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l. Introductinn

This report is concerned with the PASCAL implerentation of two
algorithms by Michalski [1] which convert unordered extended entry
decision tables into space or time optimal decision trees based
on the criteria of Minimizing Added Leaves (MAL) and Dynamically
Hinimizing Added Leaves (DMAL) formulated in [1]. The basic idea
of these algorithms is: the rules of the table are transformed
into elementary cartesian complexes, which are defined in Appendix A.
The complexes are assigned to action classes which represent zero or
more actions. The case of zero actions arises when ¥ou want to insure
that no action is performed for those events. If an action class has
more than une'actiun, the actions should be independent of one ancother.
In the case of the MAL criterion, the algorithm starts by finding
an optimal cover of the complexes for the purpose of merging
complexes which might be expressed as a sinzle complex.

Next, a test is chosen to split the event space of the
corplexes according to either the MAL or the DMAL criterion.

Briefly stated, these are:
a) HMAL _

1) Choose the test which has the smallest DELTAQ, defined
as the nunber of complexes broken by the test. A complex
is not counted as hroken if splitting the complex does
not separate events of the original table from which
the complex was formed.

2) In case of a tie, choose the test with the most outcomes.

3) If we still have a tie, choose the test which partitions

the event space into parts with smaller complexes.



4) Choose any test 1f a tie still exists.
b) DMAL |

1) This criterion only looks at action classes whose events
are separated by the test being examined. For the action
classes considered, determine the cardinality, ec(E), of
the cover of the complexes in these classes. Next
determine the optimal covers within the smaller event
spaces created after splitting on the test in questinn;
Then subtract ¢(E) from the cardinality of the covers
of the considered action classes in the smaller event
spaces. The resulting value is called DELTAl. Choose
the test with the smallest DELTAL.

2) Same as MAL 2).

3) 1f a tie still exists, choose the test which partitions
the event space into parts in which covers of the same
action class are larger.

4) Same as MAL 4).

There is a DMAL "shortcut" which states that if we determine a
test to have a DELTAO of zero, then DELTAl must alsc be zero and
we can skip the cover generation.

After a test 1s chosen, it is removed from the set of
available tests. This test now represents an inner node in the
optimal tree. The event space 1s split into smaller spaces by the test.
These event spaces are further split by invoking the algorithm
recursively until a space with one action class (i.e. a leaf) 1=
reached. Note that the DMAL criterion forms optimal covers at each
step of the process. I have appended to the MAL ctiterinn an additional

tie-breaking decision which produces trees im certain instances as



good as DMAL without thg large expense of generating optimal covers
every time a splitting variable must be chosen. This will be
described later.

As an illustration, Suppose we were to apply MAL and DMAL
to the diagram in Fig. 1. First, consider MAL. Test Xl would break
1 complex. X2 would break all 15 complexes. Tests X3 and X4 each
break 2 complexes. So X1 would be picked. If we used DMAL, we
would break one complex by X1 1into 3 complexes. But on forming a
cover in the X1=0 regiomn, 2 complexes would combine, thus giving
a DELTAI value of 1. X2 would have a DELTAL of 30. x3 and X4
each would yield a DELTAl of 4. So again, X1 would be chosen.

The program accepts input tables in two modes: a) interactive
mode which allows a user to enter the parameters and rule values.
at a terminal, and b) file mode which usés & prepared, formatted
file containing the same information the interactive user
inputs. In file mode, the data can be set up In advance and
can be saved for reﬁeated use if modifications to the data are
desired. The resulting tree is Output as a graphic tree or as
PASCAL code using -case- "switches" for the fnternal tree nodes
and procedure calls as the actions within the action class.

The procedures the actions represent should be independent of the
order ia which they are called. This is a "stand alope" prograu.
but if the user wishes, the tree-constructing procedures and
lmportant global variables may be removed for other uses. Fig. 2
1llustrates interactive mode for a rather trivial example which
would fit on one page.

The compiled program occupies about 8K 60-bit Cyber 175

words of object code.
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2. Cover generation

While the recursive test determination dominates these
algorithms, it is actually the optimal cover generation which
consumes the most processor time. Even in the MAL method, where
only one optimal cover is constructed, finding the cover may
take several times the prnceséing as does the tree generation. Part
of the problem stems from the fact that covering the cells
in different orders may produce different covers, especially if
there are "don“t care" events which may be consumed in different
ways by the covering complexes. Because of the "combinatorial
explosion", we obviously canft consider covering the individual
cells in all possible orders. A natural alternative to this is
to produce covers for all permutations of the action classes.

The number of permutations is the-nurber-of-action-classes factorial.
So when we exceed three action eclasses, we have fhe same
combinatorial problem. Generating 24 covers of 4 action classes is
an expensive proposition, and there may not be enmough don’t cares to
warrant doing so many covers. For this reason, the user has the
option of skipping the cover generation for a certain number of
loops through the permutation algorithm when the input diagram is
not complete (i.e. it doesn”t cover the whole event space) and

the number of action classes exceeds 3. There is the risk of a

less optimal cover being produced, but many seconds of processing
time can be saved. This "skip factor" always may be set b? the

user. But when there are more than 3 action classes, the user

is alerted and given one more chance to set it,

In order to facilitate making good covers, the input



complexes within an action class are sorted according to ;ize, then
broken into individual cells before invoking the optimal cover
procedure. The ordering is necessary because one or more complexes
adjacent to a larger complex (in the same action class) might
"steal” a slice of cells from the larger complex to form a
"don’t care" selector which has the entire domain as {itg value,
resulting in the decomposition of the large complex into a number
of smaller ones (see Fige 3). The complexes are broken into
single cells because complexes which might be “orthogonal™ may
not be able to combine in their entirety, but may forp better
complexes after decomposition (see Fig. 4).

The covers are produced using the AQ procedure which forms
the cover of a set El against a set E2 [2]. This 1s the same AQ .
procedure used by the INDUCE-1 system [3] with some modifications.
Only nominal scale variables are used. ﬁnly two functions are used
by procedure TRIM to find the "pest™ conplex from the "intermediate
star" covering an eﬁent; These functions are: the most 'héﬁ covered"
events in El and, in case of a tie, the most "don’t cares". TRIM has
been made external to AQ so that it 'can be used to sort complexes
within an action class as described above. The function used for
this sorting is only available when a flag, -aqmode-, 1s false.
The -maxstaraq- parameter passed to AQ has been changed to be a
variable rather than a cnﬁstant. This is so in order to trim back the
"intermediate stars" at the last possible moment. The low constant
value from the INDUCE version often trimmed the star very early
In the covering process when 1little Information was known about the
events in El and E2. Thus potentially good complexes were discarded.

The value of ~maxstaraq- is set to be the size of the sorting array
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divided by the number of input table variables (-nvar-), since the
number of complexes in the star can increase, at most, by a factor
of —-nvar—. The last modification involves the requirement that
complexes covering an action class do not intersect with each other.
This is accomplished by placing a copy of each complex produced by
AQ in the E2 set before looking for the next event to be covered.

The cover generator, OPICOVER, finds covers for action clgssea
one at a time. The set to be covered 1s passed as parameter El.
All cells covered by previous iterations, as well as the cells of
the action classes to be covered, are enqueued as set EZ. Since AQ
.uften produces complexes with internal disjunction (with selectors
that have more than one value, but less than the entire variable’s
domain), these complexes must be broken into "elementary complexes"
{(complexes with no internal di;junctiuni. This 1s necessary Eor the
case when there may be a complex of another action class occupying
cells adjacent with respect to the selector with disjunction.
When this happens, as 1s often the case, the MAL method MUST break
the complex by the test which has disjunction in order to separate
it from the complex of the other action class. This artificially
{nflates the value of DELTAD (the numher of broken complexes) for
that test since the split will always be done. This may lead to
choosing the improper tesf. Fig. 5 illustrates this. We MUST split
on X3 in order to separate the complex of action class Al,
[X1=2] [X3=0,1], from the complex of action class 3.

I1f the user wishes, the cover generation can be skipped
entirely and the tree formed with respect to the original decision
table., The user may already have an optimal cover and re-generating

it 1s unnecessary. Also, for a very large table, the cost of finding
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an aptimal cover may be prohibitive. In a 50-rule, lO-variable
test exacple, the program ran about 1 minute before the Cyber
aborted the job. Examination of the post-mortem dump showed that
the cover genarator was only on the first of six iterations!

3. MAL Modification

While the MAL criterion makes very good choices of test
variables, it can make seemingly curious decisions in certain
circumstances. Fig. 6 illustrates an example of a subdiagram that
has been reached in the course of the tree algorithm. The complexes
belong to action classes 1, 2 and 3, and are generalizations of
the input table complexes denoted by the dotted circles. The
choice looks clear. However, the MAL criterion doesn”t count
complexes as broken if cells from the original diagram arean’t: :
separated. In the example, tests 2 and 4 both have DELTAO eqﬁal to
0. Both are tied in all the other t1Eﬁbfeaking criteria.
Subdiagrams that contain no original diagram cells count only
as "else leaves". So if test X2 is chosen arbitrarily, a subtree
of 5 leaves will be produced rather tham a 3 leaf tree when test
X4 1s chosen.

For this reason, a new tie-breaking rule has been appended
to MAL to determine if any of the tied tests produces more "immediate
leaves". We know that we have a leaf if the subdiagram contains
only cells from a single action class. In this PASCAL implementation,
this can be determined very quickly. Suppose we are checking the
i-th wvariable. The "loglical or" is taken of the i-th var{able
(encoded as a bitmask) for all events from the uriginal.table that
are also in the subdiagram under consideration. This resulting

mask 1s compared with two other bitmasks: -avail-, which represents
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the subdiagrams in which we have yet to find cells from the original
table, and —onemask-, representing the subdiagrams where cells
of only one action class have been found. For each action class
examined, any bits set in both the test mask tesult;pg from the
"logical or" and -onemask- are removed from -onemask-. Any bits set
in both the test mask and —avail—.are removed from —avail- and added to
-onemask—-. When we are done, the cardinality of =—onemask- gives the
number of "immediate leaves".

This method will also find parts of broken complexes that
can be combined, but only if the result is a leaf. Fig. 1
illustrates this feature. After splitting on X1, there are two
complexes of action class 1 in the Xl=0 subdiagram which can be
combined to form a leaf, giving a subtree of 7 leawves in all.
Without the modification, test X3 might be chosen, resulting
in a 9-leaf subtree. The program’s nutpﬁt for this example, in both
tree and PASCAL form, is given in Fig. 7 and Fig. 8. If the complexes
which can be merged are buried among other complexes so that a
leaf can’t be formed at that moment, the modified MAL test will n&t
find them, although the DMAL method will detect them. Note also that
the DMAL method would not have made the "mistake" that led to the -
added eriterion.

4. Major Data Structures

The following are the main data structures of the program.
The terms "complex", "action class" and "diagram" in the procedure
descriptions which follow will refer to these structures and not
the concepts which they fepresent.

A complex represents a Cartesian complex. Besides having an
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array of nominal scale selector variables, 1t contains a pointer
to a "next complex" for chaining.

An action class structure contains a bitmask which denotes
the actions in the conceptual action class. There is a 0-th bit 1p
the mask used as a marking bit. A pointer to the first complex in a
chain of complexes for this class is included. There is also a
Pointer to the next action class.

A structure called a diapram consists of chained action
class nodes with their respective complexes. The ordinary way of
accessing a diagram is by a poloter to the first action class node.
For the purpose of chaining together diagrams, there is a separate
diagram header node which has a pointer to a diagram’s first action
class and a pointer to the next diagram header.

A tree node has a variant record which states whether
the node 1s an internal node or a leaf, If it is.a leaf, its
appropriate action class is stored in a bitmask. If it“s an internal
node, an array of pointers points to its tree node "children"
and the integer value of the test it represents is stored.

S+ Major Procedures

The following conventions are used here: procedures are in
capital letters. Variables are in lower case. Within the text, varfable
names are bracketed with hyphens. The fullaying abbreviations are used:
int = integer, bool = boolean, cptr = pointer to complex,
aptr = pointer te action class node, dptr = pointer to diagram header,
tptr = point to a tree node, bit = bitmask.
ﬂSIZF{c: cptr)

is a function which returns the integer size of complex -c-.
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TRIM(nstar: int; maxs: int; agmode: bool; el: eptr)
sorts a chain of complexes pointed to by -nstar-. If ~aqmode- 1is
true, then the chain is sorted on two cost functions: a) number
of cells newly covered by the complex, b) number of "don’t cares".
}E ~aqmode~ is false, then we are sorting on complex size prior |
to decomposition for the covering routine. =El- is the
event we are covering when TRIM is called from AQ.

AQ(fl, f2: cptr; maxstaraq: int)
is a function which returns a pointer to a chain of complexes
which 1s the cover of a set of complexes pointed to by -fl-
against a set of complexes pointed to by -f2-. Differences
between thils version and the INDUCE-1 version have been
explained earlier in this report. AQ calls TRIM with —aqmode=-
set to true. The limit tosthe size of the "intermediate
star" before we invoke TRIM is -maxstaraq-.

EXPAND (r, firstecl, lastcl: cptr; keepstar: bool)
‘creates a chain of complexes which exactly covers the set of
events covered by =-r-. If -keepstar- is true, the "expansion"”
of =r- 1s to a chain of elementary complexes. Interngl
disjunctions are "removed" in this way but "don’t care"
("star") selectors rerain intact. If -keepstar- is false,
the expansion is tﬁ a chain of single cell complexes.
-Firstcl- points to the head of the chain. -Lastcl- points to
the last complex in the chain. The "seed" complex, -r-,
remains unchanged.

DECOMP (a: aptr; suhnaé: int)
{5 a function which returns a pointer to the first action

class node in a diagram. The resultant diagram is a
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decomposition into single cell complexes of the diagram whose
first action class node 1is pointed to by =-a-. The decomposition
1s done by calls to EXPanD with -keepstar- set to false. The
variable parameter, —subnac-, is set to the number of action
classes in the resultant diagram.

GETPARAM
1s where the user sets the number of tests (-nvar-), the
upper bounds of the various test domains (-nval(1)~) and |
the number of actions for the input table.

DTABLEIN
is a function which returns a pointer to the diagram
representing the input table. Tt is here where the user inputs
the rule values. The returned diagram is broken into single
cells, but only if a cover is to be generated. As a side
effect, the original unbroken diagram is pointed to be
—origdiag-. This procedure calls DECOMP. It removes
redundant cells if input rules from the same action class
overlap. Inconsistancies are detected and aborted. Also éhe
number of action classes is computed.

OPTCOVER (diagram: dptr; noties: bool; nac: int; tests: bit)
returns a pointer to a chain of diagrams which are optimal
covers of the diagram pointed to by -diagram-. If more than
one cover is found, only unique alternate covers are kept. If
-noties- is false, only one cover i1s kept. The covers are
generated by calls to AQ.

MAKESUBDG (subdiag, cover: aptr; 1, t: {nt)
returns a diagram pointed to by -subdiag- vhich represents

a subdiagram of -cover- split on the variable -t- for
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value =i- in the domain of -t-. Only one subdiagram is

created.

PICKM(tests: bit; cover, origdg: aptr)
is a function returning am integer which is the best test
for splitting the diagram pointed to by -cover- via the MAL
criterion. The bitmask, —tests-, passes the tests available
for selection. -ﬂrigdgn_pnin:a to the original diagram 50
that we may determine if a test separates original cells
within a complex. Global variables, -deltal- and =sipmal-,
are set. These are the number of broken complexes and
the summation of -deltal- over all tests chosen, respectively.

MAL {node: tptr; tests: bit; cover, origdg: aptr)
calls PICKM to determine the test by which we”ll split
—cover—. MAKESUBDG is called to form ﬂuhﬂiagrams of the
original diagram. If the subdiagram has only one action clas;
or is null, the corresponding "child" of -node- is set to be
a leaf node (an "else leaf" in the latter case). Otherwise,
the chosen test is removed from -tests-=, the available test set,
and MAL calls itself recursively with the -node- parameter
passed as tree nodes which are "offspring" of -node- in
the calling procedure.

PICKD (cover, subcovs: aptrﬁ
is a function internal to procedure DMAL which chooses from the
set of avallable tests, which test best splits the diagram
pointed to by —cover— via the DMAL criterion. The integer
value of this test Is returned. The variab;e parameter
-subcovs— 1s also set to point to the chain of covers of

subdlagrams which are formed as part of the DMAL selection
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Note that Case 1 is Example 1 in [1] which is from a complete

table (i.e. it covers the whole event space). The other cases were
not from complete tables. DMAL was not used 1n cases 4 and 5 because
of its prohibitive cost. In Case 5, because of {its large size, no
optimal cover was generated for MAL, but the tree algorithm was run
on the "raw" decision table rules.

6. Future Considerations

After some further modifications, which will include test
costs and action probabilities, a user manual for this program will
be produced. Further research comparing these algorithms with other

methods will be conducted.
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Process. Procedures MAKESUBDG, DECOMP, and OPTCOVER are
called. PICKD sets -deltal- and -sigmal- which 1s 1
Summation of -deltal- over all chosen tests.
DMAL (node: EpEr; tests: bit; cover, origdg: aptr)
calls PICKM to see if -delta0- equals 0 sg the shortecut
explained {ip [1] can Be taken. If ~deltaQ- is not 0, then PICED
is called. DMAL then calls itself using the chain of subdiagram cove
which PICKD generates. The set of available tests is passed

a8 —tests- and -origdg- points to the original diagram.



5. Program Performance

Case number.
No. of rules.
No. of tests.
No. of action
classes.

Size of event
space.

MAL

Time to find
cover (ms).
Time to find
optimal tree (ms).
Sigma0.

Number of leaves/

number-ﬂf_*ﬁlae
leaves".

DMAL

Time to find

optimal tree (ms).
Sigmal.

Mumber of leaves/
number of “e}se

leaves".

1 2
27 10
6 4
6 &
64 108
70 2029
45 51
0 2
6/0 17/2
o 3375
- &4
e 17/2
Table 1.

14

128

661

57

9/0

3398

9/0

Program performance data.

34

394

19998

269

36/4

30

10

9456

479

79/18

25
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Appendix A

Definition of Cartesian Complex

A cartesian complex iz defined over an event space

E =D, ¥ D, ¥ ...fnn where Dy = {0,1,2,4..,d;} for an integer d,-
A cartesian complex, C, is defined as:
c'iEI{“i:o{i}

where {xi 'Ckﬁ}, called a cartesian literal, is a set

of all events e = (“1‘“2""!x1""“n} € E, such that

the value of x; 1s an elerent of 0{1, C’&E'; Dy-

An elementary complex 1is a cartesian complex where the ﬁhfi
either take a single value from Dy or take the entire
domain as their value. In the text, a cartesian complex

is called, simply, a complex.



