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Some recent work in the area of 1earn1n% structural descriptions from examples is
sciplines for pro%rams which can perform conceptual data

Such programs describe complex data In terms o

tionships which cannot be discovered using traditional data analysis techniques.

tant aspects of the problem of learning structural descriptions are examine

1ight of the need in many diverse d

analysis.

evaluating current work is presented. Methods published
55-9]. and Vere [22-25], are analyzed according to these
eveloped by the authors.

I. INTRODUCTION
1.1 Motivation and Basic Concepts

There are many problem areas where large
volumes of data are generated about a class of
objects, the behavior of a system, a process,
etc. Seientists in fields as diverse as agri-
culture, chemistry, and psychology are faced
with the need to analyze such data in order to
detect regularities and common patterns. Trad-
itional tools for data analysis include various
statistical technigues, curve-fitting tech-
niques, numerical taxonomy, etc. These
methods, however, are often not satisfactory
because they 1impose an overly restrictive
mathematical framework on the scope of possible
solutions. For example, statistical methods
describe the data in terms of probability dis-
tribution functions placed on random variables.

As & result, the types of patterns which they
can  discover are limited to those which can be
expressed by placing constraints upon the

of various probabillity distribution
Because of the mathematical frame-
works upon which they are based, traditional
methods cannot detect conceptual patterns such
as the logical, causal, or functional relatcion~
ahigs that are typical of descriptions produced
by humans. This is a well-known problem in AI,
namely that a system in order to

arameters
unctions.

learn some-

thing must first be able to express it. The
solution requires introducing more powerful
representations for hypotheses and developing

corresponding techniques of data analysis and
pattern discovery. Work done in AI and related
areas on computer induction and learnin% struc-
tural descriptions from examples has laid the

groundwork for researh in this area. This 1is
not accidental, because, as Michie [18] has
systams which

suinted out, the development of
eal with problems in human conceptual terms is
4 fundamental characteristic of AI research.

In this pager, we examine some o0f the recent
work in Al on the subject of learning and gen-
eralization of ‘structural descriptions. In

The authors pratefully acknowledge
support of NSF under grant MCS=76=22940.

the

223

Ryszard S. Michalski*
Department of Computer Science
Oniversity of Illinois

Urbana, Iilinois 61801

reviewed 1n

logical, functional, and causal relia-
Various impor-
and c¢riteria for
y Buchanan, et.al.[1-3,20], Hayes-Roth
criteria and compared to a method

Finally some goals are suggested for future research.

particular, we will review four recent methods
of inductive generalization: Buchanan et. al.,
Hayes-Roth, Vere, and our own work (Earlier
well-knowrn work by Winston was recently re-
viewed by Knapman [11]). We also outline  some
goals for research in this area. Attention is
given primarily to the simplest form of gen-
eralization, namely the maximally specific con~-
Junctive statements which characterize a single
set of input events (called for short, conjunc-
tive generalizations). The reason for thia
cholce 1s that most work done in this area is

addressing this, quite restricted, subject.
Many of the researchers whose work we review in
this paper have done work -on other aspects of

machine learning including generalization usin

negative examples (Vere, Michalski) an
developing discriminant descriptions of several
classes of objects (Michalski). Due to space

limitations, we have been unable to include

these topics in this paper. Instead, thhese
contributions are mentioned 1in the sections
concerning extensions. We begin the analysis

by first discussing several important aspacts
og the problem of learning conceptual descrip-~
tiong:
- types of descriptions:
versus discriminant
« farms of descriptions
+» types of generalization processes involved
in ga2neralizing descriptions (rules of gen-
eralization)
» comnstructive versus
duction
- general versus problem-oriented methods of
induction.

1.2 Types of Descriptions

We distinguish batween
discriminant descriptions [16]. A characteris=-
tic description is a description of a single
set ol ohgects (examples, events) which is in-
tended to discriminate that set of objects from
all other poasible objects.  For example, a
characteristic description of the set of all
tables would discriminate any table from all
thirgs which are non-~tahles. Paychologists
consider this problem under the name of concept
formation (e.g. Hunt [i0]). Since it ia impos-

characteristic

non=constructive in-

characteristice and




sible to examine all other possible ocbjects, a
characteristic description is usually developed
by s eciinnﬁ all characteristics which are
true for all known objects of the class (posi-~
tive examples). Alternatively, 1in some prob-
lems there are available sgo-~called 'near
misses” which can be used to more precisely
circumscribe the given class.

A diseriminant description is a description of
a single class of objects in the context of a
fixed set of other  classes of objects. It
only those properties of objects in the

gtates

class under consideration which are necessary
to distinguish them from the gbjects in the
other classes. A characteristic description

can be viewed as a discriminant description in
which the given class is discriminated against
infinitely many alternative classes.

In this pager we restrict ourselves to the
problem of determining characteristic descrip~
tions. The problem of determining discriminant
descriptions has been studied by Michalski and
his collaborators [13-17]).

1.3 Forms of Descriptions

Descriptions, either characteristic or discrim~
inant, may take several forms. In this paper
we concentrate on generalizations 1in conjune-
tive form. Other forms.include disjunctions,
exceptions, production rules of wvarious types,
hierarchical and multilevel descriptions, se-
mantie nets, and frames.

1.4 Generalization PRules

The process of inducing a general description
from examples can be viewed as a process of ap-
plying certain generalization rules to the ini-
tial descriptions to transform them inte more
general output descriptions. This viewpoint
germits one to characterize various methods of
nduction by specifying the rules of generali=-
zation which they use. Below is a brief review

of various generaliization rules based on the
paper [17].
i1} Dropping Condition Rule. If a descrip-

tion 1s viIewed as a conjunction of conditions
which must be satisfied, then one way to gen-
eralize it is to drop one or more of these con-
ditions. For example:

red(x) A big(x) |< red(x)

(this reads: "the description ‘xs which are red
and big’ can be peneralized to the description
x8 which are Ted ; [< denotes the generaliza-

tion operator)

ii) Turning Constants to Variables Pule.
If we have two or more descriptions, each of
which refers to a specific object (in a set to
be characterized), we can generalize these by
creating one description which contains a vari=-
able in place ofthe specific object:

tall{Fred)a man(Fred)
tall(Iim A mantoing ) 1<V tall(x) A mantx)
assuming that the value set of x is {Fred, Jim,
see . X  can be interpreted as representing
2 person from the group under consideration.”’

These first two rules of generalization are the
rules most commonly used in the literature on
computer induction. Both rules can, however,

Eel viewed as special cases of the following
ule.
1i1) Ceneralizing by Internal NMsiunction

Rule. ~A™déscription =an be penerallzed by ex-
ténding the set of wvalues that a descriptor
(1.,e. variable, function, or predicate) is per-
mitted to take on in order that the description
1s satisfied. This process involves an opera-
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tiop called the internal disjunction. TFor ex-

ample:
shapegx,square) K
shape(x,triangle)
shape(x, (square or triangle or rectangle))

where statements on the left of < describe
some sl ﬁle objects in a class, and the state-
mgnt on the right is a plausible pgeneraliza-
tlil0n.

Using the notatlon of wvariable-valued logic

system VL [17] this rTule can be expressed
somewhat mdtle compactly:
[shape Ex; =gquare] K
[shape(x)=triangle]
[shape(x)=square, triangle, rectangle]
The °,” in the expression on the right of the
[< denotes the internal disjunction. Although

it may seem at first glance that the dinternal
disjunction 1s just a notational abbreviation,
this operation appears to be one of the funda-
mental operations: people use in generalizing
deseriptions. -

In general this rule can be expressed:
W[L = RI1] [< W[L = R2}

where W is some condition and where Rl and R2
are sets of values linked by internal disjunc-
tion, and Rl R2.

There are twc important special cases of this

Tule. First, when the deseriptor involved
takes on values which are linearly ordered (a
linear descriptor) and the second when the

descriptor takes on values which represent con-
cepts a4t various levels of generality (a struce
tured deseriptor).

In the case of a linear descriptor we have:

iv) Closing Interval Rule. For example
suppose two objects of the same class have all
the same characteristics except that they have

different sizes, a and b. Then, it 1s plaue
sible to hypothesize that all objects which
share these characteristics but which have
sizes between a and b are also 1in this
class.

w BiECGHR] < v otstzen = aim

In the case of structured descriptors we have:

v) Climbing Generalization Tree Rule. Sup-
pose the value sef of the shape descriptor gs
the tree of concepts:

fplane geometric figg{ir
P lng&\ oval Tigure
triané{i rectangle ellipse ﬁztrcle

With this tree structure, values such as trian-
le and rectangle can be generalized by climb-
ng the generalization tree:

'h x=
Ezh:£25§§-iif§§2f§?] < [shape(x)=polygon]

1.5 Construective Induction

Most methods of induction produce
which involve the same descriptors which were
present in the 1initial data. These methods
operate by selecting descriptors from the input
data and putting them into a form which {s  an
appropriate generalization. Such methods per=
form non-constructive induction. A method per-
forms cofistructive induction 1if 1t includes
mechanisms Which can generateé new descriptors
not Eresent in the input data. Thege new
descriptors are generated by applying rules of

descriptions




conBtructive induction. Such rules may be
written as procedures or as roduction rules
and may be based on general knowledge or on
problem-oriented knowledge (for examples of
constructive generalization rules see [17]).

Constructive induction rules can interpret the

input data in terms of knowledge about the
problem domain. Freguently, the solution to a
problem 1s dependent upon finding the proper

description for the problem; as in the mutilat-
ed checkerboard proglem. An inductive program
should contain facilities for constructive Ain-
duction including a 1library of ganeral con-
structive inducticn rules. The user should be
able to suggest new rules for the program to
examine. In order to activate those rules
which would be most useful, the program must be
able to efficiently search the space of possi-~
ble constructive induction rules.

Programs which perform constructive d1nduction
are more likely to find useful and interesting
patterns in complex data since they have the
ability to examine the data using many dif-
ferent representations.

1.6 General versus Problem-oriented Methods

It is a common view that general methods of in-
duetion, although mathematically elegant and
theoretically applicable to many problems, are
in practice very inefficient and rarely lead to
any interesting solutions. This opinion seems
to have lead certain workers te abandon {(at
keast temporarily) work on general methods and
goncentrate on  some specifie problem (e.g.,
Buchanan, et. al, [1,2,3] or Lenat [12]). is
apfrcach often leads to interesting and practi-
cal solutions. On the other hand, it is, often
difficult to extract feneral principles of in-
duction from such prob em=-specific work. It is
also difficult to apply such special-purpose
Programs to new areas.

An  attractive possibility for solving this
dilemma 1s to develop methods which incorporate
various general principles of induction {in-
cludin§ constructive induction) together with
mechanlisms for using exchangeable packages of
problem-specific knowledge. In this way a gen-
eral method of induction, frovided with an "ap~
propriate package of knowledge, could be both
eas ly'agglicable to different problems and
also efficient and practically useful. This
idea underlies the development of the INDUCE
programs [14,17,4].

2. COMPARATIVE REVIEW OF SELECTED METHODS

2.1 Evaluation Criteria

We evaluate the selected methods of induection
in terms of several criteria considered espe-
ciall{ Important in view of the remarks in sec-
tion 1.

1) Adequacy of the
The language used to

represenftfation lancuage.
represent Input data and
output generalizations determines to a large
extent the quality and usefulness of the putput
deseriptions. Although 1t 1is difficult to as-
3ess the adequacy of a representation lanﬁuage
out of the context of some specifie problem,
recent work in AT has shown that languages
which treat all phenomena unifurmlg must sacri-
fice descriptive precision. or examplae,

regsearchers who are attempting to build
natural-language systems prefer the richer
knowledge representations such as frames and

semantic nets (with their tremendous variet¥ of
gyntactie forms) to more uniform and ess
8tructured representations such as attribute~
value lists and PLANNER-style databases. In
our ownm work on inductive learning, we have
chosen to use the reprasentation language VLsy
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(see below) which has a wider variety of syn-
tactic forms than our earlier language VL,.
Although languages with many- syntactic forms,&o
provide greater descriptive precision, they
also make the induction process more complex.
In order to control this complexity, a comprom—
ise must be sought between uniformity and rich-
ness of forms. In the evaluation of each
method, a review of the operators and syntactic
forms of each description language 1is provided.

11) Rules of generalization iImplemented.
The eneralization TGIes Implemented 1in each
algorithm are listed. :

111} Computational
analysis “of thé computational
these algorithms is very difficult

efficiency. The exact
efficiency of
due both to

the inherent complexity of the algorithms and
to the lack of precise formulations of the agl-
orithms in available publications. However,

t seems useful to have some data comparing the
efficiency of these algorithms even if that
data 1s approximate an based on hand=-
Simulations. To get some indication of the ef-
ficiency we measure the total number of
descriﬁtion generations or comparisons required
by each method to perform a test example (see
Fig. 1). Ve also measure the ratio of the
number of outgut conjunctive generalizations to
the total number of generalizations examined on
this example. Since these numbers are derived
from only one example, it is not appropriate to
draw strong conclusions from them concerning
the peneral performance of the algorithms. Our
conclusions are based primarily on the general
behavior of the algorithms.

lv) Flexibility and extensibility. Mere
conjunctive characteristic generatizations are
not particularly wuseful for conceptual data
analysis because of their limited format and
their lack of formal mechanisms for handling
exxors in the input data. It is important in
evaluating these algorithms to consider the
ease with which each method could be extended
to

a) discover descriptions with formgs. other
than conjunctive generalizations {see section

- b

b) include mechanisms which facilitaté
detection of errors in the input data,

c) provide a gemeral facility for incorporat-
ing domain-specific knowledge into the Enduc-
tion Erucess as an exchangeable package
{Ideal g, the domain=-specifiec knowledge
should be isclated from the general-purpose
inductive process.), and

d) perform constructive induction.

It 1s difficult to assess the flexibility and

extensibility of the algorithms presented here.

We base our evaluation on the general ap-
roaches of the methods and on extenslons which
ave already been made to them.

In the following sections, we
method by Eresenting the descri
used, sketching the underlying a garithm, and
evaluating the method 1in Cterms of the above
criteria. Fach method will be illustrated us=-
Ing the test example shown in Fig. 1.

the

describe each
tion language

2 D

Figure [




2.2 Data-driven Methods: Hayes-Roth and Vere.

Methods can be divided d4into bottom—up (data~
driven), top~down (model-driven) and mixed
methods. Bottom-up methods generaiize the i1in-

put events pairwise until the final conjunctive
generalization 1s computed!:

;F&

G3
N
E1=/Grl\ﬁ'.2 E3 E4

G2 is the set of conjunctive %enEralizatiuns of
El and F2. Gi is the set of conjunctive gen-—
eralizations obtailned by taking each element of
Gi-1 and generalizing it with Ei.

We consider here only the methods described by

Hayes-~Roth and Vere. Other bottom—up methods
include the candidate elimination approach
described by Mitchell ({19] and the Uniclass

method described by Stepp [21].
2.2.1 Hayes-Roth: Program SPROUTER [6~9]

Hayes-Roth uses the term maximal abstraction or
interference match for maximally specific con-
Junctive generalization. He uses parameterized
structural representations (PSRs) to represent
both the input events and their generaliza-
tions. For examgle, consider the two events

described in Fig.

O

El E2
Figure 2
The PSEs for these could be:

El: {{circle:al}{square:b}{small:a}
small :b}{ontop:a, under:b}}

E2: {{circle:c}{square:d}{circleze}

{small:c}{large:d;{small:e}

EnntoP:c, under:d

inside:e, outside:d}}

The expressions such as {small:a) are case
frames made up of case labels (small, cirecle,
etc,) and parameters {a, b, ¢, d}. The P5R can
be interpreted as a conjunction of predicates
of the form small(a) where the parameters are

existentially uantified wvariables which are
assumed to be distinct.
The iriterference match attempts to find the

longest one-to-one match of parameters and case
frames (l.e., the longest common subexpres-
sion)s This 1s accomplished 1in two steps.
First the case relations i1in El and E2 are
matched in all possible ways to obtain the set
M. Two case relations match if all of their
case labels match. Each element of M is a case
relatfon and a 1list of parameter correspon-
dences which permit that case relation to match
in both events: :

M = ircle: | :((bfd))}
BT AL YA TR
{ontop,under:((a/c b/d})}}

TEE second step invelves selecting a subset of
the

parameter correspondences in M such that
all parameters can be bound consistently. fTh%s
of the

is conducted by a breadth-first searc
space of possib{e bindings with pruning of
unpromising nodes. The search can be visual-
ized as a node~building process. PHere 1is one
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such (pruned)} search:
M Interference match

{circle)}
9
2 : .
{square
{small}

5
ble 2,/
{ontop,under}
afc bfd—

The nodes are numbered in order of generation.
One at a time, a node is examined and joined
with all other consistent nodes which have al-
readv been examined. The nodes 5, R, and 9 are
conjunctive generalizatrions. Node 9 binds a to
c (to give 1) and b to d {to give 2) to produce
the conjunction:

{{circle:1}{square:2}{small:1l}
iuntOP:l, unﬂer:Z}}

The node-building process is guided by comput-
ing a utility value for each candidate node to
be built. The nodes are pruned by setting an
upper limit on the total number of possible
nodes and pruning nodes of low utility when
that limit is reached.

Fvaluation:

i) Representational adequacy. The &algo~
rithm discovers the following conjunctive gen-
eralizations of the example in Fig. 1:

1. {{ontop:l, under:2}{medium:1}{clear:1}}
There is a medium clear object ontop of
something.

2. {{ontep:1, under:2}{medium:1}{large:2}
{clear:2}
There is a medium object ontop of a
large, clear object.

3. {Emedium:li{clear:l}{large:S}{clear:S}
shaded:2}}
There is a medium sized clear object,
a large sized clear object, and a
shaded objecte.

PSRs Erovide two symbolic forms: parameters and
case labels. The case labels can express ordi-
nary predicates and relations easily. Sym=
metric relations may be expresed by using the

same label twice as in {samel!size:a,
samelsize:b}. The anlﬁ operator is the con-
unction. The language has no disjunction or

nternal disjunction. As a result, the fact
that the top element in Fig. 1 is always either
a square or a diamond cannot be discovered.

1i) Rules of peneralization. The method
uses the dropping condition and turning con-
stants to variables rules. :

114) Computational efficlieney. On our
test example, the algorithm requires 22 compar=
isons and generates 20 candidate conijunctive
generalizations of which 6 are retained. This
gives a figure of 6/20 or 30% for computational
efficiency. TFour separate interference matches
are required since the first match of El and E2

produces three possible conjunctive generaliza-
tions.

iv) Flexibllity and extensibility. FHayes-
Roth has 1indicated ({persenal communication)
that this method has been extended to produce-
disjunctive generalizations and to detect er=
rors in data. Hayes=Roth has applied this
method te various problems in the design of the
speech understanding system Hearsay II. Howev-



er, no facility has been developed for incor-
porating domain-specific knowledge into the
general%zation process.

Also, no facility for constructive induction

has been i1ncorporated although PFayes=Foth has
developed a technique for converting a PSR to a
lower-level finer-grained uniform PSR. This
transformation ﬁermlts the program to develop
descriptions which involve a many-to-one bind-
ing of parameters.

2.2.2 Vere: Program Thoth [22=25]

Yere uses the term maximal conjunective general-
ization or maximal wunifying generalization to
denote the maximally specilfic conjunctive gen-
eralizarion. Fach event 1s represented as a
conjunction of literals. A literal is a
arenthesized 1list of constants called terms.

or example, the objects in Fig. 2 would be
described:
~ El: fcircle a) (square b)(small a){small b)
onto

small c¢){large d){small e)
ontop ¢ d)}{inside e d)

Although these resemble Favegs-Foth”s PSRs, they

E a b)
E2: gcirc e o) (square d) (cirele e)

are quite different. There are no dis-
tinguished symbols. All terms are treated uni-
formly.

The algorithm operates in four steps. First,
the 1literals in each of the two events to be
generalized are matched in all possible ways to
enerate the set of matching pairs MP. Two
iterals match if theg contain the same number
of constants and they share a common term in
the same positien. For the example of Fig. 2,

MP= { g circie ai—gcirc%e c%i,
circle a)=(circle e
square b square d)} :

small a)—§small c)),

smai% gi- Smaii e);,

ama ~-{sma c)),

small b gsmall e;),

ontor A MWi=(antop ¢ d4)) }

The second scep wuvolives selecting all possible
subsets of ™ sucn that no single literal of
one event 1s paired with more than cone literal
in another avent.
tually forms a new generalization of the origi-
nal events.

In the third step, each subset of matching
palrs selected in step 2 is extended by adding
to the subset additional pairs of {iterals
which did A new pair p

not previously match.
1z added to a sugset S of MP if each literal in
p 1s related to some other pair g in S by a
-common constant in a commeon position. For ex-
ample, 1f S contained the pair {({square b)=

SBquare’d}) then we could add to S the air
(ontop a b)-(inside e d)) because the third
element of {ontop a b) is the second element of

(square b) and the third element of (inside e
d) 1s the second element of ({square d) (Vere
calls this a 3-2 relationship). We continue
adding new pairs until no more can be added.

In step 4 the resulting set of pairs 1s con=-
verted into a new conjunction of literals by
merging each pair to form a single 1literal.
Constants which do not mateh are turned intao
new constants which may be viewed as variables.
For example, ({circle a)~{(circle ¢})} would he
converted to {circle 1).

Fvaluation:

1} Pepresentational adequacy. Vhen ap-
plied to rhe test example (gig. 1) this alpo-
vithm produces many generalizationa. A few of
the significant ones are listed here:

Fach of these subsets even=—-
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e gontop 1 2){medium 1) (large 2)(clear 2)
clear 3IY{shaded 4)(5 4)°

There 1s a medium object on tng of a
je

large clear object. Another object 1is
clear. There 1is a shaded. aobject. (Note
also the wvacuous relationship 5 derived

from unifying circle and triangle).

2. Eontop 1 2Y{¢lear l}gmedium 1Y(9 1}y (5 3
&%Eghi§8d N7 3¥(6 3)(clear 4) (large
There 1s a medium, clear object on top of
some other object and there are two ob=
jects related in some way (5) such that

one 1s shaded and the other 1is large and
clear. (Note the wvacuous relationships
6, 7, 8, and 9).

3. (antog I 2)(medium 1} {clear 2)(large 2)(5
2} {(shaded 3)(7 3)}{clear 4)(6 4}
There is a medium object on top of a
large clear obiect. There 1is a shaded
object and there 1s a clear c¢bhject.
gNote the vacuocus relationships 5, 6, and

Y a

The representation is ver

tion the first symbol o¥ a literal can be in-
terpreted as a predicate symbol. The algo-
rithm, however, treats all constants uniformly.
This creates difficulties. For i1nstance the
algorithm generates vacuous literals in certain
gituations. Literals can be formed by pairing

general. By conven- -

(red x) with. (blg v) to produce meaningless
generalizations. One advantage of this relaxa-
tion of semantic constraints is that the pro-

ﬁram can discover conjunctive generalizations
nvolving a many-to-one binding of wvariables.

The langua%e contains only a cenjunction opera-
tor. No disjunction or internal disjunction is
included.

11} PRules of generalization. The algo-
rithm implements the dropping condition rule
and the turning constants to variables rule.

11{) Computational efficiency. From the
published articles [22-25]) it is not clear how
to perform step 2. The space of possibilities
18 wvery large and an exhaustive search could
not possiblg %ive the computation times which
Vere has published. It would be interesting to
find out what heuristics
guide the search.

iv) Flexibility and extensibility. Vere
has published alporithms which “discover
descriptions with disjunctions [24) and excep-
tions [25]. He has also developed techniques
to generalize relational production  rules
[23,24]. The method has been demonstrated us-
ing the traditional AI toy problems of IO anal-
ogy tests and blocks-world sequences. A facili-
tz for usin% background information to assist
the {induction process has also been developed.
It uses a spreadinf activation technigue to ex-
tract relevant relations from a knowledge base
and add them to the 1input examples prior to
generalizing them. Since the method has been
extended to discover disjunctions and excep-
tions, it would be expected that the method
could also operate in noisy environments.

2.3 Model~driven Methods:
and FIchalskT.

are being wused to

BRuchanan et. al.,

Model-driven methods search a set of possible
generalizations 1in an attempt to find a few
best” hypotheses which satisfy certain re-
quirements. The two methods discussed here
search for a small number of conjunctions which
together cover all of the input events. The
gearch proceeds by choosing as the initial
workin§ hypothesis some starting point in the
partially ordered set of all possqbge degerip-



tlons. If the working hypotheses satisfy cer—
tain termination criteria, then the search
halts. Otherwise, the ¢current hypotheses are

modified by sl%ﬁhtly generalizing or specializ-
ing them. ese rnevw hyPotheses are then
checked to see 1f they satisfy the termination
criteria. The process of modifying and check-
ing continues until the criteria are met.
Top-down techniques typically have better nolse
immunity and can easily be extended to discover
disjunctions. The Rrincipal disadvantage of
these techniques is that the working hypotheses
must repeatedly be checked to determine whether
they subsume all of the input events.

2.3.1 PBuchanan, et. al.: Program Meta-DENDRAL
[1-3,20]

The algorithm which we describe here 1s taken
from the RULEGEN program (part of the Meta-
DENDRAL system). Meta-DENDRAL was designed to
discover c¢leavage rules to explain mass spec-
trometry data. The descriptive language 1is
based on the ball-and-stick model of chemical
molecules. Each input event is a bond environ-
ment which describes some portion of a
molecule. The environment is represented by a

raph of the atoms in the molecule with four
ﬁescri tore attached to each atom and forms the
left hand side of a cleavage rule. The right
hand side of the rule predicts a cleavage based
on the existence in a molecule of the left-hand
gside of the rule (breakhbond (**) indicates that
the ** bond is predicted to be broken). A typ-
ical cleavage rule (with atoms w, x, y, and z)
i1s:

LEFT-HAND SIDE (BOND ENVIRONMENT):

Molecule graph: W A X we Y e 2 -
Atom descriptors:
atom tyge nhs nbrs dots
W carbon 3 1 0
x carbon 2 2 0
v nitrogen ] 2 0
z carbon 2 2 0

RIGHT-HAND SIDE (CLEAVAGE PREDICTION):
=> Breakbond {*¥)}

The algorithm chooses as its starting point the
most general bond enviroment ( x **% y ) with no
properties specified for either atom. During

the search, this description is grown by suc~
cessively specializing a property of one of the
atoms 1in the graph or by adding a new atom to
the graph. After each specialization, the new
grap% is checked to see 1if 1t is "hetter" than
the Earent graph from which is was derived. A
daughter graph 1is better than its parent 1f it
still covers at least half of the

input rules

{(it"s general enocugh) and still focusses on
only one cleavage process {(it"s sgecific
enough). _ The cleavage rules built by this al-
orithm are further %mproved by the program
ULFMOD.
Evaluation:

1) Representational adequacy.. The
representation was adequate for the specifice

task of developing cleavage rules. It was not
intended to be a %eneral representation for ob-
0

iects outside the chemical world. The
escriptions can be viewed as conjunctions.
Individual rules developed by the program can

be considered to be linked by disjunction.

11} Rules of generalization. The dropging
condition and turning constants to variables
rules are used "in reverse'" during the special-
izartion process. RULEGEN does not seem to have
the ability to handle an intermnal disjunction
but RULFMOD apparently deoes. For example, it
can indicate that the type of atom is ”anytﬁing
except hydrogen'. In similar work on nuclear
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magnetic resonance (NMR), Mitchell presents an
example in which the value of nhs 1s listed as
"sreater than or equal to one'" (which Indicates
an Iinternal disjunction).

114} Computational efficiency. Because
this is a problem-specific algorithm, we cannot
supply comparison figures here for how this &al=-
gnritzm would work on our test example. The
current program is considered to be relatively
inefficient {2].

iv) Flexibility and extensibility.
DENDRAL Thas
tra. The program works
environment.

Meta-
been extended to handle NMR spec=-
well 1in an errorful
It uses domain-specific knowledge
gextensively. However, there 1s no strict
separation between a general-purpose induction
component and a speclal-purpose knowledge com=
ponent. It 1s mnot clear whether the methods
developed for Meta-DENDRAL could be easily ap-
plied to any non-chemical domain. The program
does not perform constructive induction In any
general waﬁ. However, the INTSIM program does
perform sophisticated transformations on the
input spectra in order to develop the bond-
environment descriptions.

%.%.2 Michalski and Dietterich: Program INDUCE

The alporithm described here is one of three
algorithms designed by Michalski and his colla=-
borators. The others are a data-driven method
described by  Stepp ([21) and a mixed method

described by Larson and Michalski [13,14]. The
language used to describe the input events is
extension to first-order predicate

VL,,, an

loéic (FOPL) [17]. Each event is represented
as a conjunction of selectors. A selector typ-
ically contains 2 function or predicate
deseriptor (with variables as arguments) and a
list of values that the descriptor may assume.
The selector [size(xl)=small, medium] asserts
that the 8ize of xl may take the values small
og medium. The events In Fig. 2 are represent-
ed as:

El: [size(x1)=small]l[size(x2)=small]
[shapegxl)=circle][shape(xZ)-square]
fontop(xl,x2}]
[size(x1;=small][size(x2}=large]
[size(x3)=small) [shape(x1l)=cirele]
[shape$x2}=square][sﬁ

E2:
ape(x3)=circle]

[ontop({x1l,x2)] [inside(x3,x2)]
In this method, descriptors are divided into
two classes: attribute  descriptors  and
structure-specifying descriptors. Attribute

descriptors describe attrilbutes such as size or

shape or distance which are applicable to all
variables (representing, e.g., object parts).
Structure-specifying descriptors Include all

other descriptors. Theg typically represent
relationships among variables such as ontop or
inside. Each input conjunction is broken into
two conjuncts--one bullt of selectors containe-

ing on attribute descriptors (the attribute
conjunct§ and one built of selectors containing
only structure-specifyving descriptors (the
structure cnnjunct?.

The algorithm is based on the observation that
the structure-specifying descriptors are

responsible for the computational complexity of
generalizing structurag descriptions. I we
could determine conjunctions of structure-
5pecifging selectors which were relevant for
describing a particular ¢lass of objects, then
the pgeneralization of the attribute conjuncts
could be handled gquickly bv an appropriate cov-
ering alporithm. The algorithm seeks to deter=-
mine such a set of structure conjuncts which
appear likely to be part of a maximally specif=~
ic conjunctive generalization of all of the in-



does this by finding conjunc-

put events. It
generaliza-

tions which are maximally specific

tions of the 4input structure conjuncts con-~
sidered alone. Such conjunctive generaliza-
tions of the structure conjuncts miust be con-—
tained in some maximally specific generaliza-
tions of the entire set of input events. _Row-
ever, there may be maximally specific conjunc-

tive generalizations of the input events which
contain few if any structure-specifying selec~-
tors. This algorithm also finds these general-
izations by considering structure conjuncts
which are less than maximally specific.

The algorithm operates in two phases. The
first phase is the structure-determining phase.
A random sample of the input structure con-
Juncts 1s taken. This sample becomes the ini-
tial set of generalizations Gh. In each step,
Gy 1s first pruned to a fixad size by removing
uﬁpromising generalizations. Then G is
checked to see 1if any of its generalizétions
covers all of the structure conjuncts. If any
do, they are removed from G, and placed in the
set C of candidate conjunctive generalizations.
Lastly, G; is generalized to form 0 by tak-
ing each element of G, and generaliziﬁé it in
all possible ways by-éroPping single selectors.
When the set “of "candidates C reaches a
prespecified size, the search stops.

The second phase is the  attribute-~determinin
phase. In this Rhase, the problem is converte
to a multiple-valued loglc covering problem us-
ing the propositional calculus [15,16].
Each candida&e cover A In € is matched against
all input events and the relevant variables are
identified. For each match, the appropriate
attribute conjuncts are extracted and used to
form a VL, event. For example,

if A = [ontop(pl,p2)}] and

El = [ontop( 1,§3)T[onto (p2,p3)]
[size(pg)= TIsize( g)=3f[size(p3}=5]
color£p1}=red][co or{p2)=green]
color(p3)=blue]

then we get two VL; events:

Vi (1, 3, red reen}) and
Vim 53: 5: greénf blue).

These are vectors of attributes
correspond here to the descriptors:

(size(pl), size(p2), color(pl), color(p2))
for pl and p2 in A.

All inEut events are converted inte VL, events
in this manner. In general, more thatk one VL

event is created from each input event. Thd
get of VL, events can be covered using a cover-
ing algor%thm. A cover could be obtained by
formin the wunion of the values taken on by
each attribute. Such an approach wusually
leads to overgeneralization since only one VL

event derived grom each 1input event need be
covered. We beam-search technique to
select a the VL, events to be
covered.

This two-phase algorithm provides two computa=-
tional 4ddvantages. First, the time requlired to
compare expressions in the structure-
determining phase is reduced because the struc—
ture ccnfuncts are usually muech smaller than
the full input conjuncts. Second, the manipu~
lation of VL, formulas is very easy since they
may be rep}esented as bit strinps and mani%ﬁ—
lated using fast bit-parallel operations. e
chief disadvantage of this algorithm is that 1t
18 difficult to decide when to the
structure-determining phase.

Evaluation:
1) Representational adequa--.

which

use a
subset of

terminate

The algo-
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ithm discovers, among others, the following
generalizations of the events in Fig. 1:

1. Enntopgpl p2)][(size{pl)=medium]
shape gl5=circle,square}rectangle]
[size(p2)=large]
[shape(pZ}=box,rectangle,ellipse]
{texture(p2)=clear]
There 1s a medium-sized circle, rectangle
or square on top of a large, clear box,
rectangle, or ellipse.

2e ontopEpl p2)] {size(pl)=medium]
shape 515=polygnn} [texture(pl)=clear]
size(p2)=medium,large]
[shape(p2)=rectangle,circle]
There 1s a clear, medium~-sized Eolygon on
top of a medium or large circle or rec~
tangle.

3. [ontopspi p2)1[size(p1}=medium]
shape 3 S=po ygon]
[size(p2)=medium,large]
[shape{p2)=rectangle,ellipse,circle]
There 13 2 medium-sized polygon on top of
ai lirge or medium rectangle, ellipse or
CiTrclie.

4o Esize(pl)=small medium]
shape(pl)=cire e,rectangle]
[texture(pl)=shaded]
ere 15 a shaded object which is either
medium or small in size and has a circu-
lar or rectangular shape.

This algorithm implements the cnniunctinn, dis~

unction and internal disjunction operators.
t provides a fairly non-uniform set of
representational facilities. Descriptors,
variables, and values are all distinguished.
Descriptors are further analyzed into
attribute

structure—speci%ging deseriptors and
descriptors. e current method frovides for
descriptors which have unordered, 1 nearly ore

dered, and tree ordered value sets. This
variety of possible representations permits a
baetter "fit" hetween the description language

and any specifiec problem.

11) PFules of §eneralization. The algo-
rithm uses all rules mentioned in section %.4
and also a3 few constructive Induction rules
(see below}. All constants are coded as vari-
ables. The effect of the turning-constants to
variables rule is achieved as a special case of
thf generalization by dinternal disjunction
Tule.

114}

Computétional efficiency. The algo-
rithm requires 28

comparisons and builds 13
rules during the search to develop the descrip-
tions listed above. Four rules are retained S0
this gives an efficiency ratio of 4/13 or 30%.

iv) TFlexibility and extensibility. The al-
gorithm ecan easily discover disjunctions by
altering the termination criteria for the

structure~datermining phase to accept structure
conjuncts which do not necessarily cover all of
the dinput events. The same general two-phase
approach can also be applied to problems of
determining diseriminant generalizations. Lar-
son and Michalski have done work om determining
discriminant classification rules f13,14,15].

The algorithm has pood noise immunity. Noise
events can be. discovered because the algorithm
tends to place them in Separate terms of a dig~
Junection.

Domain~specific knowledge can be incorporated
into the program by defining the domains of
descriptors, specifying the structures of these

domains, sEecifyin certain simple production
rules, and by providing constructive induction
rules. These forms of knowledge representation



are not alwags convenient, however. Further
work shoul provide other facilities for
knowledge representation.

A few simple constructive induction rules have
been incorporated into the current implementa-
tion as a preprocessor. Other constructive in-
duction rules can be specified by the user.
Using the built-in constructive induction
rules, the pr0§ram produces the following con-
%gnct%ve generalization of the input events in
ge Lt

(# p’s with texture clear=2][top-most(pl}]
[ontop(pl,p2)] {size(pl)=medium]
[5hape{gl$=pulygon]Itexture(p1)=clear]
[size{p2)=medium,large]
[shape{p2)=circle,rectangle]

There are exactly two clear objects in each
event., The top most object 1s a medium
sized, eclear polygon and it is on top of a
large or medium sized circle or rectangle.

We hope to expand this constructive induction
facility in the future.

2.4 Summary

The comparison of various methods is summarized
in Fig. 3. The table shows the distinct advan-
tages and disadvantages of top-down methods as
opposed to bottom-up methods. Bottom-up methods
tend to be faster but nolse immunity and flexi-
bility suffer as a consequence. Top=-down
methods have good noise immunity and are easily
modified to discover di%aunctive and other
forms of generalization. ey do tend to be
computaticonally more expensive. By separating
the structure-determining phase from the
attribute=-determining phase in our method, a
considerable speed-up has been achieved.

3.0 CONCLUSION

One of the problems of current research on

duction

different
This makes
This pape
gat a better understandin

cult,.

is that each research group is using &

formal language and - terminelo

art in this area.

Some important problems to be addressed in fu-

ture research include:

1)
pot

the development

the exchanpge of information dif
r was intended to help readers
g of the state of the

of adequate formal
lanﬁuages and knowledge representations for hy-
esls formulation and modification;

11} extension of the scopes of operators
and forms which an inductive grogram.can effi-
0

ciently use during hypothesis

1ii)} the development of general mechanisms
of dinduction whic can be guided by problem—

rmulation;

specific packets of knowledge; and

iv) incorporation in the program of
sive facilities for constructive induction and
multi-level schemes of description. In partic-
i{nductive program should be able to
assign names to various subdescriptions and use
names in the formulation of hypotheses

ular,

these

(i.e. generate hierarchical forms).

Finallpt
u

guide
ciple

an important

principle which should
ure research is what we call the prin-
comprehensibility. This principle

gstates

that
gram uses and the concepts which it

the descriptions which an AI pro~
generates

should be easily comprehensible by people.
the context of work

comprehensibility principle
descriptions be short and use operators which

on induction,

Method: Hayes-Roth Vere Buchanan et.al. Michalski
Criterion
Intended application: general general discovering general
mass spectro-
metry rules
language: Parameterized (Ouantifier- Chemical model Variable-valued
Structural free FOPL logic system VL21
Representation
syntactic concepts: case frames literals molecule graph selectors
parameters constants attributes descriptors
case labels constants in dummy variables
in value sets ccgstants in
operators: N\ FAN NV, A u? sers
internal V internal V
Gﬁneralizatiog Rules:
ropping condition? es es es 8
constants to varilables? ges ges ;és ;:s
generalizing by internal v? no no yves ves
climbing tree? no no no yes
closing intervals? no no no ves
Efficiency:
comparisons: 22 complete not applicable 28
algorithm
conjunctions not known
generated during search: 20 ———— not applicable 13
ratio output to total: 6/20=30% ————— not applicable 4/13=30%
FExtensibility:
applications speech none MASS spectro- soybean disease
analysis metry, MNMR diagnosis
disjunctive forms? no yes yes yes
noise immunity low probably good excellent very good
domain knowledge? no ves yes, built-=in yes
to program
constructive induction? no no no limited
facility
Figure 3.
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gxten—-

requires that the



can be easily interpreted in natural language.
Furthermore, systems should be desipgned to pro-
vide flexible interactive facilities. This ap=-
proach has been adopted in our work because we
expect that the most significant applications
of AI inductive programs will be as interactive
tools for conceptual data analysis.
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