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CONCEPTUAL CLUSTERING:
A THEORETICAL FOUNDATION AND A METHOD
FOR PARTITIONING DATA INTO CONJUNCTIVE CONCEPTS

Ryszard S. MICHALSKI

University of Hlinois
Urbana, Il1., U.S. A.

Then he took the seven loaves

and the fish, and when he had given
thanks, he broke them and gave then
to the disciples, and they in turn
to the people.

Mathew 15:36

1. )NTRODUCTION

Clustering 1s the intelligent partitioning of a collection of
entities. Speclfically, 1t is the process of dividing entities {cbjects,
observations, measurements, data, etc.) into categorles that are meaningful
or useful for some purpose. It 1is one of the fundamental operations
people use to simplify descriptions of their eanvironment, and by that, to
lmprove the efficlency of their decision_maklng. Appropriate clustering
reveals the underlying structure of the given set of objects, and hence

clustering can be viewed as a form of knowledpe acquisition.

Clustering problems pervade many filelds, particularly experimental
sciences such as blology, chemistry, geology, medicine, ete. Incelligent

partitioning of cblects can also be au important capability of autonomous
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or semi-autonomous robots designed for exploration of special environments
(e.g., the bottom of an ocean or the surface of a planet). Consequently,
uaderstanding the nature of clustering is not only of sclentific interest

but also of significant practical {mportance.

A conventional view of clustering is that 1t is a process of
partitioning objects iInto groups suvch that the degree of similarity (or
“natural assoclatlon™) 1is high among objects of the same group, and low
among the objects of different groups. The uotion of the degree of
similarity {s therefore fundamental to this viewpoint. A great variety of
different similarity weasures thave been developed and used in various
clustering techniques. Frequently a reciprocal of a distance measure is
used as a similarity functlon. The distance measure for such purpbses,
however, does not have to satisfy all the postulates of a distance
function ({specifically, the triangle inequality). A comprehensive review
of various distance and similarity measures is provided in Diday and Simcn
[L] and Anderberg [2]. Backer [3] describes a fuzzy similarity measure

based on the theory of fuzzy sets,

To determine the simflarity of objects, a measure of gimflarity 1is
applied to symbolic descriptions of objlects (data points). Such
descriptions are typically vectors, whose components represent scores on
selected qualitative or quantitative varfables used to describe objects.
The underlying assumption f{s that If the similarity function has high value
for the given descriptions, then the ocbjects represented by the
descriptions are similar. The similarity relationship between any two
objects 1in the populatlon to be clustered i{s thus reduced to a single

number == the wvalue of the similarity function applied to synbolic
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descriptions of objects.

Conventional wmeasures of distance are “context-free,” 1l.e., the
distance between any two data points A and B is a functfon of these points

only, and does not depend on the relationship of these points Lo other data

points:
Simtlarity(A,B) = f(A,B) (1)

For example, for any conventlonal distance  measure, the distance

between points A and B 1s the same as between B and C (Fip.l).

An illustration of the context-free distance

Fig.1l

Recently some authors have been 1introducing “context-sensitive”™

measures of similarity:
Similarity(A,B) = f(A,B,E) {(2)

where the similarity between A and B depends not only on A and B, bhut also
on the relationship of A and B to other data points, represented In (2) by

E.

For example, Gowda and Xrishna {4)] defined the so—called “"mitual
neighborhood™ distance measure. If point A 1s the nth closest point to B

and B is the nth closest point to A, then the mutual nefghborhood distance
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between A and B is n+m, These authors have demonstrated that a method using
guch a distance measure can solve some clustering problems which umethods

based on the "context~free” distance cananot.

Both previous clustering approaches cluster data points only on the
basis of knowledge of the Individval data points. Therefore such methods
are fundamentally unable to capture the "Gestalt property” of objects,
i.e., a property which 1a characteristle to certain configurations of
points consldered as a whole, and not as a collectlan of independent
points. In order to detect such properties, the system must know not
only the data points, but also certain “concepts”. To 1illustrate this

polnt, let us consider a problem of clustering data points in Fig. 2.

A persoan consldering the problen In Fig. 2 would typically describe {t

as "a clvcle on top of a rectangle.”

An illustration of conceptual clustering

Fig.2

Thus, the points A and B, although being very close, are placed in separate

clusters. Here, human solution {nvolves partitioning the data points lato
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groups not on the basls of palrwise distance hetween poilnts, but on the
basis of "concept membership.” That means that the points are placed in the
same cluster {f together they represent the same concept. Tn our example,

the concepts are a circle and a rectangle.

The approach to clustering which clusters objects inte groups
representing a priori defined conceptual entities is called “conceptual
clustering.” A link between conceptual clustering and dlstance~hazed
clustering methods can be established by stating that 1in conceptual
clustering the similarity between the data points is a functioa of these

points, context F, and a set of predefined concepts C:
Similarity(A,B) = f(A,B,E,C) (3)

The approach has been introduced by Michalski [5]. It evolved from
earlier work by the author and his collaborators on the problen of
generating “uniclass covers.” Such covers are disjunctive descriptions of
& class of objects learned from only positive examplea of the class. Stepp
{6] describes a computer program and wvarious experimental results on
determining uniclass covers. His work is concerned with what can be called

“free”* conceptual clustering.

The idea that the similarity measures of the type (1) or {2) (the
"concept-free” measures) may be inadequate for some clustering problems 1s
not new. In the past, several authors noticed this problem it and proposed
varfous solutions. For example, Watanahe [7,8) proposed the concept of

“"cohesion” te measure the “degree of clusterness” of points, which

*In "free” clustering the number of clusters Is not predefined, as opposed
to “constraint™ clustering where the number of clusters is assumed a
priori.
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utilizes the entropy measure. Using this concept he was able to resolve
the “three girls in the dormitory™ paradox, wvhich cannot be solved by
"concept-free” methods . Other measures of "cohesiveness” of objects were
proposed on the basis of graph-theoretic considerations, e.g., Matula [%],

Auguston and Minker [10], Zaln [11], Cheng [12].

This paper presents a theoretical basis and an algorithm for
conceptual clustering, where conceptual entitles are conjunctive statements
in variable-valued loglc calculus VL, [13] (which Is a typed many valued
loglic extension of propositional calculus)l These statements, called VLl '
complexes, are logical products of relatfonal statements involving discrete
varlables of an arbltrary number of values (definition 2 and 3 in the mext
chapter)., Complexes have a simple linguistic {nterpretation and are able
to express consisely a large class of relationships among discrate
varlables. The algorithm combines the wmethodology of optimization of
variable-valued loglc expressions [14] with the dynamic clustering method
[1]. Its theoretical FEoundation is a spectal property of complexes

fomulated as the Sufficiency Principle (section 3).

2. COMPLEXES AS CONCEPTUAL ENTITIES FOR CLUSTERING: BASIC DEFINITIONS

Let Kyv Xyy eves X denote discrete variables which are selected to
describe objects in the population to be clustered. For each varlable a

value set or domain is defined, which contains all possible values this

variable can take for any object fn the population. We shall assume that
the value sets of varfables JT {=1,2,...,n are finite, and therefore camn

be represented as:
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Di - [Q,l.ou-.&i}. L 1,2‘ sas N (!')

In general, the value sets may diffe- not only with respect to their size,
but alsc with respect to the structure relating their elements {reflecting
the scale of measurement). In this paper we will restrict ourselves only to
the case of nominal or linear variables (l.e., variables with unordered or
iinearly ordered domalns, respectively). A sequence of values of variables

iy Xy wvey Xoy 1s called an event:

e = (rl, PP rn) {5)

where r, e D, 1 = 1,2,...,n.

i i’

The set of all posslible events, L, 15 called the event space:

d (6)

where d = dl-dz-...-dn {the size of the event set) and di - Hi + 1.

Definition 1. Given two events e, e in I, the syntactfic distance,
6(el,e2) between e, and e, 1s defined as the number of varfables which have

different values In EI and e,.

Definition 2. A relational expression

[xl # Ri] (7)

where Rl' called the reference set, 1s one or more elements from the domaln

Di and # stands for one of the relatieonal operators = ¥ 2 &, 1s called a

VLI selector* or, briefly, a selector.

*VL, stands for variahle-valued loglc system VL, [13] which uses such
selectors.
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Nlere are a few examples of a selector, in which variables and thelr

values are tepresented by linguistic terms:
[height = tall]
[color = blue, red) (read: color is blue or red)
[length > 2]
[size ¢ medlum]

["21gllt - z- |5]

The operator ,. in the last selector denotes the range of values Crom
2 to 5, 1inclusively. It is used when the domain of the varlable is a

linearly ordered set. A selector [x1 # Ril 1s said to be satisfied by an

event e = (xl,xz,....xn), tf the value of x, in e, 1s in relation # with

any element of Ri'

Definition 3. A loglical product of selectors {s called a VLI term:

A [x, #R]
ter + 1 (8)

where T ¢ {1,2,...,n}, and Ri.E Di' A set of events which satisfy a ‘JL1

tern is called a VL1 complex or, briefly, a complex.

Thus a VL, term is a formal representation of a complex. Since these

1
twoe uaotfons have a one ta one correspondence, we will use them
interchangeably, unless 1t leads to a confusslon. Therefore, 1{f a set-
theoretic notation {s applied to a term, it means that the operation ls
applied to the corresponding complex (i.e., a set of events satisfylng the

term). A complex { VL, term ) a 1s said to caover an event e, if the values

1

of variables in e satisfy the relational statements (selectors) 1In the
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complex (term).

For example, event e = (2,7,0,1,5,4,6) satisfies the complex

[x, = 2,31Ix4 £ 3][xg ™ 3..8].

Let E be a set of events in E, which are data points teo be clustered.

The events in E are called data events {(or observed events) and eveuks in

£ \E (L.e., events in [ which are uot data events) are called empty events

{or unobserved events ).

Let a be a complex which covers some data events and some empty

events.

Definition 4. The number of empty events covered by a 18 called the

sparseness of o and denoted by s(a).

Let p{a) denote the number of data events covered by a, and t{a)
denote the total number of events covered by a. We have then
t{a) = p(a) + s{a). The total number of events satisfying the complex

o= A [x, ¥#R,] is:
iel i 1

t(a) = T C(Ri) + 1 d

el id1 {9)

where
1 E {1.2.-1.,“]
c(Ri) -~ the cardinality of Ri

d1 - the cardinality of the value set of varlable Xy
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Definition 3. The degree of generallty g{a) of complex a is defined:

t(a)} s{a)

- — 1 + —— 1
g{a) = log o(a) log ( ta) (10)
The value %%%% speclfies how many events are In the complex per one data

event. Thus,lthe degree of generality g(a) specifies the uncertainty of the
location of the data points In the complex. The greater the degree of
generality of a complex, the greater is the uncertainty. If g = 0, then
all the events in the complex are data events. HWe can see from {10) that
for a Fixed p{a) the degree of generallty is a monotonically growing

function of sparseness.

let L be a set of complexes {or events), and Ri be the set of all the

distinct values which variable X, takes In these complexes (or events).

Definition 6. The operation which transforms L Into the complex

It
A [x, = R, ]
) TR |

complex is called the minimal covering complex or mc-complex for L and

i called reference unfon or refunion. The resulting

denoted RU(L) (refunion).

I1f any R1 = Di’ then the corresponding selector 1s removed from the
complex. The refunion is thus a trausformatlon whlch transforms a set of

complexes (or events) fnto the minimal covering complex.

Theorem 1. The mc-complex of an eveat set has the minimum sparseness among

all complexes covering this set.

Proof: Let a be the me—comple . for an event set E:
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n
a =RE) = A [xi'Ril
i=1 (11)
n
‘here R, ¢ D, (the domalin of x,). Suppose that p= A ([x,=P ] 1is a
1 =1 1 i, “E 1

:omplex which covers E and has a smaller sparseness than a. 1f this is

~rue, then there must exist L such that P, ¢ R+ But Ri» according to the

iefinition 6, contalns all values that x, takes in events in E. Therefore,

i

\f P P Ri' then complex a could not possibly cover all events in E, which

|

is a contradiction. ®

Let E be data events which are covered by a complex a .

Definition 7. The set ¥ is called the core of a, and the complex a* = RU(E)

is called the trimmad a.

From Theorem 1 we have a* ¢ a.

Theorem 2. If El and Ez are two disjolnt event sets then:
a(RU(El)) + s(RU(E,)) < s(RU(E1 U E,y)) (12)

Proof: According to Theorem 1, RU(El) and RU{EZJ have the smallest possible
sparseness among all complexes covering El and EZ' respectively. Since El

and E2 are disjoint, then (12) must hold, ®

The property expressed by Theorem 2 has an analogy In statistical
clustering, where with the increasing number of clusters the “fit” between
each cluster and the probablilicty distribution "fitted™ to the cluster also

Increases.
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Theorem 3. let a, and @, be two intersecting complexes, whose unlon covers

an event set E. Llet El (Ez} denote the set of events in a, (uz) which are

covered only by this complex (the relative corc of the complex). Let ay

and @, be any two disjolnt complexes covering the same event set E. 1If

RU(EI} and RU(EZJ are disjolnt complexes, then:
s(RU(El))'+-s(RU(E2)]_£ s(a,) + s(uz) {13)

Proof: The theorem is an immed!{ate consequence of Theorem 2 and the premise

that a, and a

1 o are disjoint complexes. ®

We will next iIntroduce two bagic concepts for the conceptual
clustering algorithm presented in section 6. They are the star of an event

against an event set and a cover of an event set against another event set.

Let F be a proper subset of the event space I, and e an event outside

of F, 1l.e., ¢ & F.

Definition B. The star G{e[F) of e against F is the set of all maximal

under 1inclusfon complexes covering the event e and not covering any event

in F. (A complex a 1s maximal under inclusion with respect to property P,

1f there does not exist a complex a* with property P, such that a c ak.)
Let E1 and Ez be two disjolnt event sets,-Elf\ Ez = 4,

Definition 9. A EEEEE.Cﬂvfﬁllﬁz) of El against Ez 1s any set of complexes,

{nj}ij’ such that €or each event e € E, there 15 a complexa,, J e J,

1 i’

covering Lt, and none of the complexes “j cover any event In Ez. Thus we

have:
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E,. ¢ U e, ¢ I \ EZ

YR (14)

A cover In which all complexes are pairwise disjoint sets 1s called a

disjoint cover. If set E, is empty, then the cover COV(EIIEZ} - COV(EIIG)

is glaply dencoted as CGV(EI).

Pefinftion 10. The sparseness (the degree of generallty ) of a cover {is

defined as the sum of the sparsenesses {the degrees of generality) of

complexes Iin the cover.

3. SUFFICIENCY OF COMPLEXES AS CLUSTER REPRESENTATIONS

First, we will observe the following property of complexes:

Theorem 4. For any given event space I and integer k £ dl-dz-"dn {where di
is the cardinality of the value set of varfable xi), there exist k palrwise
disjoint complexes Qps Ggy weey O which completely £111 up the space E,

f.e.,

1 3 (15)

Proof: The theorem 1s equivalent to saying that any event space can be
partitioned Into an arbitrary number of complexes (but, of course, not
larger than the cardinality of I). To sec this, take any subset of
variables such that the arithmetic product of corresponding di-s is preater
than or equal to k: Let Rj' 3=1,2,... denote all possible sequences of

values of variables Xy ir 1.
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Construct complexes:

a, = A [x, =r¢ ]
I oger 1 U (16)
where rlj’ ielI, im= 1;2,..., denotes a value of wvariable X in the

seguence Rj. Obviously, the complexes uj are palrwise disjoint and £111 wp
the space . If k™ > k, then k" -k complexes are joined with the

remaining ones into single complexes, according to the formula:
ﬁ[xi = a)l v ﬁ[xi = b] = B[:-.'i = a,b] {17)

vhere £ denctes a conjunction of selectors Involving variables eother than

x This 1s always posslible, because fot any x,, L £ I, there are dl

g’ L
complexes aj, which differ only in the wvalue of X, - L

From the view of clustering, a more interesting question is whether
for ény given event set E {n the space L, there always exlst an arbltrary
nunber k £ c¢(F) of pairwise disjoint complexes, such that they not . only
f11] up the space I, but also partition the set E into k nonmempty subsets.
A positive anéwer to this questlon would impply that any given event set can
be partitioned into an a priori assumed number of subsets, each covered by
a simple complex, disjoint from other complexes. The answer 1is lndeed
positive. TIn fact, even a stronger property holds, as stated by the

following theorem.

Theorem 5. (The Sufficlency Principle)

For an event space I and any data event set F = {el, Bay srey ek},

E ¢ L there exists at least one set of k palrelse disjoint complexes

a
1 92, .o, ®k, such that each complex contalns one data event:
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e ay, J=12,...,k (18)

A

and the union of complexes Eills up the space I:

[ (19)

Proof:

The basfic 1dea of the proof s o show that €for any
E = [el,ez,...,ek], E ¢ I, it is always possible to construct a tree, {p

which nodes are assigned the variables Xy 1 1,2,...,n, branches of nada

x, are assigned elements of a partition of Di {the value set of xi), and

i

the leaves represeat complexes aj, such that each complex covers a single

event Ej’ and the union of complexes fills up the space k.

Suppose, ej - (xlj,xzj,....xnj), j=1,2,...,k, and xlj > Di'

Take any variakhle, say xp, which has different values for events ia F,
Suppose these values are 2y, @y, 1., @, Partition the value set, Dp of
xp, into subsets {al}, [az}, S {az-l}' Az, where a e Az and Az is a set

DP \ {31,32,53,...,az_1}. It is obvious that complercq

{xp = 31], [xp = 32]. veeey [xp - Az], partition both, the event set E 3-4

the event space I 1into z non-empty subsets. Suppose these compler:y

partition E into Ea . Ea s sruy EA and I into Ea

y vma, I » ‘H'hifrg
1 8 5 1 % A,

E c E

Vartable xp is assigned to the root of a tree. Branches From the r-.¢

are assigned wvalues Ayr By eney ﬂ?. Leaves of this tree correspond 1,

-

complexes [xp - all, [xp "8y, e, [xp - Azl, covering event ge-y
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Eal' Ea!' coa, EA:' respectively (Fig. 1).

[xP'ﬁ| 1L X, =ByJ

Constructing a tree for the proof of the sufficilency principle
Fig.3
For every one of the ahove event sets which has more than one element
repeat the above process with the following modificacion. Suppose Eal has
more than one element and X, takes values bl' bZ' Tesy By for events 1In

E Asslgn X to the root cf a new tree, and attach the tree to the leaf

al’
corresponding to Eal (i.e., to the leaf marked by IxP = aI] in Fig 3).
Assign the branches emanating Erom this root values bl’ bZ' es ey By,.where

B!"r - DY \ {bs'bz""'byal}' 1t 1is obvious that complexes:
[x, = 8y Tixg = dyls [xp = ayllxg = byly ooy [xy = 3] ix, = 3,1 Q20)
partiticn both, the set Eal and the set Eal {nto y disjoint subsets.

Thias process is continued until leaves of the obtained tree correspond
to complexes, each of which coveriny only one event Erom E. Because every

step of this process partitions slmultaneously events in F and in I, the
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union of the obtained complexes covers E and fills up the whole space .

Thus, these complexes constitute the desired set [ul,nz,...,uk}. »

This above theorem asserts that the space of all complexes is
sufficlent to be a space of cluster representations, because any event set
can be clustered into an arbitrary nuamber of complexes. The theorem 1s

used as the theoretical basls for the clustering algorithm described in

section 6.

As the above proof Indicates, there usually will be many covers whilch
constitute a k-partition of any glven eveat get. Therefore, a question
arises as to which cover to select as the most desirable. In order to

answer this question, a criterion of the quality of a cover is needed.

4. A CRITERION FOR EVALUATING QUALITY OF CLUSTERING

Let E be the set of data points, and COV(E) a disjoint cover of E.
Such a cover Ilmplies a partition of E into clusters, each cluster being the
event set contained in one complex. The sparseness (or' the degree of
generallty) of the cover could be used for defining a criterion of gquality
of a partition. However, If E is partitioned 1ote 1individval events,
then, obviously, the sparseness { as well as the degree of generality)
will be zero. Consequently, this kind of criterfon can be used only if the
number of clusters 1s assumed a priori, {.e., for a constrained clustering
problem. In this case the problem is to find a disjoint cover of E with k
complexes, whose sparseness (or the degree of generality) 1s minfmum. In
the case of a free clustering problem (i.e., when the number of clusters is

not assumed a priori), a criterlion of quality of partitioning has to
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involve, in additlon to sparseness {or the degrece of generality), also some
"cost™ function dependent on the number of clusters, e.g., a measure of
complexity of a cover. 1In this paper we are concerned only with the
constraint clustering problem. Although it may seem otherwise, this is not
a serious limirarfon because interesting practical gsolutiouns of
clustering problems should net produce more than just a few clusters (rhis
is so, because when the number of clusters 1s large, humans prefer to
crganize them {(nto an hierarchy). Consequently, te obtain a general
golutfon, a constraint clustering algorithm should be repeated for
gseveral different &k, and the hest obtained partition selected as the

general solut{on.

The sparseness (or the degrec of generality) may not be sufficfent as
the sole crlterion for selecting a cover. One may scek a cover whlich
exhibits other properties than minimum sparseness. In order-tn use several
criterla for selecting a cover simultaneously, we adopt the lexicographic

cost functional defined in [14].

A lexicographic evaluation funetional { LEF) {s defined as a pair of

two lists:
A = {a-list,1~list> {(21)

where a-list = (al,az,...,all, ts 2 list of attributes used
to evaluate a cover
1~1list = (‘1'72""*‘13' ls a 1ist of "tolerances” assigned to

the attributes ai,ranpecttvely. 0 E_Ti < 1.
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Let Vj, i= 1’2"f' denote all possible disjolnt covers of the event
get E. Let V denote cne of the covers, and let al{?j) denote the value of
attribute a, for cover Vj' Cover V is said to be optimal (minimal)} wunder
functional A 1f for every J:

AY) T AV ) 22)

3

where
A{V) - (al(v}l az(v)l"'lazcv)}

A(VJ) ne (aI(Vj)' az(vj),-..'&ltvjj)’ j 'lrzl"’t

and & is a relation, called the lexicographic order with toleraunces, which

holds {E:
al(Vj) - al(V) ? Tl
or |al(VJ) - EI(V)I.S,Tl and az(vj) - a,(v) > T,
DY e
(23)

OF cucceosanaavnsnaesanwnans anda(V}‘a{V} >0
where 4 . -
Ti - Ti.(aimax"ﬂlmin), 1.2,1-0,.""1
®imax mj“[ai(vj)}’
a1mln - m;n{ai(?j)}

Note that {f t = (0,0,...,0) then K. Jenotes the lexicographic order

in the usual sense. In this case, A can be apeclfied just as A = <a-listd.
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To apecify the a functional A cne selects a set of attributes, puts
them 1n the desirable order in the a-list, and sets the values for

tolerances in the t-1list.

Relation & partitions all covers into equivalence classes and orders
the classes linearly, with the first class containing cne or wore optimal

covers, and the next classes containing consecutively less optimal covers.
Below are a few criterla which may be used to assemble an a-list:

® Sparseness (or generality g) of a cover. Minimizing sparseness will

produce complexes which T"fit" as closely as possible to clusters of data
events. This criterion 1s an analop to the criterion of minimizing intra-

distances {n the conventional distance-based clustering.

# Intersectlion, defined as the average degree of Iintersection (DI} between

any two complexes in the cover. The DI hetween two complexes {s the total
number of selectors whlch remaln In both complexes after removing every
palr of disjoint selectors (selectors whose reference sets do not
lntersecf). For example, the depree of intersection between complexes

[x,%2,3) [x,=3,5,7][x.=2..5]
and 2 » 4 2 t

(%, =3] [x,=1]{x, =5..12] [x.=L]
is 3. 1 2 b 75
The introduction of DI as a eriterion for clustering comes €from the
observation, . that people tend to prefer partitions of objects, in which
c¢lusters differ not {n just one, but In many characteristics. This

eriterion 1Is an analog to the rciterfon of maximizing cluster inter-

distances Iin dlstance~based clusteriag.
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e Imbalance, defined as

-

k
i/ ) |l/kec(E) - c(E n ui)f
i=1 (24)

where ¢(E) is the size of the event set, and c(E ai) {s the number of
data events covered by complex x. (the cardinalfity of the core of ut). The

{mbalance measures the variahility of cluster sizes.

e Dimensionality , defined as the total number of different variables

Invelved 1in the complexes of the cover. The dimensionallty tells us hoW
many variables are used to describe clusters, and, thus, how many variables

have to he measured to classify objects into these clusters.

5. PROCEDURES STAR and N1D

Before describing an algorithm for conceptusl clustering (next
sectlon) we shall first describe two important procedures used In thls
algorithm: STAR and NID. Procedure STAR generates the star (def. 8) of &
data event against a set of other data events, and procedure NID transforms
a non-disjolnt cover, whenever possible, into a dis jolnt cover with the

same number of complexes.

Procedure STAR:

This procedure is based on the algorithm described in [14].

Let e, be an event and « a complex. The operation e, |— a (read: e

extended in a is def ined:
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( a, 1f e, £

e I—u'< (25)

Q

k ¢, otherwlse

Let event e, ™ (rl,rz,...,rn) and e # e The operation e - ey

{read: e, extended agalnst elj is defined:

e e, =\ (e b Ix, #r .1
o 1 el 0 1 i (26)

let Gu(aIE) denote the unlon of complexes from the star G(elE). It

can be shown that:

¢'Cele) = N\ (e ey
eJEE {27)

To obtain the star G(elE) from Gu(elﬂ). the right~hand side of {(27)
must be converted to the unlon of maximal (under incluslion) complexes.
Such a unlon is obtalned when the set-theoretical wmultiplication is done

with the applicatlon of absorptlion laws.

Frocgﬁure N1b:

(A transformatton of 4 non-disjolnt cover into a dis jolnt cover)

Let lal.az,...,n!] be a set of not necessarily disjolnt complexes,

which s a cover of a data event set F.



5.

7.

Let c{ai), il =1,2,...,2, denote the cardlonality of ay {the total

number of wevents covered). Determine the (arlthmetic) sum of

Eprdinaltttes:
£
se = 3 cla,) (28)
i=1 1

and the cardinality of the (set~theoretic) sum of complexes:

)
es = ¢ U ui] (29)
1=]

If sc = cg then STOP: L is already a disjoint cover.

For L =~ 1,2,...,%, determine the relative core, COREi, of complex

ai,l.e., the set containing data events covered by complex a, and only
by this complex. Let RESIDUE denote the set of remainlag events,
g
l.e., RESIDUE = F \ U CORE,.
i
i=1
Foer each CDREi determine {ts mc-complex (def. 6):
u? = RU(CORE,), 1 = 1,2,...,2 (30)

o

If any two complexes a,

intersect, then STOP. The dlisjoint cover

cannot he obtained. (This Is 2 direct consequence of Theorem 1)
Select an event from RESINUE and call it e. Delete e¢ from RESIDUE.
For each pair te,u?), {=1,2,...,0, determine the covering complex:
1 0
a, = RUC[e} p a,) (31)

Delete every ui which Lntersects with any a’ J# 1. 1f all ai are

jl

deleted then STOP: a dlsjoint cover cannot he obtained.
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9., Select the best complex, Best-a, among complexes ui, according to the

LEF:
<{Aspars, -res, -&sel],(tl,tz,ra))

vhere
Aspars - the difference between the sparseness of ni and ui
resd - the number of events in RESIDUE covered by ai
Asel - the difference between the number of selectors In uz and

al

1

11,12,13 tolerances are set to O by default.

The slgn "=~ in front of res and Asel Indlcates that the algorithm

will maximize these criterfa (by minimizing the negative value).

10. Suppose Rest-a was created by Jolning e with u%. Assign to a; a new

valuve Best-a.

1i. T1f RFSIDUE = ¢, then END, otherwise go to 6.

The output from this procedure 1s elther a disjoint cover

[u?,ag,...,nzl of set F, or an lIndicatlion that such cover cannot be

obtalned from the initlal cover {al'nZ""'nl}'

6. AN ALGORLTHM FOR CONJUNCTEVE CONCEPTUAL CLUSTFRING

——— — i — —

E,L. &E_Overvleu

—— - ———r——

fased on the ldeas deéscribed (n previous sections, we have developed

an algorithm for conjunctive conceptual clustering, called PAF.* Given a

[ ———— A R i e

*Palish-Amecican-French
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set, £, of events from an arbltrary event space, and an Integer k, PAF
partitions E 1{into k clusters, each of which has a conjunctive description
in the form of a VLl complex. The obtalned partition i3 optimal or
guboptimal with regard to a lexleographic evaluation funct{onal, assembled

by a user from the criteria listed in the previous section.

The general structure of the algorithm is based on the multicriteria
dynamic clustering method developed by Diday and hiis collaborators (Diday

and Simon [1], Hanani [15]). Underlylng notions of the dynamlc clustering

method are two functions:

g - the representation function, which, given k clusters of a particion

of € (a k-partition) produces a set of k cluster representatioms,
called kernels. There way be diferent kinds of kernels, e.g., the
center of gravity of a cluster, a few selected points from a cluster, a
probability distribution best fitting the cluster, a linear manifold of
minimal inertla, etc.

f - the allocation function, whlch, glven a set of kernels,

partitions % into k clusters, “best fltting” these kernels.

The method works {teratively, starting with a set of k initial,
randomly chosen kernels (of a given kind). A single iteration consists of
an application of function f to given kernels, and then of [function g to
the obtalned partition. An ftervatlion ends with a new set of kernels. The
arocess continues untll the chosen criterion of quality of a partition, U,
ceases to improve. (Criterion W measures the "fit"™ between a partition and
kernels.)} It has been proven {1}, that this method always converges to a

local optimumn.
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The measure W can be a stngle criterion, or a sequence of criteria.

In the mwmultlcriterla case, for each criterion an approprlate type of

kernels 1s used (Hanaal [15]).

The algorithm PAF applies a nulticriteria dynamic clustering method,
{n whlch the basic and final cluster represeatation 1s a Vi, complex.
Intermediate representations include the geometrical center of a cluster
(using the syntactic distance; def.l) and the »most outstanding” eveut

(most distant from the center) in a clusterc.

The use of the latter representation Is an application of an
“adversity prlnciple.” This pcinciple states that if the most outstgndlng
evant truly belongs te the given cluster, then if it serves as the cluster
representation, then the “fit" between it and other events in the same

cluster should still he better than the "fit" betwecn it and events of any

other cluster.

In the algorichm PAF, the measure of “fit" between a data event and a

kernel (a VL complex) 1is a binary measure, defined by a predicate

1

specifying whether an event satlsfles the complex or not. A complex 1is a
form, whlich can describe a very large number of configurations of events.
For n variables, each takling d ﬁ[sttnct values, there are N = (Zd—l}n
different complexes. For example, {f n = 10 and d = 7, then N:IDEO. Such
a large slze of the "concept space” makes conjunctive clustering
computatlonally an extremcly complex problem. To obtain a feasible
practlical salutioh, it {s necessary to apply 4 combinatlon of carefully

designed heuristic search methods. Tn PAF, one of the methods used 1s a

well Lkupwn “best flrst™ sedrch technlque developed o artificial
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intelligence [16].

5.2 Description of PAF

A flow diagram of algorithm PAF is shawn In Fig. 4.

In the first step (block 1), a set of %k data events
E0 - [el’eZ""'Ek}' called seeds, 15 selected from the event set E.
Sceds can he selected arbitrarily, or they can be chosen as events
which are most distant syntactically (def.l } from each other. 1In the

latter case the algorithm will generally converge Ffaster. For

selecting such events program ESEL [17] can be used.

For each secd €, 1= 1,2,...,k, a star 1is generated apgainst the

remiining seeds (using procedure STAR described in sec. 5):

Gy = GleylE N\ {e D), t=1,2,...,k
From each star a complex is selected, such that the resulting set of k

complexes:
(1) 1Is a disjolnt cover of E

(11} Is an optimal or suboptlmal cover among all possible such covers,
accordlng to an assumed criterion LEF (constructed by a user from
criteria llsted in sec.4: sparseness or generallty, intersection,
imbalance and dimenslonalliry). This 1s the most dlfficult and
computationally costly step of the algorithm. It caa be
performed In a numher of different ways. We will distinguish
between three different procedures: » (parallel), PS (parallel-

sequentlal) and § (sequential). These procedures are descrlbed
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Given:

£ = a set of dala events
k = the desired nr of clusters
A « the evaluation [uncLional

L/

Choose k "seed" events from E

8

Using procedure STAR determine the star
of each scod apainst the remaining sceds,
Sclect from vach star one complex, so
that the obtained collection, 11, of &k
complexes will be thie "best™ disjoine
cover of E {(with help of NlID procedurc}.

J

Is the termination Yos .
eriterion applied !// LND

to P satisfied?

Is iteration

odd er cven
?
H ~N
3/ \&/
Choose k new seed Chonse k new seod
events which are events which are
central in the extrome in the
complexes in P complexes in P

A flow diagram of algoritm PAF

Figure §.



In the next section.

4. A termination criterion of the algorithm Ls applied to the obtained
cover. The terminatlon criterlon is a pair of parameters (b,p), where
b {(the base) 1s a standard number of lterations the algorithm always
performs, and p (the probe) 1Is the number of iterations beyond b,
which the alporithm performs, after each lteration which produces an

fmproved cover.

S A new set of seeds is determined. 1Tf the iteratlon s odd, then the
new seeds are data events in the centers of complexes In the cover
(according to the syntactle distance}. 1If the Lteration ls even, then
the new seseds are data eveats maximally dlstant [rom the centers

{according to the "adverslty principle”).

7. PROCEDURES P, SP AND §

All three procedures use bounded stars, that is stars whose size s

lim{ited by special paramcter MAXSTAR. The reason is that the size of stars
may be very large when the nuaber of vartables a iIs high. As can be seen
from procedure STAR, the upper bound on the number of complexes {n a star
grows ¢xponentlally with k (the nunber of clusters); namely nk. The size
of any star 1is countrolled by not allowinp it to have more than MAXSTAR
complexes. Whenever a star excecds this number, complexes are ordered in
the order of ascending sparseness, and only Flrst MAXSTAR complexes are
retalned. It Is also assumed that all complexes In stars are telmmed (l.e.,
the refunlon operation ts applled ¢to the c¢ore of each complex, and then

the resulting mc-complex Is used to replace the original complex In the
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star; sce def.?).

To simplify the description of procedures we will assume that the
criterion of clustering optimality 18 minimizing the sparseness of the
disjoint cover (representing a partition). The procedures can bhe extended
for a multicriteria case by using a criterion LEF (which imposes a linear
order between equivalence clsgses -of sets of coumplexes). In such a
multicriterfa case, however, sparseness should be used as the primary

criterion In order to retain the properties of the described procedures.

Procedure P

The procedure is applicable for relatively small MAXSTAR and k. It 1is

particularly wuseful for execution on a parallel processor. Let star

1 i
Gi - G(ei!Eo \ {eil} be a set {ao,ul,...,a; }J, 1 =1,2,...,k. Agssume that

i
complexes ui, j-O,I,...,gi are ordered in ascending order on sparseness.

The position of a complex In the star so ordered {indicated by a subscript,
which counts from 0), (s called the rank of the complex (thug, e.g.,

complex u; has rank 2).

Taking one symbol ni from each star Gi' 1 =1,2,...,k, at a time,

generate all possible sequences:

l, 2 k
PQ = (uo Go,--.,UO)

2 k-1 k&
0

pl - (0 o L .nlt,ﬂo 'ﬂl)

. D =

(32)

wvhere ' = (gl+l){32+l)-l-'(gk+1)
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The sum of the ranks of complexes In any such sequence is called the

pathrank. Assume that sequences P j=1,2,.¢., are now arranged in

jl
ascending order on theilr pathrank, with sequences of equal pathrank ordered
arbitrarily. As before, Po has pathrank 0 {(because all complexes in Po

have rank 0). Pl'Pz""’Pk’ however, denote sequences with pathrank 1, and

Pr denotes a sequence with pathrank gl+32+"'+gk'

Considering sequences P in the ascending order on thelr pathrank,

3

the following operations are performed on each sequence:

{1} A PJ is tested whether it 1is a cover of E. This can be done by
consecutfvely removing from E data events covered by each complex in

P If at the end E beconmes the empty set, P, is a cover. If a P, 1s

¥ J b

not a cover, It is removed from further consideratlon.

{(11) A Pj Is tested whether it {s a disjolnt cover. If 1t 1is, 1{its
sparseness is calculated. If it is not, a lower bound {1.b.) on the
sparseness of a possible disjoint cover 1s calculated {(without

actually determinig the disjolnt cover).

The 1.b. 1s computed hy.deterplning the relative <core of each
complex (i.e., data events covered only by the given complex and not
by any other camplexes}, and then computlng the sparseness of the mc-
complex of the core. The l.b. 1s the sum of so obtained sparsenesses
(this computation i{s based on theorem 3). [The purpose of using the
l.b. 1is to avoid, whenever possible, the computationally costly

procedure NIl.}
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(111) TIf the computed sparseness {or 1.b.) 1s not a new minimum (i.e., {is
not smaller than the sparseness of the best cover obtained so Ffar),
then the cover is removed from further consideration. (ttherwise, 1f
1t is a disjoint cover, it 1s retained as the best cover; and if it is
a non—-di; jolnt cover, it is transformed by NID, If possible, into a
disjoint cover {note that some operatlons of the NID procedure were
already done in (ii1)). If the sparseness of the obtained disjoint
cover etlll represents a new minfmum, the cover is retained as the
best so Far. 1If the sparseness is not a new minimum, or NIP fails to

produce a disjoint cover, the cover is rtemoved from further

consideratlion.

The disjoint cover retained at the end of thé above search process
through sequences Pj is the output of the procedure. It is a minimum
sparsaness cover which can be assemhled from complexes In the given stars.
The existence of at least one disjolnt cover {s assured by the sufficlency
princtple. An advantage of the above described ordering of sequences Pj
Is that the best cover will most likely be close to the beginning of the
list. Therefore, Lf the number of sequences 1s very large, the search can

stop before reachlng the end, with a low risk of loosing the optimal

solution,

Erncedure o

In procedure P, all sequences P, were generated first, and then

b

linearly scarched Ln order to detern!ne the best cover. Tn this procedure,

the search for the hest cover is doae during the process of gencrating the
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sequences, using the “"best Eirst™ search etrategy (Winston [L6]).
Specifically, the search is based on the algorithm A* {Nilsson [1L8]}. At
step a complex is added to the partial cover {(a partial sequence after
application of NID) which most likely leads the optimal cover (according to
an evaluation function). This process avolds testing (usually many)

sequences P for whlch 1t 1is possible to predict that they will not

jl

produce an optimal cover. The procedure PS {s especlally applicable when

stars G, are large.

1

Fig. 5 1lllustrates the search process. Branches emanating From a node
at level 1 represent complexes in star Gi' A path from the root to a node
at level i represents a partial disjolnt cover with { complexes. When f=k,
the path represents a complete disjoint cover (corresponding to some

sequence Pj to which NID was applied).

In the ffirst step, segquence Po - (a?,ug,...,uz) is generated. (It is

the sequence of complexes of the smallest sparseness). The relative core
of each complex is determined and then the mc~complex 1s coastructed for
each core. Let $19850 00128, denote the sparsenesses of the obtalned mc~
complexes. 0On the basis of theorem 3, the sum 8y + s, + ...t 5, speclifies

a lower bound on the sparseness of the best disjoint cover which can be

built from complexes nf given stars.

In the next step, nade {1) (fig. 5) 1s expanded, i.e., uf 13 paired
with every cooplex in GZ' procedure NID 1is applied to each pair, and then
the sparseness 1ls calculated for the obtalned disjoint pair. If NID falls,
the path 1Is abandoned. The obtained palr {5 a partial cover with i=2

complexes. Nodes corresponding to generated partisl covers (including the
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remainlng complexes in Gl} are assigned a value of the evaluation function:
feh+g (33)

where
h - is the sparseness of the obtalned partial disjoint cover

+ 3 + ... + 5, , where | is the number of complexes

g — is the sum 8, 1+2 K’

+1

in the partial cover.
{g represents a l.b. on the sparseness of the remaining complexes to

be determined, {.e., complexes that are needed to complete the cover

under construction}

According to the best first strategy, the node to be expanded at each
step {5 the one which is assoclated with the lowest value of the
evaluation function. 1t 1s proven that such strategy will produce rLhe
optimal cover [18]. The order of expanding aodes in the tree in Fig. 3 1s
shown by numbers 1in clreles. The value of the evaluation functlon

assoclated with each node is given in parentheses.

Procedure §

This procedure ls like procedure P53, with the exception that stars are
not generated beforehand. When expanding a node in the search tree, rather
than taking complexes frowm already determined stars, an appropriate star is
generated each time. Thls requires a multiple repetition of the star
generation process, hut saves on the memory for storing all stars (which

may be large sets).
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8. A NOTE ON IMPLEMENTATION AND AN EXAMPLE

The algorithm has been implemented by R. Stepp in PASCAL for Cyber
175. The details on the implementation are in {19]. For 1llustration we

will briefly describe two examples, which were used in testing experiments

with the prograa.

Flgure Ga represents a diagraamatic representation [20] of an event
space, spanned over variables X1 2%3sXqy%X,, With domain sizes 2, 5, 4, 2,
respect{vely. Fach cell represents one event. Cells marked by 1 represent
data events, remalning cells represent eopty events. Fig. ‘6a also shows g
cover obtained from the fivst iteration of the algorithm. The remaining
figures show results from the consecutive iterations. Cells representing
seed eveats [n each [teration are marked by + . The partition evaluation
criterion was a LEF:

{(sparseness, imbalance, dimensionality) (0, 0, 0 »
According to this criterlon, the best partition (s the one shown inp

Fig. fc. The partlition is specified by complexes:

af = Ix; = 0ilx, = 1][x, = 0]
ug = Ix) = O]lx, = 2]{x, = 1..3]
q; = (x = 1}{x, = 1..3]

Another experimeunt with the program involved clustering 47 cases of
soybean discases. These cases repregented four different diseases, as
determined by plant pathologlsts (the ptogram was not, of course, given
thls information). FEach case wasg represented by an event of 35 many-valued
variables. With k=4, the progra=n partitloned all cases inte Ffour

categories. These four categories turned out to be precisely the
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categories corresponding to individual diseases. The camplexes defining
the categories involved known characteristic symptoms of the corresponding

diseases.

9. CONCLUSION

The paper presented a theoretical Ffoundation and an algorithm for
conceptual clustering, In which entitles are assembled into classes
described by slngle conjunctive concepts (VL1 complexes), Thus, the
proposed approach produces clusters together with thelr descriptions. The
descriptions are conjunctive statements involving relatlons on variabhles

characterizing the entitles, and have a simple lingulstic Interpretation.

The presented algorithm has been {mplemented and tested on various
examples. The results indlcate rthat the method provides an valuable

alternative to the conventional clustering methods, and has a potential for

application In variety of clustering problems.
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a ITERATION 1 b ITERATION 2
Sparseness =18 Sparseness = 20
Imbalance= 1.6 Imbalance = 3.6
Dimensionality= 3 Dimensionality = 3
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C. ITERATION 3 d. [ITERATION4

(Optimal solution)
Sparseness = 12

Imbalance= 7.3

Dimensionality= 4

Sparseness = 16
imbalance= 3.6
Dirensionalitys 3



