were included in the analysis. The ICD-9 diagnosis codes were combined from 

multiple tables in the dataset: Medicare provider analysis and review (MedPAR), 

outpatient, durable medical equipment (DME), carrier (NCH), home health agency (HHA) 

and hospice. The ICD-9 codes were transformed into 282 AHRQ’s CCS codes. Binary and 

Temporal Min-Max Representation methods were applied to the data, resulting in 282 

diagnosis codes for Binary Representation and 564 codes for TMMR. The codes that were 

not present in medical history were replaced with ±999999.0 (6_9) in TMMR.  
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The prediction time (t0) was January 1st, 2013, and a fixed one-year prediction 

window was defined to construct the output attributes ending on December 31st, 2013.  

Table 4 shows the characteristics of the patients in the study population. The unit 

of analysis in the models was patient (each row in the test datasets corresponding to a 

patient). The final dataset included 83,590 patients for the first two models and 61,750 and 

53,699 patients for Problem 3 and Problem 4, respectively. As shown, about 10% of the 

population were high healthcare utilizers and about 7% of the cohort died, experienced 

CKD and CHF in 2013. Most patients were white and the average age in the cohort was 

about 79 years old. 

When the observation window size is set to 18 years, the average number of days 

between diagnoses and time of prediction across all CCS codes is about 1847. As shown, 

the average number of days across all CCS codes and CCSmin attributes was less among 

positive classes. Also, this average number of days across CCSmax groups was slightly 

lower among positive class in Problem 1 and Problem 2 and higher in Problem 3 and 4.  In 

addition, the average number of present distinct CCS codes across four problems is about 

44.42 with the total number of codes being higher among positive labels. 

 

Table 4: Characteristics of the study population. Tot, Pos and Neg correspond to all, positive and negative 

cases, respectively. 

   Prob 1   Prob 2   Prob 3   Prob 4  

  Tot Pos Neg Tot Pos Neg Tot Pos Neg Tot Pos Neg 

N  83590 6111 77477 83590 8401 75189 61750 4129 57621 53699 3502 50197 

%   7.32 92.68  10.05 89.95  6.69 93.31  6.52 93.48 

Race% White 82.67 82.06 82.71 82.67 82.68 82.67 84.37 80.72 84.64 83.22 82.72 83.26 
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 Black 6.96 8.49 6.84 6.96 8.56 6.87 5.58 8.23 5.59 6.51 7.42 6.45 

 Asian 4.09 4.02 4.10 4.09 3.58 4.15 3.72 4.31 3.68 3.90 4.11 3.89 

 Native 0.39 0.54 0.38 0.39 0.39 0.39 0.39 0.03 0.39 0.41 0.71 0.39 

 Hispanic 2.83 2.45 2.86 2.83 2.61 2.85 2.73 3.25 2.70 2.64 2.37 2.66 

 Unknown 3.05 2.43 3.10 3.05 2.17 3.15 3.02 3.15 3.00 3.31 2.66 3.35 

Age  79.7 82.6 79.5 79.72 80.3 79.7 79.3 80.4 79.23 78.8 80.2 78.7 

CCStotal  1846.2 1693.9 1858 1846.2 1612.7 1872.6 1886.4 1856.8 1888.4 1810.7 1770.9 1813.3 

CCSmax  2312.4 2230.8 2318.8 2312.4 2252.5 2319.3 2318.6 2352.7 2316.3 2212 2242.5 2210 

CCSmin  1379.9 1157 1397.2 1379.9 971.9 1426 1454.2 1361 1460.5 1409.4 1299.3 1416.7 

# Code  47.8 57.2 47 47.8 70.8 45.2 42.79 44.37 42.7 39.4 43 39.1 

 

The models were developed using the standard model construction methods. The 

data were first split into 10% test set and 90% training set with the testing portion set aside 

for final validation. Ten-fold cross validation was used to tune model hyperparameters. 

After tuning final models were constructed using the entire 90% training dataset and 

validated using the 10% test dataset set aside. The quality of the models was measured 

using the standard machine learning measures including accuracy, area under the curve 

(AUC; often referred to as C-statistic), recall and precision, as well as sensitivity.  

Four machine learning classification algorithms, Random Forest (RF), Gradient 

Boost (GB), Logistic Regression (LR) and Decision Tree (DT), were used to construct the 

models. For each algorithm, default parameters provided by scikit-learn (0.21.3) in Python 

3 were tuned to develop the models.  

Model Performance 

The first set of experiments was to compare the performance of the models when 

diagnoses were constructed using standard Binary and Temporal Min-Max 
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Representations. For this purpose, the observation window size was set to 18 years. Table 

5 presents a summary of the performance of the models in terms of AUC, accuracy (Acc), 

precision (Prec), and recall (Rec). Two tailed paired t-test was used to determine the level 

of significance (p<0.05). As summarized, TMMR performed statistically significantly 

better than Binary Representation (p<0.05) for most of the four criteria, except for LR and 

DT for Problem 2, 3 and 4. Overall, the results suggest that the TMMR can improve the 

quality of the predictive models. In predicting the four outcomes, GB achieved the highest 

performance with the average AUC ranging between 0.66 and 0.85. As shown, recall was 

low in the models due to imbalanced data. However, it is important to note that the purpose 

of this dissertation was not to develop the best models with optimized parameters, but to 

systematically compare different diagnosis representation methods for supervised learning. 

It is also possible that adding more attributes to the data (i.e., provider information) could 

improve the overall accuracies of the models. 

 

   Table 5: Average AUC, accuracy, precision and recall of the models for Temporal Min-Max 

Representation (TMMR) vs. Binary Representation (BIN). 

Problem 1-Mortality 

 TMMR  BIN 

Alg AUC Acc Prec Rec  AUC Acc Prec Rec 

RF .767* .927* .605* .025*  .735 .926 .312 .003 

GB .794* .928* .579* .084*  .767 .927 .467 .014 

LR .765* .926 .436 .032*  .759 .926 .415 .021 

DT .575* .874* .183* .208*  .550 .865 .140 .164 

Problem 2-High Utilization 

RF .845* .911* .748* .179*  .787 .902 .656 .060 

GB .853* .914* .682* .263*  .803 .903 .603 .115 
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LR .821* .905* .595 .160*  .801 .903 .578 .118 

DT .628* .859* .315* .344*  .574 .836 .221 .250 

Problem 3-CKD 

RF .637* .933* .383 .010  .619 .932 .324 .011 

GB .673* .933* .194* .003*  .663 .933 .00 .00 

LR .641* .933* .167 .001  .637 .933 .00 .00 

DT .538 .866 .089 .109  .535 .865 .085 .103 

Problem 4-CHF 

RF .630* .934* .166 .002  .609 .934 .148 .002 

GB .663* .934* .233 .003  .644 .935 .15 .001 

LR .622 .935 .100 .000  .622 .935 .000 .000 

DT .528 .869 .082 .098  .529 .870 .083 .100 

 

Method for Detailed Analysis of Models on Individual Level 

The following experiments aimed at understanding individual-level differences 

between the data representations. Following the methodology presented by Wojtusiak 

(Wojtusiak, 2021) and later extended by Wojtusiak and Asadzadehzanjani (Wojtusiak & 

Asadzadehzanjani, 2022), it is not sufficient to compare models purely based on their 

statistical performance measures. A detailed understanding of models’ behavior and 

properties is needed. There is surprisingly little literature that present frameworks for 

comparing ML models. When searching for published literature on comparison of ML 

models, all papers that appear are comparing specific models (or algorithms) for solving 

specific problems at hand. Virtually all of them report only some statistical measures 

discussed earlier in “Introduction” chapter. Similarly, large number of ‘data science’ 

websites discuss practical aspects of comparing models, including examples of source 

code, but also limit these comparisons to statistical accuracy measures.  Some approaches 
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to comparing models are available in other fields, including work by Lee and Sangiovanni-

Vincentelli (Lee & Sangiovanni-Vincentelli, 1998) who presented a general framework for 

comparing computation methods.  

While AUC, accuracy, recall, and precision are good overall metrics of model 

performance, they are insufficient to understand why models perform differently for 

individual cases. Comparison models on individual level allows to capture differences in 

models that are missed in population-level comparison; this would help identify cases for 

which that a specific model works best. The individual level comparison of models is 

categorized into two groups: Output and Input Comparison, which will be explained below.  

There are three requirements associated with model comparison: (1) the 

comparison should be applied on the same cases; this means that the cases should be 

extracted from either the same database or different databases linked by a common 

identifier; (2) the models should have the same unit of analysis meaning that each row 

corresponds to the same object; (3) the compared models should have the same output. The 

third condition can however be relaxed to some degree. 

Even though calibration curves allow for output comparison at different levels, like 

the standard statistical methods, they do not investigate model performance on cases-by-

case basis. Model Correlation Plots (MCPs) is an Output Comparison method that allow 

for visual case-by-case comparison of model outputs (Wojtusiak et al., 2017). The MCPs 

are scatterplots with axis corresponding to outputs of two models, and points representing 

individual cases (i.e., patients) for which predictions are made. If two models are identical, 

all points are located at the diagonal. Further, MCPs encode true class by color or symbol. 



68 

 

The corresponding datapoints in MCPs could also be aggregated and reported as tables in 

Output Comparison. Finally, comparing the distribution of the correct classified cases for 

each of the models is another Output Comparison method, which will be discussed in the 

‘Output Comparison’ section.  

Comparing model outputs allows for visually or statistically inspecting differences 

between models on individual cases. However, one needs to understand if there are any 

patterns within input values that correspond to differences in outputs of the compared 

models. In other words, are there patterns in input values that correspond to outputs 

visualized in model correlation plots?  

The patterns can be described in terms of attributes present in the data or derived 

from them. Results can be presented visually or in the form of a data table. Let 𝑇𝑆+ be a 

set of positive cases in TS and 𝑇𝑆−be a set of negative cases in TS. Let’s consider now 

four subsets of the testing set: 

 

Equation 8: Better vs. Correct Prediction 

𝐶𝑃𝑀1 = {𝑥 ∈ 𝑇𝑆+: 𝑀1(𝑥) ≥  𝜏 ∧ 𝑀2(𝑥) <  𝜏} 

𝐶𝑁𝑀1 = {𝑥 ∈ 𝑇𝑆−: 𝑀1(𝑥) <  𝜏 ∧ 𝑀2(𝑥) ≥  𝜏} 

𝑆𝑃𝑀1 = {𝑥 ∈ 𝑇𝑆+: 𝑀1(𝑥) ≥  𝑀2(𝑥) + 𝜀} 

𝑆𝑁𝑀1 = {𝑥 ∈ 𝑇𝑆−: 𝑀1(𝑥) < 𝑀2(𝑥) − 𝜀} 

 

𝐶𝑃𝑀1 and 𝐶𝑁𝑀1 are respectively positive and negative cases correctly classified 

by model 𝑀1 but not model 𝑀2.  𝑆𝑃𝑀1 and 𝑆𝑁𝑀1 are positive and negative cases better 

classified by model 𝑀1. Superior (Better) prediction is defined based on higher output 
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probabilities for one model vs. other model on positive cases and lower output probability 

on negative cases (output probability closer to the correct 0/1 label).  Better prediction does 

not tell us, which model makes correct prediction, but rather if it is performing better in 

classifying positive and negative labels. These four sets can be compared in terms of values 

of input attributes. The sets 𝐶𝑃𝑀2, 𝐶𝑁𝑀2, 𝑆𝑃𝑀2, and 𝑆𝑃𝑀2 are defined analogously for 

results superior by model 𝑀2.  

 The following experiments gives us case-by-case insight into model’s 

performance. Output comparison of the representation methods will be explained in 

Comparison of “Output Probability” section and Input Comparison is explained in the rest 

of the sections. 

Output Comparison 

Comparison of Output Probabilities 

A detailed comparison was made on the output probabilities of the models. First, 

the average output probability was compared between TMMR vs. Binary Representation 

methods across positive and negative labels. Since the distribution of the output 

probabilities across the two models were not normally distributed, Wilcoxon signed-rank 

test was used to compare the results. As shown in Table 6, the average output probability 

among cases with positive labels was significantly higher across Temporal Min-Max 

Representation-based models except for GB and DT of Problem 4 for which the results 

were not significant. Conversely, TMMR had overall lower output probabilities among 

negative label cases except for RF in predicting renal failure for which the pattern was 

opposite. (The results were not significant using DT in Problem 3 and RF and DT in 

Problem 4). Overall, higher probabilities of positive labels and lower probability of 
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negative labels in Temporal Representation suggest that this method is generally more 

likely to correctly classify both classes. Also, higher recall in Temporal Representation of 

diagnoses suggests that the method allows the algorithms to select more positive cases that 

are missed in Binary Representation method, thus leading to overall higher recall. 

 

Table 6: Output probability comparison for Temporal Min-Max 

Representation (TMMR) vs. Binary Representation (BIN) on all cases. 

Problem 1-Mortality 

 Positive Label Negative Label 

Alg TMMR BIN TMMR BIN 

RF 0.1859* 0.1459 0.0758* 0.0765 

GB 0.1883* 0.1452 0.0637* 0.0674 

LR 0.1579* 0.1487 0.0665* 0.0673 

DT 0.2134* 0.1704 0.0753* 0.0814 

Problem 2–High Utilization 

RF 0.3040* 0.2300 0.0879* 0.0946 

GB 0.3282* 0.2385 0.0748* 0.0850 

LR 0.2680* 0.2414 0.0817* 0.0848 

DT 0.3444* 0.2506 0.0843* 0.0990 

Problem 3-CKD 

RF 0.1185* 0.1062 0.0773* 0.0750 

GB 0.0891* 0.0863 0.0654* 0.0655 

LR 0.0866* 0.0847 0.0656* 0.0657 

DT 0.1319 0.1197 0.0824 0.0833 

Problem 4-CHF 

RF 0.1090* 0.0957 0.0760 0.0731 

GB 0.0851 0.0800 0.0638* 0.0643 

LR 0.0810* 0.0799 0.0642* 0.0643 

DT 0.1194 0.1094 0.0806 0.0801 
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The data summarized in Table 6 are also shown graphically in the form of Model 

Correlation Plots (MCP) in Figure 12 depicting 1000 randomly selected patients from the 

test set. In this example, values on axes represent output probabilities from models (vertical 

Binary, horizontal Temporal Min-Max). Green points represent negative cases (no death 

or no high utilization, no CKD and no CHF) and red represent positives (death or high 

utilization, CKD and CHF) according to real labels. The plots were created for RF, GB, 

and LR algorithms which give outputs in the form of probabilities, thus are not applicable 

to DT which is a symbolic classification method.  

 
Figure 12: Comparison of the output probability of TMMR vs. Binary Representation that shows 

weak correlation. Vertical and horizontal axes show Binary and Temporal Representation, 

RF        GB LR 

(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

   
(j) (k) (l) 
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respectively. Plots (a), (b) and (c) are for Problem 1, plots (d), (e), (f) for Problem 2, plots (g), (h), 

(i) for Problem 3, plots (j), (k), (l) for Problem 4.   

 

 

The models showed an overall medium or high agreement between models based 

on Binary and Temporal Representations. The average R2 across all three algorithms and 

among all cases and cases with positive and negative labels are as follows:  Problem 1: 

(All: 0.61, Positive: 0.60, Negative: 0.58), Problem 2: (All: 0.66, Positive: 0.66, Negative: 

0.59), Problem 3: (All: 0.56, Positive: 0.62, Negative: 0.54), Problem 4: (All: 0.50, 

Positive: 0.50, Negative: 0.49). The overall agreement is highest in predicting high 

utilization (Problem 2) and lowest in predicting CHF (Problem 4). Also, the correlation 

tends to be higher in positive labels.  

Despite high correlation coefficient, there are clear differences in the models’ 

predictions. For RF and GB algorithms, there was a visible shift of values to the right of 

the plots, indicating that the Temporal models output overall higher values. This 

observation is clearer in predicting mortality and high utilization as the other two models 

had smaller output probabilities for both TMMR and Binary methods as shown in Table 6.  

Distribution of Cases Between the Two Representation Methods 

To further investigate differences between TMMR and Binary methods, the distribution of 

the cases that are correctly classified or better predicted by one of the representation 

methods were calculated. The results are reported as percentage in  Table 7 and Table 8. 

Based on correction prediction definition (Table 7), positive cases tend to be correctly 

captured by Temporal Representation, while negative cases tend to be correctly classified 

by Binary Representation. Superior prediction table, however, indicates that most cases 
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were better captured by Temporal Representation method regardless of true labels of cases 

except for a few algorithms across the four prediction problems. It should be noted that the 

sum of values in superior comparison for both Temporal and Binary methods (Table 8) 

may not be always 100% as there are some cases with similar output probability.  

 

Table 7: Comparison of the distribution of cases for Temporal Min-Max 

Representation (TMMR) vs. Binary Representation (BIN) on correct 

prediction. 

Problem 1-Mortality 

 Positive Label Negative Label 

Alg TMMR BIN TMMR BIN 

RF 94.70% 5.30% 17.58% 82.42% 

GB 93.37% 6.63% 16.14% 83.86% 

LR 77.95% 22.05% 32.91% 67.09% 

DT 57.82% 42.18% 52.38% 47.62% 

Problem 2-High Utilization 

RF 90.43% 9.57% 29.44% 70.56% 

GB 88.04% 11.96% 34.01% 65.99% 

LR 75.83% 24.17% 35.35% 64.65% 

DT 63.06% 36.94% 54.94% 45.06% 

Problem 3-CKD 

RF 45.45% 54.55% 75.61% 24.39% 

GB 100.00% 0.00% 9.68% 90.32% 

LR 100.00% 0.00% 8.33% 91.67% 

DT 53.55% 46.45% 50.27% 49.73% 

Problem 4-CHF 

RF 0.00% 100.00% 81.25% 18.75% 

GB 76.92% 23.08% 13.16% 86.84% 

LR 100.00% 0.00% 0.00% 100.00% 

DT 53.07% 46.93% 49.75% 50.25% 
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Table 8: Comparison of the distribution of cases for Temporal Min-Max 

Representation (TMMR) vs. Binary Representation (BIN) on superior 

prediction. 

Problem 1-Mortality 

 Positive Label Negative Label 

Alg TMMR BIN TMMR BIN 

RF 59.25% 34.78% 48.43% 40.16% 

GB 56.75% 43.25% 52.70% 47.30% 

LR 56.79% 43.21% 46.30% 53.70% 

DT 16.12% 11.84% 6.88% 6.26% 

Problem 2–High Utilization 

RF 69.15% 27.12% 51.64% 34.69% 

GB 65.94% 34.06% 60.20% 39.80% 

LR 63.11% 36.89% 56.62% 43.38% 

DT 22.65% 13.27% 8.27% 6.78% 

Problem 3-CKD 

RF 51.51% 41.44% 46.84% 43.31% 

GB 46.79% 53.21% 49.90% 50.10% 

LR 54.83% 45.17% 46.44% 53.56% 

DT 9.23% 7.94% 7.03% 6.90% 

Problem 4-CHF 

RF 50.11% 41.92% 47.36% 42.60% 

GB 47.77% 52.23% 53.81% 46.19% 

LR 52.17% 47.83% 46.73% 53.27% 

DT 9.34% 8.45% 6.83% 6.81% 

 

Input Comparison 

Days Between Diagnosis and Prediction Time 

The following experiment was conducted as part of Input Comparison to understand what 

patterns within inputs correspond to changes in the outputs based on the two representation 

methods. The average number of days between diagnosis occurrence and prediction time 
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across all diagnosis codes (Min and Max attributes) was compared between Temporal and 

Binary Representations. In TMMR, the diagnosis codes are represented by calculating the 

time from the first and last occurrence of the diagnosis to the prediction time (represented 

with Min and Max attributes of each diagnosis code). Therefore, the average of time to 

diagnosis across all CCS codes (both Min and Max attributes) were compared on cases that 

are either correctly or better predicted by one of the representation methods and the results 

are shown in  

Table 9 and Table 10. Due to non-normal distribution of the data, Mann-Whitney 

U test was used instead of the t-test for comparing results. A general observation was that 

the average number of days was smaller for Temporal Representation among cases with 

positive labels and larger among cases with negative labels in most comparisons. The 

results were conclusive and significant in Problem 1 and Problem 2 for both correct and 

superior prediction. In terms of superior prediction, similar pattern was observed among 

GB and LR algorithms in predicting CHF and CKD, while it was opposite for RF in these 

two outcomes. However, the results were not comparable when comparing correctly 

classified cases in predicting these outcomes; this is because either there were no correctly 

predicted cases (represented by N/A in the tables) in one of the representation methods or 

no significant difference between the values. The results overall suggest that TMMR 

representation tends to better classify positive cases who had health issues for a shorter 

period, while it tends to better predict true negative cases who were sick longer. A related 

issue is further investigated in “Model History Length” section in which the relationship 
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between observation window sizes (history length) and model performance will be 

examined.   

 

Table 9: Comparison of the average number of days for TMMR vs. Binary 

Representations on correct prediction. 

Problem 1-Mortality 

 Positive Label Negative Label 

Alg TMMR BIN TMMR BIN 

RF 1259.6* 2599.1 2405.3* 1243.4 

GB 1353.6 1413.3 1898.0* 1380.5 

LR 1181.7* 1906.9 2608.1* 1193.3 

DT 1595.1* 1680.8 1981.4* 1838.6 

Problem 2–High Utilization 

RF 1432.5* 1913.5 2070.2* 1555.0 

GB 1468.2* 1754.1 1834.7* 1525.5 

LR 1184.2* 2195.7 2362.4* 1213.2 

DT 1579.9* 1669.6 1944.5* 1754.2 

Problem 3-CKD 

RF 3933.5 2426.3 2568.4 1751.9 

GB 1340.5 N/A 2182.1 1977.3 

LR 1871.6 N/A 1612.9 1572.3 

DT 1929.1 1863.2 1959.7 1964.2 

Problem 4-CHF 

RF N/A 2693.0 2444.8 1245.7 

GB 1849.8 1983.4 2080.6 1751.1 

LR 2248.5 N/A N/A 1660.8 

DT 1794.3 1793.7 1886.8 1868.4 

 

Table 10: Comparison of the average number of days for TMMR vs. Binary 

Representations based on superior prediction. 

Problem 1-Mortality 
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 Positive Label Negative Label 

Alg TMMR BIN TMMR BIN 

RF 1641.26* 1771.76 1920.35* 1816.88 

GB 1549.92* 1896.64 2004.06* 1699.10 

LR 1510.49* 1933.96 2103.39* 1643.55 

DT 1600.81* 1682.96 1977.14* 1842.69 

Problem 2–High Utilization 

RF 1538.88* 1795.15 2048.76* 1644.65 

GB 1497.31* 1833.94 2055.30* 1587.85 

LR 1338.79* 2082.75 2188.95* 1459.63 

DT 1579.53* 1669.15 1942.51* 1755.21 

Problem 3-CKD 

RF 1876.77* 1829.25 1888.13* 1914.82 

GB 1656.12* 2062.27 2118.64* 1665.69 

LR 1603.46* 2159.21 2232.56* 1586.16 

DT 1915.05 1847.00 1959.98 1963.72 

Problem 4-CHF 

RF 1805.54* 1734.04 1815.74* 1835.75 

GB 1545.74* 2003.89 2046.07* 1551.52 

LR 1477.50* 2083.87 2158.46* 1506.57 

DT 1807.58 1815.79 1886.77 1882.89 

 

Number of Present Health Conditions 

Similar experiment was conducted to compare the number of present diagnosis 

codes for Temporal vs. Binary Representation methods. This experiment is intended to 

determine how the representation methods are impacted by the number of present diagnosis 

codes resulting in different prediction. For this purpose, the average number of present 

diagnoses (CCS codes) was compared for the two representation methods based on correct 

and superior prediction and the results were shown in Table 11 and Table 12, respectively.  
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In general, the number of present health conditions was larger or smaller depending 

on what is being predicted, algorithm, and output class when comparing correctly classified 

cases; this means that no specific pattern was observed for each of the representation 

methods.  

The results were more conclusive based on superior prediction; the average number 

of codes tends to be larger for Temporal Representations among cases with positive labels 

and smaller among negative ones for most algorithms across four prediction problems. 

Therefore, the larger number of present codes (sicker patients) in predicting positive cases 

suggests that sicker patients (patients with more diagnosis codes) are better predicted with 

Temporal Representation. Conversely, sicker patients are better captured with Binary 

Representation in predicting negative labels. These results can be interpreted as when using 

the Temporal Representation in predicting positive cases, patients need to be more severely 

sick with larger number of conditions present. In general, in Binary Representation, each 

of the conditions present in a patient’s record provides an incremental increase to the 

predicted probability. In contrast, in TMMR, individual diagnoses can have stronger impact 

as well as non-linear relationship with the predicted outcomes because of the time 

information available. 

 

Table 11: Comparison of the number of present codes for TMMR vs. Binary 

Representations on correct prediction 

Problem 1-Mortality 

 Positive Label Negative Label 

Alg TMMR BIN TMMR BIN 

RF 83.0* 1.1 10.5* 77.3 



79 

 

GB 77.9* 87.0 85.8* 78.5 

LR 80.0 86.5 84.9* 78.8 

DT 68.9* 65.0 57.8* 59.5 

Problem 2–High Utilization 

RF 85.3* 103.7 101.5* 88.9 

GB 79.7* 97.0 96.8* 80.8 

LR 85.8* 99.7 98.1* 85.6 

DT 76.9* 78.6 63.6 63.9 

Problem 3-CKD 

RF 0.4* 1.0 1.6 1.9 

GB 74.7 N/A 78.0 77.5 

LR 76.3 N/A 73.0 60.1* 

DT 58.4* 54.2 50.3 53.7* 

Problem 4-CHF 

RF N/A 0.8 0.8 1.3 

GB 85.5* 77.7 90.8 72.7* 

LR 94.0 N/A N/A 66.0 

DT 56.8* 52.1 47.8 49.8* 

 

Table 12: Comparison of the number of present codes for TMMR vs. Binary 

Representations on superior prediction 

Problem 1-Mortality 

 Positive Label Negative Label 

Alg TMMR BIN TMMR BIN 

RF 60.68* 52.52 46.25* 50.13 

GB 60.52* 52.92 47.71* 46.23 

LR 57.35 57.08 49.19* 45.13 

DT 68.46* 64.24 56.89* 58.49 

Problem 2–High Utilization 

RF 71.74* 70.50 47.24* 50.83 

GB 70.70 70.99 49.22* 39.08 

LR 69.72* 72.65 44.79* 45.71 
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DT 76.84* 78.54 62.85 63.19 

Problem 3-CKD 

RF 48.86* 38.88 40.58* 46.15 

GB 51.73* 37.89 42.72 42.63 

LR 44.32 44.42 44.44* 41.15 

DT 56.73* 53.05 49.37 53.21 

Problem 4-CHF 

RF 47.73* 37.93 37.03* 42.87 

GB 48.70* 37.83 37.72* 40.77 

LR 42.56 43.52 40.38* 38.04 

DT 55.67* 49.83 46.56* 49.08 

 

Model History Length (Back Window Size)  

Does the history matter? This set of experiments was to investigate the impact of 

the observation window size (length of patient history) on the quality of models when 

applying the Binary vs. Temporal Min-Max Representation methods. Intuitively, longer 

windows allow for inclusion of more diagnosis codes present in the patients’ history. 

However, when Binary Representation is used, large window size may cause inclusion of 

diagnoses (codes) that are no longer relevant (i.e., acute conditions). In contrast, when 

TMMR is used, data with irrelevant timeframe can be adjusted by the model itself. The 

presented discussion assumes fixed window size across all diagnoses. However, initial 

results have shown that this assumption is an over-simplification since period of relevance 

may depend on specific diagnoses. In general, an optimal window size should be optimized 

for each diagnosis separately, yet that may not be practical due to computational 

complexity of the problem.  
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For this purpose, diagnosis codes were extracted 1 year, 2 years, … 12 years as well 

as 18 years prior to the prediction time to allow for investigating the impact of the amount 

of information on model performance. As illustrated in  Figure 13, the grey area indicates 

the size of observation window ranging from 18 years to 1 year and the fixed-size window 

(1 year) on the right of each axis shows the prediction window. For each observation 

window size, the models were developed for the four outcomes, four algorithms and two 

representation methods.   

 

 
 Figure 13: Illustration of temporality in diagnosis codes extraction 

 

The results are summarized on Figure 14 that graphically shows the AUC of the 

constructed models. The vertical axis refers to the AUC of the models and horizontal axis 

represents the size of the observation window ranging from 18 years to 1 year. Similar 

plots were generated for accuracy, precision, and recall, but they are not included here due 
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to space limitation. Red and black lines correspond to the changes in AUC for Temporal 

vs. Binary methods. An interesting observation was that the changes in observation 

window size affect the quality of the models differently across the four models, four 

algorithms and the two representation methods. The results suggest that one needs to 

carefully pick the optimal size of observation window with respect to the algorithm, 

outcome, and the representation method to improve the quality of the models. The AUC 

ranged between about 0.53 and 0.76 in Problem 1, 0.54 and 0.85 in Problem 2, 0.50 and 

0.67 in Problem 3, and between 0.48 and 0.66 in Problem 4. 

In general, it was observed that TMMR outperformed Binary method in most 

observation window sizes. However, in some algorithms or observation window sizes, 

Binary Representation outperformed Temporal Representation or have equal performance. 

The AUC change pattern was similar for RF and GB across Problem 1, 3 and 4. In these 

models, the accuracy of Temporal-based models increased with more amount of data 

achieving the highest AUC when the window size was 18 years (the longest that can be 

constructed from available data). This suggests that in predicting these three outcomes, it 

is important to know what happened in patient’s medical history long time ago and that 

Max columns should have high ranking. In Problem 2, however, it was observed that the 

accuracy of the models does not depend on the amount of data as it was almost constant 

over the course of 18 years; this suggest that the most recent diagnoses or Min columns 

should have high rank in predicting high utilization. As an exception, it was observed that 

the AUC of DT-based model in predicting high utilization drops with less amount of data. 

However, since AUC is not a good metric for assessing DT, the results are not reliable for 
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comparing. Using Binary Representation for RF and GB algorithms, the performance of 

the models increased with less amount of data in predicting mortality and high utilization 

achieving the best performance by having about three years of data in Problem 1 and only 

one year in Problem 2. However, in Problem 3 and 4, the performance of Binary-based 

models dropped by shrinking the size of the observation window. For Decision Tree (DT), 

the accuracy dropped with less amount of data for Temporal and Binary Representations 

across four prediction problems. Additionally, when LR was used, the pattern varied based 

on the prediction problem and the representation method. Finally, it was shown that there 

was a large difference between the two representations between Problem 1 and Problem 2, 

while these two methods did not really differ in predicting CKD and CHF.  

In summary, it is clear that the relationship between the window size and model 

performance depends on the specific type of algorithm used as well as the outcome being 

predicted. When predicting mortality, symbolic methods (RF, GB, DT) performed better 

with more data available and TMMR representation was used. When Binary Representation 

was used, RF and GB peak at about 3 years of data. LR models on the same data preferred 

smaller window sizes, with peak at 3 years again. Different shapes were observed for other 

prediction problems, indicating that amount of data depends on the outcome predicted. 
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Figure 14: Comparison of the Temporal (red) vs. Binary (black) Representation for the four problems. Vertical 

and horizontal axes show AUC and observation window size, respectively. Different scales on the sub-plots are 

irrelevant because the focus is on presenting shapes of the curves. 

 

Distribution Importance of Chronic and Non-chronic Diagnoses 

As described along with the definition of TMMR, the choice between Min and Max 

attributes is to capture the first occurrence of the diagnosis which may typically be 

important among chronic conditions and last occurrence of the diagnosis, which may be 

more important for acute conditions. In the previous section, it was observed that RF, GB, 

and DT had better AUC in predicting mortality, CHF, and CKD in larger observation 

window size while the change in observation window size did have small impact in high 
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utilization prediction. In predicting high utilization, the change was constant in RF and GB 

over the course of 18 years, while the AUC of DT-based model dropped in smaller window 

sizes. Therefore, it was suggested that time from the first visit (Max attributes) tends to 

have high ranking for the first three models compared to the last model, meaning that there 

should be more Max attributes as top predictors of mortality, CKD and CHF compared to 

high utilization. To test this observation, average Gini scores across the 10 training sets 

were calculated to measure the quality of the predictors. Table 13 shows the top CCSmax 

attributes among the top 40 attributes for each of the models. As shown, there were more 

Max attributes in Problem 1, Problem 3, and Problem 4, while there seems to be few Max 

attributes in predicting high utilization. The results agree with what was observed in 

previous section, that in most models some information about when diagnoses were present 

for the first time is important, while in predicting high utilization recent data is more 

important.  

In addition, the Chronic Condition Indicator (CCI) from the AHRQ was used to 

distinguish Chronic vs. Non-chronic CCS conditions. The tool essentially categories the 

ICD-9 CM diagnosis codes into CCS categories, that were later assigned chronic/non-

chronic status. In this experiment, CCS codes with both chronic and chronic/acute 

definitions were defined as chronic. This mapping resulted in 141 chronic conditions and 

92 non-chronic conditions. Condition names associated with each of these CCS codes as 

well as chronic/non-chronic status could be found in Appendix section (Table 21). By 

examining the CCS codes (see Table 13), it was observed that most of these codes are 

chronic conditions, supporting the definition of Max attributes in TMMR method. It should 
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be mentioned that since the plots were not consistent for LR-based models, the results could 

not be generalized to this algorithm.  

 

Table 13: Top Max attributes among the top 40 predictors for each problem. The 

importance was calculated based on the average Gini Score for RF, GB, and DT 

algorithms. Condition names associated with the CCS codes can be found in in Table 

21 (Appendix). 

Problem 1-Mortality 

Alg CCS   CCS% 

RF 
CCS98, CCS653, CCS259, CCS10, CCS211, CCS108, CCS133, 

CCS257, CCS106 
22.5 

GB 
CCS98, CCS108, CCS204 

7.5 

DT 
CCS53, CCS98, CCS211, CCS55, CCS108, CCS133, CCS10, 

CCS257, CCS259, CCS198 
25.0 

Problem 2–High Utilization 

RF 
CCS108, CCS158, CCS157 

7.5 

GB 
CCS158, CCS108 

5.0 

DT 
CCS53, CCS257, CCS98 

7.5 

Problem 3-CKD 

RF 

CCS98, CCS10, CCS53, CCS259, CCS49, CCS211, CCS101, 

CCS257, CCS164, CCS86, CCS106, CCS133, CCS117, CCS205, 

CCS102 

37.5 

GB 
CCS98, CCS257, CCS50, CCS53, CCS17, CCS259, CCS49, 

CCS126, CCS653, CCS2616, CCS221, CCS97, CCS138 
32.5 

DT 
CCS10, CCS259, CCS95, CCS133, CCS134, CCS101, CCS114, 

CCS126, CCS49, CCS127 
25.0 

Problem 4-CHF 

RF 
CCS98, CCS53, CCS259, CCS257, CCS133, CCS164, CCS49, 

CCS106, CCS205, CCS256 
25.0 

GB 
CCS98, CCS256, CCS53, CCS2618, CCS203, CCS50, CCS154, 

CCS63, CCS158, CCS132 
25.0 

DT 

CS98, CCS53, CCS10, CCS211, CCS257, CCS133, CCS49, 

CCS259, CCS164, CCS95, CCS106, CCS114, CCS203, CCS205, 

CCS99 

37.5 
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Diagnoses Groupers 

The original diagnoses are stored in claims data as ICD-9 or ICD-10 codes. When 

modeling, these codes are often grouped to larger categories such as CCS, Elixhauser, or 

Charlson to reduce dimensionality of the representation space.  Such reduction is often 

needed when limited amount of data are available. 

This experiment addresses the question that if the results described above are 

specific to CCS codes or are generalizable to other coding systems (code groupings). More 

specifically, a version of Elixhauser (ELIX) code (version 3.0 or AHRQ-web ICD-9-CM 

Elixhauser code (Quan et al., 2005)) was applied to map ICD-9 codes into 30 categories. 

Specifically, CCS codes were mapped to ELIX codes resulted in a total of 30 attributes for 

Binary and 60 attributes for TMMR. The models were reconstructed using ELIX codes and 

compared with CCS-based models. Figure 15 compares the AUC of the four prediction 

problems for CCS vs. ELIX codes. As shown, the AUC of the models constructed on the 

ELIX codes was lower than the CCS-based models across all algorithms except for 

Temporal-based CKD model using DT in which ELIX model was slightly better. This is 

reasonable as some information is lost when mapping CCS codes to ELIX grouper codes 

with smaller number of categories and large number of datapoints, resulting in lower 

performance.  

A key observation was that the ‘shape’ of the plots is the same as when using CCS 

codes. Thus, one can reason that the change in the AUC is independent of the representation 

methods in both Temporal and Binary Representations, which suggests potential 

generalizability of the findings to other groupers. However, similar experiments are needed 



88 

 

to be completed for other groupers. It is also possible that the ‘shape’ of the curves will 

change when only a limited amount of data is available.  

 

 
Figure 15: Comparison of the AUC of models on two different representation systems by changing the size of 

the observation window. Red and black lines indicate Temporal vs. Binary Representations, respectively. 
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Shape of the curves indicate that model performance depends on data representation but not on diagnosis 

groupers used. 

 

Representation of Non-present Diagnoses 

As described along with the definition of TMMR, the non-present administrative 

codes should take special values. While it may be reasonable to represent missing values 

with zero in regression-like models (that cancels out a term in regression), it may not work 

for symbolic models. The initial results in predicting Activities of Daily Living suggested 

that symbolic representation algorithms including Random Forest, Decision Tree and 

Gradient Boosting are not impacted by what special value was used, however it mattered 

for algorithms with numeric representation such as Logistic Regression (Wojtusiak et al., 

2021a). The following experiment aims at replicating the results on the four prediction 

problems by replacing the special values with different n_9 values including +/-999999 

(6_9), +/-99999 (5_9), and +/-9999 (4_9) values. Also, these non-present codes were 

replaced with other values including 365 (representing 1 year), 730 (representing 2 years) 

and maximum value of each administrative code (Max_Each) to determine how small 

special values that are within the range of the data would impact the results. In addition, 

the models were created by changing the observation window size to see how these special 

values are impacted by the amount of available data. 

Figure 16 compares the AUC of the constructed models using different Temporal 

methods. Each line corresponds to one of the Temporal methods. The AUC corresponding 

to Binary Representation method was also shown in each plot for better comparison. The 

results confirmed our initial observation in predicting ADLs; Random Forest, Gradient 
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Boosting and Decision Tree were not affected by these special values were assigned 

through different observation window sizes, while the AUC of the Logistic Regression-

based models was impacted by the representation method. One explanation for these results 

is that for symbolic methods, it is irrelevant how not-present values are represented as long 

as the value is distinct, while parametric models need to find a coefficient for each 

diagnosis code, which is affected by the representation of the codes. Replacing non-present 

codes with 365 (1 year) or 730 (2 years), however, lowered the AUC of some models in 

symbolic representation algorithms. Because these values are small enough, they might be 

confused by the number of days within the data, thus affecting the AUC. Additionally, it 

was observed that depending on the size of the observation window, one Temporal method 

outperformed the other in LR-based model. Finally, and as expected, different Temporal 

Min-Max methods outperform Binary Representation using RF, GB, and DT algorithms, 

while it changes depending on the observation window size in LR-based models.  
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Figure 16: Comparison of the AUC of different Temporal Min-Max Representation across four models including 

+/-999999 (6_9) , +/-99999 (5_9), and +/-9999 (4_9), 365 (1 year), 730 (2 years), and maximum value of each 

diagnosis attribute (Max_Each) by varying observation window size; each line correspond to one Temporal 

method.  Binary Representation was also included for better comparison. 

 

Age and Racial Biases 

Another important question is how the two representation methods differ with 

respect to demographic factors? It is essential that machine learning-based models are free 

of biases that may potentially discriminate against certain groups of individuals. Thus, 

testing how claims representation methods affect potential biases is of critical importance. 
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tested on patients with different age groups as well as races. For age experiment, different 

age categories were created including: ’70-74’, ’75-80’, ’81-85’, ’86-89’, ’75-80’, and 

‘more 90’ age groups. The models were also tested on six race groups including: ‘White’, 

‘Black’, ‘Asian’, ‘Native American’, ‘Hispanic’, and ‘Unknown’. The AUC of the models 

was then calculated for these subcategories.  

The plots in Figure 17 demonstrate the AUC values of the models on different age 

groups for TMMR vs. Binary methods. Patients’ distribution for each age group is also 

included in the figure. It was observed that TMMR outperforms Binary Representation 

method across different age groups for the four prediction problems, suggesting the 

superiority of TMMR across age groups. More interestingly, the results indicated that even 

though models’ performance becomes worse for older patients (due to smaller sample size), 

this decrease is smaller for TMMR method; larger difference in AUC of the two 

representation methods among older patients (underrepresented population) can indicate 

that TMMR is potentially more stable than Binary method in predicting the four outcomes. 

Consequently, this suggests the potential of TMMR in minimizing the disparity among 

different age groups. 

Results with race groups (see Figure 18) also confirmed the superiority of TMMR 

over Binary method. Similar patterns were also observed in predicting some of the 

underrepresented population across the four prediction problems. 
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Figure 17: Comparison of the AUC of models for TMMR vs Binary methods on different age groups. The age 

groups include 70-74’, ‘75-80’, ‘81-85’, ‘86-89’, ’75-80’, and ‘more 90’. For better comparison, the average AUC 

of models on all patients is included in the figure. Also, the distribution of the cases for different age groups is 

shown for each prediction problem. 
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Figure 18: Comparison of the AUC of models for TMMR vs Binary methods on different races. The race groups 

include ‘White’, ‘Black’, ‘Asian’, ‘Hispanic’, ’Unknown’, and ‘Native American’. For better comparison, the 

average AUC of models on all patients is included in the figure. Also, the distribution of the cases for each race 

group is shown for each prediction problem. 

 

The above analysis illustrated that the potential biases are smaller for TMMR than 

standard Binary Representation. However, potential biases need to be investigated for all 

constructed models, regardless of representation used. Further analysis could also be done 

for other characteristics of patients, such as gender that is not present in the analyzed data.  

Sensitivity Analysis 

Sensitivity analysis is one way to measure the uncertainty of the models in making 

prediction. In other words, in measures how the changes in input attributes would affect 
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output. It refers to model’s variance in machine learning and statistics domain. The model 

becomes less stable or more sensitive, if any small changes in inputs results in significant 

changes on the output (Wojtusiak, 2021). Therefore, an experiment was conducted to 

determine how the probability of each outcome is affected by changes in each 

administrative code (CCS code) across the two representation methods. For this purpose, 

the change in output probability was measured by converting present CCS codes (one code 

at a time) to non-present one. In Binary Representation, present codes (represented with 1) 

were converted to zero. In TMMR method, present Min and Max attributes of each code 

(represented by the number of days from diagnosis to prediction time) were replaced with 

999999.0 and -999999, respectively. Figure 19 visually illustrates how sensitivity analysis 

is applied for both Binary and TMMR methods on one diagnosis code. As shown, CCS1 is 

converted to zero in Binary Representation, while Min and Max copies of the same code is 

converted to +/- 999999 in TMMR representation. Then the changes in output probability 

before and after this conversion is calculated. The sensitivity of the model with respect to 

each CCS code is the average of the changes for all patients in one of the test sets. The 

average of the change in output probabilities was then calculated across all CCS codes and 

compared between the two representation methods. The results were reported across the 

true label of each outcome and Wilcoxon signed-rank test was also used to determine the 

significance of the results.  
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Figure 19: Sensitivity analysis framework for Binary (a) and TMMR (b) methods. In Binary Representation, 

the change in output probability is calculated by converting 1 to 0. In TMMR, such change is measured by 

changing the present codes to +/-999999. Sensitivity of the models with respect to each diagnosis codes is the 

average of output probability changes for all patients.   

 

As shown in Table 14, both representation methods had small changes in the 

average output probabilities across all CCS codes suggesting that the models developed 

with two representation methods are not sensitive to changes in individual diagnoses in 

general. Nevertheless, there were some cases for which converting present to non-present 

codes affected the output prediction with large changes in output probability. It was 

observed that the sensitivity of the models on the two representation methods was impacted 

by the prediction problem, algorithm, and the true label of each class and the results were 

significant among most of the comparisons. For example, in predicting mortality using GB, 

Binary Representation-based model was on average more sensitive than Temporal one, 

while an opposite pattern was observed when LR was used.  

Intuitively, one would expect a decrease in the output probability by converting 

present CCS codes to non-present ones. Even though this is true for most instances, it is 

possible for some algorithms and models to have an increase in the output probability, 
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resulting in the negative change in output probabilities. This could happen due to the 

correlation among different CCS codes that can impact learning of an instance during 

model training.  

 

Table 14: Comparison of the changes in output probabilities between the 

two representation methods. 

Problem 1-Mortality 

 Positive Label Negative Label 

Alg TMMR BIN TMMR BIN 

RF 0.0001 0.0002 -0.0001* -0.0001 

GB 0.0006* 0.0007 0.0001* 0.0001 

LR 0.0005* 0.0004 0.0000* 0.0000 

DT 0.0003 -0.0001 -0.0002* -0.0003 

Problem 2–High Utilization 

RF 0.0013 0.0015 0.0003* 0.0004 

GB 0.0021 0.0022 0.0004* 0.0006 

LR 0.0021* 0.002 0.0006* 0.0006 

DT 0.0018 0.0012 0.0002* 0.0001 

Problem 3-CKD 

RF 0.0000 0.0000 -0.0001 -0.0001 

GB 0.0001* 0.0002 0.0000* 0.0001 

LR -0.0044* -0.0001 -0.0046* -0.0001 

DT -0.0319* -0.0004 -0.0430* -0.0002 

Problem 4-CHF 

RF 0.0000 0.0000 0.0001* -0.0001 

GB 0.0001* 0.0002 0.0000* 0.0001 

LR 0.0001* 0.0000 0.0000* 0.0000 

DT 0.0001* -0.0005 -0.0002* -0.0004 
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Then, similar experiment was conducted across all CCS codes that were present in 

patient’s records only once in the data (value of Min and Max attributes are the same 

indicating only one encounter for a specific diagnosis code) and the results are shown in 

Table 15. It was observed that the changes in output probability was larger in Binary-based 

models for most of the algorithms across four prediction problems and the results were 

significant mostly across negative labels.  

 

             Table 15: Comparison of the changes in output probabilities between the 

two representation methods for codes present once in data. 

Problem 1-Mortality 

 Positive Label Negative Label 

Alg TMMR BIN TMMR BIN 

RF 0.0035* 0.005 0.0036* 0.005 

GB 0.0025 0.0033 0.0005* 0.0024 

LR 0.0018 0.0019 0.0041 0.0025 

DT 0.0085 0.0081 0.0049* 0.0072 

Problem 2–High Utilization 

RF 0.0031* 0.0063 0.004* 0.0064 

GB 0.0024* 0.0064 0.0008* 0.0042 

LR 0.004* 0.0041 0.0016* 0.0032 

DT 0.003* 0.0122 0.0061* 0.0088 

Problem 3-CKD 

RF 0.003 0.0045 0.0042* 0.0048 

GB 0.0003 0.001 0.0008 0.0018 

LR 0.0017 0.0016 0.0001 0.0005 

DT 0.0089 0.013 0.0037* 0.0145 

Problem 4-CHF 

RF 0.0036* 0.0047 0.0044* 0.0053 

GB 0.0004 0.001 0.0013 0.0046 
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LR 0.002 0.0017 0.0034 0.0018 

DT 0.0065 0.017 0.0054 0.0114 

 

Comparison of Model Sensitivity among Min and Max Attributes 

To investigate the relationship between Min and Max attributes and the change in 

output probabilities of Temporal-based models, scatterplots were created for different CCS 

codes. Figure 20 and Figure 21 show examples of three codes: CCS108 (congestive heart 

failure), CCS653 (delirium, dementia, and amnestic and other cognitive disorders) and 

CCS158 (chronic kidney disease) in predicting high utilization of medical services using 

Gradient Boosting algorithm across Min and Max attributes, respectively. These codes 

were selected from the top 10 predictors of high utilization based on the average GINI 

Score. The scatterplots were created for all cases as well as those for which then changes 

in output probability is meaningful (absolute value is greater than 5%) as shown in the 

second row of each figure. Overall, the change in output probabilities was higher among 

top predictors whereas the change in less important attributes was smaller or close to zero. 

As shown in Figure 20, there was a relatively small negative relationship between the last 

occurrence of diagnosis (Min attribute) and changes in output probabilities, meaning that 

the changes are larger when the last occurrence of these diagnoses is close to the prediction 

time. The negative coefficient corresponds to the fitted line in these scatterplots confirms 

such relationship. Also, large changes in output probabilities happens when the last recent 

occurrence of the diagnosis was less than about 1000 days. The negative correlation was 

more apparent on cases for which the change in output probability was greater than 5%. 
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Conversely, there was a small or no correlation between the time from first occurrence of 

the diagnosis (Max attributes) and changes in output probability (See  Figure 21, first row).  

However, among cases with meaningful changes (greater than 5%), there was a clear 

positive correlation between Max attributes and changes in output probabilities (second 

row); this indicates that the models are more prone to changes when the patient was first 

diagnosed with a disease long time ago. The results overall suggest that Temporal models 

are more sensitive to the last occurrence of the diagnosis than time since the first diagnosis. 

This fact is also consistent with the last occurrence of disease (Min attribute) being overall 

more important.  

 

 
Figure 20: Relationship between changes in output probability and Min attributes in predicting high utilization 

using Temporal method. The vertical and horizontal axes correspond to changes in output probability and Min 

attributes for CCS108, CCS653 and CCS158, respectively. The first row refers to all patients in the test set with 

mentioned diagnosis codes, while the second row refers to those with meaningful changes in probabilities (greater 

than 5%). 
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Figure 21: Relationship between changes in output probability and Max attributes in predicting high utilization 

using Temporal method. The vertical and horizontal axes correspond to changes in output probability and Max 

attributes for CCS108, CCS653 and CCS158, respectively. The first row refers to all patients in the test set with 

mentioned diagnosis codes, while the second row refers to those with meaningful changes in probabilities 

(greater than 5%). 

 

 

 Sensitivity Comparison between TMMR and Binary Models across Min and Max 

Attributes 

An experiment was then performed to determine how the time from diagnosis (Min 

and Max attributes) impacts the sensitivity of models with respect to TMMR vs. Binary 

methods. Scatterplots were created to visualize example results for both Min and Max 

attributes (high utilization prediction using GB algorithm) and the results are shown in 

Figure 22 and Figure 23 for diagnosis codes CCS108, CCS653 and CCS158. The figures 

were developed on all cases (first row of each figure) and on cases for which the change 

was greater than 5% (Second row of each figure). Blue and Orange points refer to Temporal 

and Binary-based models, respectively. As shown, Binary models were less sensitive to 

time from diagnosis compared to Temporal-based models, meaning that there is a weak 
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correlation between the time from diagnosis and changes in output probabilities across 

Binary models. One might argue that since the changes in output probabilities in Binary 

models was calculated based on converting present code (represented as 1) to non-present 

(represented as 0), the model should not be impacted by the time to diagnosis and therefore, 

the correlation should be zero for these models. This weak correlation can be justified by 

the association between specific CCS codes with other diagnosis codes, which can 

potentially impact the output probability. 

 

 
Figure 22: Relationship between changes in output probability and Min attributes across both Temporal 

(blue points) and Binary Representation (orange points) methods. The vertical and horizontal axes 

correspond to changes in output probability and the number of days (Min attributes), respectively. The first 

row refers to all patients, while the second row refers to those with meaningful changes in probabilities 

(greater than 5%). 
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Figure 23: Relationship between changes in output probability and Max attributes across both Temporal and 

Binary Representation methods. The vertical and horizontal axes correspond to changes in output probability 

and the number of days (Max attributes). 

  

Model Sensitivity and Outcome Analysis 

To investigate the sensitivity of the models to changes in input attributes, a series 

of experiments were performed. To illustrate results, example scatterplots were created for 

the three mentioned diagnosis codes across Problem 1 (Mortality) and Problem 2 (High 

Utilization) using GB algorithm. Figure 24 and Figure 25 show the changes in output 

probabilities across Min and Max attributes, respectively. In each figure, first row refers to 

Problem 1 and second row refers to Problem 2. For better illustration, the plots were only 

produced when the change in output probability was greater than 5%.  

As shown, the negative correlation between Min attributes and output probability 

and the positive/close to zero correlation between Max attributes and output probability 

changes is independent of the outcome. However, the magnitude of the changes is different 

for each CCS code with models being more sensitive to their top predictors. For example, 
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the changes were larger for CCS108 (congestive heart failure) and CCS 653 (delirium, 

dementia, and amnestic and other cognitive disorders) in predicting mortality, whereas the 

change for CCS158 (chronic kidney disease) was larger in predicting high utilization. The 

diagnosis codes CCS108 and CCS653 are among the most important features in predicting 

mortality, while CCS158 is more predictive of high utilization of medical services. 

Although CCS653 is also a top predictor of high utilization, its higher importance in 

predicting mortality making it more sensitive in Problem 1. Similar analysis for CKD and 

CHF models also confirmed such observation. In summary, it is advisable to test sensitivity 

every time a new model is constructed, rather than assuming certain model properties.  

 

 
Figure 24: Comparison of the changes in output probability and Min attributes across Problem 1 (Mortality) 

and Problem 2 (High Utilization); the first row corresponds to Problem 1 and the second row refers to Problem 

2. 
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Figure 25: Comparison of the changes in output probability and Max attributes across Problem 1 (Mortality) 

and Problem 2 (High Utilization); the first row corresponds to Problem 1 and the second row refers to Problem 

2. 

 

 

Conclusion on Temporal Min-Max Representation 

In this chapter, Temporal Min-Max Representation (TMMR) was evaluated and 

compared with Binary Representation on four prediction problems. Population-level 

comparison of the two representation methods indicated that TMMR outperforms Binary 

Representation in most cases. The results also showed that the representation of these codes 

is affected by algorithm, outcome, observation window size, characteristics of input 

attributes including time from diagnosis to prediction time, number of diagnosis codes and 

demographic factors. Depending on any of these parameters, one representation method 

outperforms the other. The sensitivity of the models also differs with respect to the 

representation method. The results indicated that the sensitivity of TMMR models is larger 

compared to Binary models for codes present once in the data. It was also shown that even 

within TMMR-based models, the sensitivity of models is impacted by Min vs. Max 
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attributes, with models being generally more sensitive to Min attributes. In these models, 

there is a positive and negative correlation between Min and Max attributes and changes in 

output probability, and such correlations are independent of the outcome.  
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TRAJECTORY REPRESENTATION 

Trajectory of Illness 

A trajectory of illness indicates the change in health status as a function of time. 

Modeling illness trajectories helps patients and caregivers understand how the health 

conditions change over time, as well as in prediction of changes to come. Knowing why 

and what changes the health of status can help identifying the adverse events and 

implementing appropriate interventions if needed.  Changes in health can be impacted by 

many factors including genetics, biological, behavioral, social, and environmental factors 

(Henly et al., 2011). In medical literature, the trajectories of end of life are categorized into 

four different groups (see Figure 26): 1. Trajectory with steady progress over time followed 

by a sudden decline in the final few months. This trajectory is typically observed among 

cancer patients. 2. Trajectory with gradual decline followed by multiple episodes of 

exacerbations and temporary improvement, resulting in sudden death. These trajectories 

include heart failure or chronic obstructive pulmonary disorder for which the time of death 

is less certain. 3. Trajectory with gradual decline progressing over many years. This 

trajectory is observed during fatality or among patients with dementia. 4. Sudden death or 

medical disability, which could be due of trauma or cardiopulmonary/neurologic condition 

(Murray et al., 2005; Barker & Scherer, 2019).  The trajectories considered in the above 

works are limited to the end of life stages, whereas more trajectories (shapes) can be 

observed in general. One could think of many possible patterns for illness trajectories 

including improvement, decline, stable, temporary decline, temporary improvement etc. 
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(Wojtusiak et al., 2016). For example, Wojtusiak et. al identified 7 different trajectories 

when predicting changes in ADLs post hospitalization; these trajectories included early 

recovery, delayed recovery, delayed recovery after temporary decline, early decline, 

delayed decline, delayed decline after temporary recovery, and no change (Wojtusiak et 

al., 2016). Different mathematical functions can be used to model changes in the health 

status including linear, quadratic and higher-order polynomial, and exponential functions 

(Henly et al., 2011). 

One complexity in modeling trajectories (which are continuous by nature) is that 

patients are observed at discrete points in time and these time points are only available 

when data elements such as diagnosis or procedure codes are reported in medical claims. 

The diagnosis codes in medical do not represent the real patient status as only discrete 

billable conditions being reported. Thus, these are only as an approximation of the hidden 

patient’s status as well as its change over time. 

 

 
Figure 26: Trajectory of illness for different categories of health conditions. The 

horizontal axis corresponds to time to death and vertical axis refers to 
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functionality of individuals according to their health conditions. Adapted from 

https://www.mypcnow.org/fast-fact/illness-trajectories-description-and-clinical-

use/ 

 

The trajectory of illness can clearly display the severity of illness (SOI) over time. 

Severity of illness refers to “the extent of physiologic decompensation or organ system loss 

of function” (Averill et al., 2003), meaning how serious a medical condition is.  The 

severity of illness (SOI) rating assigns a score to a physiological condition based on a 1 to 

4 scale. As part of hospital reimbursement, SOI plays a crucial role in healthcare costs 

(Spurgeon et al., 2011).  

In 1983, CMS introduced the diagnosis-related groups (DRGs) codes to substitute 

the per-dime method of hospital reimbursement, in which patient stay and resource 

utilization were used for payment assessment (Averill et al., 2003; Spurgeon et al., 2011). 

DRG is categorized into three groups: basic DRGs, All Patient DRGs (AP-DRGs), and All 

Patient Refined DRGs (APR-DRG). The first category is used by CMS for payment 

assessment of beneficiaries. All Patient DRGs (AP-DRGs) encompasses Medicare and 

non-Medicare population including pediatric patients.  In All Patient Refined DRGs (APR-

DRG), four subclasses have been added to represent the severity of illness in order to better 

match the money received by hospitals and the cost they incur to treat patients (Averill et 

al., 2003). In this type of code, the severity of illness or the risk of mortality is categorized 

into minor, moderate, major, and extreme or is numbered from 1-4, with 1 being a minor 

health condition (Averill et al., 2003). Similar to other types of billing codes, DRGs are 

static, and do not reflect the changes of patients’ health status over time.  

https://www.mypcnow.org/fast-fact/illness-trajectories-description-and-clinical-use/
https://www.mypcnow.org/fast-fact/illness-trajectories-description-and-clinical-use/
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Longitudinal claims data store patient’s administrative codes along with the date of 

service (or claim date) in the form of sequence of temporal events, which can occur at 

regular or irregular time intervals. These sequences also vary across different patients. 

Sequences of these billing codes can show progression of disease or severity of illness for 

each condition over time. Consequently, each diagnosis code can be represented in the 

form of trajectory of disease.  

This chapter aims at introducing and evaluating another method of representing 

diagnosis codes called ‘Trajectory Representation’ (TJR) by using the trajectory of illness 

concept. This study uses trajectories reconstructed from patients’ histories as inputs in 

predicting patient outcomes. This contrasts with works available in the literature that focus 

on predicting the future trajectories of patients.  

Trajectory Representation  

The approach studied in this dissertation is to construct the trajectory of illness 

representing changes in patient’s health from the time between visits/encounters specific 

to a given condition. The time between visits can represent how severe a health condition 

is and how it changes over time. Consider a patient with an underlying health condition 

such as cancer, which progresses over time and has different stages. Such patient could 

have multiple inpatient and outpatient visits at even or uneven time intervals. In the 

beginning, the patient might have short intervals between visits when the diagnosis and 

initial treatment is made. As the treatments continues, the patient has regular intervals 

between visits. Later, if the patient responds to the treatment, fewer visits at longer time 

intervals may be needed. On the other hand, if the treatment doesn't work well and more 



111 

 

interventions are needed, the frequency of visits might increase while the time between 

visits might decrease. 

In the method studied here, the trajectory of illness is represented by a regression 

line fitted into time between encounters, and more specifically the coefficient and intercept 

of a fitted linear regression. Similar to Temporal Min-Max Representation, each diagnosis 

code (i.e. ICD code) is represented by its corresponding coefficient and intercept of that 

regression. 

Figure 27 illustrates how the Trajectory Representation (TJR) method works. 

Suppose a patient has N visits 𝑉1,…𝑁 for a diagnosis code C over time, where 𝑉1 and 𝑉𝑁  are 

the first and most recent encounter of C, respectively. The diagnosis 𝐶𝑖 and its associated 

𝑉𝑗  at date (𝑑𝑡𝑖,𝑗) is represented by subtracting the time from the previous visit (𝑉𝑗−1).  In 

other words, 𝐶𝑖  associated with 𝑉𝑗  is represented as follows and is shown as 𝑡𝑖,𝑗:  

 

Equation 9: Time Between Diagnosis 

𝑡𝑖,𝑗  = 𝑑𝑡𝑖,𝑗  -  𝑑𝑡𝑖,𝑗−1 

 

In the above equation, there are N-1 time-between points for N visits associated 

with a diagnosis 𝐶𝑖. A simple approach such as linear regression can then be used to model 

change in time between visits for a given diagnosis code, resulting in coefficients (slope) 

and intercepts associated with that diagnosis. Since one encounter is not sufficient to fit the 

line, a minimum of three encounters is needed to construct trajectories. 
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Figure 27: Illustration of constructing trajectory of disease by calculating the time between visits for each 

diagnosis code. 

  

Interpretation of Trajectory Representation   

The coefficient (slope) and intercept of the fitted line can represent how patient’s 

health changes over time. For each diagnosis, these slopes can indicate improvement, 

decline or stability in health condition.  Figure 28 compares the constructed trajectories of 

two hypothetical patients represented by blue (patient 1) and orange (patient 2) lines. 

Positive slope indicates that the time between visits is increasing, while negative slope 

indicates the opposite. Thus, and as shown in Figure 28 (a), the positive slope in the case 

of patient 2 may indicate possible patient’s improvement, and negative slope can indicate 

patient’s decline. The value of the slope can also indicate how quickly patient’s health is 

changing. Figure 28 (b) shows two hypothetical patients with negative slopes with the blue 

line (patient 1) being steeper than orange line. Shorter intervals between visits result in 
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steeper slope; this suggests that even though both patients’ health is deteriorating, it is faster 

for blue line. 

 

 
Figure 28: Changes in the coefficient of the fitted lines with different time intervals in visits. 

 

Figure 29 illustrates the translation of time between diagnosis codes to the 

trajectory of illness for a hypothetical patient with two health conditions (ELIX21 code 

representing diabetes and ELIX18 representing hypertension) and how this time can be 

translated to coefficient and intercept of a fitted line. Each datapoint in the figure 

corresponds to the visit related to that diagnosis code. While the horizontal axis shows the 

time since the first occurrence of the disease, the time interval between the visits is clearly 

visible. According to the figure, the time between visits related to diabetes (ELIX21) is 

decreasing, resulting in a fitted line with a negative coefficient; this suggests that patient’s 

health is declining with regard to diabetes. In terms of hypertension (ELIX18), however, 

as the interval between visits increases over time, the patient may require fewer visits, 

indicating that the condition has improved or better managed.   
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Figure 29: Illustration of the constructed trajectory of illness from time between visits for a hypothetical 

patient. The diagnosis codes from left to right are ELIX21 (Diabetes) and ELIX18 (Hypertension), 

respectively. 

 

Trajectory Construction 

To construct the trajectories, patients’ visits corresponding to diagnosis codes were 

extracted over 18 years of patient history. These trajectories were created with Exlihauser 

(ELIX) codes, which reduce dimension and increase frequency of visits.  Each diagnosis 

code with more than 10 associated encounters was represented with two attributes referred 

as intercept and coefficient of the fitted line. It is important to note that even though a 

minimum number of 3 visits are required to fit a line, but they may not be enough to reflect 

how patients’ health changes over time. An experimental analysis led to selection of the 

minimum of 10 data points (encounters) as they are large enough to represent the trajectory 

but small enough not to miss any important trajectories. On the other hand, the coefficient 

and intercept of diagnoses with less than 10 visits were represented with a special value of 

–888888 (the value was selected as they are easily distinguishable in data but have no 
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specific numeric meaning). With 30 Elixhauser codes, a total of 60 attributes were assigned 

to trajectories.  

Table 16 displays the mean of the coefficient and intercept values for all ELIX 

codes between positive and negative classes. As shown, the mean values of the calculated 

coefficients were negative in both positive and negative classes among the four outcomes. 

However, the absolute value of the coefficients as well as the average value of intercepts 

were higher for positive labels compared to negative labels. As a result, if a hypothetical 

line is plotted for positive vs. negative labels, it can be observed that even though patients’ 

health is declining between the two classes, it is declining faster for positive labels (patients 

with negative health outcome, i.e., death).  

 

Table 16: Distribution of the mean of coefficients and intercepts of all ELX codes 

among positive and negative labels of the four outcomes. 

 Positive Label Negative Label 

Outcome Coefficient Intercept Coefficient Intercept 

Mortality -5.24 152.69 -2.11 131.65 

High Utilization -5.02 143.38 -1.69 131.61 

CKD -2.56 136.57 -1.29 129.58 

CHF -2.38 130.61 -1.44 124.64 

 

As mentioned, the corresponding intercept is larger for positive labels than for 

negative ones across the four outcomes. However, since the fitted line was determined 

based on the time between visits, its intercepts cannot be interpreted directly. To visually 

compare the difference in value of intercept between positive and negative classes, 
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scatterplots between the coefficient and intercept of each diagnosis code were created. 

Figure 30 shows a scatterplot for one Elixauaser code representing congestive heart failure. 

The vertical and horizontal axes correspond to the intercept and coefficient, respectively. 

As shown, there was a negative correlation between the coefficient and intercept (the 

smaller coefficients are the larger the intercepts are) suggesting that the average intercept 

value is larger for positive classes. Similar plots for other diagnosis codes confirmed this 

negative correlation across most of the codes. 

 

 
Figure 30: Correlation between the calculated intercept and coefficient for 

one Elixauaser code representing congestive heart failure. Similar plots were 

created for other codes but are not shown here due to space limitation. 

  

 

Also, a scatterplot between the number of visits and the calculated intercept was 

created for the above Elixauaser code (See Figure 31). The vertical and horizontal axes 

correspond to the number of visits and the intercept, respectively.  
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Figure 31: Correlation between the calculated intercept and the number of 

visits for a Elixauaser code representing congestive heart failure. Similar 

plots were created for other codes but are not shown here due to space 

limitation. 

 

The plot clearly showed that the intercept is closer to zero when the number of visits 

is large, while large value of intercept occurs when there are few visits corresponding to 

the diagnosis code. One may argue that since the average number of visits was larger 

among positive cases compared to negative cases (See Table 17), the average intercept 

should be smaller for cases with positive labels. It should be noted that it is not only the 

number of visits that correlates with intercept. In fact, large intercept happens when a 

patient is diagnosed with that health condition long time before prediction time with no or 

few visits until more recently when he/she starts having visit at shorter time intervals. These 

cases are more likely to have positive labels.  
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Table 17: Average number of visits among positive ang negative 

labels for the four outcomes. This average is reported for 

diagnoses with more than 10 visits for comparison with the 

calculated intercept. 

Outcome Positive Label Negative Label 

Mortality 33.88 30.68 

High Utilization 36.40 29.19 

CKD 33.01 28.37 

CHF 30.13 28.51 

 

Trajectory Model Construction 

A number of models were created and investigated for the outcomes described in 

the previous chapter. Models were first created using: 1) patient demographics and 

Trajectory coefficients only (Coef) with a total of 38 attributes; 2) patient demographics, 

Trajectory coefficients and intercepts (Coef_Int) with a total of 68 attributes. Then these 

Trajectory-based attributes were combined with Min and Max attributes from TMMR 

resulting in Com_Coef models with total of 98 attributes and Com_Coef_Int models with 

total of 128 attributes. In addition, Trajectory-based attributes were constructed using 1 as 

well as 5 years of data and combined with TMMR attributes to determine if the size of 

observation window impact the constructed trajectories and models. The models were 

defined as Com_Coef_1yr, Com_Coef_Int_1yr, Com_Coef_5yr, and Com_Coef_Int_5yr, 

with 1yr and 5yr representing 1 year and 5 years of data, respectively. These models were 

compared with the TMMR. Two tailed paired t-tests were used when applicable to 

determine the level of significance (p<0.05). For completeness, the performance of Binary-

based models was also reported.   
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Table 18: Comparison of the performance of different Trajectory-based models in predicting mortality, high 

utilization, CKD, and CHF. The models include Coef, Coef_Int, Com_Coef, Com_Coef_Int, Com_Coef_1yr, 

Com_Coef_Int_1yr, Com_Coef_5yr, and Com_Coef_Int_5yr. The models were compared with Binary and 

Temporal Min-Max Representation results. 

  RF GB LR DT 

  AUC Acc Prec Rec AUC Acc Prec Rec AUC Acc Prec Rec AUC Acc Prec Rec 

M
o

rt
a

li
ty

 

Binary .684 .923 .13 .01 .738 .927 .15 0 .727 .927 .429 .002 .534 .864 .134 .157 

TMMR .753 .927 .575 .034 .778 .928 .557 .072 .729 .927 .502 .009 .566 .876 .178 .193 

Coef .673* .924* .136* .006* .707* .927* .368* .007* .672* .927 .416 .006 .519* .883* .136* .111* 

Coef_Int .678* .926* .299* .004* .707* .926* .379* .009* .672* .927 .413 .006 .520* .882* .135* .114* 

Com_Coef .754 .927 .56 .027 .778 .928 .553 .07 .739 .926 .405 .017* .569 .875 .181 .200 

Com_Coef_Int .753 .928 .62 .031 .777 .928 .551 .068 .739 .926 .408 .016* .567 .875 .177 .194 

Com_Coef_1yr .752 .928 .583 .033 .777 .928 .566 .073 .737 .926 .452 .03* .565 .874 .173 .191 

Com_Coef_Int_1yr .752 .928 .595 .031 .777 .928 .566 .072 .736 .926 .459 .029* .569 .875 .180 .200 

Com_Coef_5yr .755 .927 .591 .029 .778 .928 .569 .072 .74* .926 .423 .02* .57 .874 .18 .202 

Com_Coef_Int_5yr .752 .928 .592 .029 .778 .928 .555 .071 .74 .926 .422 .019* .564 .874 .173 .192 

H
ig

h
 U

ti
li

za
ti

o
n

 

Binary .742 .894 .381 .086 .785 .901 .561 .065 .782 .901 .55 .059 .557 .833 .213 .246 

TMMR .829 .91 .699 .189 .838 .911 .662 .231 .794 .901 .566 .074 .611 .854 .294 .322 

Coef .748* .902* .552* .12* .785* .906* .64* .136* .772* .902* .569 .108* .501* .851* .256* .255* 

Coef_Int .756* .905* .631* .12* .785* .906* .646* .138* .772* .902* .569 .108* .509* .853* .266* .265* 

Com_Coef .829 .911 .714 .187 .838 .911 .668 .236 .812* .904* .588 .151* .614 .854 .297 .328 

Com_Coef_Int .83 .911 .715 .188 .838 .912 .672 .235 .812* .904* .587 .151* .614 .855 .299 .328 

Com_Coef_1yr .832 .912 .723 .197 .84 .913 .689 .244 .819* .909* .638* .209* .617 .857 .307 .332 

Com_Coef_Int_1yr .834 .912 .714 .204* .84 .913 .687 .241 .819* .909* .639* .208* .62* .859* .313* .337* 

Com_Coef_5yr .831 .911 .717 .19 .838 .912 .67 .235 .816* .904 .574 .158* .614 .855 .298 .329 

Com_Coef_Int_5yr .831 .911 .719 .194 .838 .912 .672 .235 .816* .904 .575 .158* .612 .854 .295 .325 

C
K

D
 

Binary .582 .928 .119 .011 .639 .933 0 0 .607 .933 0 0 .523 .871 .079 .087 

TMMR .623 .933 .323 .006 .65 .933 .194 .002 .607 .933 0 0 .536 .871 .084 .094 

Coef .569* .929* .085* .006 .605 .933 .083 0 .573* .933 0 0 .496* .89* .083* .064* 

Coef_Int .568* .933 .02* 0* .602* .933 .14 .001 .574* .933 0 0 .495* .89* .081 .062* 

Com_Coef .617 .933 .343 .006 .65 .933 .203 .002 .615 .933 0 0 .539 .871 .09 .101 

Com_Coef_Int .617 .933 .367 .006 .649 .933 .289 .003* .615 .933 0 0 .537 .872 .087 .096 

Com_Coef_1yr .625 .933 .362 .006 .651 .933 .233 .002 .613 .933 .100 .000 .540 .871 .090 .102 

Com_Coef_Int_1yr .619 .933 .340 .006 .651 .933 .263 .003 .613 .933 .100 .000 .538 .873 .089 .098 
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Com_Coef_5yr .607 .94* .362 .011* .64 .94* .225 .003* .608 .94* 0 0 .549* .887* .069* .072* 

Com_Coef_Int_5yr .608 .94* .373 .01 .639 .94* .128 .002* .609 .94* 0 0 .554* .89* .077 .078* 
C

H
F

 

Binary .581 .929 .075 .008 .628 .935 0 0 .628 .935 0 0 .519 .875 .086 .094 

TMMR .623 .934 .05 .001 .647 .934 .3 .003 .647 .934 .3 .003 .536 .876 .098 .109 

Coef .568* .93* .051 .004* .604* .935 .15 .001 .604* .935 .15 .001 .49* .895* .089 .065* 

Coef_Int .573* .934 .064 .001 .6* .934 .158 .001 .6* .934 .158 .001 .493* .894* .095 .072* 

Com_Coef .621 .934 .067 .001 .647 .934 .319 .004 .608 .935 0 0 .531 .874 .088 .1 

Com_Coef_Int .625 .934 .067 .001 .646 .935 .412 .005 .608 .935 0 0 .529 .874 .086 .096* 

Com_Coef_1yr .624 .934 .067 .001 .646 .934 .229 .004 .605 .935 .000 .000 .536 .874 .096 .110 

Com_Coef_Int_1yr .624 .934 .098 .001 .645 .934 .227 .004 .605 .935 .000 .000 .533 .875 .091 .103 

 Com_Coef_5yr .62 .934 .05 0 .646 .934 .366 .003 .608 .935 0 0 .534 .876 .094 .104 

 Com_Coef_Int_5yr .622 .934 .05 0 .645 .934 .208 .003 .608 .935 0 0 .536 .876 .097 .11 

Coef and Coef_Int refer to models constructed on coefficient and coefficient +intercept, respectively. Com_Coef and Com_Coef_Int 

refer to models in which coefficient and coefficient +intercept attributes were added to Min-Max models, receptively. Finally, 1yr 

and 5yr show that Trajectory-based attributes were created on 1 and 5 years of data, respectively. * Indicates significance (p < 0.05) 

of different models compared with Temporal Min-Max models. 

 

As shown in Table 18, models that only used Trajectory-based attributes (either 

coefficient or in combination with intercept) were on average not performing better than 

Binary or Temporal Min-Max Representation-based models in terms of AUC. It is likely 

that Binary and Temporal Mi-Max models provide a more comprehensive representation 

of diagnosis codes in predicting the four outcomes. In fact, trajectories were constructed 

only on diagnoses with large numbers of claims, thus limiting their ability to represent the 

codes. It is found that trajectories slightly improved the recall or precision of some of the 

models compared to Binary Representation method. It was also observed that the 

combination of these attributes with TMMR models’ attributes does not on average improve 

the performance of the models and the results were consistent on models with trajectories 

constructed on 1 and 5 years of data. The results however showed that this combination 
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(addition of coefficient or coefficient+intercept) performs better using Logistic Regression 

in predicting mortality and high utilization. When Logistic Regression was used to predict 

mortality, the best results occurred when trajectories were constructed using 5 years of 

data, while it was 1 year in predicting high utilization. 

Even though the results suggested that TJR was not on average performing better 

than TMMR and Binary Representation methods according to population-level metrics, 

individual-level evaluation of the above models indicated that TJR can work better for 

certain patients. Therefore, the next two sections aim at understanding what types of 

patients are more accurately described with trajectories as compared to TMMR.  

Comparison of Number and Average Value of Coefficients 

One experiment to compare representations on individual-level (Input Comparison) 

involved determining the value and the number of constructed coefficients between the two 

representation methods. For this purpose, the average value of coefficients and the average 

number defined coefficients (diagnosis codes with more than 10 datapoints) were 

compared across Temporal Min-Max Representation (TMMR) and Trajectory 

Representation (TJR). The Com_Coef_Int models (combination of TMMR and Trajectory 

attributes) were used for Trajectory Representation models and were called TJR models for 

simplicity. These experiments were applied on both correct and superior prediction as well 

as superior prediction with the difference in output probability greater than 5%. Due to the 

similarity of the models, the results were compared only for superior prediction with more 

than 5% difference in output probabilities. The other comparisons results can be found in 

Appendix section (Table 27 to Table 30). The average number of coefficients and the 
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average value of the coefficients across true label of each outcome were compared in Table 

19 and Table 20, respectively and Mann-Whitney U test was used to determine the 

significance of the results.  

As shown in Table 19, the number of constructed coefficients was larger for TJR 

among cases with positive labels and smaller among cases with negative labels in most 

comparisons except for DT of Problem 1 and GB of Problem 4, for which the results were 

not significant. The results shown in Table 20 also indicated that the average value of 

coefficients across all diagnoses was negative for both representation methods, with the 

absolute value being larger for TJR representation among positive cases and smaller among 

negative cases. The results, however, were not significant for most comparison in 

predicting congestive heart failure (Problem 4).  

Larger number as well as absolute value of coefficients in predicting positive cases 

suggests that the addition of Trajectory-based attributes to TMMR models works better 

when the patient has one average more diagnosis codes represented by trajectories and 

faster decline in health status. It should be noted that the intercept was not compared for 

this experiment, as it cannot not provide meaningful insight about patient’s overall health 

status. 

 

Table 19: Comparison of the number of coefficients for Temporal Min-

Max Representation (TMMR) vs. Trajectory Representation (TJR) 

based on superior prediction (difference in probability greater than 5%) 

Problem 1-Mortality 

 Positive Label Negative Label 

Alg TJR TMMR TJR TMMR 

RF 4.54* 3.64 2.96* 3.59 

GB 5.94* 5.05 5.02* 5.69 
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LR 6.75* 3.65 3.72* 6.09 

DT 4.42 4.11 3.19 3.31 

Problem 2-High Utilization 

RF 5.89* 4.25 2.74* 4.04 

GB 6.92* 4.65 3.94* 6.00 

LR 7.30* 3.14 2.35* 6.27 

DT 5.23* 4.91 3.29* 3.48 

Problem 3-CKD 

RF 3.55* 2.56 2.16* 2.90 

GB 5.77* 3.91 3.68* 4.79 

LR 6.19* 2.29 2.73* 5.64 

DT 3.26* 2.89 2.38* 2.63 

Problem 4-CHF 

RF 2.94* 2.50 1.92* 2.58 

GB 4.66 4.46 3.49* 4.29 

LR 6.09* 2.89 3.06* 5.80 

DT 2.91* 2.66 2.09* 2.22 

 

Table 20: Comparison of the coefficient average for TMMR vs. TJR based 

on superior prediction (difference in probability greater than 5%). 

Problem 1-Mortality 

 Positive Label Negative Label 

Alg TJR TMMR TJR TMMR 

RF -6.87* -6.05 -3.81* -3.03 

GB -12.28* -6.93 -7.90* -9.34 

LR -8.18* -6.03 -5.13* -5.82 

DT -4.31 -6.30 -4.00 -3.69 

Problem 2–High Utilization 

RF -6.86* -6.30 -3.52* -5.09 

GB -6.15 -7.89 -5.50* -5.82 

LR -6.29* -5.66 -3.07* -4.85 

DT -6.93* -5.95 -3.48* -4.44 

Problem 3-CKD 

RF -6.68* -3.14 -2.97* -4.37 

GB -8.60 -5.03 -5.72 -6.84 

LR -4.38* 1.60 -1.84* -5.41 

DT -5.16 -2.65 -3.33 -3.09 

Problem 4-CHF 

RF -5.77 -4.27 -2.84* -2.48 

GB -0.31 -6.78 -5.43 -6.46 

LR -6.04 -2.98 2.12* -5.17 

DT -3.57 -3.20 -3.91 -3.06 
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Comparison of Mean Absolute Error 

Second individual-level comparison experiment examined how the difference in 

the output probabilities (absolute difference) of the two representation methods affects the 

Mean Absolute Error (MAE). The rationale behind this comparison is to test which method 

performs better when there is a larger disagreement between TMMR and TJR.  

For this purpose, MAE was calculated for both TMMR and TJR by varying the 

difference in output probability of the two models. Figure 32 compares the MAE of the 

four prediction problems for both TMMR and TJR methods. The horizontal axis refers to 

the difference in the output probability of the two methods and vertical axis refers to the 

Mean Absolute Error on the selected patients. The results suggested that the change in 

MAE by varying the difference in output probability is problem dependent. In general, 

increasing the output probability difference for the two representation methods increases 

the MAE difference, except for the DT algorithm, where the change in output probability 

does not impact MAE. However, the magnitude of the difference depended on the 

algorithm and the outcome. Furthermore, while the plots of LR-based models suggest that 

the TJR models have larger MAE compared to the TMMR models specifically on larger 

differences in output probability, the results were inconclusive for RF and GB-based 

models. For example, the results of the GB algorithm clearly showed that while the MAE 

is always smaller for TJR in predicting high utilization, it was larger in predicting 

congestive heart failure (CHF).  In this case, TJR might be a better representation method 

for predicting high utilization, but not for predicting CHF.      
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Figure 32: Comparison of the Mean Absolute Error (MAE) by changing the difference in output probability 

of the two different representation systems. Blue and orange lines indicate TMMR vs. TJR Representations, 

respectively. Shape of the plots indicate that changes in MAE by varying the difference in output probability 

is problem dependent. 

 

 

Conclusion on Trajectory Representation  

In this chapter, another method of the administrative codes’ representation called 

Trajectory Representation was introduced. The assumption for representation was that the 

time between visits indicate changes in patients’ health over time. In this method, each 

diagnosis code (here Elixhauser codes) was represented with coefficient and intercept of 

the fitted line to the time between diagnosis data points.  The population-level analysis 

based on standard model accuracy indicated that Trajectory Representation does not 
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provide a better representation of the codes compared to TMMR methods. However, TJR 

worked better for certain patients based on individual-level comparison of TMMR and TJR 

models. Based on the average number and mean value of coefficients, as well as the Mean 

Absolute Error (MAE), the TJR method appears to perform better for certain patients than 

TMMR.      

In summary, the investigation of the two introduced representation methods 

(TMMR and TJR) showed that despite some patterns observed from the experiments, there 

are no specific rules to indicate which representation method should be used. Therefore, 

when these codes are used in supervised machine learning, different parameters should be 

tested for optimal results. 
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CONCLUSION 

Administrative Data Preprocessing and Diagnosis Representation 

The problem of representing data before applying machine learning methods has a 

significant impact on the quality of the models applied in patient care and health system 

management, as well as health policy and payment. Previous studies have observed similar 

effects of representation on performance of ML methods in health-related applications, 

particularly in claims processing (Lynam et al., 2020). A crucial factor in determining 

model quality is the ability to extract the right information from raw data by applying 

proper transformations and represent the current knowledge in the data that could allow 

better prediction. When analyzing complex data such as those from Electronic Medical 

Records, or medical claims considered here, the process is not trivial and involves 

construction of flat representation from multi-dimensional and highly temporal databases. 

In such data preprocessing, the goal is to reduce the complexity of the data and 

extract/construct the relevant attributes from the data, which can subsequently be used for 

analysis.  

This dissertation considered data preprocessing steps as part of model construction 

and optimization: the way data are represented affects specific types of models either on 

the quality of the models or prediction of specific instances in the data.  The presented 

study focused on data preprocessing steps applied to transform raw medical claims data 

into final analytic files before applying ML methods. While the dissertation specifically 
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addressed representation of medical diagnoses, it can be generalized into other data 

elements. 

The claims data contains information in the form of codes, dates, text, symbols, and 

so forth. In contrast to other types of healthcare data, in medical claims data much of the 

information is structured, with little or no information provided as free text. There is an 

irregularity in claims data that corresponds to when the patient receives services. In fact, 

many claims datasets don’t indicate when the services are actually provided; data are only 

available about when a claim is recorded. The data are also potentially censored on both 

sides because of benefit eligibility and events such as death or discontinuation of treatment. 

Since most ML algorithms cannot handle multiple records within a relational database like 

claims data, some summary functions including Boolean representation and counting the 

occurrence of each event are used to aggregate the data. In general, the difficulty in 

analyzing claims data comes from complexity of coding systems used that potentially leads 

to extremely high dimensionality, temporality of the data, missing information (i.e., 

undercoding of data), as well as noisy information (i.e., overcoding of certain data). 

Among the types of structured data in claims are administrative codes (medical 

codes) such as International Classification of Diseases (ICD-9 or ICD-10) codes, Current 

Procedural Terminology (CPT), Healthcare Common Procedure Coding System (HCPCS) 

codes and other specialized codes used for specific claim types. These codes are used to 

classify disease, comorbidities, and procedures when providing services in healthcare 

settings. They are popular source of information in predicting health outcomes with the 

common assumption that the presence of the codes in claims is representative of patients’ 
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true status. Claims data can be viewed as a sequence of claims that include one or more of 

these codes recorded over time. Consequently, this dissertation focused on the 

representation of the administrative codes specific to diagnoses in data preprocessing step 

of supervised machine learning. 

Methodological Gap in Administrative Codes Representation 

Despite wide use of administrative codes in constructing ML-based models, there 

is still a gap in better representation of administrative codes that could enhance the quality 

of the models. This dissertation discussed and investigated some of the common 

administrative codes representation methods including: 1. Binary Representation in which 

binary indicators (dummies) are used over a timeframe, 2. Binary Representation with 

Multiple Time bins in which observation window is divided into multiple bins and then 

Binary Representation is applied for each bin separately, 3. Enumeration Representation in 

which the number of visits related to a specific health condition (code) is counted within a 

predefined window. Due to the longitudinal nature of claims data, temporal information 

could be better captured in representing these codes in data i.e., incorporating the time from 

the occurrence of the disease or capturing the changes in prognosis of the disease over time 

and the representation of these codes by using temporal information has gained popularity 

recently.  Therefore, in this dissertation, ‘Temporal Min-Max Representation’ (TMMR) and 

‘Trajectory Representation’ (TJR) as two additional representation methods were described 

in detail, which focus on capturing the heterogeneity and hidden temporal information in 

the data. Also, a major gap with regard to the use of the administrative codes is the lack of 

little systematic research on how these codes should be preprocessed (represented) before 
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being model construction. These standard methods mentioned above are extensively used 

in supervised machine learning without determining if they are appropriate methods for the 

problem at hand. It is assumed that the method of representing data could be impacted by 

many factors including the type of algorithm, outcome, size of observation window, the 

type of administrative code, characteristics of inputs etc. 

Temporal Min-Max Representation 

This dissertation focused on two methods in representing administrative codes 

called Temporal Min-Max Representation (TMMR) and Trajectory Representation (TJR). 

In the “Temporal Min-Max Representation” chapter, TMMR method was introduced which 

works by calculating the time from the first (𝐶𝑜𝑑𝑒𝑖
𝑚𝑎𝑥) and most recent (𝐶𝑜𝑑𝑒𝑖

𝑚𝑖𝑛) 

occurrence of the diagnosis to prediction time. The advantage of this representation is the 

ability to capture long-term effect of chronic health conditions that are present over a long 

period of time and temporary impact of acute health conditions. The method was first 

introduced in predicting the Activities of Daily Living (ADLs) and the results on different 

learning algorithms suggested that this method outperforms Binary Representation method 

in terms of standard model performance measurement including accuracy, AUC, precision, 

and recall. The “Evaluation of Temporal Min-Max Representation” chapter focused on 

comparing TMMR and Binary Representation methods using a large-scale experimental 

evaluation on four classification problems: predicting mortality, high utilization of medical 

services, chronic kidney disease, and congestive heart failure. The results indicated that 

TMMR outperforms Binary Representation in most cases. However, the optimal data 

representation is highly dependent on the classification problem, observation window size 
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(how much historical data are available for patients), model representation, learning 

algorithm, the predicted outcome, and characteristic of input attributes (number of health 

conditions and time from diagnosis and demographic forctors). For example, the results 

suggest that TMMR method performed better on positive cases (those with bad predicted 

outcome) with smaller time between diagnosis and larger number of diagnosis code, while 

the pattern was opposite on negative cases. The sensitivity analysis of the models also 

showed the difference between constructed TMMR or Binary Representation-based 

models. Specifically, TMMR models were on average more sensitive across codes present 

once in the data. Furthermore, the sensitivity of the models differed between Min and Max 

attributes, with Min attributes exhibited negative correlation with changes in output 

probability and Max attributes exhibited small positive or close to zero correlation. It was 

also shown that even though the negative and positive correlation between Min and Max 

attributes was independent of the outcome, the magnitude of sensitivity was larger for the 

top predictor of each outcome.  

Trajectory Representation 

In “Trajectory Representation” chapter, TJR method was introduced in representing 

the administrative codes by using the time between visits related to specific diagnosis. 

Longer intervals between encounters can indicate that a patient's health status is improving 

for a specific disease, while shorter intervals indicate his health status is deteriorating. In 

this method, the trajectory of disease was represented by calculating the coefficient and 

intercept of a fitted line to time between visits data points. Different variants of constructed 

Trajectory attributes were applied to the four classification problems and were compared 
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with TMMR and Binary Representation methods. These variants included coefficients only, 

coefficient and intercept, and combination of Trajectory-based attributes with TMMR 

attributes in which Trajectory attributes were constructed using 18, 5 and 1 years of data. 

The results suggested that using the Trajectory-based attributes alone does not provide a 

better representation of codes compared to that of TMMR and Binary methods. Also, the 

combination of these attributes with TMMR attributes does not on average improve the 

AUC of models. However, the individual-level comparison of TMMR and TJR 

(combination of TMMR and Trajectory attributes) methods based on the average number 

of coefficients, the mean value of coefficients and the Mean Absolute Error (MAE) showed 

that TJR method can perform better for specific patients under specific circumstances. 

Representation Methods Evaluation 

One of the major focuses of this dissertation is on the systematic and comprehensive 

comparison of different ML-based models specific to the representation of the 

administrative codes. In this dissertation, the evaluation and comparison of the 

representation methods were applied on both population and individual level. The 

population level comparison uses standard model performance metrics including AUC, 

accuracy, precision, and recall for classification problems and Mean Square Error (MSE), 

Mean Absolute Error (MAE), and correlation coefficient in regression problems. With ML 

field being dominated with statistical methods, researchers often assume that statistical 

model evaluation and comparison are sufficient. This cannot be further from the truth, 

especially in the medical or health care fields in which every ‘test case’ is a patient whose 

treatments and potentially life-altering decisions may be made based on predictions. The 
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models may be similar or even identical in terms of the statistical metrics but can be very 

different on individual level. Comparing models on an individual basis can help identify 

certain groups of patients (even if small) for which a model is most effective. 

Unfortunately, there are no standard methods for comparing models in detail on an 

individual level in machine learning.  

The methods of individual level comparison of the representation methods used in 

the dissertation could be divided into two levels: Input and Output comparison. Model 

Correlation Plots (MCPs), output probability table through aggregating the results, and 

distribution of correct classified cases, MAE by varying the difference in output probability 

were used as Output comparison methods to visually compare individual cases based on 

their output probability corresponding to each representation method. In addition, Input 

Comparison methods were used to investigate how the representation of input attributes 

correspond to differences in outputs. The comparison was done by looking into the time 

between diagnosis and prediction time, number of health conditions, average number of 

defined coefficients, and average value of coefficients on cases that are correctly classified 

or better classified (superior prediction) by either of the representation methods. In general, 

classification-based models are compared based on an accurate prediction on a specific 

threshold. However, the comparison could be made based on superior prediction meaning 

that the cases of the two models are compared if they are better predicted in terms of output 

probabilities. This better (superior) prediction could be made based on any difference in 

the output probability or within a specific tolerance. In fact, superior prediction comparison 

allows for better understanding of the nuances between the representation methods. Also, 
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other than the characteristics of diagnosis codes, demographic factors including age and 

race were compared between the representation methods. It should be noted that the 

selection of the specific metrics for comparison should be done carefully to gain maximum 

insights about the models. In this dissertation, the Input Comparison methods in either the 

TMMR vs. Binary Representation or TMMR vs. TJR are justified by the problem at hand.  

Finally, the methodology of model comparison and experimental evaluations 

presented in this dissertation focuses on representation of administrative codes. However, 

they can serve as a general framework in which models are described by their inputs, 

models, and their corresponding outputs. The framework can be used to study model 

performance, explainability, fairness, and other factors that may ultimately lead to end 

users’ trust and model adoption. 

Contribution 

This methodological dissertation focused on pushing the understanding of 

representation of administrative codes generated in healthcare. Thus, its main contributions 

are methodological and experimental, but the constructed models also contribute to the 

considered application areas of mortality, high utilization of medical services, and chronic 

conditions such as chronic kidney disease and congestive heart failure. More specifically, 

the main contributions of the current dissertation can be summarized as: 

1. A detailed review of methods used for representing administrative codes in 

supervised machine learning to construct models for predicting patient outcomes. 
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2. Study of two methods of representing the administrative codes called Temporal 

Min-Max Representation (TMMR) and Trajectory Representation (TJR), which are 

constructed based on complex temporal information in claims data.  

a. Detailed study of TMMR method constructed by calculating the time from 

first and most recent diagnosis and its comparison with Binary 

Representation method.  

b. Detailed study of TJR method, which assumes that the trajectory of illness 

is proportional to time between encounters for a given condition and its 

comparison with Binary and TMMR methods. The method has been 

introduced and studied in different variants including coefficient of the 

fitted line only, coefficient and intercept, the combination of the 

coefficient/coefficient+intercept attributes with TMMR-based attributes and 

construction of TJR with different window sizes. 

3. Detailed comparison of representations on both population and individual level. 

Population comparison used simple standard accuracy measures, while individual 

level comparisons were made based on models’ inputs and their outputs including 

output probability, time from diagnosis to prediction, number of present health 

conditions, window size/history, how missing codes are represented, demographic 

factors, number and average of coefficients, and MAE with respect to output 

probabilities. 

4. Construction of models to solve practical problems in health care including 

prediction of mortality, high utilization of medical services and chronic kidney 
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disease (CKD) and congestive heart failure (CHF). The quality of the first two 

problems was comparable to results published in the literature. While the model 

quality in predicting CKD and CHF was below what may be needed in clinical 

practice, the models provide insights into the possibility of using administrative 

data to predict these chronic conditions. 

In summary, the results of this dissertation indicated that there is no best 

administrative code representation method in supervised machine learning. These methods 

should be experimentally tested using different parameters to achieve optimal results in 

predicting health outcomes.   

This dissertation is highly experimental and includes a large number of models and 

their evaluations. During this study, about 30,000 models were constructed in comparing 

the representation methods, each being used in the process of study and optimization, 

which accounted for weeks of continuous CPU utilization. The analyses have been done 

mainly in Python 3.6 and data preprocessing in PostgreSQL. 

Limitation and Future Works 

This dissertation is intended to be a significant step toward designing a systematic 

study of using administrative codes in health data. There is still a need to further examine 

the representation issues for multi-class classification, regression, and unsupervised 

learning. Even within supervised learning, there is a practically unlimited number of ways 

to transform raw claims data into flat tables from ML algorithms. Future works include 

designing’ Perfect Representation’ in which each diagnosis is optimized individually. This 
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means that a combination of two or more of the representation methods is used, depending 

on which method is most appropriate for a particular administrative code.  

One limitation of the presented work is that it is applicable in settings in which 

longitudinal information of patients are collected over multiple years. Therefore, large and 

well-established databases of claims or EHRs data are required. Furthermore, claims data 

are often expensive to purchase for research purposes, thus are often limited to short 

periods of time. In fact, this dissertation highlights the importance of longitudinal data to 

create high quality models. It is the authors’ opinion that it is more beneficial to use data 

collected over longer periods of time when limited resources are available.  

Also, the presented work did not completely take into consideration censoring of 

data based on data availability (multiple payers, insurance eligibility, etc.), as many 

nuances of payment system need to be accounted for. The other limitation is that some 

comparisons were not possible due to the lack of cases correctly predicted by one of the 

representation methods. The issue was specific to predicting CKD and CHF which had 

relatively smaller sample size. Therefore, more robust conclusion could be achieved by 

using larger datasets.  

Finally, the presented work focused on ‘traditional’ machine learning algorithms 

(Gradient Boosting, Random Forest, Logistic Regression and Decision Trees) and results 

are most likely generalizable to similar methods. While Neural-network approaches were 

investigated in this dissertaion, they were limited to simple feed-forward perceptron (multi-

layered) and did not account for recent advances in deep learning.  Deep learning methods 

and more specifically Recurrent Neural Networks (RNN) such as Long Short-Term 
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Memory (LSTM) (Hochreiter & Schmidhuber; 1997) and Gated Recurrent Units (GRU) 

(Cho et al., 2014) are attractive alternatives for analyzing highly temporal claims. RNNs 

can be trained on the actual sequences of claims rather than aggregated data within selected 

windows. A future work would apply data representation using RNNs, especially in 

settings where large amounts of data are available.  
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 APPENDIX  

 

Table 21: Full list of Single-Level CCS diagnosis codes derived from AHRQ website: 

https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp. The blank values in Chronic/Non-

chronic column mean that the code does not belong to any of these categories.  

CCS Code CCS Code Description Chronic/Non-chronic 

1 Tuberculosis non-chronic 

2 Septicemia (except in labor) non-chronic 

3 Bacterial infection; unspecified site non-chronic 

4 Mycoses non-chronic 

5 HIV infection chronic 

6 Hepatitis chronic 

7 Viral infection chronic 

8 Other infections; including parasitic non-chronic 

9 Sexually transmitted infections (not HIV or hepatitis) chronic 

10 Immunizations and screening for infectious disease non-chronic 

11 Cancer of head and neck non-chronic 

12 Cancer of esophagus non-chronic 

13 Cancer of stomach chronic 

14 Cancer of colon chronic 

15 Cancer of rectum and anus chronic 

16 Cancer of liver and intrahepatic bile duct non-chronic 

17 Cancer of pancreas  

18 Cancer of other GI organs; peritoneum chronic 

19 Cancer of bronchus; lung chronic 

20 Cancer; other respiratory and intrathoracic non-chronic 

21 Cancer of bone and connective tissue  

22 Melanomas of skin non-chronic 

23 Other non-epithelial cancer of skin chronic 

24 Cancer of breast  

25 Cancer of uterus non-chronic 

26 Cancer of cervix non-chronic 

27 Cancer of ovary non-chronic 

https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
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28 Cancer of other female genital organs chronic 

29 Cancer of prostate non-chronic 

30 Cancer of testis non-chronic 

31 Cancer of other male genital organs non-chronic 

32 Cancer of bladder non-chronic 

33 Cancer of kidney and renal pelvis chronic 

34 Cancer of other urinary organs non-chronic 

35 Cancer of brain and nervous system non-chronic 

36 Cancer of thyroid chronic 

37 Hodgkin`s disease chronic 

38 Non-Hodgkin`s lymphoma chronic 

39 Leukemias chronic 

40 Multiple myeloma chronic 

41 Cancer; other and unspecified primary chronic 

42 Secondary malignancies chronic 

43 Malignant neoplasm without specification of site chronic 

44 Neoplasms of unspecified nature or uncertain behavior chronic 

45 Maintenance chemotherapy; radiotherapy chronic 

46 Benign neoplasm of uterus  

47 Other and unspecified benign neoplasm non-chronic 

48 Thyroid disorders chronic 

49 Diabetes mellitus without complication chronic 

50 Diabetes mellitus with complications chronic 

51 Other endocrine disorders chronic 

52 Nutritional deficiencies  

53 Disorders of lipid metabolism  

54 Gout and other crystal arthropathies chronic 

55 Fluid and electrolyte disorders non-chronic 

56 Cystic fibrosis chronic 

57 Immunity disorders chronic 

58 Other nutritional; endocrine; and metabolic disorders chronic 

59 Deficiency and other anemia chronic 

60 Non-chronic posthemorrhagic anemia  
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61 Sickle cell anemia chronic 

62 Coagulation and hemorrhagic disorders chronic 

63 Diseases of white blood cells chronic 

64 Other hematologic conditions chronic 

76 
Meningitis (except that caused by tuberculosis or sexually 

transmitted disease) 
non-chronic 

77 
Encephalitis (except that caused by tuberculosis or 

sexually transmitted disease) 
non-chronic 

78 Other CNS infection and poliomyelitis chronic 

79 Parkinson`s disease  

80 Multiple sclerosis  

81 
Other hereditary and degenerative nervous system 

conditions 
chronic 

82 Paralysis chronic 

83 Epilepsy; convulsions chronic 

84 Headache; including migraine chronic 

85 Coma; stupor; and brain damage chronic 

86 Cataract chronic 

87 
Retinal detachments; defects; vascular occlusion; and 

retinopathy 
chronic 

88 Glaucoma chronic 

89 Blindness and vision defects chronic 

90 
Inflammation; infection of eye (except that caused by 

tuberculosis or sexually transmitteddisease) 
chronic 

91 Other eye disorders chronic 

92 Otitis media and related conditions chronic 

93 Conditions associated with dizziness or vertigo chronic 

94 Other ear and sense organ disorders chronic 

95 Other nervous system disorders chronic 

96 Heart valve disorders chronic 

97 

Peri-; endo-; and myocarditis; cardiomyopathy (except 

that caused by tuberculosis or sexually transmitted 

disease) 

chronic 

98 Essential hypertension  

99 
Hypertension with complications and secondary 

hypertension 
chronic 

100 Non-chronic myocardial infarction chronic 

101 Coronary atherosclerosis and other heart disease chronic 

102 Nonspecific chest pain non-chronic 
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103 Pulmonary heart disease chronic 

104 Other and ill-defined heart disease chronic 

105 Conduction disorders chronic 

106 Cardiac dysrhythmias chronic 

107 Cardiac arrest and ventricular fibrillation chronic 

108 Congestive heart failure; nonhypertensive chronic 

109 Non-chronic cerebrovascular disease chronic 

110 Occlusion or stenosis of precerebral arteries chronic 

111 Other and ill-defined cerebrovascular disease  

112 Transient cerebral ischemia  

113 Late effects of cerebrovascular disease chronic 

114 Peripheral and visceral atherosclerosis chronic 

115 Aortic; peripheral; and visceral artery aneurysms chronic 

116 Aortic and peripheral arterial embolism or thrombosis chronic 

117 Other circulatory disease chronic 

118 Phlebitis; thrombophlebitis and thromboembolism chronic 

119 Varicose veins of lower extremity  

120 Hemorrhoids  

121 Other diseases of veins and lymphatics chronic 

122 
Pneumonia (except that caused by tuberculosis or 

sexually transmitted disease) 
non-chronic 

123 Influenza non-chronic 

124 Non-chronic and chronic tonsillitis chronic 

125 Non-chronic bronchitis non-chronic 

126 Other upper respiratory infections non-chronic 

127 Chronic obstructive pulmonary disease and bronchiectasis chronic 

128 Asthma chronic 

129 Aspiration pneumonitis; food/vomitus  

130 Pleurisy; pneumothorax; pulmonary collapse chronic 

131 Respiratory failure; insufficiency; arrest (adult) chronic 

132 Lung disease due to external agents  

133 Other lower respiratory disease chronic 

134 Other upper respiratory disease chronic 
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135 Intestinal infection non-chronic 

136 Disorders of teeth and jaw chronic 

137 Diseases of mouth; excluding dental non-chronic 

138 Esophageal disorders chronic 

139 Gastroduodenal ulcer (except hemorrhage) chronic 

140 Gastritis and duodenitis chronic 

141 Other disorders of stomach and duodenum non-chronic 

142 Appendicitis and other appendiceal conditions  

143 Abdominal hernia non-chronic 

144 Regional enteritis and ulcerative colitis  

145 Intestinal obstruction without hernia non-chronic 

146 Diverticulosis and diverticulitis chronic 

147 Anal and rectal conditions non-chronic 

148 Peritonitis and intestinal abscess non-chronic 

149 Biliary tract disease non-chronic 

151 Other liver diseases non-chronic 

152 Pancreatic disorders (not diabetes)  

153 Gastrointestinal hemorrhage chronic 

154 Noninfectious gastroenteritis chronic 

155 Other gastrointestinal disorders chronic 

156 Nephritis; nephrosis; renal sclerosis chronic 

157 Non-chronic and unspecified renal failure  

158 Chronic kidney disease chronic 

159 Urinary tract infections chronic 

160 Calculus of urinary tract non-chronic 

161 Other diseases of kidney and ureters chronic 

162 Other diseases of bladder and urethra chronic 

163 Genitourinary symptoms and ill-defined conditions chronic 

164 Hyperplasia of prostate chronic 

165 Inflammatory conditions of male genital organs non-chronic 

166 Other male genital disorders chronic 

167 Nonmalignant breast conditions non-chronic 

168 Inflammatory diseases of female pelvic organs chronic 
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169 Endometriosis  

170 Prolapse of female genital organs chronic 

171 Menstrual disorders  

172 Ovarian cyst  

173 Menopausal disorders chronic 

174 Female infertility  

175 Other female genital disorders chronic 

176 Contraceptive and procreative management non-chronic 

177 Spontaneous abortion non-chronic 

178 Induced abortion non-chronic 

179 Postabortion complications  

180 Ectopic pregnancy non-chronic 

181 Other complications of pregnancy chronic 

182 
Hemorrhage during pregnancy; abruptio placenta; 

placenta previa 
non-chronic 

183 
Hypertension complicating pregnancy; childbirth and the 

puerperium 
chronic 

184 Early or threatened labor non-chronic 

185 Prolonged pregnancy non-chronic 

186 
Diabetes or abnormal glucose tolerance complicating 

pregnancy; childbirth; or the puerperium 
chronic 

187 Malposition; malpresentation non-chronic 

188 Fetopelvic disproportion; obstruction non-chronic 

189 Previous C-section non-chronic 

190 Fetal distress and abnormal forces of labor non-chronic 

191 Polyhydramnios and other problems of amniotic cavity non-chronic 

192 Umbilical cord complication non-chronic 

193 OB-related trauma to perineum and vulva non-chronic 

194 Forceps delivery non-chronic 

195 
Other complications of birth; puerperium affecting 

management of mother 
non-chronic 

196 Other pregnancy and delivery including normal non-chronic 

197 Skin and subcutaneous tissue infections non-chronic 

198 Other inflammatory condition of skin chronic 

199 Chronic ulcer of skin chronic 

200 Other skin disorders chronic 
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201 
Infective arthritis and osteomyelitis (except that caused 

by tuberculosis or sexually transmitted disease) 
chronic 

202 Rheumatoid arthritis and related disease chronic 

203 Osteoarthritis chronic 

204 Other non-traumatic joint disorders chronic 

205 
Spondylosis; intervertebral disc disorders; other back 

problems 
chronic 

206 Osteoporosis chronic 

207 Pathological fracture non-chronic 

208 Acquired foot deformities non-chronic 

209 Other acquired deformities chronic 

210 
Systemic lupus erythematosus and connective tissue 

disorders 
 

211 Other connective tissue disease chronic 

212 Other bone disease and musculoskeletal deformities chronic 

213 Cardiac and circulatory congenital anomalies chronic 

214 Digestive congenital anomalies chronic 

215 Genitourinary congenital anomalies chronic 

216 Nervous system congenital anomalies chronic 

217 Other congenital anomalies chronic 

218 Liveborn non-chronic 

219 
Short gestation; low birth weight; and fetal growth 

retardation 
non-chronic 

220 Intrauterine hypoxia and birth asphyxia non-chronic 

221 Respiratory distress syndrome  

222 Hemolytic jaundice and perinatal jaundice non-chronic 

223 Birth trauma non-chronic 

224 Other perinatal conditions chronic 

225 Joint disorders and dislocations; trauma-related chronic 

226 Fracture of neck of femur (hip) non-chronic 

227 Spinal cord injury chronic 

228 Skull and face fractures non-chronic 

229 Fracture of upper limb non-chronic 

230 Fracture of lower limb non-chronic 

231 Other fractures non-chronic 

232 Sprains and strains non-chronic 
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233 Intracranial injury non-chronic 

234 Crushing injury or internal injury non-chronic 

235 Open wounds of head; neck; and trunk non-chronic 

236 Open wounds of extremities non-chronic 

237 Complication of device; implant or graft chronic 

238 Complications of surgical procedures or medical care chronic 

239 Superficial injury; contusion non-chronic 

240 Burns non-chronic 

241 Poisoning by psychotropic agents non-chronic 

242 Poisoning by other medications and drugs non-chronic 

243 Poisoning by nonmedicinal substances non-chronic 

244 Other injuries and conditions due to external causes non-chronic 

245 Syncope  

246 Fever of unknown origin non-chronic 

247 Lymphadenitis  

248 Gangrene chronic 

249 Shock non-chronic 

250 Nausea and vomiting non-chronic 

251 Abdominal pain non-chronic 

252 Malaise and fatigue chronic 

253 Allergic reactions non-chronic 

254 
Rehabilitation care; fitting of prostheses; and adjustment 

of devices 
non-chronic 

255 Administrative/social admission non-chronic 

256 Medical examination/evaluation non-chronic 

257 Other aftercare chronic 

258 
Other screening for suspected conditions (not mental 

disorders or infectious disease) 
non-chronic 

259 Residual codes; unclassified chronic 

650 Adjustment disorders chronic 

651 Anxiety disorders chronic 

652 
Attention-deficit, conduct, and disruptive behavior 

disorders 
chronic 

653 
Delirium, dementia, and amnestic and other cognitive 

disorders 
chronic 

654 Developmental disorders chronic 
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655 
Disorders usually diagnosed in infancy, childhood, or 

adolescence 
chronic 

656 Impulse control disorders, NEC chronic 

657 Mood disorders chronic 

658 Personality disorders chronic 

659 Schizophrenia and other psychotic disorders chronic 

660 Alcohol-related disorders chronic 

661 Substance-related disorders chronic 

662 Suicide and intentional self-inflicted injury non-chronic 

663 
Screening and history of mental health and substance 

abuse codes 
chronic 

670 Miscellaneous mental health disorders chronic 

2601 E Codes: Cut/pierceb  

2602 E Codes: Drowning/submersion  

2603 E Codes: Fall  

2604 E Codes: Fire/burn  

2605 E Codes: Firearm  

2606 E Codes: Machinery  

2607 E Codes: Motor vehicle traffic (MVT)  

2608 E Codes: Pedal cyclist; not MVT  

2609 E Codes: Pedestrian; not MVT  

2610 E Codes: Transport; not MVT  

2611 E Codes: Natural/environment  

2612 E Codes: Overexertion  

2613 E Codes: Poisoning  

2614 E Codes: Struck by; against  

2615 E Codes: Suffocation  

2616 E Codes: Adverse effects of medical care  

2617 E Codes: Adverse effects of medical drugs  

2618 E Codes: Other specified and classifiable  

2619 E Codes: Other specified; NEC  

2620 E Codes: Unspecified  

2621 E Codes: Place of occurrence  
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  Table 22: Full list of Elixhauser (ELIX) codes.  The 3.0 version or AHRQ-web ICD-9-

CM Elixhauser code was used in this dissertation, in which Cardiac arrhythmias is 

removed from the list of comorbidities. 

ELIX ELIX Code Description 

1 Valvular disease 

2 AIDS 

3 Solid tumor without metastasis 

4 Alcohol abuse 

5 Depression 

6 Renal failure 

7 Psychoses 

8 Fluid and electrolyte disorders 

9 Diabetes, uncomplicated 

10 Lymphoma 

11 Weight loss 

12 Hypothyroidism 

13 Congestive heart failure 

14 Deficiency anemia 

15 Other neurological disorders 

16 Rheumatoid arthritis 

17 Drug abuse 

18 Hypertension, complicated 

19 Pulmonary circulation disorders 

20 Paralysis 

21 Diabetes, complicated 

22 Metastatic Cancer 

23 Peptic ulcer disease excluding bleeding 

24 Obesity 

25 Blood loss anemia 

26 Hypertension, uncomplicated 

27 Peripheral vascular disorders 

28 Liver disease 

29 Chronic pulmonary disease 

30 Coagulopathy 
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31 Cardiac arrhythmias 

 

Table 23: Average coefficient and intercept for each ELIX code across positive and 

negative labels of mortality 

 Coefficient Intercept 

Code Death No Death Death No Death 

Elix1 -9.671* -4.937 233.829* 193.015 

Elix2 -2.642 3.010 63.144 40.454 

Elix3 -1.805* 3.860 98.950 77.220 

Elix4 -9.625 -0.610 179.611 118.300 

Elix5 -4.746* -3.507 182.162 171.974 

Elix6 -5.430* -4.370 117.235 114.837 

Elix7 -2.072* -0.571 106.938 87.060 

Elix8 -14.593* -9.518 245.399* 214.351 

Elix9 -2.087* -1.494 112.496* 106.669 

Elix10 -0.127 0.591 44.075 52.531 

Elix11 -7.851 -6.401 179.580 165.122 

Elix12 -7.077* -5.452 211.299 203.268 

Elix13 -7.485* -3.080 168.925* 143.451 

Elix14 -9.422* -6.792 206.255 200.848 

Elix15 -7.745* -4.290 153.731* 133.033 

Elix16 -0.293* 0.910 111.358 91.904 

Elix17 -6.714 -0.095 159.165 107.208 

Elix18 -7.452* -3.688 212.415* 180.660 

Elix19 -2.151* 3.018 116.574* 53.545 

Elix20 2.463* 2.925 95.737* 74.252 

Elix21 -6.737 -4.557 170.539 159.962 

Elix22 -1.784* -1.050 59.225 67.539 

Elix23 -6.957 6.992 158.695 95.811 

Elix24 -9.119 -7.481 247.817 224.553 

Elix25 -1.979 -3.831 146.925 154.026 

Elix26 -3.734* -2.994 153.287* 148.007 
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Elix27 -5.059 -5.402 180.930 176.711 

Elix28 -3.700* 0.621 142.039* 114.152 

Elix29 -8.848* -4.357 202.051* 177.389 

Elix30 -2.745 -0.774 120.335 101.639 

 

Table 24: Average coefficient and intercept for each ELIX code across positive and 

negative labels of high utilization 

 Coefficient Intercept 

Code High Ut No High Ut High Ut No High Ut 

Elix1 -10.148* -4.246 234.299* 187.955 

Elix2 -0.534 3.428 57.672 37.799 

Elix3 -1.015* 4.273 86.387 78.073 

Elix4 -8.346 -0.125 160.210 117.717 

Elix5 -4.398* -3.425 176.358 172.291 

Elix6 -4.819* -4.386 104.512* 120.759 

Elix7 -2.673* -0.175 103.899 85.105 

Elix8 -13.434* -8.805 231.123* 214.115 

Elix9 -3.109* -1.216 108.383 106.911 

Elix10 -1.210* 1.419 52.812 50.410 

Elix11 -10.356* -4.961 178.656 163.268 

Elix12 -8.366* -4.986 212.514 202.114 

Elix13 -6.909* -2.610 162.541* 141.900 

Elix14 -8.849* -6.516 189.763* 205.747 

Elix15 -7.597* -4.055 149.792* 132.552 

Elix16 -1.635* 1.445 105.869* 90.529 

Elix17 -1.900 -0.520 112.521 115.536 

Elix18 -8.065* -2.823 203.836* 177.842 

Elix19 -2.792* 4.039 103.446* 47.218 

Elix20 2.818* 2.872 83.985* 75.235 

Elix21 -6.218* -4.295 161.616 161.016 

Elix22 -1.680* -0.948 60.951 68.352 

Elix23 -0.164 7.458 99.782 100.565 

Elix24 -12.092* -6.259 242.062 221.802 

Elix25 -2.889 -3.787 136.227 161.683 

Elix26 -4.050* -2.887 142.784* 149.358 
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Elix27 -7.854* -4.653 198.572* 171.177 

Elix28 -2.712* 0.842 128.358 115.281 

Elix29 -7.370* -4.279 190.693* 177.824 

Elix30 -2.341 -0.582 121.877 98.027 

 

Table 25: Average coefficient and intercept for each ELIX code across positive and 

negative labels of CKD 

 Coefficient Intercept 

Code CKD No CKD CKD No CKD 

Elix1 -6.942* -4.408 204.502 187.899 

Elix2 -2.381 7.023 80.673 20.716 

Elix3 0.326 4.441 102.089 70.914 

Elix4 7.002 -2.278 75.244 125.895 

Elix5 2.532 -3.209 162.699 168.872 

Elix6 -1.469 3.260 87.091 96.354 

Elix7 -2.693 0.059 92.545 84.131 

Elix8 -13.325* -6.254 225.833 200.659 

Elix9 -1.539* -1.178 109.389 110.432 

Elix10 0.231 -0.836 28.415 60.165 

Elix11 -6.659 -6.781 186.034 167.054 

Elix12 -5.320 -4.776 211.693 202.033 

Elix13 -3.851 -2.865 152.213 146.383 

Elix14 -8.312 -6.428 226.622 210.108 

Elix15 -3.060 -3.673 138.591 127.080 

Elix16 0.944 1.623 87.829 86.242 

Elix17 -6.978 -0.699 112.519 112.557 

Elix18 -1.442 -0.866 179.281* 160.860 

Elix19 3.116 3.688 68.785* 45.142 

Elix20 4.519 2.441 71.691 72.143 

Elix21 -3.097 -3.778 155.416 159.213 

Elix22 -0.768 -2.827 55.856 74.448 

Elix23 -0.445 11.645 112.395 98.129 

Elix24 -4.510 -7.692 217.183 221.541 

Elix25 -1.187 -3.440 163.220 166.963 

Elix26 -3.417* -3.048 157.829 154.745 

Elix27 -5.609 -5.124 183.796* 171.805 
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Elix28 -2.986* 1.473 131.962 116.496 

Elix29 -7.116* -3.818 203.973* 172.129 

Elix30 -2.273 -0.290 111.879 96.399 

 

  Table 26: Average coefficient and intercept for each ELIX code across positive and 

negative labels of CHF 

 Coefficient Intercept 

Code CHF No CHF CHF No CHF 

Elix1 -12.577* -4.572 251.017* 190.020 

Elix2 4.746 3.510 47.918 45.062 

Elix3 2.808 3.884 68.457 72.936 

Elix4 -2.332 -0.141 106.677 107.966 

Elix5 1.765 -3.049 131.116 170.097 

Elix6 -5.035 -3.710 119.031 111.049 

Elix7 -1.299 0.299 89.209 82.926 

Elix8 -9.273 -6.041 205.122 177.997 

Elix9 -1.864* -0.927 111.314 106.307 

Elix10 -0.870 -0.878 40.148 47.961 

Elix11 -7.517 -6.672 166.923 167.849 

Elix12 -5.898 -4.707 204.294 198.741 

Elix13 -3.872 3.579 182.598 98.492 

Elix14 -8.350 -5.847 207.907 194.756 

Elix15 -5.961 -3.168 136.209 123.757 

Elix16 2.091 1.093 91.944 83.047 

Elix17 -8.165 -0.731 136.461 114.489 

Elix18 -0.118 -1.776 165.498 164.605 

Elix19 2.730 5.127 61.038 33.716 

Elix20 8.312 2.458 62.029 66.657 

Elix21 -4.748 -4.410 154.514 161.356 

Elix22 -3.382* -0.773 92.849* 58.250 

Elix23 -13.617 5.435 149.467 98.887 

Elix24 5.884 -8.921 173.517* 219.768 

Elix25 1.195 -2.777 116.301 147.316 

Elix26 -3.495 -2.902 157.478* 152.404 

Elix27 -2.630 -3.996 167.042 160.725 

Elix28 4.779 1.416 49.295* 114.974 
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Elix29 -6.346 -3.798 195.209 178.735 

Elix30 1.741 -0.158 77.786 88.494 

 

Table 27: Comparison of the number of coefficients for TMMR vs. TJR 

based on correct prediction  

Model 1-Mortality 

 Positive Label Negative Label 

Alg TJR TMMR TJR TMMR 

RF 6.62 5.76 4.57 5.00 

GB 6.26* 4.95 5.85 6.76 

LR 8.19* 3.92 4.35* 8.02 

DT 4.45 4.14 3.21* 3.35 

Model 2-High Utilization 

RF 6.75* 5.41 5.40* 7.00 

GB 6.70* 4.56 4.75* 6.50 

LR 8.61* 4.18 3.77* 7.98 

DT 5.23* 4.91 3.29* 3.48 

Model 3-CKD 

RF 0.00 0.00 0.00 0.00 

GB 4.43 4.00 4.65 5.86 

LR N/A N/A N/A N/A 

DT 3.26* 2.89 2.38 2.63 

Model 4-CHF 

RF N/A 0 0 0.89 

GB 5.233 2.0 3.47 4.53 

LR N/A N/A N/A N/A 

DT 2.92 2.67 2.12 2.26 

 

Table 28: Comparison of the coefficient average for TMMR vs. TJR based 

on correct prediction 

Problem 1-Mortality 

 Positive Label Negative Label 

Alg TJR TMMR TJR TMMR 

RF -7.67 -5.14 -7.68 -10.65 

GB -10.81 -7.69 -9.74 -7.73 

LR -10.91 -7.76 -8.61 -6.11 

DT -4.31 -6.30 -4.00 -3.69 

Problem 2-High Utilization 

RF -6.28 -6.90 -6.29* -7.21 

GB -6.86 -7.75 -4.50* -7.95 

LR -6.12 -8.49 -6.54* -6.38 

DT -6.93* -5.95 -3.48* -4.44 
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Problem 3-CKD 

RF N/A N/A N/A N/A 

GB -27.46 -8.94 -2.69* -17.47 

LR N/A N/A N/A N/A 

DT -5.16 -2.65 -3.33 -3.09 

Problem 4-CHF 

RF N/A N/A N/A 0.62 

GB 0.72 -1.21 -7.38 -12.46 

LR N/A N/A N/A N/A 

DT -3.57 -3.06 -3.91 -3.06 

 

Table 29: Comparison of the number of coefficients for TMMR vs. TJR 

based on superior prediction 

Problem 1-Mortality 

 Positive Label Negative Label 

Alg TJR TMMR TJR TMMR 

RF 3.40 3.16 2.05* 2.26 

GB 3.09* 3.26 2.25* 1.82 

LR 3.42 2.85 2.34* 1.68 

DT 4.42 4.11 3.19 3.30 

Problem 2-High Utilization 

RF 4.95* 3.93 1.88* 2.40 

GB 4.72* 3.95 1.86* 1.84 

LR 5.41* 2.82 1.54* 2.17 

DT 5.23* 4.91 3.28* 3.47 

Problem 3-CKD 

RF 2.26* 1.86 1.50* 1.75 

GB 2.23* 1.80 1.51* 1.58 

LR 2.32* 1.61 1.19* 1.97 

DT 3.26* 2.89 2.38* 2.63 

Problem 4-CHF 

RF 1.96* 1.77 1.32* 1.52 

GB 1.87* 1.76 1.36 1.33 

LR 2.21* 1.39 1.01* 1.77 

DT 2.91* 2.66 2.09* 2.22 

  

Table 30: Comparison of the coefficient average for TMMR vs. TJR 

based on superior prediction 

Problem 1-Mortality 

 Positive Label Negative Label 

Alg TJR TMMR TJR TMMR 

RF -4.55* -5.19 -3.55* -1.70 

GB -4.55* -5.19 -3.55* -1.70 
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LR -6.19* -3.54 -2.62* -2.69 

DT -4.31 -6.30 -4.00 -3.69 

Problem 2-High Utilization 

RF -5.96* -5.69 -2.60* -2.69 

GB -5.63 -6.00 -1.51* -2.96 

LR -6.09* -5.35 -2.00* -2.72 

DT -6.93* -5.95 -3.49* -4.44 

Problem 3-CKD 

RF -3.87* -2.87 -2.10* -2.50 

GB -3.35* -3.38 -2.23* -2.19 

LR -4.06* -2.43 -1.82* -2.54 

DT -5.16 -2.65 -3.33 -3.09 

Problem 4-CHF 

RF -3.56 -3.52 -2.27* -2.12 

GB -3.13* -3.48 -2.22* -2.07 

LR -4.45* -1.90 -1.83* -2.43 

DT -3.57 -3.20 -3.91 -3.06 
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