INDUCTIVE INFERENCE OF
VL DECISION RULES

by

J.B. Larson
R. S. Michalski

Invited paper for the Workshop in Pattern-Directed Inference Systems, Hawaii,
May 23-27, 1977 and published in SIGART Newsletter, ACM, No. 63,
pp. 38-44, June 1977.

Workshop on: PATTERN - DIRECTED
 INFERENCE SYSTEMS

Hawaii, May 23-27, 1977

INDUCTIVE INFERENCE OF VL DECISION RULES

J. Larson, R. 5., Michalski
Department of Computer Science
University of Illinois

Urbana, Illinois 61801

(217) 333-6725

Abstract

The problem considered is a transformation of a set of user given
decision rules into a set of new rules which are more general than the
original ones and more optimal with regard to a user defined eriteriom.
The decision rules are expressed in the lel logic system which permits
a more general rule format than typically used, and facilitates a compact
and easy to understand expression of descriptions of different degrees
of generality. The paper gives a brief description of methodology for

rule induction and of a computer program.

INDUCTIVE INFERENCE OF VL DECTSION RULES

J. Larson and R. 5. Michalskl

1. INTRODUCTION AND STATEMENT OF THE PROBLEM

The paper reports recent results on the development of a methodology
and a computer program for generalization and optimization of VL decision
rules. The VL decision rules are similar to production rules used by wvarious
authors (e.g., Shortliffe 74, Waterman 75, Rychener 76) in that they follow a
general schema:

CONDITION = DECISION

That is, if a situation satisfies the CONDITION, then the rule assigns to it
DECISION, otherwise NULL decision is assigned. The difference between a usual
form of decision rules and VL rules is that in the latter CONDITION and DECISION can
have a more general form, namely a form of an expression in the sz loglic system
(Michalski 76) .The system can be viewed as amulti-valued form of the first order
predicate logic , with some additional operators. In this paper we restrict
gurselves to a subset of VLR‘ called VLz:* in which formulas can have truth
status only TRUE, FALSE or UNKNOWN, and certain VL2 forms are not permitted
(see section 2).

The goal of this work is to ultimately develop a set of programs
which can aid a computer user in solving certain types of inductive problems.

The specific induction problem we are investigating is as follows:

e

Authors gratefully acknowledge the support from the Natiomal
§cience Foundation, Grant NSF MCS 74-03514, for conducting the research re-
ported in this paper.

Given is a set of decision rules

Gy * Dy C€p= Dy v G T By
=
Cpy =Dy Cpp=Dy oot oty D,
" (1)
. *Dy Cgp= @ +ooc Cpm ™D

where cij and Di are expressions in VLZl' which represent a CONDITION
and DECISION of decision rules, respectively. For example, cij may
look like
Jxy, x4 ([P{xl’XZ’KB) = ﬂ,ll[x2 = 2..5])
or [£(x,y,%5) ¥ 31[xg > 3](xg = 0]
(For the explanation of the formalism see section 2.3.) It is also assumed
that for any situation either NULL decision or only one DECISION (i.e.,
a specific Di) is assigned by the rules (1). The rules (1) may represent
specific examples of situations to which a certain decision is assigned
{e.g., learning examples in pattern recognition), or they may represent
a partial knowledge that a certain set of situations should be assigned
a given decision.
In this paper we make a simplifying assumption that variables and

atomie functions in cij do net oceur in Di's-

The problem is to determine, through an application of generalization rules,

(See section 3.3) a mewiset of decision rules:

. (2)

(within the framework of the same language, in this case vLZI) which
are, with regard to rules (1):

1. consistent

2. complete

3. optimal (according to a user defined eriterion) among all
the rules which satisfy 1 and 2.

The rules are congistent if for any situation for which the new rules assign
a DECTISION (i.e., a men NULL decision), the initial rules assign the same
DECISION or a NULL decision. The rules are complete if for any situation
for which the initial rules assign a DECISION, the new rules assign a
DECISION. (It is easy to see that if the new rules are consistent and
complete with regard to the initial rules, then they are equivalent to
or more general than the initial ones.)

From an initial set of rules, it is usually possible to derive
very many sets of rules which are consistent and complete. Therefore, a
criterion of optimality (defined by a user according to his problem) is
used to select one or a few alternative sets of rules which are most de-
girable according to the given inductive problem (such a criterion may
refer in some sense to the simplicity of the rules, the memory
required for storage, the time for rule evaluation, the cost of measuring

the information needed for rule evaluation, etc.).

In this paper we briefly describe the format of VLZl decision rules
(for short VL rules), generalization rules, the methodology for solving the inductior
problem and a computer implementatiom. Chapter 2 and 3 use to a large extend

material in Michalski 76.

2. VL FORMULAS

2.1 The Concept of a Selector
The logic system VL, is used here as a language for deseribing situa-
tions (objects, classes of objects, etc.) and expressing decision and inference
rules. It was especially designed to facilitate a compact expression of descrip-
tions of different degrees of generality and to provide an easy linguistic inter-
pretation of the descriptions (or rules) without loosing the precision of other
logie systems.
There are two majer differences between VL21 and the first order predi-
cate logic:
1. Instead of predicates it uses selectora which can be viewed
as tests for membership of values of predicates and atomic
functions in a certain set. (The concept of a selector is
useful for compactly expressing descriptions of different
degrees of generality.)
2. Each wariable, predicate and function symbol is assigned a
domain (value set) together with a characterization of the
structure of the domain. (This feature facilitates the pro-
cess of rule induction and an application of different gen-
eralization rules according to the structure of the domains.)
For the lack of space, we will give here only a brief informal descrip-
tion of the concept of selector and of vLZI system.
Definition 1: An gtomic form is a constant, variable or a function symbol fol-

lowed by a pair of parentheses enclosing a sequence of atomic forms.

Examples of atomic forms:

a, b, carl - constants
X1s X5 f, g, h, color - wariables
f{a‘b,g(xa),xﬁ}, ”““tUP{xl-xz), - fupnction symbols followed
by a pair of parentheses
color(carl) enclosing a sequence of

atomic functions

If a variable or function symbol has the domain {T, F}, where
T - true, F - false, then it is called a predicate variable or predicate
symbol, respectively.

A single predicate variable or a predicate symbol followed by a
pair of parentheses enclosing a sequence of atomic forms is called a predicate form.

Let f(xl, Xos sevs xk} be an atomis form and D(f), D(xl}, D(xz}, vy
D(xk} denote domains of function symbol f and variables X;, ¥5, -++y X,
respectively. An atomic form represents a function (called an qtomic funciion)
which maps the cartesian product of the domains, D{xi], i=1, 2, ..., k Into
D(f):

o D(xl} ® D(xz) X wus X D(xk} + D(f)

4 concept of selector is introduced to represent a unit of informa-

tion about a situation. The selector can have wvarious truth status with regard

to a situation and is used as an argument of various logical operations.

Definition 2: A pelector is a form:
[L # R] (3)
where L - called referse, is an atomic form,

is one of the symbols: =, %, Py 7y %, %

¥
R - called refersnce, is either
a list of elements from the domaim D (if the list contains
a sequence of consecutive integers from a to b, then it is
written as a..b), or
an atomiec form, or

symbol '*' {an irrelevant value).

A selector im which the reference R is not an atomic form is called
a simple selector. A selector in which the referee L is a single variable and

reference R is a single element of D or * is called an elementary aelector.

If R is a list, then L is related to R by # if:
when "#' is '='" or '}' then the value of L for given
values of arguments 12 or ig not,
respectively, on the list R,
when '#' is '>' or '>' or '<' or '<’ then the value of L 1s greater
or equal, greater, smaller or
equal, smaller, respectively,
than any element on the list R,
If R is an atomic form, then L ig related to R if the value of L is
related by # to the value of atomic form. If R is %, then L ig related to R

for any value of L (in this case, # is always '=').

A selector can have, with regard to a given situation, truth-status
(briefly, TS), UNKNOWN (?), TRUE (T) or FALSE {(F). If a selector has truth-
status UNKNOWN (TS = 7), them it is interpreted as a condition or a question.
If it has truth-status TRUE (TS = T), then it is interpreted as a statement

that "value of L is related by # to K.

Examples of a Selector
Interpretation when TS = T
(1) [color(wall) = white] color of wall is white

(ii) [length(box 1) > 2] the length of box 1 is greater than
or equal to 2

(iii) [blood-type(Pl) = 0,A] the blood type of P1 is 0 or A

(iv) [weight(B) = 2..5] weight of B is an intéger between
2 and 5, inclusively
(v) [on-top(Bl, B2} = T] it is true that Bl is on top of B2
or simply :

[on-top(Bl, BZ]
(vi) [above(Bl, B2) = 3"] Bl is 3 ineches above B2

(vii) [weight(A) > weight(B)] weight of A is greater than weight of

3. VL DECISION RULES AND VL GENERALIZATION RULES

3.1 Definition of VL Decision Bules
VL decision rules are in the form:

vl 0y (4)

(an implicative decision rule)

where Vl and V2

(4), formula V

can, in general, be any VL formulas. In the implicative rule

| is called a condition formila (or comdition part) and V, is

called a decision formula (or deeision part).

The interpretation of an implicative rule (4} is that if the condition
formula vl reaches truth status TRUE, then the truth status TRUE 1is assigned to
the decision formula ?2. Variables and atomic functions in VZ are assumed to

take values which make it TRUE.

3.2 The Use of VL Decision Rules

A decision rule is used by applying it ro situations. A situvation
is, in general, a source of information about values of wariables and atomic
functions in the condition part of a decision rule. A situation can, 2.8.. be
a data base storing wvalues of variables and atomic functions, of it ean be an
object on which various tests are performed to obtain these values.

The truth status of the condition and decision formula in a rule,
before applying it to a situation, is assumed to be UNKNOWN.

Let @ denote the set of all possible situations under consideration.
To characterize situatioms in Q- one determines a set S, called deseriptor set,
which consists of variables, predicate and atomic functions (called, generally,
descriptors) whose specific values can characterize adequately (for the problem
at hand) any specific situation. We will assume here that arguments of predicate

and atomic functions are single variables, rather than other atomic functions.

4 situation is characterized by an gvent which is a sequence of assignments
{L:= V), where | is a variable or an atomic form with specifie wvalues of argu-
ments, and v is a value of the given descriptor (variable or atomic function)
which characterizes the situation. It is assumed that each descriptor has
defined a value set (domain) which contains all possible values th; descriptor
can take for any situation in Q- Certain descriptors may not be applicable

to some situations, and therefore it is assumed that a descriptor in such

cases takes value NA, which stands for not applicable. Thus, the domains of
all descriptors always include by default the value NA, A set of all events
possible assuming a given descriptor set § is called the event space, and
denoted E(S). It should be noted that certailn variables (variables which are
quantified in formulas) may have in an event assigned a number of different
values, i.e., there may be more than ome pair (Li= Vi), where L is a variable
and Vi i=1, 2, ... represent different values.

An event e € E(S) is said to satisfy a selector [£(xy, -..» x) # R]
iff the value of function f for wvalues of Xis i=1, 2, ..., k, as specified
in the event, €, is related to R by #. For example, the event

gt Taa Xgi=a), Xgimag, fZD(al' 32} 1= B0)
satisfies the selector:

[f20(35: xﬁ} = 1; 3’ 51

4 satisfied selector is assigned truth status TRUE. If an
event does not satisfy a selector then the selector is assigned truth status
FALSE. If an event does not have enough information in order to establish
whether a selector is satisfied or not then the selector has UNKNOWN truth
status with regard to this event.

Let us assume first that a condition part of a decision rule is a
quantifier-free formula. Interpreting the conmectives T, A, W, as described
in section 2.3, from the truth status of selectors one can determine the truth
status of the whole formula. An event is said to satisfy a rule, iff an ap-
plication of the condition part of the rule to the event gives the formula truth
status TRUE. Otherwise, the event is said teo not satisfy the rule.

Suppose now that the condition formula is in the form

Ix (V)
An application of this formula to an event assigns status TRUE to the formula

iff there exists in e a value assigned to x such that V achieves status TRUE

(x may have a number of different values assigned to it). For example, the
formula
Jpart [color (part)} = red]

is satisfied by an event:

g = (e part:=Fl, color(P1):=blue, part:=F2, color(P2):=yellow,

part:=F3, eolor(P3):=red...)

1f the condition formula is a form
¥ x(V)

then it is assigned status TRUE if every value of x in the event applied to it
satisfies V.

1f the condition formula of an implicative rule is assigned truth
status TEUE then the decision formula is assigned status TRUE. 1f a decision
formula reaches status TRUE, then yvariables and functions which oceccur in it
are assumed to have values (possibly new) which make this formula TRUE. This
value may not, im gemeral, be unique.

For example, suppose that V is a decision formula with status TRUE:

V: [p(xl,xz) = 2][:-:3 = 2:5][35 = 7]

vV is interpreted as a description of a situation in which p has value 2 {if a
specification of p(xl,xz) is known, then from it we can infer what wvalues of
®y and Xy might be), X, has a value between 2 and 5, inclusively, and xg has
value 7. (Note that the formula does not give precise information about the
value of xj.) After applying a formula to an event, the truth status of the
condition and decision part returns to UNKNOWN. The role of a decision rule
can then be described as follows: Therule is applied to an event, and if the

event satisfies the condition part, then an assignment of values to variables

and functions is made, as defined by the decision part. This assignment

defines a new event {or a set of events which satisfy the decision formula).
Another decision rule mow can be applied to this event (or set of events), and
if satisfied by it (or by all of them) a new assignment of values to some variables

and functions can be made.

Examples of implicative VL decision rules:
(pGxy, xp) = 3latxy) = 2,510x; 1 01 = Gy = 7RGy, v = 2]
3:-:3{[11(1:1. x3) = 2..3][a(x,, XBJ > 2D v [&(x)) = 1] = [= 71

T = [P(RE} K?} - 2][){? = 21395]

3.3 Examples of VL Generalization Rules

In order to transform an original set of decision rules (1) into
a new set of rules (2), a condition of oprimality is defined, and VL generaliza-
tion Tules are applied to the original rules. VL generalization rules are
inductive inference rules which transform ome or more VL decision rules into
1 new decision rule which is an equivalent or more genmeral ome.

A decision rule

¥ =D (5)

is equivalent to a set of decision rules

{V, =D}, £t =1, 2, «e. (8)

i
if any event which satisfies at least one of the Ui, 1w 1, 2. cons
satisfies also V, and conversely. If the converse is not required, the rule
(6) is said to be more general than (7).

The generalization rules are a tool for transforming initial decision

rules. In order to obtain rules (2), the transformation is carried on in such

a way that the conditions of consistency, completeness and optimality are

gcatisfied. Section &4 outlines an algorithm for such a process.

Below are examples of VL generalization rules (the symboi-k is used to
denote the transformation from a set of rules into one more general rule).
(i) the 'dropping geleator' rule

vIL .—.-‘Rl]w[: k v=D (V - any VL formula)

This rule is generally applicable, no matter what kind
of descriptor is in the selector.

(ii) the lortengion against' rule
M Y
l v1[L o 32] =0 (W Vo= a0y VL formulas)
Vg[l. - R?.] =D |
i 0 =
assuming Rl Rz @

This rule is also generally applicable. It takes into
consideration the 'megative examples.'

(iii) the relosing interval' rule
v[L =a]l =D

yIL = a..b] =D
yiL =b] =D

where L is an interval deseripter

This rule is applicable only when a selector involwves
an interval wariable.

(iv) the 'finding next level generalization' rule

VL =al =D
e V[L=1¢c]l=D

VIiL=b] =D
where L is a structural descriptor,

¢ represents the predecessor of the nodes
a and b in the tree domain of L.

This rule is applicable only to selectors inveolving
structural descriptors.

4.1 Computer Representation of VL Decision Rules

A VL decision rule can be represented as a graph with labeled
nodes and directed labeled edges. The labels on the nodes can be: a) a
selector containing k-ary descriptors without argument lists, b) a k-ary
descriptor without arguments, ¢) a quantified variable, d) a logical operator.
(From here on, we refer to a node by its label, e.g-., 2 gelector node means a
node with a selector label.) The edges are labelled with integers from 0, 1, ...
Edges mot labelled 0 refer to the position of an argument in the label at the
head of the edge. (Edges have non-0 labels aﬁly if the position in the argument
1ist of the head node is important. Labels of O may be dropped for convenience.)

Several different types of relations may be represented by edges.
The type of relation is determined by the label on the node at each end of the
edge. The types of relations are: 1) functiomal dependence, 2) logical
dependence, 3) implicit wvariable dependence, 4) scope of wariables.

Figure 2 gives a graph of a VLZ formula. The two arcs connected
to the logical operation (A} rtepresent the logical dependence of the walue
of the formula on the values of the two selectors. The other arcs in the

figure represent the functional dependence of f and g om xl-and Xy

/

[£ = 1]

ﬁhﬁaﬁ““mm
3:-1/ /

1

= 2]

VL Graph Structure: axl x, ([£(xy,%,5) = 1][g(x,) = 21)

Figure 2

4.2 Outline 5f an Algorithm for Rule Inductiom and Computer Programs
INDUCE=1

In the algorithm implemented in the program INDUCE-1, the
following assumptions have been made: A1) The condition part of every
decision rule is in the form of a sequence of zero or more existentially
quantified wvariables followed by a disjunction of preoducts of selectors
{("existential disjunctive form' or EDF): A2) It is further assumed that
the condition part of every c-rule (c-conditicon) can be represented by
a weakly connected (directed) graph whose edges represent only functiomal

dependence; A3) In every existential quantifier form

Elxl. Koz wees Hy

each Xyo 1 =1, 2, «v., k is assumed to have the same domain. A quantifier
form postulates an existence of a sequence xl, xz, aaay xk inwhich each xi have
different value (¥, T %, 4 ...4x). InasingleEDF, there can be several different
quantifier forms.

The algorithm described here uses to a large extent ideas and
algorithms developed for the generalization of VLlexpressians {Michalski 75,
Larson and Michalski 75).

The basic input infermation te the algorithm consists of:

a) a set of decision rules, such as (1)
and

b) the eptimaliry criterion.

A1l rules are assumed to be c-rules, and they are grouped into
decision classes, each class consisting of rules with the same decision part.
The algorithm is applied to each decision class separately. Let F1 =

{el, €hs +ecs ek} - a set of condition parts (e-condition) of rules in one

nlaés, and FO - a set of condition parts of qll éhe rules from the remaining
classes. N

An e, is selected from Fl and a set of farmulas is generatgd {G) which
are different irredundant generalizatioms of e; but not a generalization of
any formula in FO. (If a formula e; is more general than €y then we say that
e, covers e,.) By an irvedundant gemerglization, we mean a c-formula from
which no selector can be removed without violating the consistency condition
(i.e., that the formula will not cover any elements of FO).

From G, one c-formula is selected, 1Q, which is the 'best' according
to the optimality criterion. All elements of Fl which are covered by LQ are
removed from F1l. Another formula is selected from F1l, and the whole process is
repeated again until F1 becomes an empty set. To implement this process, a
aumber of specific algorithms have been developed, each accomplishing one basic

task. Among the most important tasks are:

Tl. Formation of generalizations of a c-formula

T2, Testing whether one c-formula is a generalization
of another c-formula &

T3. Generalization of a c—formula by extending the

selector references and formation of irredundant
c=formulas

T4. Ceneration of metadescriptors (or inferred
descriptors) which are functions of the initial
descriptors. The current program generates
only unary descriptors (such as 'number of ob-
jects or parts which show one or more properties').
Algorithms for solving these tasks will be published in a separate paper.
The computer program INDUCE-1 which implements the above inductive

algorithm has been written in PASCAL for the CDC CYBER-175. It contains

approximately 3000 PASCAL statements and 40 basic procedures.

1. TRAINS GOING EAST

J

)
40

0
Q [j

[l[]

Q
C
d

40
4o
b
>
i

o o -
T

NS OO VATSVEVAS I
S HETHL R

Figure 3

D”-

5. EXAMPLE

Given are two sets of trains: Eastbound and Westbound; and the
problem is to determine concise decision rules distinguishing between these two
sets (Figure 3). The descriptor set for the trains involve such descriptors as:

NCARS . number of cars (an interval descriptor),

CAR-SHAPE (car) shape of a car (a structural descriptor
with 12 nodes in the generalization tree),

LN (car) length of a car,

INFRONT (cari, car,) a predicate indicating that car, is in front
3 of carj,

lod,) a predicate indicating that car contains load

LCONT (ear.,
o i lcdj,

LOAD-SHAFPE {lodi} a shape of the load lod, (a structural
descriptor with 5 nodes in the generaliza-
tiom tree),

and some others, total 12 descriptoers.

Each train is input to the program as a VL decision rule involving
12 descriptors. For the purpose of the following discussion, our attenticn
will be limited to only a subset of these descriptors. The decision rule
associated with train number 2 going EAST using a descriptor subset is the

following (assume that all function arguments are existentially quantified):

[WCARS = 4][IF (CAR,, CARE}][IHFRONT (CAR,. CARB}]{INFRDNT (CAR,, EAR&)}
[CAR-SHAPE (CARI} = ENGINE] [CAR-SHAPE {CA‘RZJ = U-SHAPED]
[CAR-SHAPE {CARs) = (OPEN- TRAFEZOID] g
[CAR-SHAPE (C.ERE‘I} = RECTANGLE] [LN (CARI} = LONG]
[Lw (CARZ} = SHORT][LN (CARB} = SHORT][LN (CAREL) = SHORT]
= [D = EAST]
Two sets of formulas are created from the description of each set
of trains (the set Fl contaning descriptions of trains going EAST, the set
FO containing descriptions of trains going WEST). An e, is selected from

i

the set Fl (assume that e, is the description of train number 2).

The object is to generate a set G (a star) of consistent genera-
lizations of ey- The program forms a sequence of partial starts (a partial
etar is a set of generalizations of e; which may be inconsistent). If an
element of a partial star is consistent, it is placed inte the star G.
Theinitialpartialstar(Pl} contains the set of all selectors of e This partial
star and each subsequent partial star is reduced according to a user specified
optimality criterion to the 'hest' subset before a mew partial star is formed.
The size of the subset is contrelled by a parameter called MAXSTAR. A new
partial star ?i+1 is formed from am existing partial star Pi such that for
each product in Pi’ a set of products is placed into Pi+l where each new
product contains the selectors of the origimal product plus one new selector
of e which is not in the original product. UOnce a sufficient number of con-

sistent generalizations have been formed, a version of the AQVAL/1-AQ7 program

[Larson-Michalski 75] is applied to extend the references of all selectors
in each consistent generalization. As the result, some selectors may be

removed and some may have more general references.

In the example, the best subset of selectors of e, (i.e., the

reduced partial star Pl} was:

{ [CAR-SHAPE (CAR1} = U-SHAPED],
[CAR-SHAPE (CAR,) = OPEN-TRAPEZOID],
[CAR-SHAPE (CAR;) = RECTANGLE] }

The criterion used here was to maximize the number of events covered im F1l
and with secondary priority to minimize the number of selectors in a c-condition.
Since none of these are consistent (i.e., there is at least one element in
FO with each of these properties}, a new partial star is formed. This
partial star contains the consistent generalization:
[CAR-SHAPE ECARl) = RECTANGLE] (LN (CAR;) = SHORT]
so the consistent generalization is placed in the star G.
The value in the reference of each selector is then generalized

by the program AQVAL/1-AQ7 to form the consistent, complete generalization

[CAR-SHAPE (CAR,) = CLOSED-TOP][LN (CﬁRl) = SHORT].

In this abbreviated example, only 2 partial stars were formed, and one
consistent generalization was created. In general, a set of consistent
generalizations is created through the formation of several partial stars.
The size of each partial star and the number of alternative generalizations
are controlled by user supplied parameters.

Using the complete description of each train, the program produced
the following alternative decision rules using as optimalily criterion the
aumber of c—conditiens, and with lower priority, the number of selectors

(computation time on a CDC-CYBER 175: 10 seconds) :

Eastbound trains (EB):

(1) ECARl, CAR,, LOD,, LDDZ{TNFRUHT (Cﬁkl, CARz)][LCOHT (Cﬁkl, LﬂDl)]

[LCGHT(CARQ, LODz)][LDﬁD-SHﬂPE{Lonl) = TRIANGLE]

[LOAD-SHAPE (LOD,) = POLYGON] = [D = EB]

(ii) HCARL[LN(CARl} = SHDRT][CAH-SHAPE(CARl) = CLOSED TCP] = [D = EB]

Westbound trains (WB):

(11i) [NCAR = 3].V HCARIECAR-SHAPE(CARIJ = JAGGED TOF] = [D = WB]

(iv) 3CAR, [#CARS (LN=LONG) = 2]
[CSHAPE {CﬂRl} = OPEN RECTANGLE, U-SHAPED] vy
[LOCATION (CAR,) = 2][CSHAPE (CAR;) = CLOSED RECTANGLE]

= [D = WB]

The first selector in rule (iv) uses a meta descriptor generated

by the program which counts the number of long cars in a train.

It is interesting to note that the authors constructed the
example with rules (i) and (iii) in mind. The rule (ii) found by
the program as an alternative was rather surprising because it seems to
be conceptually simpler than the author's original rule (i). This
observation indicates one of potential applications of the program, namely

as a tool to determine alternative hypotheses.

6. SUMMARY

Let us briefly review the main advantages and limitations of the
presented method of inductionm. Among the advantages are gemerality and
gimplicity. Due to these features, the programINDUCE-1 has a potential to
be applied to a variety of inductive tasks. Also, it is easy to compre-
hend what kind of initial information it needs and how to interpret the
results. Among other, more specific properties are:

® in ability to take into consideration different structures

of value sets of descriptors and wvarious properties of

descriptors pertinent to the given practical problem.

® A possibility to specify different criteria of optimality
for the inferred descriptions or rules.

® An ability to generate new descriptors (meta descriptors)
and blend them smoothly with the initial ones to provide
a basis from which the final description chooses its most
appropriate descriptors.

® » uniformity of the representationm of initial and final

descriptions (i.e., in terms of VL rules) and their
simplicity.

A major limitation of the presented work is the quite limited
number of operators which the program understands and uses in inducing
descriptions. Another limiration is that induction is done only on the
left hand side of the decision rules. These limitations do not seem,

however, to be inherent to the approach. We have alse not yet investigated

questions pertinent to the computational efficiency of algorithms and

adequacy of the accepted data structures.

References

Hayes, Roth F., and McDermott, J. Knowledge Acquisition from Structural
Deseriptions. Departmental Report, Department of Computer Seiance,
Carnegie-Melon University, Pittsburgh, 1976.

Larson, J. and Michalski, R. 5. AQVAL/1(AQ7) User's Guide and Program
Description. Report 731, Department of Computer Science, University
of I1linois, Urbana, 1975.

Michalski, R. 5. Synthesis of Optimal and Quasi-Optimal Variable-Valued _
Logic Formulas. Proceedings 5th International Symposium on Multiple-
Valued Logic, Bloomington, Indiana, 1975.

Michalski, R. §. STUDIES IN INDUCTIVE INFERENCE: An Approach Utilizing
Variable-Valued Logic. (To appear in a published form.) A Proposal
to NSF, 1976.

Morgan, C. G. Inductive Resclution. Master's Thesis, Department of Computer
Science, University of Alberta, Edmonton Alberta, 1972.

Rychener, M. D. The Student Production System. A Study of Encoding
Knowledge in Production Systems, Report, Department of Computer
Science, Carnegie-Mellon University, Pittsburgh, October 1975.

Shortliffe, E. H. A Rule Based Computer Program for Advising Physicians
Regarding Antimicrobial Therapy Selection. Ph.D. Dissertatiom,
Stanford Artificial Intelligence Laboratory, Memo AIM-251, 1974,

Schubert, L. K. Extending the Expression Power of Semantic Networks.
Artificial Intelligence, 7, (1976), 163-198.

Waterman, D. A. Adaptive Production Systems, Working paper #1285,
Department of Psychology, Carnegie-Melon University, Pittsburgh, 1974.

