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This paper describes a systeém of computer programs developed in the [estitute of Automatic Contrel of the
Polish Academy of Scences for minimization of combinational switching circuits.

All these programs are based on an algorithm A4, the general principles of which are also outlined. This algo-
rithm was first presented by Michalski [1,3] for quasi-minimal solution of the generally stated cpvering problem.
It pives an approximate minimal solution without inspection of irredundant covers and also provides an estimate
of the maximum possible “distance” between the obtained cover and the minimal one.

The system consists of five programs; four of them are for minimization of disiunctive normal forms of in-
completely specified, one- and multiple-output switching functions with the restriction (n+m}) < 31 (m and i are
the numbers of variables and outputs, respectively). The fifth program is intended for minimization of TANT cir-
cuits (i.e., three-level with NAND elements} for incompletely specified, one-output switching functions of up to

23 variables.

I. INTRODUCTION

At the Fifth FCIP Symposium we presented an
algorithm A9 for the so-called quasi-minimal solution
of the generally stated covering problem [1], based on
the methed of disjoint stars.

At the Sixth FCIP Symposium we presented an
application of the same algorithm A% to the automatic
synthesis of minimal forms of incompletely specified
multiple-output switching functions together with
some computer-generated results [2].

The following programs are presently operational:
(1) A3 — NORMIN — L7a;

(2) A9 — NORMIN — wl;
(3) A" — NORMIN — w2;
(4) A9 — NORMIN — w3;
(5) A9 — TANTMIN —4J. .

The first two of these programs were described in
[2]. They permit the minimization of disjunctive
forms of one-output (17a) and multiple-output (wl)
switching functions.

The next two are new versions of A9 — NORMIN
— wl, while the last one minimizes three-level cir-
cuits of NAND or NOR elements, the so-called TANT
circuits [4].

2. GENERAL PREN{:IPLES OF ALGORITHM A4
Let

X=(...5): ie{o1,..27-1}; xe{01};
denote a sequence of values of the input variables
X1, ey X, such that

"
j= Z;J'(I.zu-l"
=1

Lzt X denote the set of all X;-sequences. An m-output
switching function f(x;....x,,) is then the mapping of
the set X into set {0,1,%}™, where * denotes an un-
specified value 0 or 1 (don't care).

A one-output switching function can be uniquely
determined by means of any two of the three sets
F1, FO F* designating the indicesj of the sequences
X; at which the function f takes the values 1, 0, *, re-
spectively.

An m-output switching function is equivalent to a
set of m one-output functions % of the same input
variables and can be determined by m above-men-
tioned pairs of sets — e.g., (F 1.k FO.k),

We shall now describe a geometrical model repre-
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senting switching functions, the so-called logical
diagram [3].

Letm = |. Supposing we are given an arhnrar}r
rectangle, divided into 21721 rows and 2n-1n/2]
columns, where [n/2] = entier (n/2).

In lexical order we assign numbers 0, 1, ..., 2 —
to cells of the diagram. The cell e having number j
will be denoted e/ Now the numbers of cells corre-
spond to the numbers m“}:} sequences. Moreover, we
can assign the letters x; and ¥; to the specified parts
of the diagram (as in the Veitch one) so that every
cell e/ will correspond to a sequence X, (fig. 1).
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Fig. 1. ia} The logical diagram for # = 5, and (b) the image of
function f of 5 variables; an unfilled cell denotes unspecified
value »,

Fuﬂhemmre when the value f(X; 17 =0, 1,

— | of function f is assigned to the cell e/ nf |‘_hs
dmgram, we call it the image T(f) of function f
(fig. 1).

In the case where m > 1 we divide every celie/ in
the diagram into m smaller subcells /%, 50 an m-out-
put function may be represented on the diagram if
we assign the values f¥ [XJ.-] to the subcells e/ .

When we have the image T()), a set of cells {sub-
cells) corresponding to a prime implicant K; of the
function f (when m > 1 a multiple-output prime
implicant) will be called a complex of cells.

The star G{;} or G{jk) of cell e/ or subcell e/
such thate/ €F! or e/ € F1 is the set of all com-
plexes covering the cell e/ or subcell ¢ . By G we
denote the family of disjoint stars. We denote the min-
imal cover of image T({f) by M{(T), the quasi-minimal
cover (i.e., the cover obtained from algorithm AT} by
MI(T). c(K) is the number of elements in a set K.

Foundarions

THEOREM 1. The number of elements c(M(T)) of the
minimal cover of image T(f") satisfies the relation

c(M(T)) = c(G7). (1
Then an estimate A,
cMAUTY) — e(MIN <A, (2)

may be obtained as

A= c(MI(T)) - ¢(GT). (3)
An estimate &,
HMUT) - z(M(T)) <5 , 4)

where z{(M(T)) is the cost of the cover M{T) — the sum
of costs of its elements — may be obtained similarly
(fig. 2) [1].

Fig. 2 presents the flow-diagram of algorithm A9
using the above concepts. FL, £0, FP, M7 are var-
iables the values of which are sets. F#, M4 are
auxiliary variables. OP(F,f, } is the operation of
selecting one number from the current value of F and

(Betarmination of &7 )
Determination

FrmrE ) =

M ¥ Has
d;:.ﬂ.-ﬂ-r, £ -..h-zf.t"'_l'

Fig. 2. Algorithm A in the case of minimization of switching -
circuits,
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assigning the notation j; to it. K9 is a product of
{( j) which covers the maximal number of elements
of the current value of F! (a quasi-extremal). K™ is
a minimal cost product of G(f). 2(K) is a cost of
product K {the number of literals in it). £9, G4(/)
are the sets of all elements of F! covered by X9 or
by all products of G f) respectively.

The tinal vaiue of M9 is a set of products — com-
ponents of a quasi-minimal form M9(f); (cover
MA(Ty)of f.

3. PROGRAMS A9 — NORMIN - 17a,
A9 — NORMIN — wl

These programs were written in LY APAS lan-
guage [5] for the ODRA 1204 computer |6]. They
were described in [2].

The first program permits the minimization of
only one-output functions (up to 31 variables), the
second one handles multiple-output provided
(n+m) = 31, where n and m are the numbers of
variables and outputs. respectively.

Now we describe the algorithm for generating a
star &(/). We shall determine it for a fundamental
product K( /) corresponding to cell e/,

Letm = 1. Let F¥={; }}_, and K, denote the
product corresponding to number j..

An implicant of f included in K(f) that is an ele-
ment of G{/) is a product consisting of literals of
K{7)and not included in any product X,. The im-
plicant is a prime implicant when it is minimal under
inclusion. K, .t' are sets of literals of products K and
K, respectwely
Afgwfrhm G?

1. Determine sets .

i) =K_F";'A’z: z=1,2, 0¥

2. Set up a function

¥

fo= A D, (5)
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3. Find the jrredundant disjunctive normal form
Di f,) of function f,.

The star G{f}is the set of ail components ol D{ fy).

In cases where s > | the general principles of
generating a star are the same (described in detail in
2]

Ler us assume that the algorithm (fig. 2} has been
realized and a cover M7( ) determined, but valuss
A and & are considered to be too large. IF the
algorithm is repeated whilst selecting the other
quasi-extremals and/or generating stars of other
numbers f, then better results may be obtained. Thers
are many different heuristic approaches possible and
some of them have been tested in our programs [2].
In that way a certain adaptive process is realized and
more iterations may be performed.

4. PROGRAMS A9 — NORMIN — w2 AND w3

These are new versions of program w1, also written
in LY APAS language. The difference between them
and w1l is in generating a star.

We notice that determining components uFD{f )
in algorithm G2 is also the covering problem, so we
may apply algorithm AY to it. The covered elements
are disjunctions 0, of function f,. They are covered
by single literals chosen from them in order to
algorithm AA.

In effect these programs work several times Faster
than w1, but the results are a little worse.

Because the whole star is not generated, deter-
mination of G¥{j} (fig. 2) is not possible. Thus we
find an algorithm for checking whether or not the
stars of given cells, say ¢/, e/, are disjoint ones.

Letm= 1. Let K, denote a fundamental pro-
duct corresponding tn cell e/7 so that

f; €FY; z=1,2,..,cFY.

Let ' denote the product of literals obtained from
K by complementing all its literals {e.g., if

K = x%,%; thenK' =¥ x3x5). K denotes the set of
all literals of K.

THEOREM 2. The stars G{k) and G(f) of cells ¥, ¢/
are disjoint iff there exist at least one z such that
lsz=c(FY) and

K, nk.nk=0 (6)

where © denctes an empty set.
Form > |, a similar theorem is valid.
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5. PROGRAM A9 — TANTMIN — 4J

This program was w.itten in assembly language
“ip zero™ for the ODRA 1204 computer for mini-
mization of TANT circuits (Three-Level AND-VOT
Metworks with True Inputs) [4].

As Gimpel showed [4] the only type of TANT
circuit that we need consider will have the form
shown in fig. 3.

I tevel [ level

{01 fevel
Fig. 3. General structure of TANT circuit.

The second-level elements realize complements of
the so-called TANT-expressions (which are the forms
of notation of TANT-implicants).

Definition 1. A TANT-implicant of the function fis
an implicant of this function which can be written
as P=HT Ty, where H and T; are frontal terms;

H is the head of a TANT-implicant; the T; are tail
factors of TANT-implicants, with the feature that if
any tail factor is removed, the resulting expression
will not be an implicant of f.

So the minimization of TANT<ircuits is equivalent
to a problem of covering given functions by TANT-
complexes (which correspond to TANT-implicants).
In arder to apply algorithm AS we then need only an
algorithm for generating a star of TANT-implicants.
Definition 2. A head H(K) of product K is a product
of all uncomplemented literals of the product K. A
head Hie) of cell e is a head of the fundamental
product corresponding to cell e.

Definition 3. A frontal complex of cells, LP(H), is the
complex corresponding to frontal term H. Complex
LP(H{e)y is called a frontal complex of cell e.

Analogously, we define backal complexes L7(G)
and L™(e) = L7{G{e)).

Definition 4. A lower bound of a set of cells Z is the
set 29 C Z with the property that the set-theoretic
sum of frontal complexes of cells of set 29 includes
the set Z and no cell could be removed from Zd
without destroying this property,

Z(P) is the complex of cells corresponding to the
TANT-implicant P.

Foundations

THEOREM 3. TANT-implicant with head & of the
function fbelonging to the star of cell ¢;& F exists iff

e(H)EQ =L () U L"ep) (7
{eo} :

where e(#) is a cell with head ; {eg} = FO N L7 (e,).
THEOREM 4. If cell e(ff) € F© then we may obtain al]
TANT-complexes Z (P ) (corresponding to all TANT-
implicants Py(H) = HTI T}, with head H) as

fr
ZF) =L\ U LP(TT) (8)
=1

where {LP(T"]} is an irredundant cover of a set
R%;R9is5a lower bﬂund of set R

R =FO0 LP(H) ©)

and forevery T!is T'NH=©.
Fig. 4 presents the flow-diagram of that algorithm.
It is worth noting that this algorithm generates all
TANT-implicants without generating and inspecting
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Fig. 4. Generation of a star of TANT-implicants.
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the prime implicants of given functions, as was the
case in [4] and [7].

In progeam A9 — TANTMIN — 4J we also use the
algorithm A% for minimization of the third level of
circuit, because it is also a covering problem.

The program discussed here permits the minimiza-
tion of TANT-circuits up to 23 input variables. [t also
permits the minimization of TANT-structure circuits
built with NOR elements,

6. CONCLUSIONS

The system of programs presented here is based on
the algorithm Af for the quasi-minimal solution of
the generally stated covering problem, presented in
[1]. Experiments with this system show the great
usefulness of that algorithm in applications to prac-
tice problems in automata theory, leading us to as-
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sume that it will also turn out to be useful in other
applications as well.

REFERENCES

[1] R.5.Michalski, On the quasi-minimal solution of the
general covering problem, Proc. V. Yugoslav Int. Symp.
on Inf. Proc, (FCIP 69), Bled 1969, Vol. A3, 125-
128,

[2] R.5.Michalski, Automatic synthesis of the quasi-minimal
multiple-output switching circuits, Proc. VI Yugoslay
Int. Symp. on Inf. Proc. (FCIP 70), Bled 1970, Vol. D1.

[3] R.5.Michalski, Synteza Wyrazen Minimalnych i Roz-
poznawanie Symetri Funkcji Logicznych (Warszawa 1970).

[4] J.F.Gimpel, The minimization of TANT networks, IEEE
Trans., EC-16 (1967).

[5] Logicheskii Yazik dlya Predstavieniya Algoritmoy Sinteza
Releinikh Ustroisty (Moscov 1966).

[6] A.Michalski and T.Wiewiorowski, Odra Ljapas, CC PAS
Reports, Vol. 4, (Warszawa 1970).

[7] K.K.Chakrabarti, A.K.Choudhury and M.5.Basu, Com-
plementary function approach to the synthesis of three-
level NAND network, IEEE Trans., C-19 {1970).



