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RECOGNITION OF TQTAL OR PARTIAL SYMMETRY
IN A COMPLETELY OR INCOMPLETELY

SPECIFIED SWITCHING FUNCTICN

by

Ryszard S. Michalski ‘
Instytut Automatyki PAN,Warszawa, Poland

1. Introduction

At the stage of the structural synthesis of a switching cir-
cuit, knowledge of the symmetry properties of the switching
function has proved to be very valuable. PFirst, if we do not
1imit the structure of the circuit, the methods of designing
the switching circuits that realize symmetric functions are
very simple 1'3; especially when a circuilt is constructed on
such elements as relays 1 or threshold elements 5. If we are
interested. in obtaining a minimal-cost two-level  switching
c¢ircuit, constructed on conventional gate-type switching ele-
ments "or", "and", "not" the problem arises of determining the
minimal normal sum-of-products form.

Resolving of this problem can be 45 essentially simplified,
once we have the information that the function is symmetric.
This fact is particularly significant,. because as a result of
Kazakov’s work 6, the class of switching functions possidly
Processing a maximal pumber of prime implicants, potentially
the most difficult to minimize, is included in the c¢lass of
symmetric functions X, Symmetry information is also useful for
showing equivalence between two multiple output switching func-
tions. And most of the gates used today to realize switching.
¢ircuits produce symmetric functions. .

A number of works have been devoted to the problem of re-
cognizing symmetry in switching functions 7'12. The majority

= Assuming that the class of symmetric functions includes
the functions symmetriec with respect to the literals, i. e.
unprimed or primed variables (or functions f£(x) = x and

£(x) = T ).
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of these works deal with recognizing total symmetry in a
switching function. Mukhopadhyay 10 4escribes a method for
determining the total or partial symmetry sets of a completely
specified switching function which uses n or (g) respect-
ively so-called "decomposition charts'". Schneider and Diet-
meyer 12 describe a computer-oriented method for recognizing
symmetry in a completely or incompletely specified (multiple
ohtput) switching function which involves performing certain
operations on the rows of an array which represents the given
function. This method deals with recognizing symmetry with re-
spect to (unprimed) variables.

"e present paper describes a method for recognizing total
or partial symmetry with respect to the literals in a (single
or multiple output) switching function which may be completely
or incompletely specified. The method represents a new ap-
proach which is based on the use a certain two-dimensional to-
pological model of a function, +the so-called function image
T(£). The use of this model allows the method to be easily ap-
plied in hand (for n.( 7-8) as well as machine calculations.

2. Notation and Definitions of the Basic Terms

=((1)1, LUK ] wn),jE{O, 1, s ey Zn-1}, wiE

Let Qj
€ {O, 1}, i=1,...,n,denote a sequence or values of the input
n
) . -1
variables X4, eeey X, apnd assume further that j =§i:cui2n .
i

Let S = {Qj} be the set of all such sequences Qj .
n
Let Ykz(‘x1, seaey Xm), kE{O, 1, ss ey 3 -1}, a’iE
€ {O, 1, x} y1i=1 «¢.y n, where = represents an unspeci-
fied ("don’t care") value, denote a sequence of values of the
output variables Tqs eees Ty and assume further that k=

m ,
: _3 'b’ it X:O 1
= E ?'3n i , Where §i = N 1 ’ . Let Y= {YZ}
i=1 2, if ¥ == J

be the set of all such sequences Y. .
A multiple output switching function £ is then defined as
a mapping from R into Y ( fi:@ QR — ‘Y). For our considera-
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tions now we assume that m = 1, but later we will show how to
extend the method for the case when m > 1 .

tet 90, @', 9F denote the sets of sequences R y for which
£(R,) = 0, 1, ® respectively. If * = 9, where © 1is the
empty set, then the function £ is completely specified and
i Q%40 then f is incompletely specified. An incompletely
specified function f determines a set ¢(f) = {f{} of com-

pletely speciried functions £ , 1 = 0, 1, «uvy 20(R%) _ 4,
where c(R%) is the cardinslity of the set Q*, These func -
tions f; are determined by all possible partitions of the
set ©F into subset 2*0 and 2*', such that £f (R*0) = {o}
and £} (*') = {1}.

Definition 1: A function £(X4y «-e» x,) is seid to be sym-

) . 6;
metric th re ct to & t terals x’{xi‘}iel
where I 9{1,...,11}, 616{0. 1} and xf‘ = :_‘_i' it 6i=1;
xi,if 61= 0
if:

(1) if Q%= 6 , then the function is invariant with respect
to any permutation of the literals of the set X 3§

(2) if Q% # 6 , then in the set & (f) =‘{f;} there is at
least one function £ which satisfies condition (1).

A set of -literals X with respect to which the function £
usymmetricvevillcallaswmset of £. If X is a
symmetry set of f and Y is maximal under inclusion among
the symmetry sets of X , then we will say simply that X is
a maximal symmetry set. Symmetry sets of £ of largest cardi-
nality among the symmetry sets of £ will be denoted xm. It

c(Xy) =1, the function £ is said to be totally symmnetric,
it 1< c(Im) <n, f is said to be partially symmetric.

If X= {x{’k, x.fl} is a symmetry set of the function f ,

then, according to definition 1, xkék can be permuted with x{’l

and 1161 with xlfk without changing the functiom £ , if f
is completely specified or if £ is incompletely specified,
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without changing some functions f; in the set ¢ (£).7e will
denote the set of all such functions f; by ¢, 1 » The rela-
9
tion saying that the literal x]fk is pernutable with 11

without changing the function £ is written (xé’kw xgl)r.lr

f 1is incompletely specified then (xf:k ~ x{’l)f will be writ-

ten to mean that the set ¢k 1 defined above is not empty.
y

If functions of +the set ¢k 1 are determined we write
]

(xf;"fv xlé_l)¢k1. It 1is easy to prove that the relation ~~ is

reflexive, symmetric and transitive, but in the case Q¥4 0
transitivity is understood as

(x~ X?l)“’k,l A (b~ X)oyn=> (RE~ x$m>¢k,l ndn (D

When X = {xf' ) veny xﬁ"’} is a symmetry set, a relation

(x,?’ ~ sse AU xgm)f can be defined analogously to the above.

The elementary symmetric functions are:
61 6
So (Xi 1"-:xnn)

S (8% ey xin) = x$Y x1762 | A76ny (1761 6 163 én

.
.

x,‘-c" x21‘62 oo xS0

6
Sn (x,‘,...,xg"’) =x%' xf2 xon

Each totally symmetric function is a sum of a set of ele~-
nentary symmetric functions and can therefore be written in

. - G2 N
the form SA(X), where X = {xil} i=1,...,n is a  symmetry

set of the functionm, and A = {ai} 1=1.2 is the set of
kd ’ ] LN

indices of the elementary symmetric functions whose sum is the

given function (the so-called a-numbers set). It is also well

xnovn that: -
A .

$,(X) = 83(X) (2)
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A 2. A
where I:{xf’l}, c,i=1- 6 AL

i }i=1,2,...' 8 =
=n -8y . The function 'SL(xq, ceey xn) is written Si .

and 2:{/8\1

Any switching function ﬁdy be written in the form of the
following matrix:
; 2
T(f) = [tv,h]v=0,1,.oo’2 2 -1
n
D= | =
g
h=0,1,.’.,2 -1
pe
‘ . 2 n
where tv,h = f£( Qj), J = ve2 + h and &ﬂ is the entire

part of g « To the matrix T(f) there correspond in a one-

-to-one fashion a certain topological model called the image
T(f) of the function. The image T(f) is determined with the
use of the n-variable logical diagram defined below.

Let us divide any rectangle into 2 rows and 2 col-
umns according to the rules:

(1) In the first step we divide a rectangle into two rows
with a horizontal line. In step m each row obtained in step
p-1 we divide into two rows. We execute [g steps.

'(2) The steps a4 1y +eey B are executed similarly as
it was done in rule (1), but by division of the rectangle into
columns with vertical lines. '

The lines which divide the rectangle in step i (i=14.¢.4n)
we call the axes of the variatle x - The intersection of any
row with any column we call a cell of the logical diagram, as-
suming that the cell does not include the points belonging to
any axis or the perimeter of the rectangle. To set of cells
lying above x, axis we assign the literal iq and to those
lying below the axis the literal Z, « The axes E rXnyeeeyXy,
i=1, 2, «vey g - 1, divide the rectangle into 21" sets of
cells.To the set consisting of the cells of all the top halves
of these sets described above we assign the literal ii+ﬁ and
to set consisting of the cells of all the bottom halves we as-
sign the litera; i1 *
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To the set of cells lying on the left of the axis x{n _
: = + 1
~ H

n] . 1 and to the set of those lying

2
on the right the literal x + The axes x s ees
. [2] + 1 E‘] +1

we assign the literal i[

2
coey Trpy - 0 1 =21,2,040., D = [E] - 1, divide the rectangle
H+i 2

2
into 2% set of cells. To the set consisting of the cells of
all the left halves of those sets described above we assign
the literal X ~ and to the set consisting of the cells
Eﬂ+1+1
of all the right halves we assign the literal x. 141 *

Definition 2: The figure described above we call an D-var-
ieble logical diagram (see Fig. 1 g).

The n-varisble logical diagrém is similar to the "tables"™
of Venn 15, "charts®™ of Veitch 14, "maps"” of ERarnaugh 15 and
other diagrams. To the logical operations on the literals
there correspond set-theoretic operations on the sets of cells
assigned to these literals: to the product of literals there
corresponds the intersection of sets of cells, to the sum of
literals the union of sets of cells. The set of cells corre-
sponding to a product a of literals we will denote by L(«x).
To a product of n 1literals « = x$1 veey xf" corresponds
in a one-to-one fashion one cell e of the diagram. We have

= 1, when the variables X3 ,1=1 «..y n, take values
W, = O, . Then the cell e corresponds uniquely to the se-

1 1

quence Qj = (W4qy +evy wy), where wy = 6, and j =

= i w2
i=1

Definition 3. The number of the cell e in an n-variable
logical diagram is the number 3(e) J , where j is the in-
dex of the sequence Q. to which corresponds the cell o .

The cell numbers ¥(e) are distributed in the logical di-

* In this figure a given variable X; 1s written beside
only one of the Xy variable axes.

** Not to be confused with the "diagrams" of Venn.
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agram in an ordered manner.For instance in Fig. 2 is shown the
distribution of cell numbers in a 6-variable logical diagranm.
Definition &4: The weight of the cell e in an n-variable

n
logical diagram 1s the number é(e) =j{::q>i y Where Wiy 1=
i=1
=1, ..., n, are elements of the sequence Qa%e)'

The weights of the cells are located in the logical diagram
in a certain characteristic order. Fig. 3 presents the example
of the distribution of weights in a 6-vartable logical diagram,

To each cell e in an n-variable 1logical diagram 1let us
assign the value £ S?K(e)) where f(x1, ;.., X)) is a given
function.

Definition B: The set of all cells of an n-variable logic-
al diagram with values assigned as described above we call the
image of the function £ and denote by T(f) . ‘

If e is a cell in T(f) +to which was assigned the value
P , we will say simply that e e T(f) has value p .We define
P = {e € T(f) : e has value P} , where p =0, 1, = . Let

1 2
u1 = /\ xgi . and ¥y = /\ xgl
i 611 j.EIz

where 11 = 12\< {1, soey n} . 2
Definition 6: A pair of cells (eg, ej) s Where eg € I( dj)
and ej e I( az) are called a pair of corresponding cells in

AUV : 1 2 1 2, ,n-i
L( @) and L( O if  y(ez) ~ (e = > (6] - g3t
where I = 11 = 12. ielI
It can beseen that corresponding cells in L(O(,‘) and L(oca),
if 11 = 12, we can make coincide by a parallel shift (see

Fig. 8}.
3, Recognition of Symmetry in Completely Svecified Punctions

3.1. Recognition of Total Symmetry

& given function is totally symmetric if c(Xm) = n, Detec-
tion of that fact is vased on the following theorem:
Theorem 1: A necessary and sufficient condition that & Tunc-
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tion f(x,], ceey xn) be totally symmetric is the existence of
a sequeace 6= ( 62, 65, cesy Go)y Gi e{O, 1} s Such that

Ve {2, ..., a, (x4~ xéh),

Proof: Sufficiency: This results immediately from the fact
that the relation ~ is transitive. Necessity: According to

formula (2), if the set {i,‘, xgz, veay xﬁ"} is a symmetry set
1-6, 1-6q

then the set X40 Ty 4 eeey X, is also a symmetry set,
Therefore if the function is totally symmetric, there exists
the symmetry set including the literal x, «Suppose then £ is

totally symmetric and {x,,, xgz, ceey xg“} is a symmetry set
of £ . Then clearly 62, coay C’n is a sequence with the
desired property. Q.E.D,

This theorem is also valid if we permute in any way the in-
dices i € {1, 2y veny n} of the literals xfi.

Theorem 1 shows that testing whether the function £ is to-
symmetric consists of testing for symmetry with respect to
certain pairs of literals. The minimal number of pairs to test
iz’ n - 1 and maximal 2(n - 1.

Let us expand the function f(x,‘, voey xn) with respect %o
the variables x, and X k,1 e {1, ceny n} s K £ n:

== .0 = 1 - .2
fxqr eoen Xp) = 18y 1V Exity |V 0t 1V ‘xxlfi,k (3

where fljé,l = f(x,,,...,xk__,‘,wi,xkﬂ,...,x1_1,wi,xl+1,...,xn),
i=0,1, 2, 3, i=2wi+wi .
Theorem 2: A (x6k~ 61) ﬁhere 6, £ 6,; 6,06 e{o 1}
=feofen g 4. (Xy 1 k 1’ Trr ©18

; 1T - p2
if and only if fk,l = fk,l (a)

B. (xlf’km x:f’l)f where Gk £ Gl;dk, 61 € {0,1}

if and omly 1f £ (= 20, (b)
1 9 T
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Proof:
4. If (a) is satisfied by transformation of the formula (3)
we obtain:

- — .0 _ -
fEpe cens 3p) = BNV EFH VoI v 52 )

This equation shows that pernutations <§;:§i\ and <;§:;i do
not change the function f , that is (xfkfv le‘ )f in case
6k = 61. If (a) is not satisfied, then the above permuta -
tions change ¢ , proving the necessity of (a).
B. This can be proved analogously. Q.E.D.
Conditions (&) and (b) can be easily checked using the im-
age T(f) . The images T(fi’l), i=0,1,2,3, are determined
by the subsets of the image T(£) consisting of the cells of

i i .

g L(xfk xlél), where i = 26; + 6% -Such subsets of T(f)
we will denote by Ti.lgf). Condition (a), éb) is then equiva-
lent to the relation T, (2) 3 Tﬁ’l(f), (Tp,,(£) 2 Ti,l(f)) ,
where by T we mean that corresponding ® cells in Tk l(f) and
Ti,l(f) (!°k’l(f) and Ti'l) bave the same valne.When the con-
dition (a) is satisfied we say that £ has symmetry of the
first kind and when condition (b) is satisfied that ¢ has
‘symmetry of the second kind with regspect +to the pair of var-
iables {xi, .

Pig. 5 presents algorithm & for testing the total symme~-
try of the function f based on theorems 1 and 2. The sign
"= 15 used as in Algol (it denotes that the variable on the
left of the sign takes the new value resulting from the opera-
tion written on the right).is a result of algorithm S, we ob-
tain the answer whether the function f 1is totally symmetric
and in the case of a positive answer, a symmetry set Xm is de-
termined. In general the function ¢ may have a number of al-
ternative symmetry sets xi v 1 =1, 2, ..., whose difference
from one another is that contain different litterals of the

x . P P
By corresponding cells in Tkjl(f) and Tk?l (pq=1,0,

p P
Pp = 2,3) we mean corresponding cells in I | and T 2 .
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same variables. To determine all sets X;, we modify algorithm
S , so that both condition (a) and(b) are tested for each pair
of variables (11, xi) s 1 =2, 3, ¢¢¢y n.

In the case of hand realization of the algorithm it is more
convenient to adopt a different order of testing for symmetry
with respect to pairs of variables, namely to test for symme-
try with respect to pairs: (xq, x[g]+1), (x1, IE§]+2)’ ces

2 2
(qu xn)' (12’ x[:%}b‘l)’ (x3! x[£]+1)9 ooy (x[g]v x[2]+1)° In
2 2 2
this case the sets of cells whose values we compare to test
for symmetry are characteristically located in the diagram and
are easy to define (see Fig. 6).

3.,2. Determination of the a-numbers Set

If we have determined that a function £ 1is totally symme-
tric then we can represent it in the form SA(X), where A is
the set of a-numbers and X 1is the symmetry set. Having de-
termined that £ is totally symmetr.c, we will also have
found a symmetry set X = Im. Thus we need only to determine
the set A in order to find the form SA(X) = f.Determination
of this set is helped by the following theorem:

Theorem 3: Let £ be a function such that £ = SA(X), X-=
= {xﬂ, Xy eees xn}, 4 {0, 1, ..., n}. The set F! is the set
of all cells e ¢ T(f) having weights d(e) e A .

Proof: Recall that F' is the set of all cells in T(f) with
value 1. Let A= {ai}i=1,2,...’ Because S,(X) = f then f =
= V S_(X). A function S_ (X), a, € A has (2) com-

ajeh %1 ay i 3y
ponents, each including ay literals X, and n-a, literals
ii « To each component there corresponds the sequence R in-
cluding a; ones’and n - a; zeros, so the weights of the
cells corresponding to those sequences are §(e) = 8y As the
function £ is a sum of Sa y 1 =1,2, .¢., then ?1 con-
sists of all cells, which 1 have weights §(e) € A, Q.E.D.

Theorem 3 is illustrated by Fig. 6, which shows the image
of the function SS,B (the cells of F' “are dark). Due to this
theorem the determination of the a-numbers in case the symme -
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try set is {xi},i =1, ¢cey n, may de accomplished hy the next
operations:

1. Determination of a certain minimal set of cells E = {ei}
such that the weights zS(ei) exhaust the set of all possible
values of the a-numbers i.e. the set {0, 1, ..., n} '

2. The test showing which cells e, Dbelong to Fl.ir e, € P!
then a, = é(ei) € A,

It can be easily proved that E = Ehu Ev’ where Eh consists

of the cells e , which have numbers y(e) = -1, Xx=0,1,

eeey O = 3 and &I consists of the cells e , which have
|+

numbers y(e) = -1, k=1, 2, ..., [5] The set Eh

2
is included in the set H = L(i’, ceey i[n ) consisting of the
3
cellslying in the top row of the diagram. The set E, 1is in-
cluded in the set V = I;(:u:[n ) eeey xn) consisting of the
=1+1
2

cells lying in the right hand column of the diagram., Figure 7
shows the set ¥ = zhu Ev in the 6-variable logical diagram,

Let us now assume that the symmetry set {xi } ’
=1, 2, «s.y n, includes at least one nteral X; . To reduce
the present case to the previous one we might construct sn im-
age T’(f) which consists of the cells of a logical diagram,

whose variable axes are 4x5'_ sy =1, ..., n, where xj'_= xfi.

The image T°(f) can be constructed from T(f) by success-
ively replacing the sets of cells in T(f) which were assign-
ed the literal X; by those which were assigned the 1literal
ii and vice versa, for each i such that 64 = O.

For determination of the set A we need only test the val-
ues of the cells of E , which are inciluded in the set of
cells of top row H &nd right hand column V of T°(£).There-
fore it is enough to perform replacements described above in-

e bt -1-1]4»‘1 <

side the set L(x.1 gesey x[n][i])for literals iie X, [2

2



120

2
eX,1<4< l—g] . The sets so obtained will be the top
row and right hand column respectively of the image T°(2)
which we seek in order to determine A .

£ i1<n and inside the set L(x[n] y ssey xf:“) for literals
) +1

3.3, Recognition of Partial Symmeitry

A given function f(x1, eesy Xy) 1s partially symmetric if
1< c(Im) < n . Determination of all the maximal symmetry sets

s 1=1,2, ¢¢., of function £ may be easily accomplished
when all sjmmet’ry pairs are known. The following implication
is helpful here:

Gy~ A Ey~ 0= E~ Ty~ 20, ()

lad

where X, represents a literal x

a or a sequence of liter -~

a

~

als connected by sign ~ xgdiw xi’;ZN... and X, - analo-
gously. 1

This implication results immediately from the transitivity of
the relation ~ . Pig. 9 presents algorithm sP  for the de-
termination of all the symmetry pairs of the function £f. Be-
cause the relation ~ is transitive, certain operations of

6c

this algorithm may be omitted: if (xiaw 1’.6;’;’)f and(xgafv x.©)

£

then also (x.g’bfv xg’c)f and testing for symmetry with respect
to the pair {xgb, xcé’c} is superfluous. When £ 1is totally sym-
metri¢, algorithm SP is equivalent to algorithm S, in which
for each peir of variables both conditions (a) and (b) are test-
ed.

3.4, Determination of an Algebraic Form of a Partially
Symmetric Function

Let X = {xjé,i}iel where T C{‘l, ceny n} be a symmetry
set of the function f(x,,, seny xn). Let us assume,without loss
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ot generality that I = {1, 2y eeay m}, 1 < m < n., Generalizing
Shannon’s 16 formula to the case of symmetry with respect to

literals, the function f(x1, vesy xn) may be written:

£(xqy covs T) = \/ 8D (X g1 Tpypr =+or Tp) (5)
3=1
where fj(xm+1’ Xpp2? oo In) = f(u)1, cees@WpsXpqr Tpiny eee
1, if x, € X . .

ss ey &),wi= O’i_f i—iex ,fOI'l:", 2' voey a, (Di=

0, if X, € X
= _ y for 1 = 31, 12, ..., nu,

1, if X € X

If we have found the maximal symmetry sets Ii of the func-
tion f(x.,, ceny xn) for X' we can determine the form ) .
Functions f;j may be determined from any algebraic form of the
function £ .

4., Recognition of Symmetry in Incompletely Specifies Punctions

Let f(x,,, ceey rh) be an incompletely specified <function.

The function f is symmetric with respect to the pair (xi“,xél‘)

if there exists a non-empty set ¢k 1 € &(£), such that for
each f? € ¢k 1

(@ D F R ED i 6y = 6y

or

b

0]
() T (£
Let us assume that 6){ = 61. Let {e?, ej} y 3=1,2, ..
-2 _k 1 1 2
veey 2075, ey € Tk l(ff), ey € ‘I‘k'l(f?) be the sets correspond-

ing cells in T1 l(fi) and ‘1‘ l(f*) . The set 4>k , is determ-
ined (with a certaln restrlctlon - see row 3 in the table below)
by an unspecified function fk 1 » whose image T(fk,l) results
from the image T(£) Dby reallzation on each pair ej, ej

of the following operations which depend on the values of the
cells of this pair:
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| o
11010 } values of eg and e]-' are not changed
2(1 |1 J
3|= | = | values are not changed, but for each f’; € ¢k,1’
elg and ‘\e}' must have the same value O or 1
410 | =
'5 = | O values = are changed to O or 1 to obtain equa-
61 | = lity of values of e.j and e%
7 1l= 1
810 (1 contradiction, ¢k 1 =6
911 o '

From this table we see, that a necessary condition for symme-

try with respect to the pair {xﬁk, Xy } is that the cells of

no pair e?, ej} have values O and 1 or 1 and O respectively.

In case 61: £ 64 the symmetry condition is amnalogous , but
with respect to the pairs of corresponding cells in Tg l(f)
and mi N

From the above considerations it follows that for a given
image T(£) and values of 6y and &, the set ¢ x,1 °an be
uniquely determined from the ordered triple (Ck 1,0k 1, Rk l)
where Cg 1 is the set of cells whose values change from "x
(in T(£)} to O (in (£, 1))y Cy o 1is the set of cells whose
values change from = to 1 and Rk 1 is the family of sets
{e?, e%‘} such that cells e§ and e%‘ of each set have in
T(f) value = . The cells of every set {eg, el} € Rk 1 in
the image of each f* € ¢k 1 Dust have the same value O or
1.

Let us assume that (zSX ~ x5, (x5! ~ xf;"‘)f and that the

0 1
triples (Ck 1! Ck 1? Rk,l) and (Cl,m’ cl,m’ Rl,m) have been

determined.

Theorem 4: (xé’kwxfi)f/\(xglm x.f;'“)f = (x.k Nxélwx “‘)f
if and ogly if :he following are true:
n =
(2 20 0, = O

1 )
(®) G 1N G, = O
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(e) ﬂ %, ¢ e (cg’lx c;,lu cg’l x,cl’n)a
Jeter g ur o, {c% et
Proof:

Necessity: Let us assume that (x°K~ xfl ~ x:“')f. Then there
exists & non-empty d)k 1.m € ¢ (£) such that for each I‘?e
L Rl N

6
€ '¢k,l,m the set {xikn x({‘. Inm} is a symmetry set. Accord-
ing to (1) cpk'l’m = ¢k,1 n 4’1,m . If (a) or (b) 48 not

true, there exists e , which in the image of every f’i! € ‘bk 1

has the oposite value than in the image of every ff € (bl ;.
. ?

From this it follows that ¢’k,l n ¢1,m =6 and ¢ X,1,m °

= 0 , contrary to our assumption. If (c) is not true,there ex-
ists a pair of cells, which for each ff € ¢k;l have oppo-
site and for each f? € q)l,n have equal values or vise versa..

From this also follows that ¢ 1 = O
S e K | .
Sufficiency: The sufficiency o{kconditions (a), (b), (c) we
will prove by the construction of ¢k 1.m°
i Rl ]

0 0 0 0 A a1 1 1
Let Cp 1,m=Ck,1Y C1,nY Cp @04 Cp g 5 =Ck,1" C1 ¥ O
where 0Q is the set of all cells e such that

o] 0 (0] 0 0 0
AvAX Jeezecg v Cl,m)? {91- ee} €RB 1YV By g

c; is the set of all cells e:“ such that

1 1_ .1 1 11
Vel Jeed e Cy,1Y C1,m)» {”1' °2} €R 1Y By p

0] 1 :
Let Rk,l’ R‘k,ls Bk,l denote the sets containing those mem-
bers of Ry which contain the cells e? and eg respec-
14

. 0 1
tively. Let Rl,m and Rl,m denote analogous subsets of Rl.m'

= 0 1 _ 0 1
Let R, = Rk,l\ (Bk,lu Bk,l) and R, = Rl,m\ (Rl,mu Rl,m)‘
Let By yp= R,‘u Rz, where «1 denotes the following two
9

step operation:

1. The set Ry U Rz is determined.

2. Any pair of members of R4V R, whose intersection is
non-empty we combine to form a new single member which is the
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sum of these members. We then repeat this operation on the
newly obtained set in successive such steps until we obtain a
set each two of whose members have void intersection. (In the
case we now consider thisoprocesg ends aff‘:er one1step).
If (a) and (b) than (Ck,%(J Cl,m)r\ (Ck’lL} Cl m) = eo éi)
1
If (c) than C9 N (Cg,qu ©] p) =0 (i1) and cla (c?

1,
v c‘l”m) = 0 (iii).
Because the members of Rk 1V Rl,m including any cells of

ck 1Y c; LY cg 2V 01 . @are disjoint then c° ncl=e (in.
From (1) - (iv) 1t follows thag

Ck,1,2" Ck,1,m 0
Let T(fk 1, m) denote the image of fk 1,n we get after
changing in T(f) the values of cells Cg 1,m from = to

: 1
0 and values of cells C from = to 1.Let f*}
k,1,m { ifie Ik,l,m

Ik 1,m € {O, 1y 25 ooy ZC(Q ) - 1} be a set of completely

specified functions whose images T(f?) we get by changing
the values = of cells of T(fk,l,m) in every possible way to
0 or 1, but assuming that to cells of every set of the family
Rk,l,m we assign the same value O or 1.For each function fai!,

i
iel we have the relations ( ¢k~ xél) and (x61
k,1l,m *x 1= 1
" i
~X") g+ From this it follows that (Xikf\' I‘il ~ xi"") .Then
i £F

we have ¢k,l,m = {f?}ieIk " If there are no cells in
-9

T(fk,l,m) having value * than ¢k,l,m consists of only one

function fk,l,m . Q.E.D.

From the above rproof of sufficiency of theorem 4 it results
that the sgt ¢k,l,m is uniquely determined by the triple
(C ,» C , ). Theorem 4 gives conditions for ob-
tam thﬁéé’?lezle:ﬁ%'gymmetry sets from two two element sym-
metry sets whose intersection is nop-void. We now generalize
this theorem as shown below.

Let A = {a1,...,a} B ={byy..,b } 4,3¢ {1,...,n},p,r>
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22, end A n B 2{k}. Let X, and X; be sequences of 1lit-

ém‘m cae mx("‘P

= %

respectively. Let us assume w1thout loss of generality  that
a4 = b.‘ = k. Now assume that (IA)f and (I )f and that ve have
determined the corresponding triples (CA’CA’ 1) and (CB,CB,RB)

erals connected by P < and X.bb‘tm...fv x.(gbr
Ir

Theorem 5¢ ( f/\ (XE)f = (xAu pl¢ Iif and only if
(a) cncy =6
0

(b) ¢ ncy =o
@ B hHecfxciudxcly ke pury ,
[0, e e
Theorem 5 can be proved analogously to theorem 4. As in the
proof of sufficiency in theorem 4 we can determine a triple
S, B cluB, By, p)+ This triple describes the set $, -c
€ d(£) of completely specified functions for which (xAvB)¢A 8
1Y

As we have seen above it is easy to determine the symmetry
pairs (xil, x?i ) and their corresponding triples (cg, 3 CZ, 3
Ri,j) using the image T(f). Once knowing all such pairs and
triples for f we can by virtue of Theorem 5 compute all max-
imal symmetry sets of £ and their corresponding triples. It
is also possible to compute the maximal symmetry sets of ¢
using only the image T(f) (by making the proper assigments
of the values = in T(f) {for each symmetry pair we test in
using algorithm sP ). But in this case we must use one “cop§
of the image T(f) for each maximal symmetry set so obtained.

Let us assume now that f is an m-output incompletely spe-
cified function. It is then equivalent to the set of one —out-
put functions {yj} = {fj(x1,....xdﬁ, J=1y00eym If we de-
termine the symmetry sets {Xj then, as it is easy to
prove 12,‘a11 symmetry sets of £ are the intersections of
symmetry sets picked in all possible ways from each {I%}, j=
=1, ee., m.
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5. Conclusions

The method for recognition of symmetry described in this
paper may be easily performed by hand calculations for comple-
tely specified functions up to 7-8 variables. In the case of
incompletely specified functions because 1in addition we must
assign values for = , the practically of this method depends
also on the cardinality of Q¥ .

In machine calculations this method can be carried out by
the use of matrices and submatrices corresponding to the im-
ages T(f) and Ti’l(f), i=0,1 2, 3 respectively. Oper?-
tions involving the comparison of matrices which are used in
this method are suitable for digital computers, especially of

the parallell type.
At the end it is worth noting that <+the notion of the image

T(£) described in this paper is useful also for analysis ard
synthesis of any type of igitchins circuits, in particular (as
was partly shown in work ‘) for the synthesis of minimal
forms of switching functions.
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I Determination of T(f)J
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