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INTRODUCTION 

; The end game is the part of the chess game for which, in contrast with the 
1 other parts of the game, a good deal of knowledge is available that permits the 
t player to find the correct move, if it ex.ists. The problem then is to detlne r• 	 precisely what this knowledge is, how it is organized and how it could be 
I· 

implemented in a computer so that the machine can play the end games 
f 
, efficiently without recurring to brute force searches. 

We present here a model for this knowledge that is based on the concept of 

j 
\ 

goals and subgoals. TIle primary goal of either White or Black is to win or to 
draw the game. TIlis fundamental goal can be expresseJ as a logical fundion Of 
~ome position predicates that represent geometrical or logical relationships 
among the men on the board, and some simpler subgoals that can be of offensive 
or defensive nature. In their tum these subgoals can be expressed as a fUllction 
of their own subgoals and so on until very simple subgoals are reached that can ~ 
be expressed exclusively as a function of primitive position predicates. To play ;; 

j 
~, . 	 the game in a determined position, the player tries to achieve some combinations 

of the subgoals of the primary goal determined by the logical function. This is 
done by trying to achieve simpler subgoals and so on through the very simple 
subgoals of the bottom of the structure. Whenever the lasl ones fail to be 
achieved, as characterized by the position predicates. the player goes back in a 
bottom-up direction and tries to achieve alternative subgoals. 

Attached to the functions that define the primary goal in terms of its sub­
goals, there are special procedures that generate the move in case some com­
binations of these subgoals can be achieved. 

Finally, it should be emphasized that the depth of the structure is quite 
*~. arbitrary and different players will likely have different models for the same end 
~~. game. Experienced players have probably less deep structures than unexperi· 

"~', enced players because they eliminate some intermediate subgoals lwhat makes 
the fWlctions more complex). 
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FIG. I. A schematic representation of the knowledge in a hypothetical 
chess end game 

Figure I is a schematic representation of the structure proposed but it should 
be noticed that the function blocks hide the fact that when a goal can be 
achieved through different combinations of its subgoals, some combinations will 
be more efficient than others, which implies a priority structure within those 
blocks. 

LEARNING IN THE HIERARCHICAL STRUCTURE 

Description of the model: single-pawn game case 

In order to implement the proposed structure for chess end games in a com­
puter we must be able to specify the subgoals, the position predicates and the 
functions that express a subgoal in terms of its subgoals and position predicates. 
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The latter could be a very difficult task unless some systematic way ot dumg It
1.,; can be devised. Inductive learning through a variable-valued logic system like 
:¥~VLl offers a solution for the problem. In order to test this, a partial model for 

': . the single-pawn end SlIme (white king and pawn against black king) was con­
" structed and VLI formulas were obtained for two function blocks of the model. 

To express a goal in terms of its subgoals and position predicates the fol­
, lowing approach was used: 

(a) 	 Assign to each offensive subgoal a variable that can assume 3 values: 

O-the subgoal cannot be achieved 
I-the subgoal can be achieved 
2-the subgoal was already achieved 

(b) 	 Assign to each defensive subgoal a variable that can assume 3 values: 

O-the subgoal cannot be achieved (although it should) 

I-the subgoal must be achieved (the opponent makes a threat). 

2-the sub goal does not need to be achieved (the opponent is 

not making any threat) 


(c) 	 Assign to each position predicate a variable that assume as many 
values as the number of states of the predicate. 

(d) 	 Generate a learning sample of positions for the classes defined by 
each value of the variable that represents the goal for which the 
formulas are to be generated. 

(e) 	 Run the programs of the VLI system (Larson, Michalski, 1975). 

(t) 	 Generate a testing sample of positions for the classes defined by each 
value of the variable for which the formulas were generated. Test the 
formulas obtained in the item (e) with the testing positions. Add the 
positions misclassified by the formulas to the learning sample and 
rerun the VLl system programs. Keep doing this till all the testing 
positions are classified correctly by the formulas. 

The partial model of the single-pawn end game consists of 4 
submodels: 

\ 	 -Rook Pawn, Black's turn 
-Rook Pawn, White's turn 
-Non Rook Pawn, Black's turn 
-Non Rook Pawn, White's turn 

• 	 Rook pawn, Black's turn 

Primary Goal: To draw the SlIme. It's a function of three subgoals 
and one position predicate (the pawn can run through the' 8th row ..... 

"" 	 ", ".. and get crowned). 
,~.,."", 
,'::t,~' 
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j -to take the pawn 

2-to enter the critical squares (figure 2). Once insi4e the 

critical squares the black king can keep inside them and avoid 

the pawn getting crowned. 

3-to reach the critical position (figure 3). From the critical 

position the black king can either take the pawn or enter the 

critical squares. 


The sub goal "to take the pawn" can be expressed in terms of simpler 

subgoals or directly in terms of position predicates. The other two 

can be expressed directly in terms of the position predicates. 


• Rook pawn, White's turn FIG. 2. Critical squares in the rook­ FIG.), Critic;)1 position in the rook­
pawn case. pawn case; Ihe white king cannot be in 

Primary Goal: To crown the pawn. It can be expressed in terms of a the shadowed square 

• f~.. 
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position predicate (the pawn can run) and two subgoals. 

Subgoals of the Primary Goal: 


I-to defend the critical squares. 

2-to defend the pawn 


These subgoals can be expressed directly in terms of position predi­

cates. 


• Non-rook pawn, White's turn 

Primary Goal: To crown the pawn, It can be expressed as a function 

of one position predicate (the pawn can run) and four subgoals. 


Subgoals of the Primary Goal: 

~~~ 
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FIG, 4, Critical squares of type I for FIG, 5, Criti~'ll squares of type 2 for 
I -to enter the critical squares of type I (figure 4). while king in Ih..: lIon-rook-pawn case white king in the non-rook·pawn case 
2.(0 enter the critical squares of type 2 (figure 5) when the 

rank of the pawn is greater than 5. 

3·to defend the pawn. 

4-to enter the critical position (figure 6) when the rank of the 

pawn is equal to 7. 


There is one exception to the subgoals 1 and 2 when the pawn is the 
knight pawn, it has rank equal to 6 and the black Idng is on the 
corner of the board_ All these subgoals can be expressed directly in 
terms of position predicates. 

• Non-rook pawn, Black's fum 

Primary Goal: To draw the game. It can be expressed as a function ~ .. 

K 

P 
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of two position predicates (pawn can run, stalemate position) and FIG. 7. Square I for the black king ; ... ' FIG. 6. Critical position for white in 
five subgoals. I '1';.1 '_ tbe non-rook-pawn case in the non·rook-pawn case 

:,''';
I I~.,..,. 
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FIG. 8. Square 2 for the black king 
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in the non-rook-pawn case 
FIG. 9. Opposition of type 1 
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FIG. 10. Opposition of type 2 

Subgoals of the Primary Goal: 

I·to take the pawn 
2-to reach square I (figure 7). 
3-to reach square 2 (figure 8) when the rank of the pawn is less 
than 6. 
4-to enter in opposition of type I (figure 9). 
S·to enter in opposition of type 2 (figure 10) when the rank of 
the pawn is less than S. 

These subgoals can be expressed in terms of position predicates. 

Learning experiment. 

First experiment 

The first experiment was to generate the formulas that define the primary 
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.. predicate. 

Variables used: 

Xl: 	 O·the pawn cannot run 
';'. ' 

I-the pawn can run 

X2: 	 O-black king cannot enter the critical squares. 
I-black king can enter the critical squares. 
2-black king already in the critical squares. 

X3: 	 O·black king cannot take the pawn. 

I·black king can take the pawn. 


X4: 	 O-black king cannot reach the critical position. 
I-black king can enter the critical position. 
2-black king already in the critical position. 

The formulas obtained have the following terms: 

Class I: Black can draw the game 

(X I=O)(X4= 1,2) v 
(X3=1)v 
(X I=O)(X2=1 ,2) 

Class 2: Black cannot draw the game 

(Xl=l)v 
(X2=O) (X3=O) (X4=O) 

This experiment was very simple and it was done only to illustrate the learn­
ing process for a high level of the structure. The learning posi tions were chosen 
in order to cover the whole event space. This could be done only because the 
number of variables is very small as well as their cardinalities. The formulas were 
obtained in one step of the learning process and as they are self evident they 
were not tested. 

Second experiment 

The second experiment was done to illustrate the learning process in a low 
'. level of the structure in which a subgoal is expressed exclusively as a function of 

position predicates. The formulas were obtained forthe subgoal "black king can 
take pawn" in the rook pawn case. 

Variables used: 

XI: O-black king in the region A of the board. (figure II).
I. 	 B"II 	 II II It II II II 

2.." ",." II C II II II 

3- II tt II" " 0" II II 

4.." """ " E II IIII 

, i.-­
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FIG. I L Division of the board into regions 
according to the pawn position 
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~ 

FIG. 12. Square" 	 FIG. 13. Row" 

X2: O-white king in the region A of the board. 
I.." "" " B II" ItI, 

2..." """ " Cit" " 
3.." """ " D"" " 
4-" """ " E"" " 

X3: 	 O-distance black king·pawn - distance white king·pawn <-2 
1... II II "" " ,., " " =-1 
2-" II "" " " " II =-I 
3..." " "" " " " " =0 
4­ " It " " " " " " = 1 
s­ " " " " " " " " >1 
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,', X5: 	 O-distance black king·pawn's file . distance white king·pawn's file < 
-I 

X5: 	 O-distance black king-pawn's file . distance white king-pawn's file < -I 
I." """ II " " I, " ":; .. 1 
2.. " """ It II " " " "= 0 
3.." """ " " " " 't =It 

4.." It It " II " " " " "> 

X6: 	 O-distance black king-pawn's rank - distance white king·pawn's rank <-1 
/I /I 

/II· " " " " " " " =.1 

2- " " " " " " " " " " = 0 
3- " " " " " " " " " " :: 1 

4- " " " " " " " " " :: 1 

X7: 	 O-distance black king·row a - distance white king·row a < -I 
1- " " " " " " " " " "::-1 
2- " " " " " " " " " "; 0 

" II =:3- " " " " " " " " 
4- " " " "" " " " " "> 
See figure 13 for rowa. 

X8: 	 O-pawn cannot run 

I·pawn can run 


X9: 	 O-pawn's rank =2 

I-pawn's rank = 2 


, XIO: O-black king cannot take the pawn in the present move 
I-black king can take the pawn in the present move 

• 

The formulas obtained have the follOwing terms: 

Class I: The black king can take the pawn 

(XI =O)(XJ=O: 3)(X4;;0) (X8=0) (X9= 1)" 
(X4=0: 2) (X5=0) (X8=0) v 

(X3=0: 3) (X6=O, I) (X7=0) (X8=0) (X9= I)"
•

I 

., 
.. ~ (XI=2:4) (XJ=0:2) (X6=0:3) (X8=0) (X9=1) v "" ;'t.:~ ... " 
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(Xl =2:4) (X3=3,4) (X5=3)(X6=O,1 )(X7=0:3)(X8=O) v 
(XI=2,3) (X2=1 :4) (X3=O:3) (X4=0:2) (X8=0) (X9=I)v 

I(X3=O,l) (X5=2:4) (X6=O) (X8=0)v 
, (XI=2)(X4=O,I)(X5=0:3)(X7=0,I)v 

(X3=1 ,2) (X6=0) (X7=3,4) (X8=O)v 
(X3=3) (X4=2) (X7=O,I )v 
(Xl =0) (X3=2) 

Class 2: The black king cannot take the pawn 

(X3=3: 5) (X5=1 :4) (X6=2:4) (X9=1) (XIO=O)v 
(XI=O:2) (X2=O: 2) (X4=3,4) (X5=O:2) (X9= l)v 
(XI=I:4)(X2=O,I) (X3=2:5) (X6=1:4) (XIO=O)v 
(XI =2) (X4=1 :4) (X5=3,4) (X6=O) (X7=3,4) (X9= I)v 
(Xl :4) (X4=1 :4) (X8=I)v 
(XI=O,I) (X4=1 :4)·(X5=1 :4) (X6=2:4)v 
(Xl =1 :4) (X3=4,5) (X5=4) (X7=O:3)v 
(Xl=3,4) (X2=0) (X5=3) (X7=1 :4) (XIO=O)y 
(Xl=O:3) (X6=O) (X7=2) (X9=O)v 
(XI=2:4) (X3=2) (X5=4) (X7=0) v 
(XI=1 :4) (X3=1 :5) (X6=4) (X9=0)v 
(X4=3,4) (X5=0, I). 
(Xg=l) 

Initial samples of 120 learning positions and 120 testing positions were used. 
After three steps of adjusting the formulas by adding to the learning sample the 
testing positions that were misclassified we got all the testing positions correctly 
classified by the last formulas. The learning positions were generated by dividing 
the positions in 25 classes defined by the 25 possible combinations of the values 
of the variables Xl and X2 and picking from each class some positions according 
to a 'near miss' criterion (Michalski, 1975) in which positions which are near to a 
'critical line' that separates the class I from class 2 are taken. The testing posi· 
tions were generated by taking some general positions from the 25 classes 
defined before. 

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH 

In a previous work (Michalski and Negri, this volume) we tried to introduce 
inductive learning in chess end games by generating formulas for two classes of 
positions of the single·pawn end game: winning positions (for White) and 
draWing pOSitions (for Black). The variables used were position predicates used 
by Tan (Tan, 1972) in his model for this end game and other variables that repre. 
sented the positions of the men on the board. The results although not totally 

", "preference!' tor the second type of vanab!es that are more genera!. ~ilat 

happened is that we clustered in two cluses positions that had quite different 
. characteristics. To get simple formulas for these classes we would have to use a 

large number of variables to cover aU those characteristics, which is not practical. 
In the model that we propose in this work, we use the learning process to 

generate formulas for some reduced classes of positions, namely those associated 
with some subgoals of the structure. This permits us to use exclusively variables 
that are relevant for those classes of pOsitions in particular, which makes the 
learning process simpler and more efficient. 

We think that the hierarchical structure defmed by our model is very close to 
',' the way people play chess end games. The procedures attached to the structure .,. 

"'''0'''' to generate moves can be very simple because they generate moves that have to 
reach some determined goal. A simple search process can be effiCiently used 
because we can eliminate Q priori from the search moves that will not lead to the 
desired goal. This seems to be the kind of process involved in human thinking 
that automatically rejects irrelevant moves. Besides that, information obtained in 
the lower. levels of the structure can be used by those procedures. 

We did not try to develop a playing model for the case in which the desired 
goals cannot be achieved, i.e., the position is a losing one. But we think it could 
be done because, at least we can know from the formulas the "weaknesses" of 
the opponent and try to set traps for him. 

The next research step should be the development of automatic ways of 
generating the position predicates that are used in the bottom of the structure 
for defining the simple subgoals. This is boring work and it would be nice if it 
could be automated. A possibiUty could be to extend to chess the ideas 
developed by Newman and Uhr (Newman and Uhr, 1965) for board games like 
Go Moku and Tic Tac Toe. Their method consists in defining a utiUty index for 
the patterns that appear on the board during the game. This can be defined 
simply as the number of times the pattern appeared in winning positions over 
the number of times the pattern appeared at all. Patterns that have roughly the 
same indexes are put in the same class. Now to the patterns that belong to some 
class with a high index of utility, geometric transformations like rota lion, trans· 
lation and reflexion are applied in order to transform several of these patterns 
into a stereotype pattern. The patterns that are considered equivalent under those 
transformations define a "predicate" of the positions. The problem in extending 
these ideas to chess ls that as Pitrat observed (Pitrat, 1974), the logical relation· 
ships among the men on the board are not easily expressed by geometrical 
transformations. But if we use VLl formulas to cover the positions with the 
same utility index against the other positions, the formulas so generated could 
define the desired predicates. In this case these formulas would use exclusively 
primitive variables like position descriptors for the men on the board. Finally it 

unsatisfactory showed the deficiencies of the model used: the formulas obtained should be noticed that these formulas should use the full power of the VLl 
jwere heavily dependent on the second type of variable. This indicates that the language in order to include selectors of the kind [Xi-Xj<K] . where K is some 

variables of the first type were too specific to some groups of positions so the constant. The generation of formulas for the variables used in the second 
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kind of selector. Programs like Jensen's (1975) for synthesizing VL} formulas 
with symmetric selectors could be used for that purpose . 

• 
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