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ABSTRACT

Thig paper reviews what is mesnt by gremmatical inferepce and

it discusses some of the currently used methods of grammatical inference.

The applicabion of a variable~velued logic system to this inference
problem is explored and, where possible, direct comparisqns between
methods are discussed. Examples of & correspondence between a variable-
valued logic infersnce process and a grammatical inference procege are
presented. Operations which increase the class of languages to which
varisble~valued logic can be effectively applied and operations which
allow #implified varisble-valued logic descriptlons of classes of
grammars are discussed. Type 3' and iype 3" grammars are defined (both
subsets of bype 3 grammars) and the equivalence of variable-vslued legic

formulas and btype 3 and Ltype 3" grammars is illustrated.
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1.0 Grammetical Imference

In order to describe the process of grammabical inference,
it is necessary 5o present a few definitions. Formal statements of the
process of inductive inference [eej and gpecifieally grammaticel
inference exist in the litersbure [5,9]. Since no formal theoretical
comiparisons will be ineluded in this work, the appropriate constructs
will be introduced only ag needed to supplement the intuitive discussions
to follow.

Feldman [9] has correctly ohaerved that any discussion of
grammatical inference can be generalized to include a much larger setb
of problems including the inference of functions, theories, and patterns.
Becauge of the fact thab the process of grammatical inference holde
promise as & vehicle to study other forms of inference, more detall

#ill be ineluded in the discussion of the inference of a formal lenguage

grammay then wight be otherwise justified.

A grammar, G, i & L-tuple G = <N, T, B, 8 >, where N is a
finite seb of non-berminals, T is a Ffinite set of terminals (the inpub
alphebet), F ig a finite set of productions or rules, and B is a non-
terminal called the santenpelsymbcl or the start sywbol. TI%t ig necessary
that N and T be distinet sete (i.e. thelr inbtersection must be empty).
Lower case letbers will be used-toﬁreprasemt terminals, and capital
letters will be used to represent non-terminals. A string ie &
coricatenstion of symbols from the sets N and T. A language 18 a set
of strings where each string contains symbols from the input alphsbet T only.

The set of all strings over an input alphabet T will be denoted as T¥.



Thug, T% represents all stringe which can be formed by the concatenation
of elements from T selected with replacement.

The difference between terminals and non-terminale can best
be demonstrated in ternms of a simple example, The berminsl is the
atomie unit of a language. It is the unit below which it is not
profiteable to subdivide the language. Congider ordinary FEnglish; the
logical terminals are lebters. For infermation te be conveyed, it is
not necessary to examine the structure of each individusl letter to
determine its component strokes. It is clear that a language could be
formed by considering as terminals a set of strokes frem which all
Letters could he formed. Iowever, letters seem the mogt sppropriate
terminals for the Engligh langusge. As exanmples of non-berminals,
congider the concept of a word. It would be possible to describe
English without the concept of a word, bub it ig simpler Lo group
letbers bogether into lopical constructs which can be treated as a
unit. Won-terminals serve Just such & purposs. In addition to words,
it is somebimes convenient tc group words and letters (one letter words
"

for inatance) bo form sentences. Thus the non-terminal "sentence" is

Foried from both terminals snd non~terminals. The ideas of ‘a parsgraph

and a chapter are alsc the use of non-terminals for the description of
English. ©One spesks of the rules of grammar for English as the rules
which specify the wammer in which terminals and non-terminals can be
put btogether to form statements in the Epglish langusge.

As indicated by the example sbove, the use of a set of rules
or productions is an esgential part of a grammsr. The set of rules
specifies the valid substitutions allowed in forming strings of the

language. The ghart eynbol is required o be the first symbol in the



derivation of sny string in the languege. A derivation consiste of the
guccessive application of rules from the et of rules which change one
sbring inbo another. The idea that a grammar can cepture the patbern
in s langusge is lmportant to the discussions which will follow.
Congider the following twoe grammsrs for the trivial langusge

(abe, &b, cab}, where the input alphabet T = (8,b,c}:

8 = ahec S - Do
S -+ ab or 8D and N = [D,8].
5 - cab 8 = cb

D = gh

The trivial set of productions on the left (and fthus the grammar of
which they are a part) defines the set of strings which constitute the
language, but they do not demonstrate the pattern or structure that is
present. The productions on the right apecifically sbate that the
string ab occurs in three places. In addition, in situations in which
enumeration is not desirable, or even possible, the uge of non-terminals
can simplify the set of productions used to describe the language. The
iden of simplicity has been studied glong with the companion ides of
cogt [5,6,9]. For many applications, the measure of cost and complexdty
is the gpame. Several different measures of simplicity will be mentiored
in gection Z.

A stying from the set T% which 1g an element of a given
language, L, is said to be a posibtive instence of the language L. In
o similar manner, a string from T* which is not in the language L is a
negative instance of the langusge 1. An information sequence or Just a
sequence is & group of strings presented in & gpecified order or sequence.

A pogitive information sequence iz a sequénce in which all strings in the



geguence are also in the language L, and a negative information
gequence ig a gequence in which all strings are in the set T¥ but not
in L.

With the sbove definitions, it is possible to specifly what
is meant by grammstical inference in more detail. Grammatical inference
1s the process of inferring the grammsr which describes a positive
information gequence while not dincluding any strings from any given
nesative information sequence. The omission of a given positive
instance of the language from the inferred language is considered an
errsyr., The inelusicn of a knewn negative instance in the inferred
language is also coneidered an error. Generally, errors are not allowed
in the inferemce process. The inclusion of a string from T* about which
nothing is kmown is called the introduction of & dscrepancy in the
inferred lansuage. The inferved language is then greater than the
initially given set of pogitive instances, bub it doss not contain any
error. Cook [5] has noted that by increasing the dlscrepancy it is
often possible to reduce the complexity of a grammsar.

It is possible to classify grammars based on the strings used
in the productions. The clagslification te be discussed below was
introduced by Chomsky [3] and will be extended to ineclude two intereating
classes of grammars (and thus languages). TFor the purpose of the
dizcussion below, & general production will be of the form:

i > oty
where A i3 a non-tevminal and & ig & gtring of terminals and ron-terminals.
The interpretation of the rule above i that the string A may be replaced
by the string . The strings ¢ and | are the left and right context of

A regpectively.



Type O grammars sre grammars with productions of the form
dasoribed above. There sre no other restrictions on the form of
productions of type O greammars.

Type 1 grammars &re grammars with productions of the form:
@AYy - ooy where @ is not the null string.
Type 1 grammears are the so-called context sensitive grammsrs because the
replacement must be made within the left and right context.
Type £ grammars have productions of the form:
A - o where o ig not the null string.

Type 2 grommars are called conbext free because there is no specifica-

tion of elther left or right eontext in the productions.

Type 3 grammars, the so-called fnite sbate grammars, are of
the form:
A = o where @ = a or = aB

F‘* (& is an arbitrary terminal and B is an arbitrary non~-terminal ).
There are several important results from the formal theory
of langusges which willl be important to the discussions which follow
[13,14]. The most important idea is the idea of & machine which accepts
E 8 glven language as defined hy & grammar. This equivalence hetween

machines (called acceptors) and grammars will be exploited when a
E catparison is made between grammatical inference and variable-valued
logic.
Type 3 langusges can be represented by a finite stafe machine
(and thus the same finlte-state grammer or language ). Buch a machine is
totally specified by giving the states of the machine and a tabulation
:
E




of the ghate transition and output behaviors as a function of thé
input and the current state of the machine. The machine 1s seen as
being presented the letters in a cendidate gtring, one at a time, and
‘the output of the machine after the inmput of the entire string
indicates whether the string is in the language in question; In
general, & different machine is used for each different granmar.

For the purposge of this work, btype 3" grammars will be definsd
as type 3 grammers without recursion. This means that productions of

the form:
A - al

{or sequences of productions which accomplish the same thirg) are not
allowed, This restriction can be expressed in terms of the machine
accepbor for a type 3' grammar also. The state transition graph of the
Mnite-ghate accepbor for a typs 3' gramwar is a directed graph with no
loops.

Ag an sdditional extension to the formalism of Chomsky, Type
3" grammars will be defined as type 3' grammars whose corresponding
machines can be viewed asg a trees wikth the root at the sentence symbol
and no links that comnect different levels of the tree. The corresponding
restriction on the form of & grammar will be defined by exeample. The

=1

graymar below ig bype 3' bub nol btype 3.

T = {a,c}
sdE}

N - (8,3,8] aB

bbb
®



me use of B on the right-hand side for two different non-terminals
(8, D) distinguishes this grammsx from type 3".
Tt 18 important to notice that, by construction, the types

of grammars are walated in the following way:
type 3" © type 3' < type 5 = type 2 < type 1 = type 0.

This observatlon will be importent later. An squally important
cvservation is the fact that the machines necessary to accept the
languages above incresse in power from left to right. This means

that & machine (or other formelism such ag 2 grammar) which is
gufficient for type 3 is nob sufficient, in general to accept a type

2 language. Since subaets of type 3 are the gimplest grsmmers snd thus
the simplest languages to represent, it is not surprising that early
work in grammatical inference concentrated on type 3 languages and
subsets thereof. The next section will present the general gepects of
several different metheds of grammetical inference, The range of

applicability of saich method will be indicated.



2.0 Methods of Grammatical Inference

weveral surveyd of results in prammatical inferencs exist in !
the liberature [1,511). Gold [12] presented & nuwiber of interesbing i

resulbs about grammatical inference which were extended by Feldman [9]

and reviewed by Cook [5]. ILhe deteils of the results are not of

interest here because the problem wag treated from an emmerative
approach. Buch an approach to the infererce problem implies the
enumeration of all possible grammars over a given input alphsbet and

the selection of the first grammar found teo include all of the given

pogltive instances and none of the nepative insbtances. A more t
sophisticated problem, also treated by Feldman, is the problem of E
selecting the simplest grammar that meebs the above requirewments. An

interesting result of these discussions ig the fact that the sslection é

of the least complex grammar from the set of all candidate grammars i

ungolvable, in general, unlese negative instances are given. Thig

result combined with the fact that the muber of candidates to consider

for the enumeration grows combinaborially with the size of the langusse

implies that the enumerstive approach is imyractiﬂal for any but simple

axamples. |
Az an slternative to the enumerabtive approach, several

conebructive approaches to the problem have been proposed. Most work

that has been done involves finite-stabe pgrammars with some work being
done for more powerful grammsrs [5]. Before discussing gpecific
algorithms which hawve been suggested for grammatical inference, an

intuitive example will be presented. Congsider the set of gll well-formed

strings of parentheses. Az o sample (2 positive information sequence)

Bt
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toke sll such strings of length siz or less. The sample set is thus:

O, (O, (CON, OO, (), OO, OO0, DO,

For the sets of productions below, the short hand notation S = /b
will be used to replace the more bulky § = a, 3 - b, The generalization
is obvlous.

The most trivial solution to the inference problem is the
simple set of productions: 8 - OZLONCLONIOMIOO/O/OOO/)0).
This set of productions portrays the sample with no discrepancy {the
inclusion of strings not in the sample and not known 2s negative instances).
Tt does not satiafy the desire o capture the S'bmm.’cﬁre of the language
inder gtudy, snd the method does not generalize to large snd poteritially
infinite languages. 'S-iﬁ_ee we know that non~terminals are used to portray
the structure of a grammar or to simplify a grammar, it seems reasonable
to try to introduce some non-terminsls inte the trivial grammar in order
to simplify it. Three @i frerent identifications of non-terminals will be

demonstrated below:

T ¥ > () _

8 = /(1) /((x))/Cox) fyy/e(y) /ey / (Y)Y
5, ¥ = (( _

s = (/) /xONO/O0/00) /00000
3. Y = )) _

s - (/e /O /OO /00 /OO0 /(X))

Other choices for Y are possible but they lead to less compact grammars
than the sbove. On & purely intuitive basis, it appears thet grammer 1
is the mogt compact representation of the sample snd should be chosen as
“the best from this group. Can the reduction in complexity be improved?
It would seem logical to take the new grammar and try to improve it by

selecting a subsbitution for some string which might include Y and
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agssigning it to & new non-terminal. This iterative process forms the
heart of meny consbructive approaches to the grammatical inference
problen.

In general, the constructive approach to grammatical inference
ig the game as & heuristic gearch procedure. Buch a procedure hrieg +to
make the best choice pogsible ah any stage of the gseareh. Since the
objective of the constructive approach is Lo avoid an exhaustive search,
the sbopping econdition becomes all important. Cock [6] disucsses several
typical stopping criterla in the context of the inference of stochastic
grammars, but many of hia remarke are generally applicable. The fivst
method for agsuring the termination of a ssarch procsgs in an acceptable
time ig to restrict the set of allowed candidate solutions in such a way
that an exhaustive search of this set can be performed in the worst cage.
'Thig procedure is very similar to the tobal enmmerative method and suffers
from mosh of itg problens.

Any congtructive method starts with a candidate solution or a
part of a candidate solubion and tries to add to or subhbract from the
current best guess in order to inprove the camdidabe solution. Implicit
in such & process is the potential for backing wp and trying another
path which was previously rejected. At the point where a back up is
suggested a decision must be made asg to whether the amount of improvement
to be gained by the retry ig worth the effort. No definitive solubion
o this problem hasg been presented for the existing algorithms for
grapmatical inference. (More will be said about this problem when
variable-valued logic is discussed.) The proposed stopping criteria
in use at present are to Limit the bime or steps in the enbire process,

to avoid back up entirely, or to try bo back up only when the discrepancy

e T T T S et




of the new path proves to be less than the final digcrepsncy of the

curvent best grammer. The last of these is the eriterion used by Cook,

end it ie the most promiging. At present it is not possible to prove

it to produce & correct cholce in the general case.

The First specific method of grammaticasl inference to be
discussed, unlike those which will follow, does not invelve the possibility
of & Back up. Biermann snd Feldman [1] have reported a method of
inferring Finite-state grammars which creates and compares sublanguages.
The eriginal sample is divided into eguivalence clasges which share a
cctmon imitial string. The vesulting equivalence classes are identified
with non~terminals snd the grammsr csn be produced. The mechanism ig
best understood in its application by Biermann and Feldman [2] to the
problem of the inference of finite-state machines from samples of their
input and output behavior.

s epmenn and Feldman define a relation which they use bto
partition the sample set of strings into equivalence classes. The
relation uses only the first k terminals in a string, This means that
the adjustment of the parameter k can cause the machine to pass from the
universal acceptor (k=0) to the minimal determinmistic finite-gtate
acceptor for the sample (k> the longest string's lengt ). When used as
an accepbor, the machine will have the desived behavior for the first k
letters of a string and the behavior for longer stringa is not assured to
be as given in the sample. Thus, if an accepbtor for only k letters were
needed, the algorithm.Wdulﬂ be faster gince it would not have to consider
letbers in etrings in the semple after the kOl ietter. For smell values
of k the machines are nmon-deterministic. Such & non-deberministic

machine mugt be converted to a deterministic acceptor befors 1t can be
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converted to & grammar, Becauge of the equivalence between finite-
state acceptors and type 3 grammars, the resulting grammar has the

fewest possible number of non-terminals.

TR R

Biermsnn and Teldman have programmed the algoritlhm and they

¢lainm that typleal constructions of machines with 10 to 20 states
require only & few seconds of processor time. Since the Process
minimizes the number of states in the sceeptor and thus the number of
non-terminals, the process is not genervalizable to alternate winimization e
criteria. A generalisation of the algorithm has been wmade to infer
rroductions of the form A —» a or A - aBe, but it will not be diSCuSSed;

In order to simplify the example below, the algorithm will be

vged to find the minimal grapmar for the sample set shown below:
(caaah, bbaab, caab, bbab, cab, bbb, cb]

where ¥>5, (Two avbleanguages are considered equal if they are egual for

the Firet k lebters.) The First two sublanguages ave:

S¢-= {asab, asb, ab, b} and 8 = (basb, bab, bb)

which are distinet sets (not equal and neither is 4 subszet of the other).
The two sets sbovée each give rige to a non-terminal and the first
production is:

The btwo gets above Wwlll now be divided inbto sublanguages and all sub-
languages which are distinet from all previcus sets will give rise to new
non~terminals. Sets which are subsets of previous sets or equal to
previous sehy will be ddentifisd with the non-termingl created by that

sets. Thus we have:
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w2
[

s = {asb, ab, D] and Sbb = [aab, &b, b)

s
]

ch (0]
where Sca = Sbb
B, only containg & single terminal (all strings of lengbth cne) and
thus no new obher non-terminal is needed. The final set of productions

o Sé and thug no new non~berminal is needed. The et

ig thug:

A = cB/bD
B - b/aB
D= hB
which is the minimel grammar which produces the strings in the sample
ag required by the cholce of k. Notiee that the recursive production
allows = language which is larger than the sample, but all strings of
length 5 or less are properly degeribed. The more general case of k less
than the length of the longest string in the sample involves the
conversion of a non-deterministic finite-state machine to a deberministic
meohine and it will not be treated further heve. The mevhod above is
capeble of inferring a type 3 grammer with the minimal number of non-~
terminals for a given sanmple seb.
Feldman et al. [10] have implemented another algorithm for
inferring finite-state grammars from a sampls of a language. The process
constructs & non-recursive type 35 gremmer with residues which represente
the sample., A residue 1s a production with a mon-ferminal on the left-
hand side of the rewriting arrow and a string of terminals on the left. |
The grammar with residues is simplified to produce a finite-state recursive ;
grammar. The resulbing grammar is near minimal with ne precise estimate
of the disbance from the minimum. As an exemple of the method consider

the sample set:
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(casab, bbaab, csab, bbab, ceb, bbb, cb}.

Strings are processed sequentially in order of decreasing length. The

First sbring can be generated by the following:

2 P m

Aok
o
o

sb (2 residue).

In order to gensrate the second string, bbash, the following productions
are needed:

8 = D
I - bE
L -+ all
"~ ab (& residue).

Tn order bo generate the third string, casb, the production € - b muset
be added to the list of productions. If this process is comtlnued, the
get of non-recursive productions with regiduss found below will be

generated.

-+ h/aB

+ b/al

— b/ab (a. regidue production)
= b

~ b/a¥

~ b/ab (a residue production )

=g ol

A get of productions which generate the sample has been Tormed. Tt 1s
now necessary that the residue productions be removed and, if possible,
recursion be used in the.rgplaceménts and simplifications, The residue
production T — b/ab can be removed if the production - b/el is replaced
by E - b}aE'and gll occurrences of T are replaced by K., A similar merger

of the other residue production produces the following grammar:
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§ —= cA/pD
A - h/aB
B - b/sB
D - bl
- b/-aE |

whers there are now no residue productions. The productions involving
non~terminals 4,8, and B are of the same form and can be merged together

to Porm the set of productions below:

8 - cB/bD
B - b/aB
B - bR

which is the same grammar which was cbtained in the first example for
the same sample set. As was pointed cut in the first example, the
inclusion of recursion automabically increases the discrepancy in the
genevated grammar, bub the reduction in complexity sppears to be worth
it. The example above is presented by Cook [5] and Feldman [10]

Uhlike the first example, the example above provided & large
mmber of places to make a choice. The string o expand in producbiens
mist be chosen on the basis of other eriteria if several strings are of
the same length (the process normelly processes sbtrings in order of
decrensing length). When residues are merged they may be merged in any
order, and similar productions may be verped in any order. It 18 thus
possible to apply other measures of cost or complexity at gach choice.
Thig ability and the number of cholces to be made mean that the process
camnot provide a guarantes of minlmelity, but s near minimal solurtion 1g
possible using different messures of minimality then number of non~-terminals.

Solemonoff [231, Chomsky [4], asnd Crespi-Reghizzi [T] have
developed irference wmethods depending on an informant. The informant ia

used to indicate whether a string is in the languege. The process wight
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try to generalize on the sample and in so doing create a string about

which it bas no information. The informant iz used Lo answer the
menbership guestion about the new shiring. These processes have been
applied with success in special cases [7] bub it is generally as big a
problem to act as an informant as it is to infer the grammar. Thus in
order to solve the problem, it must Pirst be solved.

The final methed to be conzidered is the method due to Cook
[6]. Cook has developed a cosh and discrepsmcy meagure for bype 2
languages defined by type 2 stochastic grammars. A stochastic grammar
ig a grammar in which s probabllity ig agscciated with any cholce allewed
in the production. The productions using / are those with choices. A
gtochastic grammar defines a stochastic language in which a probsbility
can be agsociated with each string in the language. 'The probability
aggocighbed with each string in the langusge is the sum of the probabilities
aggociated with each possible derivabion of the string. A derivation has
the probability equal to the product of the probebilities of all
productions used in the derivation. The method used by Cook is that
which was described in the First example in this section. Cook wakes &n
initial gremmer consisting of the trivial grammar and the given (or
assigned) probabilities. Specific kinds of gimplifications are considered
and the cost and discrepancy of sach ig compubed. The alfernative with
the lowest cost is chosen and the diserepancy meagures is used when the
coste are nearly squal. Cost being the same, the lesser discrepancy
alternative will be chosen. Just as im the last example, the process is
a search and thus does not always find the minimum solution. There is no

measure of the distance to the minimum.

4
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Cook applied the algorithm sbove to the same example a8 the

one used twice gbove. The intermediate steps are too lengthy to ghate

* peve, but the algoritinn converged teo the following solution after 15

X - WY (1)
Y -+ b/a¥ (0.5,0.5)
W - ¢/t (0.5,0.5)

_— Recursion was not explicitly congidered, but it was found %o have the
“amallest cost apd tThns was chosen. Probebilities associated with the
_ productions are shown in parentheses. When the probability information
 ie ayaileble or can be generated, the algorithm 15 & move general
_ golution to the problem Than has been discussed. ITf the probabilities
- of sample strings must be azrbitrarily aggdgned, the simplest solution
© fhat the alporifthm could produce might not be found because of & poer
choice of probehilities,

Other authors have approached the problem from the point of view
" of machines [21] or gpecialized applicabions. The algorithms discussed

are a vepresentative sample of those which exist.
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3.0 Inference of Pattern Grammars

Evans [8] hes reported an atbtempt to nge the results of the
inference of grammars for formal langusges in the inference of
degceriptions of patterng in objects or images. The inference of &
pattern grammar to deseribe a set of objects lg more difficu;ﬁ than
the problem of grammatical inference for formal languages.

The inference of & pattern grammar begine with the formulation
of a pattern descripbion. The first sbtep in the formation of a
description is the guanbizatlon of the object. In some instances the
srord Wigitize'is applicable, bubt in general the cbject is described in
terme of a set of prespecified numeric quantities which are thought to
have some relevance to the set of dbjects in question. Evans calls
thege numbers terminals and quite properly calls them lowest-level
object types. After the cbject hes been guantized a set of predicates
ig defined. The predicabes are operafors which forin' eguivalsnce classes
over the set of termipals in ‘the pattern grammar. After the proper
velations are chogen, it is possible to deseribe a patbtern in terms of
terminales and the relationd which collections of terminsls from the
patbern obey. The description tekes the form of a set of rules OT'.
productions which specify the descripbion. An exemple will be used o

define the form of the productions. Consider the figure ghown below:
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Ag Eyans pointe out, the nafural terminala to chooge for such &
pattern are circle, dot, line segment, and square. The relations are

defined by the operabors: above, inside, and lefd, each of which is

binary. Tha description of the figure above is:

face — features, head: inside (features, head)

hesd - circle '

features - oyes, nose, mouth: above (eyes, nose) A above
(eyes, mouth) A above (nese, mouth )

eyes — dob, dot: left (dot, dot)

noge -+ £QUBTE

mouth —+ lLinegeg.

Thiz deseription does notb precigely specify the image since 1o comment
was made @boubt the angle of inclination of the two dots or the line
segnent. It does contain the necessary information as gpecifiable by
the terminals and the predicates chosen.

A statement of the algorithm for the inference of a pattern
grammar is:

1. Quantize the pattern into a suitable set of parameters.

a. Define relations on the pavameters which have
structural meaning for the pattern (predicates).

5. Describe each instence of the pattern in terms of
the relations which are true for that patbbern.
Express the description as a get of productions.

%, Torm s grammar for the set of insbances as the union
of the grammars sbove.

5. Sinmplify the grammar.
The deteils of the verious stéps will be explained in termg of an

example, Consider the three line drawings below.
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The relevant terminals are cirele, dot, triangle, and square. The first
step results in the description of sach of the three cbjscts sbove in
terms of the terminals. For gtep 2 the only relaticon between terminals
that looks appropriate is the relation inside. The results of step 3
are shown bhelow: -

B, 8 - triangle, squars: inside ( triangle, square)

b. 8 = circle, square: inside (cirele, squars)

¢. B - dot, square: inside (dot, square)

The union of the rules sbove creates & trivial grammar which completely
specifies the set of images presented. This corresponds to the trivial
grammar formed as a Tirst step of the grammatical inference for formal
lenguages. AL this point, the simplificabtion problem is the same as it
was for the formal language case, and 1t sghould be hoped that manmy of the
same tools could be brought to bear.

The example above peinbs oubt a Fundamental differance hebwesn
the inference of patfern grammars and the inference of Tormal langusge
gremmars. The pystem of productions above is nob capeble of simplifica-
tion with the set of temminals chosen. Tvane indicates that at this
point it is necessary to weaken some of the rules used to specify the
Initial set of cbjecte. The significance of this observafion ig
eduivalent to the realization in the formal language caze that the
initially given input alphsbet should be replaced with snother. No
inference procedure for formal languages known to the author hag this
provisicn. The example sbovi ghould be yesbtructired so that the

simplification o the form below is possible.
5 - any, square: inside (any, sguare)

The grammar shove repregentd a generalizabion in order +to simplify the



grammar. This coneept will be reviewed again in the discussgion of

sariable~valued logic as 2 vekricle for inference.
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4.0 Vearisble-valued Logic

Detailed definitions of several forms of variable-valued
logic may be found in the literature [15,16,17]. The system to be
defined below will be & simple subset of the systems in current use
end 1t will be expanded ag more gophisbtleated operations are found to
be needed. The operations defined below are suffieient to define a
minimel subset of variable-valued logic system VL, [17].

A varisble~valued logic system (a VL system) is & quintuple:

<X, ¥, 8 Ry B>

'
“

X == ig & non-empty set of input or independent varisbles, whose
domains, denoted by D, 1 =1, 8, 3, «+s are any non-empty sebs.
Y =-- is a seb of output or dependent varigbles, whose domains,
dencoted by JD, J=1, 2 3 ..., are any non-empty gets.
8 == is = set of aymbole called connecting symbols. Initially the
only comnecting symbols we will use are ¢ = ( ) AV [ T.
R, == iz & geb of Fformation rules which define well-formed formulssg
(wfT) in a VL system. A string of elements fram X, D., ¥, D and

8 ig a wff if and only if it can be derived from & finite number

of applicetions of the formation rules.

R. -- is & seb of interpretation rules which give an interpretation to
VI fortulas. They specify the mepping from all wif to elements
of the sets jD.

In the discussions which follew, the symbol x, will be uged to

denote & varieble which may take on valuss selected from the inpubt set

T EEE T EE B
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Only one set of oubtput varisbles will bhe needed and elements from

% wrill be referenced by name where regquired. &£11owabls wfD will
S ionsist of simple gelectors:

['E:'[ = a sequence of elements Trom the imput seb Di]

or more than one simple selector joined by the operators AorV .
The interpretation of VI formulas will be as follows:

A gimple selector will have the value sgual to the maximal
element of the output set if the gbatement in it is

true and the value zero otherwize.

Selectors joined by A will take on the value of the

smallest selector so joined.

Selectors joined by the symbol V will take on the

value of the largest selector so jelned.

Parentheses may be used to specify the order of evalvaticn
in the normal way.

An example should help to indicate the nature of well-formed

'*':"""{"f‘orm{[:.la.s and their evaluation. Consider three inpuf sets:

12

X o= {1,2,3) X, = {r;8,8,4] XZ‘ = (cat, boy, dog)
and the output set: D= (0,1]. The following are well—formed Tormulas.

[x =1 v [x =2)x =71 V [x = cat]

[X3-
[x, = ZL][X.8 ) E][KB = cat]

= clog][-x2 =e] V [.KE = &}

- where A hag been omitted where uynambiguous and the order of evaliation
“ig left %o vight with A given a higher precedence than V .
Tne three wif above can take on a valus only after the values

- of each of the variables has been specified. The first formula will
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have the value 1 if Xy is asgsigned the value 1, or Az the value catb,

or 2, the value 2 and %, the value r. In all other cases the Tirst
Pormula will be assigned the value zero. The second wff will have the
value 1 if xg hag the value dog and X, has the value e, or x, has the
value t; otherwise, the formula will teke on the value zeéro. TFormula
two points out an interesting aspect of the evalustion of VI formulas.
Since the operation V selects the larger of the values it joins, the
svaluation of formula two could terminate alter the first condition was

satisfied sirnce it 18 not possible to find a larger value. Only if the

Tirat condition (X5 = dog and X, = e} were not met wenld the second
condition need to be evalusted. The third formula will be assigned the
value 1 enly if % iz 1 and x» 18 5 and 5 ig cabt. In all other cases
the value will be zero.

The formulas above can be thought to select points from sn é
event space. UThe evenb space hag three dimensions because there were three
input sets. The tobtal mmber of distinct evenfts in the space is the

product of the cardinalitlies of the lnput sets. For the example ebove,

" — - _

this would be 36 events. 'The third formula above speeifies a single

il - ke

event gince it specifiecs a value for each of fhe input varisbles. The

gecond formuls specifies two groups of evenbs sharing one of Two

i

properties (either Xy = dog and x, = € or X, = t)., A similar statement

can be made aboub formula 1. The generalized logical diagram (GID) has

been proposed by Michalski {18] as a geametrical representation of & :

multi-dimensional space using the thickness of dividing lines to signify

the dimensiong. The diagram is consbructed so that each event ig
represented by a single square in the diagram. The specification of a

formula on such a diagram consists of putting a 1 in the dquares of the




a.gra,m representbed by the formule. The GLD provides sn excellent
eometrical model for deseribing formulas and can be used to infer
ormiulas from gets of evenbs in simple cases.

Michalski [19] has reported an algoritim for inferring
“Pormaleas based on sets of evenbs to be inzluded in the formulas. The
algorithm hos been used in a computer program, AGQVAL, and has meb with
Tauccegs in ibe applications, The detalls of the algorithﬁ (based on the
éﬁ;gorithm Aq) are beyond the scope of thig work, bub scime genersal
?@ments gbout the algorithm are appropriate.

The program AQVAL produces a near minimal formula for fthe
f’&preséntation of a pet of evenbs E:l while not including any elements
.”‘rom the set of events 9., The prablam can be gtated graphically on &
ID by placing & 1 in the squares which correspond to the elements of
El and & O in the squares of the diasgram which correspond bo the events
'in the set BX. Those squares not marked are so called "don't care'
-anditions and may be included in the formulas if their inelusion will
e gimplify the result., The inclusion of such don't care events in the

'I 'fgmula corresponds to the introduction of discrepancy in grammatical
Inferance.

| In sddition to near minimal formules for the event setb El, the
progx'am produces the maximum possible distence between the present
«formula and the minimal formula. The application of the algorithm is
--Q,.;.-jdetezmi.nis’sig and does not regquire any bhackup. Repeated aspplication of
“the slgoritim to the problem can yield successively vetber formulazs or
wrvhebber estimates of the maximum distance to the minmimal solution. A

minimal formula is the cheapest to evaluate using a cost function defined

' by the program user.
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The estimate of the msximum distance between the present
formula and the minimal formula produced by AQVAL eppears to answer
the backup question posed sarlier for grammatical inference. After
the application of AQVAL it is possible to dscide whether the next
iteration can produce a simplification which iz worth the time it might
take by examining the distance to the minimum., No such situation ie
known to the author in the case of currently applied methods of

grommatical inference.
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5.0 VL Systems and Grammatical Inference

Before abtempting tc apply the process of inference for VL
formulas to the problem of grammatical inference, it ig necessary to
eyeluate the applicability of the VL system as a2 means of expressing
the problem and its solution. This comparison should yield interesting
insights inbo the process of grammatical inference and into the
structure of VL formulas. This section will discuss the formulation
of the grammstical inference problem for formal languages in terms of
the formalism of variable-valued logic. (Actually a subset of VI will
suffice for the early discussions in which all input sets are of the
same: cardinality.)

As hefore, the problem is to infer from a positive information
sequence and a (possibly empty) negative Information seguence s grammar
which deseribes the lenguage of which fthe posltive information sequence
: ﬁ.a 8 subset. This staftement will be meodified glightly to state that the
_'\de'sired result 1s a representation of the language not Jjust a grammsr.
The nature of & VI repragentation of s langusge will be discussed ab
length in the next section.

For the discusegiong below, the simplest possible mapping from
strings in the sample to VL variables will be made. All inpuf setg will
be of the same cardinality. The cardinality of the inpub sets will be
that of the input alphsbet &g observed in the sample plus 1. The domaing
“of the input varisbles will be the input alphebet and the previously
wused synbel $. The oubput set D will contain the values 0 and 1 and
the meanings associabed with these values will be O = not in language,

1 = in the language.
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A pumber of inpubt varisbhles eguzl to the number of Lerminals

in the longest string in the sample of the langhage will be ngeded.

To simplify the constructions below, the special symbol $ will be used
to signify the end of a string. That is the original positive and
negative informatlon sequences will be replaced by seguences in which

$ bas been added to the end of each string. A string will be represented
in a VL gystem as a set of valueg of the input veriables in positional
notation. That is, the first input variable x, will be agsigned the
value of the First terminal in the gtring; x&_the gecond and so on wnutil
the § has besn assigned. Inpub variables following the $ may be assizned
arbitrary values as desired. For the discussion below the input variabled
after the § will also be assipgned the value J.

By using the procedure stated above it is possible to write a
unique set of values for the input varishles corresponding to any string
over the alphebebt used in the sample. This meang that svery string in
the original slphebet (before the $ was added) corresponds to a unique
square in the GIN,

The inferenve problem ig bhus sbated: For saeh pesitive
instance of a string in the sample place a 1 in the appropriate square
of the GLD. Tor each negative ingtamce of a string in the sample, ﬁlace
g 0 in the appropriste sguare of the GID. A1l squares not marked
corraspontd to strlngs about which nothing iz knowm. The desired result
is a formula which includes all of the events marked by a2 L and none
marked by O (no error) end containg as few of the mnmarked squares as
possible (minimum discrepancy). In addition, the formula should be as

simple as pogsible.
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e tradeoff between complexity and discrepsncy discussed
“hy Cook [5,'6} is clearly evident 1f the construction discussed above

is used. Simplification 1s possible when specially selected don't care
_ eyents are included. BHaving stated the problem in terms of a VL

system, 1t is necessary to investigate the nature of possible solutions
to the problem before attempting to Infer descripltions for specific
languages. The next sechbion will discuss the represgentations of simple
grammars in the VL system outlined above. [The applicebllity and

simplicity of VL descriptions of languages will be discussed.
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6.0 WL Gepresentaticns of Languages

RBefore the inference df\ﬁﬁ_fermulas can be applied to the
inference of descripbions of languages, 1t is necessary To agcertain
the applicsbility of VL systems to the representation of formal
lamgusges. It should be cbvious from the definition of a VL system
given gbove that the VL system as defined is not sufficient for
recuraion. There is no provision'in the feormalism to handle it. A
legs obwious result which will be demonstrated below is the fact that
VL systems as restricbed above are net sufficlent to represent langusges
as well ag type 3' grammars. The correspondence betweenjULland grammatical
representations of languages will be explored for simple classes of
gramnars below, New operations will be proposed for the VL system above
and they will be used to extend the comparison.

The gimplest grammar to be discussed is the type 3" grammar.
Tn order bo demoristrate that the VL system defined abave 18 gufficient
for languages described by type 3" grammers, algorithms for conversion
between the two different formalisms will be outlined. In addition to
the remavks of section 5 1t is sufficient to speclfy the correspondence
petween productions and formulas.

Productions te VIp formulas.

1. Rewrite all productions with the same left-hand
gide (lhs) as one production using /e

Asgign level mumber 1 to the production with the
sherting symbol on 1ts lhe.

o

3. If no productions have been assigned then go to 6.

b, Write a1l productions whose 1hg econtain non~terminals
referenced in the level above and gasign this group
of productions the next level wvalue not assigned.
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f. Replace - with =,
7. Replace [/ with V .

&, Replace any single terminal, &, at level i
with the form:

[, = allx = &

9., Replace any terminal, a, next to a nonterminal
at level 1 with!

[Xi = a‘]
- where & may represent any terminal. The result is a systemn of V’Ll
formilag which represents the grammar. An example will be presented

"Ibe-low to demonstrate the process. Consider the type 3" grammaer with

gtart symbol S below:

gﬁ_ﬂ i)

oo

pi= s o0 = M B
A A A
tel

= -

which can be rewritben in the form:

§omh _ level 1
A= cfoD/ch __ level 2 _
D=0

E-ofa, ___ _level 3

~and the vesulbing VL, formulas are:

8= [xl = a}A
A= [z, = e]l=. %5 =&V [%y = e]B v [, = b]D

D= L-Xz = C][xh‘ $]
%, = allx, = $]

=
i
o
<

=
]




The grammar and the VI-l Tormules above both represent the

languags:
{abe, av, ace, acal.

In order to show that the VI system defined sbove and type 3" grammars
are equivalent it ie necessary to show that for every VLl representation
of & language there exists a corresponding type 3" language. Once
agatn, the proof will be consbructilve.

Vllformul_as to productions.

1. Rewrite the VIg formulas leaving out all selectors
containing the symbol $.

2. Rewrite the VI formulas so that ne two selechbols
are joined by the operation A . Create new
formula nameg 1[ neededs
%, Remove the brackets and the x, = from all selectors.
. Replace = with » and V with /.
he result is a set of productions which represent the same langnage as
the get of VLl formulag. From bthe nabure of the constructions it should
be obvious that given any seb of type 3" productions, 1f the productions
are converted into a set of VLl formulas and Then converted back to a set

of productions, then the resulling set of productieons will be the same ag

the original set. Since the inforence of the simplest possible VI '
expression for a language described by a type F grommer can be converbted
tio the inference of a type 3" grammar which is just as simple, the inference]
ofF 8 *\T'L_Lrepreaentation for & type 3" language is equivalent to the 'ini‘ez"enee-;
of g type 3" grammar directly.

A grest deal cen be learned from btrying the conversion algorithms
above on & grammer which is type 3' but not type 3. The examinabion of &

few examples should be sufficient to convinee the resder that the ordering




# productions used above is not posgible for type 3'. If non-terminals
Wﬁich cccur st more than one level are treated ss a special case, then
, get of VLl formulas wiich repregent the grammar can be produced. The

é;igorithm which was used to convert VL] formulas to a grammar can be used

to convert back to & set of productions. An example will demonstrate
he procéss. Consider the followlng type 37 grammar:

al

e/bD/cE

¢/bE

» o/a

The reader can easily verify that the gremmar sbove represents the

oo =l 7}
o4 4L

formiles
§ = [xl = ala
A=lx, = e][x§ =$]1 V [x, = clEV [x, =DID
0= [x3 = cli®, = 8] V Tx5 = blE’

8= [x, = clln, =41 V ix= allz, = $]

B = [y, = ellxg = 81V [x, = ellxg = $]

Thig exemple is simple enough that it can be shown that the VI, formulas
above cannot be simplified, A most interesting situatiom arises when the
sot of formulas shove is comverted back to a set of productions. That
éet is :shown helow.

g8 - aA

A = C/QE/"OD'
D - c/bE'

H = c/a

E" = t_:_/a
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This grammay containg a non-terminal which was not found in the
original set of productions. 4 moments thought will show that the
new producticn is not neceggary and can be removed to produce the
grammar sbove. Thus in converfing to a VL, representation and back

something has been logt, The simplest VLlTepresentation of the
lenguage 1 not as simple as the gimplest type 3' grammar for the
same language. This means that the inference problem for type 3'
grammsrs is nofb solved if the smwplest'Vleeséription of the language

cen be found. The simplest V1. representation can be simplified after

I
Pirgt bpeing converted bo =& grammar.

In looking at the formulas for B and E' there 1s a digtinet
similarity in the structure of thie formulss. In a btype 5" grammar this
gimilar sbructure could be portrayed by one single non-terminal E, but
in the VL system defined sbove two Formulas are reguired. TIn order to
correct this gituation, an addition will be made to the definition of the
VL system above in order %o allew the VI system to represent type 3'

grammars. The addition proposed by Michalski [20] is to use selectors of

the form: .
e [x&, xj, vee = a7

whare a is an arbitrary teminal snd the dequsnce of variables infthe_
gelector should be interpreted ap follows: if xi-@r Xj or ... is egual
to the terminal a, then the seclector takeg the maximal value

in the output set else it takes the value zers, Ag an example of ifts use,

thie set of formulas for the language abovye will he rewrittern using the

new gelector.

wm
Il

[z = ald

A = [XQ e][x3_= $1 Vv EXE_: c]H Vv [xé = b0

]




VLlfbﬁﬂulas to productions.
1. Rewrite the VI formulas leasving out all selectors
containing the sywbol §.

2. Rewrite the formulas so that no two selectors are
jolned by the operation A . Create new formulas
if nesded.

%. Remove the brackets, the sequences of varisble
references and the edual sign from the selectors.

4. Replace = with = and V with /.

The conversion from & type 3' grammexr to a set oi‘vﬁl formulas can be
gemmmliShed by the following algorithnm:

Eroducticns'h}VLlfbrmulas.

1. Rewrite all productions with the same lhs as one
production uging /.

2. Aggign level number 1 to the production with the
sbarting syrbel as its 1ls.

3. If no productions have been assigned level numbers
and the previous level contained no non-terminals
on the rhs of any productions, then zo to 6.

4. Weite 3ll productions whose lhs contain nop-
terminals referenced in the level above and asaign
thig group of productions the next level value not
vet used.

5. Go to 3.

6. Remove all multiple copies of productions, but
essociate the level numbers of the productions
removed with the copy left behind.

7. Replace - with = and / with V .



8. Replace any single terminal, &, in & production
with associated level values i,J,k... with the
form:

. ) _ e h
[-Xi,Xj,.X‘k, “va = a-|[xj_+l,k;;+l’x‘]{‘|'l, e = $]-

9. BReplace any terminal, a, in a production with
associated level wvalues i,J,%, ... with the form:

[Xi,xj,xk,... = a],*
where a may represent any Terminal.
As an example of the application of the conversicn algorithm
for the conversion from a grammar to = set of”ﬁhlfbrmulasl the type 3°
grammar sbove will be eeonverted to a VI gystem. The result of the

erdering of productions is:

S rad level 1 _
A ofchfoD _ level 2 _
D > e/bB

B ¢fa level 3 _
T = efs level 4

o {1 T T 1 oy

and the resulting set of formulas is the set of formulas used gs an
example of the definitlon of the new gelector. It 1g gimple to show
that the get of formulas can be converted back te the same grammar for
any type 3' grammer, so the equivalence between the inference problem for
type 3' grammars and the exbended VL system defined above is established.
This means that the simplest result 1n ope represzentation can be
converted to an squivalent represgentation which is iszomorphic %o the
original. The relationship between an extended VI, system, called

VLQ [20], and grammatical inference will be discugsed in paper [24].

TIn general, 1t may be necessary to sdd selechors of the form [Xf = $]
for ! > 1 to eliminate the introduction of discrepancy. '
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: ___..T.O Simplifled VL Representations

The previous section presented an extension to the VLl system

i ) _
mz;i-whiqh gerved to increase the classes of languages which could be

répresented by a set of VI formulas. This section wlll explore the use of

‘of those already represented.

The commg was introduced ag a way to indicate that for the

gimilar wennsy when gpecifying the values of the inpub wariablesg for

The meaning is the same ad for the previous case. A

8 = [x_l = &]4

A= [x,=cllx, =4 Bl v [x,=b]D
D =[xy = elly =§]

I =[x =8, cllx - $1

wj@éx'e- the use of the comma is defined above. This equivalent representa-
mn containe only 8 selecbors where the previous one contained 1l. The
electors more compactly represent the same langusge. As a nabural

wextension of this construct the use of : as defined by Michalski provides



38

an additional savings of expression. TIn addition, when the inpul set
18 ordered on the relation < (or mapped into a representation such as
the positive integers Tor which the relation is defined), then the use
of : to indicate a seguence of possible values represents & computational
savings. It is no longer necesgsary to make the individual_eomparisons
Pov each value in the intervel defined by the :, but the guesticen of
whether the speeified Input varigble hag a ¥values jn the range can be
answered by checking the end points only. 'lhe use of the comma for the
specification of a seguence of values is the same as specifying an
equrivalence clags of values which, for the process of evaluating thig
selector, may be treated as a wriit. The use of the symbol : makes the
manipulation of the specified sequence éspecially simple.

Michalslki defimes s number of other operators which can be
uged to simplify the expregsion and eomputation of the yalue of a VLl
expression. The comparison % ig egpeclally useful when the number of
elements of the input domain to be excluded is less than the number of
elements to be included. - This simplicity of expression becomes mest
effective when combined with the use of aequences of values as defined
above. For input sels which are crdered, the operations <, =, < >
can provide simplifications of selectors. Since all of the above
operations can be performed (alfhough less concisely} with the test
for equality, the addition of these operators does not change the class
of languages Por which VL 1g applicables, bub they de allow & more concise
manner of representation.

As an example of simplification, & grammar will be presented
below and converted Lo a geb mi‘VH_ermulas which will be gimplified.

The set of simplified;VLlbemulas will be uged Lo answey the meubership
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question for the language defined by the grammar. The performance
of the grammar will be compared to that of the VLlformulas on &

production by productlon basis. The sample grammar is shown below:

T = [8,b,c,d) 8 - aB/cB/bB/aD/bh
B - a/b/d '

N = {8 B,D,EB,F] D - aF/cF
E -+ bP
F-e

The order relations will test order in the alphabetic sense, thus tha
expression a<b is true while ¢ <a is not, The VI representation of

the grammar is shown below along with a gimplified get of VL formulss.

8=1I[x =al8 V [x =b]BV [x=c]BV[x =2a]DV [, = BB

B = [x? = 31[15 = $]‘V'[KE =-b1[35 =41V [Xé = ﬂ][X5 = §1
0= [:r:2 = glF W [XQ = ¢]F

E=[x, =bF
F = [x5 = ellx, = $]

gnd the gimpler form:

§=[x =arc]B V [x =PV [x =bIB
B =[x, # ¢, $1lx, = 4]

D =[x, = a, c]F

B =[x, = bIF

I

I = [X5 : C][Xﬂ_: $]

A good intuitive ides of simplicity of representation for &
set of objiscks ig the number of questions which have to be asked to
determine if a given objech is in the class. It seems intuitively well
justified to say that a representeation which requires that fewer

questions be asked is simpler than one which requires mors. 1f the
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firet produchion sgbove were used to sngwer the membership question for
g given seb of strings (answer Tor each string whether or ngt the

atring was in the language), 10 questions would be asked. The guestions
would be of the form: JI= the first letber an a and if so can the rest
of the string be represented by B? The numbexr of guestlons can be
veduced to 8 if the firsht 6 take the form: Ig the flrst letter a, c, or
b, and can the vegt of the string be represented by B? 1T the simpler le
Farmials is used to answer the same questions, only 7 gquestions need to
be agked. The reduchion comes Ffrom the fact that no best for first
letter of b need be made. A the productions bhecome more complex and
as the input alphsbet grows in size, Tthe savings can be expected to
grow alse. Similsr comparisons are possible for the other productions
with gimilar resultg. The explicit reference to § in the VL case does
not represént any exbra work since the use of a terminal alene in a
production carries an implieit check for the end of the string. The

4 just mskes the check explicit for the VL case.

Michalskl presents other simplificabtion operators which will
not be diseussed here bhut have similar effect. The distinetion bebween
operations which increase the classes of’ languages which & VL system
can represent and operations which produce & simpler Form of representa-
tion for the ssme class of lavguages, msy be of help in designing new

additions to the VL gystem or in evaluating the old.
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8.0 Gramatical Inference and Patterm Recognition

As pointed out in sectlon 3.0, the Fformalism of grammatical
inference holds promise for application in the ares of pabtern
recognition. The problem of the inference of pattern gr%mmars ag
stated In section 3.0 is more complex than the inference of a formal
language grammar from sebs of positive snd pegative inetances of
gtrivgs of the language.

The first step in any pabbern recognition process is the
expression of the pathern as s set of mumbers. In the general cage,
this could correspond to characterizing the pattern in terms of & seb
of primitives which are srbitrarily chosen. Numbers might be assigned
to represent sbstract constructs such as circle, line, and dot, or these
might be represented by palrs of pumberg such as radius and center, or
end points.

Ancther problem to be treated is the problem of continuous
veriables. Since no cempubing machine allows the representation of
conbinuous wvariables of infinite precigion, it is necessary to quantinze
the conbinuous varisbles into digerete compartments, The selection of
compartments may be conscioug or 1t may be determined by the number of
bits of a computer word assigned to represent a number. Thus, even
continuous variablesg must be gquantized,

For meny applications it may suffice o use a rather coarse
quentization of the continuous variable and thus simplify The number of
different values to be treated. It might be gufficient to speak of

human height as short, medium, oY tall wather than dnches measured from
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0 to 100, By limiting the mwmber of different values recognized, the
description of any common properties can be more easily recognized.
The process that Fvans cells the choosing of predicafes is
really the definition of operators which can be used to compare the
primitive elemente of his descriptions. In a very resl sense, the
specification of predicates 1is the specificabion of which cperators
are allowed 4in selectors in a VL sysbem. The gelection of input
yarishles corresponds to the selection of the primitive properties of
the pattern with which to express the pattern in numbers. In the cage
of pratmatical inference for formal languages (&t least for type 3'

langusges) the input alphebet is given snd the only predicate needed

£
w

If all of the above problems are oVercome, the problem of
inferring & simple representation for the pattern vemaing. At this
point The desire for simplied by ghould he clearly gpeeified. In the
most general case, it would be appropriste Go assipn & cost to each of
tre primitive parameters to be associated by the inference process with
the cost of evaluating that primitive. It would alsc be désirvable 1o
specify a cost of each comparigon between primitives (es done in VL) and
then minimize the fotal cost of ﬁhe pxpression for the pattern.

Grammatical imference provedurss generally do not allow the
apecification of specialized measures of cost or complexity. It is
generally assumed that simplicity means the fewest possible number of
productions or non-terminals. Cook [5,6] and Feldman [$] have discussed
nore generalized measures then productions or non-terminals, bub neithey
nas 8 fully generalized cost funcbional such as Found in the inference

of & VL system. Most grammaticsl Inference processes have a prespecifisd
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form for the complexity measure to be mimimized and do mot lend
themselves to the minimization of a generalized cost functional.
A VI inference process doss provide such a capability.
Unlike the situation with the infevence of grammars for
formal languages, bthe solution is not wniquely defined. IF g given
cost funetional is minimized for the inferred grammsar then the solution
is as good as any that can be found. In the case of the inferemce of
a description of a pattern, it is possible That the initial cholee of
primitives was nob optimal, or thet the set of operations on the
primitives was not complete, or that the quantization of the wvalues
was nob opbimal. Thus, unlike the formal language case, it might be
pogsible to redefine the input alphabet (set of input wvarishles or
their domains) in such a way that a simpler description is possible.
There is no provision in grammatical inference for the inference
of modifications in the input alphabet which can result in a simpler
degeription. As nobed in the case of VL systems, the use of the
operators "," and ":" define classes over the input variables or thelr
values. These constructs appear to be a first step toward inferring
modifications te the input alphabet in order fo produce a more efficient
repreéentation of a pattern. Consider the case of a quantization of &
continuous veriable which is finer than needed. Such a variable would
always be compared sgainst sequences using the : to specify the interval.
7% 811 references to values within the interval were alwsys references
o the same interval, then the inberval could be repleaced with a value
on & coarser quantization of the varisble. Such a substitution would

lesve the representabion simpler and easier o use.
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As another example of simplifications made possible by the

VL formalism, consider the situation where a given collaection of values

separated by a comms is found repeatedly in the VL description. it

the input set from which the values are selected 1g unordered, then it

can be ordered so that the seguence separated by commas eculd be

replaced by a sequence using the eolon. After that substitution, :
simplifications such as those discussed above might apply. In addition, E
othar patterns might emerge in the input zets in repested applications §
of the process. g

T¥ is necessary Lo state that the above comments do not ;
constitute a proef that a VL approach to pabtern recognltion iF more i
powerful then an approach involving formal grawmars, bhut some interesting ;

new possibilitles which the V1 approach gives have been found.
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