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ABSTRACT

: The paper considers: ;
(1) a Boolesn algebra < 2B,u,n, -, E, ¢ > of event sets E,
from a discrete finite vector space E, and >
(2) mappings f from the set E into {[0,1], ¥}, where * represents
gomeé unspecified value. A special case of the gbove is the
Booleen elpgebra and Boolean functions ecnsidered in switching
theory, vhere E is a space of binary vectors and f maps E
inte {0,1,%}, i.e. into the endpoints of the interval [0,1]
and *.
A meet semi-lattice of multidimensionsl intervals (inter-
val complexes) in E is introduced and then the concepts of exact,
free, unordered and ordered interval covers of f are defined.

The simplesalcase of & COVer - an unordered exact cover
of a set FIA against F° ~ is defined as a set of interval complexes
whose set-theoretic union . covers a given subset FJ‘JL ¢ E (defined as
{ e] rle) > A } )_and does not cover any element of enother given
subset FOA € E~NF+,

. The concept of ordered covers was developed to accomodate
a preferential order in covering the set of 'mixed' events, defined
as {.e | 0 < f{e} < 1.} (a case not considered in classical switeh-
ing theory).

The synthesis algorithm of covers is based on the 'method
of disjoint stars?, which has proved to be very useful for synthesis
of complex switching systems, Quasi-minimal covers, produced by this

' method, are either minimal or approximately minimsl. However, when
we cannot stete that the obtained solution is minimal, an estimate
of its maximal possible distence to the minimum is provided.

Applicaticns of the interval coverings concepls to pattern
recognition and picture filtering are delineated,

L. INTRODUCTION

Some concepts end methods, initially developed for switch-
ing theory purposes, seem to have more universal application, if
properly generalized, The generalization described in this paper
stems from three observations:

(1) The coverings arising in the minimization of switching circultis
‘ can be viewed as a limiting case of interval coverings, intro-
duced in the paper.



{2) The so-called method of disjoint stars, which was originally
developed to provide a minimal or quasi-minimal sclution of
the covering problem in switching theory [1,3,4], and then
extended to provide the quasi-minimal solution of the goneral
covering problem [2], can be applied in particular to the
synthesis of the sbove-meniioned interval coverings.

{3) The concept of a covering can be extended in yet another
direction %o sccommodate a preferentisl ordering of the elements
to be covered,

A need for the generalization azscribed in the paper first
appeared when we were considering some problems of pattern recognition
" and signal detection theory.

2. NOTATICHN AND DEFINLTION OF AN INTERVAL COMPLEX

Elements of a discrete finite vector space E will be refarred
to as events ed = (%550045%,). Components x; take their values from
the sets {0,1,2,...,04~1}, 1 = 1,2,...,0. We will assume that the

index J is given by

n-1 i-1
b= ¢ Eleyy [ hsd o (1)

thus, as can be verified, )} uniquely determines & vector EJ. The
value J will be called the numher of the event ed, When en event ecE
is given, its number will be denocted by y(e). For example, if
e = (2,2,5,1), sssuming that h, =5, by, = 3, h3 =3 and by =2,
vy {e) =1+5 (2) +2 (2.3) + 2 (2,3.3) = %9.

E. v E. snd E h.EE (or E.E_) will dencte the set-theoretic

&by 1 12
unicn and intersection of El and E‘::1 respectively, where El and E2 are
sets of events, E; is the complement of an eveni set E, , defined as
Lo~ Ei‘ where “\ is the set-theoretid subtraction. The cardinality of

& set L will be dencted by c(L).

Definition l. By “‘x‘;, called a literal, we will denote the set
of all events (xy,...,x ) from the space [ such that &, E_xi b ,ie,

Qi
Xy o= (g, eenx) | ey <3y <0y (2)
If a; > bi then WI? is the empty set @.

Literals °"1-:;’, &, € {0,1,2,,..,h,~1}, denoted briefly by
'X;i will be called elementary literals.




Definition 2. Any set of events L which can be represented

as a product of literals, l.e.

o; b;
= f1% . T € Bacsal (3)
igl %

will be called an interval complex (or simply interval).

We can easily see that interval complexes constitute
in the space E, n-dimenticnal intervals, i.e. seis of all vectors
which lie between some two arbitrary vectors, say, e' and el

e', € ¢ B. Namely we would have e'= (x},x}, .. ,xi) and e? =

4/ - : L
(x;,xéa"'ix;"l’ where X =&y and x bi for 1 € I, and x5 = Q

i
end x{ = h,-1 for i ¢ I.

i
3 5 = xul };uz " lxﬂﬂ
A product E of n elementary literals, i.e. E;® 1 o n

-

is &n interval which consists of only cne event, namely
e =(a,,8,, ”"B‘n)’ thus E;= {el}.

3. SET-THEORETIC COPERATIONS ON INTERVAL COMPLEXES

In this section we state m series of theorems which
summarize the basic rules of set-theoretic operations on intervals,
First, recall that union and intersection of sets arc idempoicnt,
commutative, associative and distributive; and the absorption laws
hold., Next we have:

Luv =1L

E AE=sL (identities) (L)

L vE=E

Lng=¢g (null elements) (5)

L M L=E

LATL=¢g" (complenments) (6)
L = I {involuticn) (7)

Ll v L2= L.]. I L2

LL, = 'ﬂlu I‘-E (de Morgan's Laws) (8)

L'.'_'L2 V) L‘]_L3 = LI,V .I.1L3U LELS {consensus) (9)



Let LJ, - ﬁ oy bi LS—J = ﬂ cixi-.

" p i 1
11;11 1c12
where Il,I2 ¢ {1,2,...,n}. Ve will sasume that for
i€ {1,7,.0.,n] \‘Il‘ e, = 0 and bi = hinl, end for i € {1,2,...,n} IE'
¢, = 0 znd ﬁi = hi_l'
Theoregm 1.:
1. L; € Ly, ifT Vie I,y &; 2 ¢, end b, < d,
2. If Ll e LE then Lll:L2 Wy = Ly and L2 v Ll P L2
Theoren 2:
mnh;?x;oﬁbﬂ} , if mox(a,e) < min{b,a) + 1
exb iyl
i i
“K: v ckg , otherwise.

The next theorem is a generalizaticn of theorem 2.
let a = (al,ae,...,an}. b = (bl’bE""’hn)’ ¢ = {cl,ce‘...,cnl and
i = {dl;dagron griﬂ}!
Theorem 3: If vector & is comparable with ¢ (i.e. a > ¢ or a < ¢)
and vector b is comparable with d , and mex(a,e} < min(®,d) +1,

where 1 = (1,1,...,1}, then:

L,vi, = () minla, gl maxib;,d)
:‘-.EI\{IE e
If for every i € Il v IE‘ min(ai,ci} = (0 end max(hi,di} = hi"l then
Ly Vv 1, = K.
Thearemn 4:
Bt
\J (LA X;] = L
a=0
FProof:
".."‘] 73
r “— ¥ (. i = = T
(LAaX)=5LAa(XvXvi.uX)=LnE=L QE.D

a=0



HMore pencrally:

Theoorem 53

L—fl (Lntixt =1,

ifre “?}aE{D,l,...,h -1}, q,] such that a,, < a < b,
i — 1 e
Theorem 6:
Lo W T W (7 mul{ui,cilxln'nn[bhﬂi]
1 2 iel Wi :
172
if for some i, max(ai,ci} > min[bi,&i) then L, N L, = d.

Theeoren T:

ulx_hi- - Q :ll'i—]ub"l+|
i=

X Xihi_I

Theorem O

(T
1. Ii
iel

L5
i1

iel

i, by _ mm by
2 Lj X, = Xy { & special case of (8) )
i€l iel

From theorems 2, 6 and | we see that the set L of all
possible inlervals in the space B (f € L) is closed under M but
not under ) and - . Since the operation M is associative,
commutative and idempotent, the system with the carrier set L,
binary operation M , and nullary operaticns E znd @. i.e,

i o - (10)
is a meet semi-lattice.
Let us find the cardinality of L. ZEvery element of L
can be represented as a product of n literals., The number of

different literals q"}'{;i for a fixed i€{1,2,...,n} is egual to
the nurber of possitle pairs '['-:n.i,bi), ai,bi (030 SR ,hi-l} and

h h, h, (b +1)
84 f-bi’ i.e{li) {21) = -L--E]' . Thus the number of intervals

in L is

Ty
) =25 [ n/n). C (1)
1=l



et L{%.). Ej ¢ L, denote the minimal interval
wnder inclusion which contains Ej(i.e. the interval included in
any other interval with such property). The unavy aperaticn

B, — L(3)
of 2]" inteo itself has the following obviocus properiics:
1. Elg E, == L {]-,1) ¢ L l:.—_E:l {isotone) (12}
2. E.C L l:‘r-g {cxtensive) (13}
3, L(LRB) =1L (E,} {idempotent)  (1U)

The sbove mesng that the operation E— L (E) 45 a
closurce operction on tne poset < 25 C >y i.e. the zet 2 with
incluzsion ¢ &s a partial ordering operaticn. !

Let us define an operation U on event sets E,, called
the normalized union , as:

HEAER SR (25)
ik i

The set I, is elescd under the normalized union. Thus the system
<L, MLl E,¢* ia a lattice. Furthermorc, it is & complete lsttice
as the inlersection and normalized unicn of intervals from eny subsct
of L also belong to L.

L, COVERS OF A MAPPING T

Assume that we are given two disjoint sets F° and F' of
events from the szpzce E. These sets define a mapping ’

£f: E —{1,0,%} (16)

where ¥ denctes some unspeecified value, and such that
PP= {efne)=0)amaF ={e]|le)=1)

Definition 3, A set of intervals p{r) = (1.} % is & cover of the

lm,annin_s;f if: a :
1l 1 * .
Fg|}rfil:FuF (1)
i=1 '
#
where F ={e| rle)=%)

Thus the cover D) distinruiches the set ¥ rrom ¥° (we
say D(r) is & cover of ¥ epainst FOY. £ Tirst covering provlem
is hos Lo provide a cover D{f) with a minizum nuber of Intervals,
More penerally, spaeifying a ‘cost! functionzl oy sots of intervels,



we can ask how & cover of rinimel cost can be found., If

the space [ is & space of binary vectors, then the latter
probler is perallel to the well known protlem of finding the
mininal disjunctive npermal form for an incomplelely specified
switching funetion (whers 'cost' is the nurber of literals,
in this case unprinmed or primed varizbles). For the purpose
of the present puper, by the cost of o cover we will mean the
nunber of interwvals in it.

Assume now that two given sets of events in E are
not disjoint, i.c. there cxisis & non-cunty sel of "mixed!
events F* representing thoir interssction,

Formally, we will consider the extended mapping
f: BE—-{[1,0],%}

and deline:

P fee B/ rle) = 1}

FD

i
1l

{ce Ef fle) = 0}

}.14}:'{&{[;,1041-(9}{1}

F' = fee B/ tle) = %) =k~ (For%rb).

Thus mixed evenls are herc those events for vwhich the mepping £

takes values properly betveen 0 end 1. A mixed event e can-be
interpreted o5 having e nonzZsre conditienzl probabhilits rep-

resented by the value of f{e), of belonging to FL, Evenis of F

can be,on this bzsis, lincarly ordered from those most Flilike
to those least F-1ike {i.e. most FL1ike).

Assunming some threshold A, where 2€[0,1], we define:

F* = fech / fle) > )

Fﬂl

{fee B/ fle) < 2}
1

(18)

(19)
(20)
(21)

{22}

b

JOA Ay p
Sets F' oand T are disjoint sets, so we can now delermine a cover

Fll gguinst FDA. To formalize the sbove idea ve state

Definition b. D(fil} = {Li] is & cover of T under A if

1 1A .
g [IJ g Fhy ¥ o,

If A = 1 then D {I]l) reduces to D{f).
It muy turn oub thal two covers B{f]ll) end D(flhE)
etn have eccngidorably difforent cost, alitoush valuss 11 gnd A

are close,

2

(23)



In order to prevenl this we pariition the set

F¢ ={e] 1> rle) >0} into some arbitrary number p of classes

dl,?¢2

of events F' .....F¢p (see fig., 1), defined as:

quﬂ{ei 1 > f(e) >1-1/p}

F¢2 s{e]|] 1-1p > ffe] >1-2/p}

L]
- -

F¢p {e]1-(p1)/p >rfe)>. 0 }

The values of f for events in the same class can differ by not more
than 1/p., Events in the same cluss will be considered as cguivalent,

Definition 5. D(r|A,p) = (L;} is a free cover of f under (A,p) irf

P C Uy ¢ PPy 5 (24)
where FlAP = Fll“\ Bthj{l))

B(F¢Jclj) ~ & subset of F¢J(A}
5
J{A) - a value § such that 1 - -Er-g_l >1- 3/p.

The concept of the free cover D(f|A,p) allows us to cover
only those events from the class F¢é{l} which can be covered with
minimal increment of ecost over the cost of covering tﬁc set
P F¢jtl}. To distinguish the coevers D(f|A) from D(r|A,p), ve
will call the former exact covers.

) The next concept to be introduced is that of a cover whose
individual intervals cover events from FlJL in an ordered manner.

Definition 6. D(f|A,p) = <L, L

1 L.»> 1is called an ordered fraz
cover of £ under (A,p) if

parnesly

Dk = '[ Ll,LE,.a.,le }, k= l’E’lil}d

are free covers of £ under

lk = miq fle) , where Ek = LivLyye.s UI%
eck

To distinguish the covers D(f), D(r|A) or D(f|A,p) frem
the ordered covers€§f{_l,pi, we will eall the Tormer upnordered covers,
We denote D(£]X,1) by TU|A) which, if A = 1, reduces to D(f).




Definition 7, An exact cover D(f|A), a free cover D(f|A,p) or an
ordered free cover'fzf|l,p) vhich has the minimum number of intervals
is called a minimal cover and denoted by M{f|A), M(f|4,p) or M(f|A,p)
respectively.

5. OYNTIHESIS OF QUASI-MINIMAL COVERS

In this secetion we will briefly describe asn applicaticn of
the disjoint starts method [1,2,3,4], to the synthesis of the quasi-
minimal covers,

5:1 The extension operation —

Definition 8, An extension operatiocn yron event set El relative to
event set E, is defined as:

2
E.v B, = (JL,
1 2 L EA i

where ﬁ={LiE Lj’Eln bi:,iﬂandLi;; EE}'
If A is empty we assign Elkr E2 = @,

The extension operation satisfies the following (asym-
m;trical} distributive properties:’

Theorem 9:  given event sets E, E; (i =1,2,....) we have;
(1) {L_{JEJ_} vE U(Ei v E}
(20 E (g
i

i
O(E vE .
Proof is given in [5]. .

Theorem 10: '
SESEE EvE =) FL{{EJ}U_{ein

E,}EEl eiEEE

where the order of the union and intersection is irrelevant,
Proof is given in [5]. '
5.2 Definition of a star Gle|A) and an algorithm for its gemerat:ion

Definition 9. L is & maximal interval in f under X if

t 3
L ¢ an F (25)

and if it is maximal under inclusion. Maximal intervals in f under A
are denoted by Li, - S

Definition 10. The interval star G(e|A) under A of en'event e € F
is & set of all maximal intervals under A which cover the event e, i.e.

Gle|r) = { Lz | L: > e} ' (26)

"We denote G{e|A) by G(e). The union of intervals from
G(e[A) is denoted by G (e|r).



Theorern J1: 3% e
TS el = ) ed o)

eiEF01
Froof: Gu{cll} {E}xf'“ = {f]kf'r-) {E 1
ax
[
Ei F
Applying now lheorem 9 port (2} we complele thz proof. Q.E.D

The following algorithm for the gencrocion of a star
G{e|d) follows from theorenm 11,

Given g B ang B {ej}z A
i=l
l. Deterpmine for i = 1,2,,..,2

e ; & (&
{ei} end then forn Qi = {e} u'1Li}

2
2. Set up the function [ ] D, end fird its irredundent
fee]
expression by multinlying cach terp D by all the othcrs
and epplying the ebsorption lawe

3, G{e|A) is the set of terms of the expression thus
cbhtained,

5.3 Synthesis of a cover M fffi}ﬁpy elrporithm Aq

The problem of synthesis of a minimal cover M(f£,1) iz a
particular case of the gencral covering provlem described in [2]. As
indicated in this paper ecven in case of a relevively simple covering
problem the number of operaticns required for its exact solution mey
not be feasible even with the fastest computers. Conscquently, ths
most desirable are good wetheods for an approxiraie solution which
, allow to drastically reduece the nurber of operations but slso give
some mensure of distance to the minimm,

The previously mentioned method of disjoined slars, when
realized by loeally optimal decisions, generateca--with a relatively
small nuwber of operziions end mermory regulrerznis--a so-called quasi-
mininal cover, which is either mirimal or epprezimstsly minimel.
Furthermore, when we cammot state that obtoired solution is minimal,
it provides an estimaie of the maxinel possible distenee between the
obtained soiuvtion and the minimal one.

Mhe fundamp-ontal theoores Tron which this method siems
(expressed in our terms) is following.

Let us agsume that wve ere givin (tr reslizing some algoriihm)

a8 family of stars ¢ = {”1{ 121, ec F1* sueh thet any two stars
chosen from 1t are disjoifit sets {we say GF is 2 fally of disjoini
stars),



Thegrem 12: The number of inlervals in the minimal cover H(fil}
satisfies the relation:

e (M(£]2)) > e(6™)

The theorem implies that if we have a cover D{f|1) end
know the number § = ¢{GY), then the difference A = (D(r][A)) - ¢
can be viewed as an estimate of the difference between the nurber
of elements in this cover, and in a minimal one. If we can next
find another family of disjoint stars with a greaster number of elements,
say Si’ then we can improve our estimate, namely:

a = (D(£]r) - ¢ <&
If on the other hand we can find snother cover with a
" emaller number of intervals, then obviocusly our estimate will also
improve, and it may turn out then & will becomz 0, This will mean
that we found the minimal solution.

A possible algorithm for accomplishing the sbove ideas
with a view toward a solution of the generally steted covering problem
was described in paper [2] (algorithm A™ 9), In the formulatieon given
there it was assumed that a cover consists of some sets (not con-
eretely spccified), called complexes., In our case the complexes are
specified ag intervals (interval complexes). Thus in order to apply the
algorithm Aq Tor our purpose we only need to make use of the algorithm
for generating a star G(r|A), described in section [5.2].

The flow diagram of algorithm AY in the form adapted to
our notalion is shown in Tige 2.

The sign 1= denoteb essignment statement (as in Aleol 60 ).

?P is an auxiliary variable, O(FP; e;) denctes the operation of
choosing the event with +the smallest number from the set specified
bﬁ the current wvalue of FP and assigning the notation ey to that event,

denotes an interval in G{E |1} called a gquasi-extremsl, which
covers Lhe maximum nﬁmber of &chts in the set eonstituling the current
value of variable F1", It can be noticed that this is & loeally
optimal decision about the choice of an interval from the given star
(generally not unique), The last value of M2 constitutes our solutien,
the quasi-minimal cover M2(r]A). Velue 4 is an estimate of the max-
imal possible difference betwcen the cover M{T|2) and & minimal
cover M{r|A), expressed in number intervals, i.e.

M(r]2)) - e(Mlz|r)) < &, (27)

If after the first execution of the algorithm, A is con-
sidered to be too large, the belter estimate {and/or solution) may
be cbtained realizing next iterations, e.g. in the way described in
[3]1 i

To synthesize a quasi-minimal free cover M>(f,A,p) using
this alt;orithm$ we substitute in the flow diagram (fig. 2) the set
Fli b Flk‘a . 1{x)

, and after determining the cover, one additional
quasi-extremal from a star Gle|l), e e F*l{l] is determined and sdded

#



to the solubion. An exbtension of the alporiikm for synthesis
quasi-minimal ordered covers is described in [S].

€. REMARKS 0¥ APPLICATIONS
A cover of & nansing © eonsisiing of muliidimensiconal
intervals can be interproied :: e set of "Tilters' for recoguizing
events from a sigral cluss (represented Ly ¥1A) ror peltern recog-
nition snd pieturs rrocecseing purposes, €.p. for disceriminating
regions of differcent texiurss, siriping of bazekground, local festure
extraction, border dstcetion, ete.

In case of an ordered co.or the individual Tilters
correspond Lo the consscutive poinis on the optimum receiver-
oporating-characteristice (ROC), defined os in stotistical decision
theory., The above ROC curve cen be obtzined by optimel crdering
events from the two clesses teo Le distinguished,with regerd to
the likeliboed ratic of their Ireguency occurence,
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