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SYNTHESIS OF OPTIMAL AND
QUASI-OPTIMAL VARIABLE-VALUED LOGIC FORMULAS

R. 5, Michalski
University of [llinois at Urbana-Chainpaign
U. 5. A,

l. Introduction. It has recently been observed [1], [2], [3] that an exten-
sion of multi-valued logic in the form of a variable-valued logic system (VLS) sug-
gests a new and promising medel for decision theory, artificial intelligence, pattern
recognition and related areas,

A VLS extends known many-valued logic systemns (MLS) in two directions:
(1) It assumes that propositions and variables in them take values not from the same
domain, but from separate domains, whose size and structure is decided based on
semantic- and problem-oriented considerations., ({2} It generalizes some of the tra-
ditionally used operators (e, g., the concept of a 'selector' in the system [3] V1, is
a generalization of 'literals' used in various ML5's), or adds new operators (e, g.,
symmetric selector or exception operator in VLj).

In this paper we describe some ideas and algorithms for the synthesis of dis=
junctive simple formulas of the variable-valued logic system VL, which are opti-
mal under a lexicographic functicnal [2].

The system VI, is the first and the simplest VL system whose practical
applications have been investigated [2], [4]. Its definition and some formal properties
have been described in paper [3], therefore we will only briefly summarize here the
notation and basic concepts pertinent to VL, .

2. Summary of Notation and Basic Concepts,

X] XZ X3 was Xp input variables with domains Dy, Dy, ... , D ,
respectively. It is assumed” here that
Di=IDllII-FJ£i} H

¥ output variable with domain D . It is assumed**
here that D=0, 1,2, ... , A} ;

E(dy),dz, ... dj} or E an event space defined as D) XDy X... XDp s
where d; = ¥l

[[_,!'R] a gselector which takes the value ﬁ'. if it is satis=
fied, otherwise the value 0 , In the selector:
L is a single variable x;, or an arithmetic
sum of variables or their inverses, or a VL)
formula; # denotes one of the following rela-
tions: 's! '#! <! 121 . B ig 53 gubset of the
union of domains of variables occurring in L

* Sets Dj can be, in principle, any (ordered or unordered) sets [3].
*% Set D can be, in principle, any linearly ordered set which has minimum and maxi-
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VLj formula ' consists of selectors and elements [rom domain D ,
linked by operators =, Vv, A,V

VeV Ve, Vi, . VLl“I-.::Irmulas : -

-V inverse of V defined as d-v ;

ViVz or V1AV conjunction er minimum of V| and Va

VvV, V) except for V, , defined as V[V, =0] ;

ViVvv, disjunction or maximuin of Vy and V,

DV1, formula (disjunctive simple formula) is a disjunction of
terms, where a term is a conjunction of selectors
and a constant from D .

3. OptimalizationCriterion for VLj Formulas. A VL; formula is inter=
preted as an expression of a function (VL function):

£ E(dl.dg,....dn}*l} . {1)

If two different formulas express the same function then they are called semantically
equivalent. A DVL; formula V is called an optimal formula under functional A =
<a-list, T-list”, among all the semanti cally equivalent DVL, fermulas "l.-’J-, if

AV) 1:-’-' A[Vj} '

where a-list, called attribute {or criteria) list, is a vector A=({A]4 824 950 s ag) ,
where the a; denote single- or many-valued attributes used to characterize
DVL, formulas (e.pg., number of terms, of selectors, total number of vari-
ables involved, etc.)

T-list, called tolerance list, is a vector T=(T], T2+ 000 Tg) + where
05s7=s1, i=1,2,..,4&; andthe Ti are called tolerances for attributes a; i

AV)=(a1 (V) a2(V) s e s 2p(VI) L AWV = () V), 2p(V5) 0 eee s 2g (V51

aj{V), ai{\?j} denote the value of the attribute a; for formula V and Vj '
respectively

.
<* denotes a relation, called the lexicographic order with tolerance T , de=
fined as .

EI{V]:I-E.II:V} = Tl ]
or |ay(Vj)-ap(V)| ST, and "ap(vj)-2a,(v)' > T,

A(V) = Ay i€

nr LR L

¥
*

OF Gsersneviviosns ¢+.. and ;'r'!'[\fj]-ai{v}l 2T, ;
i W r-ﬂe:

ai max= m?x[ai(‘-"j}} ¥ ai min = rnjin{ai{vj}]

Y

Ti = Ti{ai max aimin} s L
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Note that if T=(G, 0, ... , 0) then < denotes the !exicographic order in the

usual sense. In this case, A is specified just as A=<a-list™ . The optimality func
tional A is called a lexicographic functional,

To specify a functional A, one selects a set of atiributes, puts them in the
desirable order in the a-list, and sets values for telerances in the T-list.

4. Elements of Coverina Theory, Algorithms for the synthesis of optimal
VL, formulas to be described here are based on the results of covering theory [5]-[8]
This theory deals with problems of expressing any arbitrary sets in a universe {} by
means of certain standard subsets called complexes,

Aset [ s 20 is called universe of complexes, if it satisfies:

(i} coverability criterion:

Ve€ER, ICE L, e€C (2}

(ii} separability criterion:
"s’el,ezéﬂ, EC], C2E£: {E.IECI. E3EC3 and Clﬂcz=¢1
Let E; and E.Z be two subsets of 2

Definition 1. A cover CV!E!'IEE} of set E| against set 5 is defined as a set of com
plexes, lci}i":'l ,» guch that

ENE; = YC sE VE, (3)

where Ez = Q\Ez

We will assume here that {} is an event space E=D) x DX ... XD, and con-
sider two universes of compleses: 1) B, universe of cartesian complexes, R , de-
fined as:

where [xi:cr.i] » called a cartesian literal, is a set of all events E'—"{)\:l P Xy s eee Xy
ees 1+ X,) €E, such that the value of %j is an element of o, oS Di 3. 2) L, universe
of interval complexes, L defined as:

j ]
= IY b S ke
Li= ey U= a;: b;) {5)
where {xi= a;: !:-1} » called an interval literal, is a set of all events e such thatthe
value of x; is between aj and by , inclusively,

Following are definitions of a few concepts necessary for understanding the
principle of disjoint stars and the cover synthesis alporithms discussed later,

Let E, El i E.‘z be event scta, i.e., subsets of [ .

Definition 2, The cartesian (interval) root, JE {JE} » of E is the set of all maxi-
mal cartesian (interval) complexes included in E

VE = {RER|R SE and JR'SE, RS R') (6)
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The concepts of a star and an extension, to be defined below, will be modified
by tne adjective 'interval', whenever the root of an event set occurring in the definition
uf these concepts is an interval root,

Detinition 3. The cartesian star or, sin_ﬂ._plyr, star G{E1|E2} of Ei against EZ is
defined: - i
GIE, |Ez) = {R|R EEZ and RNE#¢} (7)

The subset of G(E; |E>) consisting of complexes C which cover entirely E; , i.e.,
E|SR, is called the covering star CG{E”Ezi of E, against E; .

Lemma |. G{E1|Ez}=ﬁf:€:_;l\1fflﬂﬁz (8)

Proof, The set fa can be partitioned into two classes of complexes: (l) a class of
complexes which intersect £, and {2) a class of complexes which do not intersect E| .

Class (1) is clearly G{E”Ezi . It is easy to see that class (2) can be ex-

pressed as g =
JENIE,VUE;) =YE,JE, =¥V E|NE, (9

which ends the proof, #

Definition 4. The cartesion extension or, simply, the extension Ey — E;, of the
event set E; against event set E, is defined as:
E,—E; = UR|IREGIE|E)] (10)

The extension E, —-frFE-Z is called the extension of E; in E; and denoted *Elr— E, .
If F is a family of sets then the set-theoretic union of the sets of this family is de-
noted by FJ, Thus, E; —E; = (G(E;|Ez))Y, or, simply, GY(E||E) .

If E|S E;, then obviously G[E1|Ea} = ¢, and if E} n Ezﬁﬁ then CG{E1|EZ}
=¢. Let e),e; be events outside of an event set E, and G{ellE] and G(e;|E) denote
the stars of e} and e, against E, respectively,

The stars G{ellE} and Gie; |E) are disjoint if they share no common com-
plexes {though the complexcs in the stars may intersect), Let GT be a family of pair-
wise dis joint stars, GKE|EZ}. et EF , Ef= El » Ey NE, =2?. Let MCV be acover
CV{E1|E2} which has the minimum number of complexes, i.e., an optimal cover under
functional A = <# of complexes> . Let c(G) and c(M) denote cardinalities of G and
M , respectively.

Theorem 1., (Principle of disjoint stars)

c{MCV) 2 c(G) (11)

Prouuf, Stars G{elEZ} , et EY, are disjoint, therefore there does not exist a com-
plex which can cover more than one event from EY. Consequcntly, any cover
CV{E‘-’IIEZ} will have to include at least ¢{G) complexes. Since EF=E|, then any
cover CV{E]|Ez), thus also MCV, has to have at least ¢(G) complexes. ®

The theorem is true for any family of disjoint stars, thus also for a family of
maximum cardinality, which, obviously, gives the most desired lower bound. The prin-
ciple of disjoint stars has been first [5] formulated by Michalski in 1969 and used for
developing a new approach for optimal cover synthesis [9], [10].

¥In papers [6], [7] +— is denoted by «—
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The most important algorithm, from the viewpoint of applications, produced
by this approach is the 'quasi-minimal [5} algorithm' A9, This algorithm has been
used as a basis for optimization of VL, expressions. It has the following important
features:

l. It produces a quasi-minimal cover (minimal or approximately minimal} of a set
against another set in a computationally very efficient way.

2. It produces an estimate A o] the maximal possible distance (in the number of
complexes) between the obtained cover, MY, and minimal one, M :

F4
e(M9) - c(M) = A (12}

~ The estimate A is computed as the difference between the number of complexes
in the obtained cover and the number of disjoint stars which were generated during the
execution of the aigorithm. The estimate, as well as the cover itself, can be improved
by repeating the algorithm,

3. The algorithm is 'robust!, by which is meant that its computational complexity ca=n
be easily controlled and kept approximately constant, independent of the combinatorial
complexity of the preblem. That is, if the problem is simple, then the algorithm will
function in a most optimal way, producing a solution which is optimal or very close to
cptimal under given functional A . But if a problem is combinatorially very complex,
the algorithm w:ll function in a lass optimal way, but still will give a solution in a
reasonable time {though the solution may be farther from the optimum).

There are many algorithms which share the first fcature with the algorithm
A9 . Oue of the most recent and advanced is described in paper [10]. There are, how-
ever, lo the author's knowledge, no algorithms which also display the other two feature

5. Algorithm A9, The basic idea of the algorithm A9 for the synthesis of
a cover CV(Ej|E,) or set E| against set E,, is to generate consecutive disjoint
stars G{E]Eg_} , ek E|, and to select from each star the best complex L9 ('quasi-
extremal'}according to an optimality criterion, This criterion can be specified as a
functional A = <a-list,T-list>, in which the a; are attributes of complexes whose
minimum is most desired from the viewpoint of the optimality criterion for the whole
cover. For example, if the first requirement for a seolution is that the cover should
have the minimum number of complexes, then the first attribute on the attribute list,
a-list, could be an inverse eof the number of events in Ey covered by a given complex.
. Part 1 of the algorithm terminates, when no more disjoint stars can be generated. If,
at this moment, the set of events remaining to be covered {(current value of El:l is not
empty, then Part Il is executed. New stars (not disjoint this lime) are generated and
quasi-extremals determined, in a similar way as in Part I, until all events of the set
E) are covered. To keep the algorithm within rcasonable computational time limits
even for very complex problems, two parameters are used: maxstar (MS) and cutstar
{CS). Their role can be described as follows: If in the prucess of a star generation,
a number of complexes at any moment is larger than the specified limit MS, then the
set of complexes is cut down to only CS complexes, which are most desirable from
the viewpoint of the assumed optimality functional A, If any of the stars is 'cut! in
the execulion of Part [, ang it cannot be proved that the union of generated complexes
fer this star is equal Gb{e[Ez) y then the computed A ceases to be a true estimate, (I,
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The flowchart of the algorithm A% is given in Fig. |. The selection of events
e) from E, in Partl, and from E| in Part II, can be done arbitrarily {e.g., random-
ly) or according to some algorithin which may depend on the information about the func-
tion obtained from the previous application of the algorithm for that function (see, e, B
paper [11] which describes an adaptive interactive synthesis of logical formulas),

6. Star Generation, The most important and difficult part of A9 is genera-
tion of stars Gle) [E;) . We will present here one of a few algorithms developed for
this purpose,

This algorithm is based on the following theorem:

Theorem 2. The union of complexes in a star Gle|E) is equal to an inter-
section of extensiovns of event e in complements of events of F :

g
cUelEy = O el — I50h. {13)
where E={e;, e;5,... , eg} g

Proof. The proof is given in paper [6].

In order to obtain the star G{e|E), it is necessary to express the right part
of (13) as a union of maximal complexes. This can be done in the following steps:

l. Determine Sk = {a} — [Ek} for each ‘-‘-kE E

Suppose e = {x =n1”x2=&2}...[x“= an] {14y
then &, = {xI #ai}U [xa aZ}U... U{xnﬁé an} - By applying the following {15)
ti H i

properties [6] E— (R U Rz'—'---}={E—RJ_HEg‘—RE}--- (16)

. _JR, i RNE#£ ¢
RS {'Eﬁ, othe rwise i
represent each S, as a union of complexes: S = {nklu RiaU... | (1)

Z. From step l we have g
GlelEy= 1 5 . (19)
k=1 “k

By multiplying S| by each other and applying absorption laws, the right side of (19) is
transforrmed into an irredundant union of maximal complexes:

GYe|E) = Ry U Ral Ryles: (20)

Thus Gle|E) = Ry} _, , o (21)

7. Synthesis of Optitnal VL) Formulas from Event Sets. A VL function
f can be specified by a family of event sels:

A, pd-1, . Fl, FO (22)
such that F* = {e|fle)=k} .
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1f g FK £E then f is incompletely specified. By an expression of an in-
completely specified function is meant any expression which can assign a value from
D to events e EE\L) Fi(called*-events or DON'T CARE).

We will show that an optimal VL) expression for f under a functional A can
be constructed by determining a family of optimal covers under A of certain event
sets against other sets.

Let DC{ELFEE} denote an optimal cover of E; against E, under functional
A . An algorithm for constructing an optimal VL, expression for f consists of the
following steps:

1. Determine optimal covers under A :
. GCF‘:QQ{Fﬁ/Ff{'ld F.’LEU... UFD]
ocf~! = oc(rf-1/ pd-20 vh-30u ... U FY)

oc! = ocirl/F?) .
2. Express each complex in covers OCk. k=Ff.fi‘-1 v eer , 1, 28 a term, i.e., & con-

jupction of selectors. Conjunct terms corresponding to complexes in A with A, in
cf-1 with d-1, ..., inc! with 1,

3. The disjunction of thus obtained terms is an optimal VL| expression of f under A .

The validity of this algorithm can be clearly seen by observing f(hat dis junction
of terms means the maximum of their values, and therefore events of F | can be
treated as “-events for all covers Ck s k= kl X

The synthesis of optimal cartesian covers is a 'polynomial complete' problem
[L2] and its precise solution may require, in a general case, an unfeasibly large enu-
meration of various possibilities. (A proof of this iz similar to the preoof by Zhuravlev
[13] on the necessity of enumeration in the minimization of Boolean expressions.)

Consequently, the only realistic approach is to apply an algorithm which seeks
an approximate solution, such as algorithm A%, whenever the problem becomes un-
tractable for an exact solution.

The above described algorithm for the synthesis of VL| expressions which
uses algorithm A9 for cover synthesis has been implemented as a P‘L/l program
called AQVAL/1 . A functional description of this program and examples of its ap-
plication to selected pattern recognition proglems has been described in paper [2].

B. Synthesis of a Family of VL] Expressions. Suppose we are givena
family of V14 functions

[jf: E"*jD}j=1'3_’_ {23}

ve s M

whose input domain is E and output domains are D, j=1,2,, ..., m . This family
can be treated as a function:

Lo BB BT (24)
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Each function Jf can be specified by a family of sets:

jky
{r }kEJD (25)

such that Fik= {e|f(e)=k]}, k€D,
Let us consider first a special case when:
q) p=fo, 1) forall j
i) F', j=1,2,..,m areall pairwise disjoint,

This case describes many problems in the area of decision theory and pattern
recognition. Specifically, Fil »J=1,2, ..., m , can be interpreted as sets of events
to which a decision class j is assigned. Each event in Fll lists specific properties
of one object of this class. Events in FiY W B A represent examples
of objects not belonging to the given class ('negative examples')., Variables Xp . X2,
-+ey Xp are descriptors which are used to describe objects, their domains D, are sets
of values which the descriptors can accept in describing various objects of the universe
of discourse,

Now, the problem may be to determine the simplest description, in some
sense, of each decision class. If we assume that the class descriptions are to be ex-
pressed in terms of the VL, system, then the problem is to determine an optimal
VL, expression of each ’f, according to an optimality functional reflecting practical

needs. )
By a VL, expression of Jf is meant a VL, formula V[JI]. such that

; ; £ il
V{]Ef}:l:{lj if e€F

0, otherwise

(2.9

In problems of this kind, sets F—]k usually constitute a very tiny part of the whole
space E . Therefore, the process of construction of formulas involves a generaliza-
tion of inputed information and, as such, is an inductive process,

All the given information consists of sets FJX, therefore any assignment of
specified decisions to “-events can happen to be wrong in the view of any new infor-
mation. We accept here a 'simplicity criterion' which means that we seek an expres-
sion ('explanation') of the given incompletely specified function which is the 'simplest’
among all possible expressions of this function.

We will consider 2 specific situations:

DC. ('Disjoint covers') When it is desirable that descriptions of individual
classes are disjoint, which means that for any e € E, only one class des cription is
satisfied (i.e., only one V({'f}, i=l1,2,.... m, is equalto 1) .

IC. (Intersecting covers') When it is required that class descriptions are
disjoint only for events e € FJ

Synthesis algorithms for both situations are given below.

11 7 il 10
DC: 1. Determine DC, = OC(F /j:LQFJ UrY
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T . i
2, Determine DC, = ot_:{z-*“/_g Fily DC]’]
i=3 5
(98] .
3. Determine DCjy= DC{E‘M/J,H}FJ[ iU Q) pcy)
o mi=1
m. Determine DC, = OC(F™!/F™0u U bcY)

m+!, The final step is to represent each cover Cj as a VL, fermula,

As we see, the obtained covers DC; depend on the order of sets Fjl v j =
1,2,..., m . To obtain order independent covers, one can first execute algorithm
IC described below, and then 'subtract' from each cover all the other covers (where
'subtract' means the set-theoretical subtraction applied to individual complexes of
the cm:_ers:l.

m .
IC: 1. Determine IC; = OC(F!!/ U, FI'U F19)

1l

m i
2. Determine IC, f.:\r:lus“"‘/jl:Jé Fily p20)
7

3

m-1
L. o ml Fj] rnﬂ
m. Determine IC_ = oc(F™!/ U, "Ity Fr™Y

Now, let us consider a general case when the In, j=1,2, ..., m, can be
any finite sets and there are no restrictions on Fik

¥ D,i=1l,2,..,nand D, j=1,2,...,m areall {0,1}, then f be-
cumes a multiple output binary switching function. When JD are not binary, an im-
portant interpretation of f ecan be as a "multivalued non-unique' decision function.
Elements of D can be interpreted as 'degree of truth' or 'confidence degree' that an
event e € FIK, k€ Ip, should be assigned decision j, The function is not 'unique’,

because it can assign to an event more than one decision,

An optimality criterion for VL, expressions of f can be a functional A =
<a-list, T=list® , where elements of a-list are attributes which characterize whole
set LV('f)} of VL, expressions of Jf .

A simple way of optimizing £ is to treat it as one VL function:
. ExD;~D (27)

Where Dg¢= {1,2,...,m} is a domain of an additional input variable w and
g, J
D = ngll D

where & means an ordered union of JD, j=1,2, ... , m, i.e., a union of sets Ip ,
which is a linearly ordered set. Values of w are indexes indicating individual
functions Jf .

Example. If V1,V,, V3 are VL, expressions not involving variable w, then the
expression
Vilw=1, 2] V Vy[w=1, 3] V V3[w=3, 4] _ (28)
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describes a family of VL, expressions:

{ijf}]j=[,2,3,4

where 1
Vil =v, vV,
vitn=v,
V=V, YV,
vi*= v,

9. Conclusion. We have described here various concepts and algorithms
oriented toward synthesis of optimal and quasi-optimal disjunctive normal VI,
formulas. We have shown that such a synthesis consists of determining optimal
covers of various event sets against otfier events sets. We discussed only problems
of synthesizing VL, formulas from event sets defining a given VL function. The
methodology described here can be, however, easily extended for synthesizing opti~
mal formulas from (arbitrary) VL, formulas, not just from event sets. This topic
and, as well, other topics related to synthesis of V1, formulas (e. g, , synthesis of
formulas with symmetric selectors) are beyond the scope of this paper and will be
described elsewhere,
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(: Input E,El,Lé,LE.CE,A=<h—list,f-lisE;:)

f

- Ell, Ml =g, A =0

fv
Select an event from Ep and call it el

¥
Generate G(ellEE} with restrictions <M3,(08>

¥

PARF I A select 1 from G(ellﬁg} according to A
i
mt=mlu (L3, £, 1= B e
1 1
i =
B, 1= E) \ G (e |B)

c! il
. MUE |E,) 1= M

3elect an event {'rom ¥
E, and call it e END
1 1
{
FART II Generate G{el]EEJ with restrictions <Ms,CT>
)

r

select LY from 0(311E2] according to A

£ o L q
M* 1= M* U (LY, E ._El'\L

NHoi=Ae]

J ) Algorithm A9
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