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INTERVAL GENERALTZATION OF SWITCHING THEORY

R. 5. MICHALSKI, B, H., MC CORMICK
University of Illinois
Urbana, Illinois

ABSTRACT

The paper considers:

(1) a Boolean algebra < 2B v, n, -y E, § > of event sets E
from a discrete finite vector epace E, and

(2) mappings f from the set E into {[0,1], ¥}, where * represents
some unspecified value, A special case of the above is the
Boolean algebra and Boolean functions considered in switching
theory, where E is a space of binary vectors and f maps E
into {0,1,%¥}, i.e. into the endpoints of the interval [0,1]
and ¥,

i

A meet semi-lattice of multidimensional intervals (inter-
val complexes) in E is introduced and then the concepts of exact,
free, unordered and ordered interval covers of f greé defined,

The simplesf, case of & cover - an unordered exact cover
of & set FlA against F -~ is defined as a set of interval complexes
whose set-theoretic union covers a given subset FY* ¢ E (defined as
{ e I f{e) > 2 } ) and does not cover any elemeént of another given

W

subset FOA ¢ E~F1,

The concept of ordered covers was developed to accomodate
e preferential order in covering the set of 'mixed' events, defined
es { e I 0 < f{e} < 1} {a case not considered in classical switch~
ing theary).

The synthesis algorithm of covers is based on the '"method
of disjoint stars', which has proved to be very useful for synthesis
of complex switching systems. Quasi-minimal covers, produced by this
method, are either minimal or approximately minimal. However, when
we cannot state that the obtained solution is minimal., an estimate
of 1ts maximal possible distance to the minimum is provided,

Applications of the interval coverings concepts to pattern
recognition and picture filtering are delineated.

l. INTRODUCTION

Some concepts and methods, initially developed for switch-
ing theory purposes, seem to have more universal application, if
properly generalized. The generalization described in this paper
stems from three observations:

(1) The coverings arising in the minimization of switching circuits
can be viewed as a limiting case of interval coverings, intro=
duced in the paper.



(2) The so-called method of disjoint stars, which was originally
developed to provide a minimal or quasi-minimal solution of
the covering problem in switching theory [1,3,4], and then
extended to provide the gquasi-minimal solution of the general

covering problem [2], can be applied in particular to the
synttesis of the above-mentioned interval coverings.

(3) The concept of a covering can be extended in yet ancther
direction i¢c accommodate a preferential ordering of the elements

to be covered.

A need for the generalization d=scribed in the paper first
appeared when we were considering some problems of pattern recognition
and signal detection theory.

2« NOTATION AND DEFINITION OF AN INTERVAL COMPLEX

Flements of a discrete finite vector space E will be referred
to as events ed = (X7,+00,%,). Components x; take their values from
the sets {0,1,2,...,h;-1}, 1 = 1,2,.,.,n. We will assume that the
index J is given by

n-1 i-1
et O [1m,) 2

thus, as can be verified, j uniquely determines z vector éJ. The
value J will be called the number of the event eJ, When an event ceE

is given, its number will be denoted by y(e). For example, if

e = (2,2,2,1), assuming that h) =5, h, = 3, h3 = 3 and hy = 2,

y (e) =1+ 2(2) +2(2:3) + 2 (2:3-3) = 53,
E, v E2 and B, N E, (or ElEz)
union and intersection of El and E2 respectively, where El and E2 are

willi dencote the gset-thecoretic

sets of events, Ei is the complement of an event set Ei’ defined as

£ N Ei’ where N\ is the set-theoretic subtraction. The cardinality of
a set L will be denoted by (L),

Definition 1, By ”x?, called a literal, we will dencte the set

of all events (xl,...,x ) from the space E such ﬁhat a. < x, < b, il.e.
n - — 1.9

Qb _ -
X; = {(xl,...,xn) I a, < x, <b.} (2)

If a; > b, then‘“x? is the empty set .

Literals QXE; 8, € {O,l,E,...,hi—l}, denoted briefly by

KEL will be called elementary literals.




Nefinition 2.

as a product of literals, i.e.

L= [)

0; b

iel

X, I¢ {dgwm o o1}

Arny set of events L which can bc represented

will be called an interval complex {or simply interval}.

el, e

(xl

and x?
i

‘We can easily see that interval complexes constitute
in the space E, n-dlmentnonal intervals, i.e. sets of all vectors
which lie betwemn some two arbitrary vectors, say, e! and el

? € E., Namely we would have e!'= (x l’x2""’xi) and e?

x2 oo 4X2), where x!
n i

A product E, of n elementary literals, i.e, E;= X

i = g, and x2 = b
i i

. for i € I, and x!
i i

is an interval which consists of only one event, namely

e =(a

3.

First, recall that union and intersection of seis are idempotent,
commutaiive, associative and distributive; and the absorption laws

hold.

1*72

a ,..,,ah), thus E,= {el.

SET-THEORETIC OPERATIONS ON INTERVAL COMPLEXES

In this section we state a series of theorems which
summarize the basic rules of set-theoretic operations on intervals.

(identities)

(null elements)

{complements)

(involution)

(de Morgan's Laws)

= L., V L.IL. v L.L (consensus)

Next we have:
L v =1
L N E =
L E=5K
L n ¢g=¢
L V L=H
L "NL=¢
L = 1
Ll\J L2= Ll:\ L2
LlLE = Llhng
Ly V Ijlg = Lyly ¥ LoLo v Lylg

(3)

ai u?--o n
SRS

(%)

(5)

(6)
(7)

(8)
(9)



-— v bi — ' i
Let Ly = (] °XH, L, = () ©x§
jeI = iel
1 | 2

where 11,12 < {1,2,...,n}. We will assume that for

i€ {1,2,...,n} \MIl, a, = 0 and b, =h,-1, and for i € {1,2,00e,n} T

c, = Q0 and di = hi—l.
Theorem 1:
1. L <1, iff Vie I, a >c andb, <d,
2. If Ll < L2 then Ll(LE v L) = L and L, v Ll L = L,

Theorem 2:

me(a,c]ximax(b,d) , if max(a,c) < min(h,d) + 1

aXPch‘EL=<
& X

”XE-\J cxg , otherwise,

The next theorem is a generalization of theorem 2.
Let a = (al,ag,...,an), b = (bl,be,.-..,bn), c = (cl,cg’...,cn) and
d = (dl,de,...,dn).

Theorem 3: If vector a is comparable with ¢ (i.e. 2. > ¢ or a < ¢)

and vector © Iis comparable with 4 , and max{a,c) j;min(h,d) +).,

wvhere 1 = (1,1,...,1), then:

— min(a;,c;),, mox(b; d;)
R iJ;LI i
Al 12

If for every ;_G’Il v L, mln(ai,ci) = 0 ‘and max(bi,di) = h,-1 then

Ll W L2 = K,
Theorem 4:
LJ I:rxx = L
a=0
Proof:
a=0

2}



Hore generally:

Theorem 5¢

[ Jantr=s

iff Vae{o,l,...,hi-l}, El j such that a,, < a <b

I (W max{a;,c |) mm{bi,d)

Theorem 6:

l jel uI
If for some i, max(ai,ci) > mln(bi,di) then L, N L, = ?.
Theorem T:
G b, _ Oyai=i b+t hi=1
lxi - xli U xi i
Theorem 8
r}lixbi & U I='f‘~.'}{i:=-i
i i
i€T 1el
LJasz-. - mn-,xb;
i i ( a special case of (8) )
i€l iel

From theorems 2, 6 and T we see that the set L of all
p0551b1e intervals in the space B (f € L) is closed under N but
not under yy and - . Since the operation N is assoclative,
commutative and idempotent, the system with the carrier set L,
binary operation N , and nullary operations E and ¢. i.e.

<L, N ,E, 0> (10)
is a meet semi-lattice.

Let us find the cardinality of L. Every element of L
can be represented as a product of n literals, .The number of
different literals 'X for a fixed i€{l,2,...,n} is egual to
the number of possible pairs (a N ), 2,0, {0,1,...5h i_l} and

X h. h. .h.(h.+1)
ai ibi’ 1'6'(11) *(21) g 21 . Thus the number of intervals

in L is

c(L) =

hi(hi+l) ) (11)

mha
5



Let L(E.), E; € E, denote the minimal interval
under inclusion wiich contalus E {i.e., the interval included in
eny other interval with such prﬁperty) The unary operaticn

Ei"‘——" L(Ei)
of 2E into itself has the following obvious properties:
1. E ¢ E, == L (El) C L (EE) {isotone) (12)
2. ‘E € L (E) (extensive) (13)
3. L (L(E)) =1L (E) (idempotent)  (14)

The above mezns that the_operation E — L (E) is =
closure operation on the poset < 25, ¢ >, i.e., the set 2 with
inclusion ¢ as a partial ordering operation,

Let us define an operation U on event sets E called
the normallzed'unlon as:

l_J By =L (L_JEi) 3.5)

The set I is closed under the normalized union. Thus the system
Ly 41I,E,@> is a lattice, Furthermore, it is a complete lattice

8s the intersection and normalized union of intervals from any subset
of L also belong to L.

L, COVERS OF A MAPPINGC f

Assume that we are given two disjoint sets F and F of
events from the space E. These sets define a mapping

f:1 E — {1,0,%} (16)

where ¥ denotes some unspecified value, and such that

o= { ¢ | fle) =0} anaF ={e| £(e) =1 }.

Definition 3. A set of intervals D(f) = {Li}d'is a cover of the

i=1
mapping £ if: 4 |
1 _ 1 #
Pol Ju o<ty (17)
i=1
= 3
where F =1{e |- f(e) = * 1,

Thue the cover D{f) distinguishes the set F1from Fo (WE'also
say D(I) is a cover of F' against F°). A first covering problem
is how to provide a cover Difi with a minimum number of intervals,
More generally, specifying a 'cost' functional for sets of intervals,




ve can ask how a cover of minimal cost can be found. If

the space E is a space of binary vectors, then the latter
problem is perallel to the well known problem of finding the
minimel disjunctive normal form for an incompletely specified.
switching function {(where 'cost' is the number of literals,

in this case unprimed or primed varisbles). For the purpose
of the present paper, by the cost of a cover we will mean the
number of intervals in it.

Assume now that two given sets of events in E are
not disjoint, i.e, there exists a non-empty zet of "mixed'
events F' representing their intersection.

Formally, we will consider the extended mapping

f: E— {[1,0],%}) (18)

and define:

F' = {e e B / f(e) = 1) (19)
FO= {ee E / £(e) = 0} (20)
P = feer /o< a(e) < 1) (21)
F = {eecE / fle) = ¥} = E‘\\(F¥JFQJF¢). (22)

Thus mixed events are here those events for which the mapping T
takes values properly between 0 and 1. A mixed event e can be
interpreted as having a nonzero conditional probability, rep- ¢
resented by the value of f(e), of belonging to FL Events of F
can be,on this basis, linearly ordered from those most Fllike
to those least Fi-like (i,e, most FO-like),

Assuming some threshold A, where A€¢[0,1], we define:

1A

F"={eecE/ f£(e) > X}
FO* = (e e E /  fle) < A}
LA 0A < i :
Sets ¥ and ¥ are disjoint sets, so we can now determine a cover

FlA against FOK. To formalize the above idea we state

Definition 4. D(flk) = {Li} is a cover of f under X if

1A 1A ¥
i

If A = 1 then D (fll) reduces to D(f), defined in (17).
It may turn out that two covers D(f|ll) and D(f[lz)
can have considerably different cost, although values ll and 12

are close,



In order to prevent this we partition the set
F¢ ={e| 1> r(e) >0} intc some arbitrary number p of classes
of events F¢1,F¢2,...,F¢P (see fig. 1), defined as:

F¢l ={ e | 1 -> fle) > 1 - 1/p }
F¢2 ={e| 1-1/p 3_f£e)'> 1-2/p1}
FPP {e| 1-(p-2}p>1fle)> O }

The values of f Tor-events in the same class can differ by not more
than 1/p. Events in the same class will be considered as equivalent.

Definition 5. D(f|A,p) = {Li} is a free cover of f under (A,p) if

¥
FrAP € ULi < PPy ¥ (24}

where FlAP = Fll‘\ B(F$j(l})

G(F¢j(l)) - 8 subset of F¢j(l}'
J-1 |
J(x) -~ & value j such that 1 -'7Efli'l > 1 - 3/p.

The concept of the free cover D(flh,p) allows us to cover
only those events from the class F¢J(l) which can be covered with
minimal Increment of cost over the cost of covering the set

will call the former exact covers,

. To distinguish the covers D(f|A) from D{f|X,p), we

The next concept to be introduced is that of a cover whose

o imn e . 1x .
individual intervals cover events from F - in an ordered manner.,

Definition 6. hﬁzflh,p) = <Ll,L2,...,Ld> is called an ordered free
cover of f under (A,p) if

Dk= { Ll,LE,;.-,Lk }’ k= l,gsl'io,d.

ere free covers of £ under
A = mi% f(e) , where B = Lpvlyuees vy
eehk

To distinguish the covers D(f), D(f|A) or D(f|A,p) from
the ordered covers"%zfl%,p], we will call the former wnordered covers.
We denote D(f|x,1) by D £lA) which, if A = 1, reduces to D(rf).




Let{:El,EE,...,Et} te a family of event sets and E an
event set. We adopt the following notation:

t
v
{El’Ee’tl.,Et} - UEi (25)
1=1
v
o= 0 (26)
g VE = Ly (27)
where Ly = {Ll’La"" }is the set of all intervals which are
maximal under inclusionl) with regard to condition L ¢ E, |
k=1,2,... [(briefly, maximal intervals inecluded in E);
Thus: VE ={ max Ly | L, ¢ E} (28)
It can easily been seen that:
Ly = {LysLy,...) = E (29)

and

VY =1 (30)

E E
According to the introduced notation, the set ¥ Fll
#
i1s a (ususlly redundant)cover of Fl;IL against FOJL - if F =,
#
or, if * £ §§ -~ a cover 'Fll against E“&Fll = FOAkJ F .

Definition 7. L is called a maximal interval in f under X if
1t is maximal under inclusion with regard to the condition:

LE FAUF (31)

Maximal intervals in f under A are denoted by
A .

Lk’

'k =1,2,...,. It can easily be seen that if E is a space

1) A set S satisfying condition p is maximal (minimal) under
inclusion with regard to p, denoted by § = max S/p (S = min S/p),
1f there does not exist a superset (subset) of it also satisfying
condition p. In general, there can be many maximal (minimal)
under inclusion sets satisfying certain condition p. Family of

such sets, i.e.{ Si/Si = max Si/p } is denoted briefly by { max Si/p }.

=1 {)~



of binary vectors and the set of 'mixed' events 1?'[Jp is empty,
then the maximal intervals Ll, (i.e. the maximel intervals in

f under A = 1) correspond tc prime implicants of an incompletely
specified switching function f: E—{1,0,*}.

Definition 8. An exact cover D{(£|A) or a free cover D(f|A,p)

is called an irredundant cover if it consists of maximal intervals

A : - .
Lk and if it is minimal under inciusion.

Definition 8 implies that deleting any interval from an
irredundant cover D(f}i) or D(f|{A,p) will cause them to no longer
be covers. An irredundant cover D{f|A) or D(f}A,p} may be obtained

from the set
%) ¥*
“JFlli F

by removing from it a maximal under inclusion subset of intervals
such that the union of intervals in the remainder still covers set

A A .
Fl or Fl P, regspectively.

In general there can be very many different irredundant
covers D(f|A) or D(f|A,p). It is easy to see that if E is the
space of binary vectors and F' = ¢, an irredundant cover p(r|1)
corresponds to an irredundant disjunctive normal expression of a
switching function f: E—{1,0,¥}.

Definition 9.

The minimal exact cover M(f|A), minimal free cover M(f|A,p) and
minimal free ordered cover M(f|A,p) is a cover D(f[A), D(f A,p) and
D(f[A,p) - respectively, which has a minimum number of intervals.

5. SYNTHESIS OF QUASI-MINIMAL CCOVERS

In this section we will briefly describe an application
of the disjoint stars method [1,2,3,4] to the synthesis of the
quasi-minimal covers.,

5.1 The extension operation -

Definition 10. An extension operation - on event set El relative
to event set E,. is defined as:

2
L
E,v-E, = A (32)
_ y
where A = {Lké VE, | L .n E; # 83,
According to {26), if A = @ then E U E, = @



¥ Y o
Sinece the union of intervals from any subset of E

is also included in E2 we can state the following:

Theorem 9:

NnNE, #0

(1) E,uv EE.s; E,, if By

1

(2) E v E, = @, otherwise

If E2 is an interval then we have the stronger

Theorem 10:

L, if ENL # ¢

Ev L= @, otherwise

wvhere E is an event set and L an interval.

The extension operation satisfies the following asymetrical

distributive properties:

Theorem 11;

(8) v ([ )E)

1
) \JE)vE
i

r—\(Eur'Ei)
i
U(Eiu" E)

i

Proof':

Part (a)., If Ei are intervals then assertion follows
immediately from the fact that any product of intervals is also

an interval and from theorem 1l0.

We denote E (QEi) = I (i)
ana O CEREN AT (1)

According to definition 10 and (27):
M .
A= (L€ v’fiiEi | L N E# @} =

={ max Ll{. | L, N E # ¢ and L, € O Ei} (iii)

-12-



u 2 minlte
Ay = { L€ /Ei | LNE#@G])=

. :
{mex L | LN EF@and L < E } (iv)
Consider (i) and (iii) : L_ § [ ) B, implies that
L £ E. for every E.. So if L €A then Jé.l-so L € A,, for avery E,.
a 1 1 a % a 1 1
Thus A ¢ m A,, which implies that nsmn‘”..
it i *

Congider now (ii) and (iv). Set m N can be uniquely

. L
: W LY
represented by set of intervals ¥ f\m‘l’ . b Let Lae Y m A'.“'i -
1 i

c \"
L,n E # ¢. From (28), L, € { max L I L, S f?) Ai.} and then
La (- hui for -every Ai. From that and (iv) we have La < Ei for

=

every E.. It implies that LaE m Es» and finally,according to (iii),
i
Laé-ﬂ.

Therefore
SN u
ﬂ Aui £ A, what implies m Aui S A .
i
Proof of part (b) is similar. Q.E.D.

Theorem 12:

eos, = () (e o @)

J
e.je El eie E2

where the order of the union and intersection is irrelevant.

Proof:

1 2
= r {%}. Thus:
e. € K
1€ Ho
g B = \J te}v T3
1 e e € F e.€E =
= i< 5

~1 3



Apply now the distribution rules of the theorem 11

(in any order) to derive the desired result. Q.E.D.

The theorem 12 gives a theoretical rule to compute the

set LA of all maximal intervals in f under A Namely:

L. = ‘f/Fnu-FO}‘ (33)

o= APt = kh) 13 (ﬂ\ s (e:| u-{EZE) (34)

eJE i eie F

tind the irredundant expression of ﬂ; as a union of
intervals. Set_Ll is the set of intervals in this expression.
A more detailed description of the above procedure - in the case
when F:uk consists of the only one olement -~ is given in the next

section.

5.2 Definition of a star (G(e|)) and an algorithm & for its

generation.

i fundamental concept in our approach to the synthesis

of interval covers is of an interval star G(ell).

Definition 1l. The interval star G(e{A) under X of an event

e € FML is a set of all maximal intervals under A which cover

the event e, i.ce

Glefr) = {L | e € L} (35)

We denote G(ell) by G(e). a(e|A) is - according
to {25) - the union of intervals in G{e|A). An interval star

can be expressed as:

Gle|r) = \:/{e}u‘ DA {36)

i (-



Theorem 13:

ey = [ ) (el E)

e:EFOl

Proof: G (elA) = {e} o T = {e}\f'(‘){gzﬁ
ox *
e,
i
Applying now theorem 9 part (&) we complete the proof. Q.E,D
The following algorithr for the generation of a star
G(e|l) follows from theorem 13 (algorithm G).

Given e € Fl>1 and FOA 2= {ei}Z ,

Aleorithm G: =1

1., Determine for i = 1,25044,%

{ei} and then form Qi = {e} U"{Ei}

- Z
2, Set up the function ] ' Di and find its irredundant
i=1
expression by multiplying each term Di by all the others
and applying the absorption laws, |

3, G{e|[)r) is the set of terms of the expression thus
obtained.

5.3 Synthesis of a cover ME (£]A) by algorithm A%

The problem of synthesis of & minimal cover M(fll) is a
particular case of the general covering proolem described in [2]. As
indicated in this paper even in case of a relatively simple covering
problem the number of operations required for its exact solution may
not be feasible even with the fastest computers. Consequently, the
most desirable are geood metheds for an approximate solution which
a1low to drastically reduce the number of . operations but also give
some measure of distance to the minimum.

The previously menticned method of disjoined stars, when
realized by locally optimal decisions, generates——with a relatively
small number of operations and memory requirements--a so—-called quasi-
minimal cover, which is elther minimal or approximately minimal.
Furthermore, when we cannot state that obtained solution is minimal,
it provides an estimate of ilhe maximal possible distance between the
obtained solution and the minimal one. '

The fundamental theorem from which +his method stems
(expressed in our terms) is following.

Let us agsume that we are given (by realizing some algorithm)
a family of stars G = {G.(ell)]? e e'Fl , such that any two stars
chosen from it are disjoint sets (we say ¥ is a family of disjoint
stars).

oy (L



Theorem i#: The number of intervals in the minimal cover M(f[l)
satisfies the relation:

e (M(2]1)) > c(e)

The theorem implies that if we have a cover D(f[l) and
know the number @ = ¢(&%), then the difference A = (D(£|r)) - ¢
can be viewed as an estimate of the difference between the number
of elements in this cover, and in a minimal one. If we can next
find snother family of disjoint stars with s grester number of elements,
say 31’ then we can improve our estimate, namely:

8, = (p(g|R)) - ¢, <&

If on the other hand we can find another cover with a
smaller number of intervals, then obviously our estimate will also
improve, and it may turn out then A will become O. This will mean
that we found the minimal solution.

A possible algorithm for accomplishing the above ideas

with a view toward a solution of the generally stated covering problem,
was described in paper [2] (elgorithm AY). In the formulation given
there it was assumed that a cover consists of some sets (not con-
cretely specified), called complexes. In our case the complexes are
specified as intervals (interval complexes). Thus in order to apply the
algorithm A% for our purpose we only need to make use of the algorithm
for generating a star G(f|A), described in section [5.2],

The flow diagram of algorithm.Aq in the form adapted to
our notation is shown in fig. 2.

The sign := denotes assignment statement (as in Algol 60 ).
F¥ is an auxiliary variable, O(FP;'el) denotes the operation of
choosing the event with the smallest number from the set specified
bg the current value of FP and assigning the notation ey to that event.
L* denotes an interval:hlg(el|m)= called a guasi-extremal, which
- covers the'maximum.n%mber of ‘events in the set constituting the current
value of variable F1°, It can be noticed that this is a locally
optimal decision about the choice of an interval from the given star
(generally not unique}, The last value of M4 constitutes our solution,
the quasi-minimal cover M2(T|A)., Value A is an estimate of the max-
ima] possible difference between the cover Ma(r A) and a minimal
cover M(f|k), expressed in number intervals, i.e.

c(e]0)) - olmlg]n)) < & . (27)

If after the firsl execution of the algorithm, A is con-
sidered to be too large, the better estimate (and/or solution) may
be obtained realizing next iterations, e.g. in the way described in

[3]).

To synthesize a quasi-minimal free cover Mq(fll,P) using
this algorithm, we substitute in the flow diagram (fig. 2) the set

LA 1Ap

F" by F . which means that we have to cover all elements from

Flh\aF¢l(l) and some elements (at least one) from the set Flhﬂ F¢i(l}.

16—



A geometrical interpretation of interval covers using

a generalized logical disgram and examples of interval covers

. synthesis are given in [5]. An extension of the algorithm for

the synthesis of quasi-minimal ordered covers and application of the
concepts described in the paper to pattern recognition are given in [6].

€. REMARKS CON APPLICATIONS

A cover of a mapping { consisting of multidimensional

intervals can be interpreted as a set of 'filters' for recognizing
events from a signal class (represented by Fli) for patitern recog-
nition and picture processing purposes, e.g. for discriminating
regions of different textures, striping of background, local feature
extraction, border detectiion, ete.

In cage of an ordered cc.o<r the individual filters

correspond to the consecutive points on the optimum receiver-
operating-characteristic (ROC)}, defined as in statistical decision
theory. The above ROC curve can be obtalned by optimal ordering
events from the two classes to be distinguished,with regard to

the likelihood ratio of their frequency occurence [6].
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