A Program that Paraphrases

Variable-Valued Logic

J. Reiter

MLI 79-8

Formulas

A PROGRAM THAT

PARAPHRASES

VARIABLE-VALUED LOGIC FORMULAS

prepared by John Reiter
for

. Professor R. S. Michalski
C. 8. 480 -
Spring, 1979

X PURPOSE OF THIS PAPER

This paper is intended to provide a brief descriptiaﬁ and serve as a
user's manual for a program that can paraphrase variable valued logic
formulas. Some implementation details will be provided; however, most
of these details are decribed in the internal documentation of the

program.

2. MOTIVATION FOR DEVELOPING THIS PROGERAM
2.1 USE IN KNOWLEGE-BASED AND COMPUTER INFERENCE SYSTEMS

The need to provide computer users with a simple, clearly understood
interface to programs and to information systems has long been recognized.
This need has been epecially apparent in the fields of knowledge base

and computer inference system development.

The developers of the MYCIN medical knowledge base system show an awvareness
of this requirement in their design specifications. They wished to

develop "a system capable of handling interactive dialog, and one which

was not a '"black box'. This meant that it had to be capable of supplying

coherent explanations of its results..."(i} The designers of MYCIN have

alén stated: "Augmentation or modification of any knowledge base is
facilitated by the ability to discover what knowledge is currently in
the system and how it is used. The sytem's acceptance (especially to a
medical sudience) will be strongly dependent upon the extent to which

performance is natural (i.e. humanlike) and transparent”. These requirements

have been met partly through the design of a program capable of supplying

a paraprase of MYCIN production rules.

2.2 HISTORY AND GOALS

This program is based upon one which was developed for use in the MEDIKAS
system, which is a system of programs being developed at the School of
Basic Medical Sciences at the University of Illinois at Urbana—Champaﬁgn
to assist in the construction and use of a medical knowledge base. That
system uses slightly modified variable valued logic rules to direct the
aquisition, modificatien, and display of information; therefore, the
ability to parapprase VL rules was essential in order to provide users
(and the system developers) with clear, easily read versions of those
rules.

The version described in this paper is a generalized and much more
flexible versicn of the MEDIKAS paraphraser. It was written in a manner
such that it can be easily easily adapted to a wide variety of programs

that utilize wvariable valued logic formulas.

It achieves this adaptability by allowing the user to specify the format
of the terminal symbols used in the formulas; for éxample, the user can
specify the format of operators, function names, and variable names.
The.pragram also allows the user to specify the way in which the terminal
symbols will be paraphrased. This ﬁill be explained in detail later in

this paper.

3. PARAPHRASE EXAMPLES

3.1 DATA RULE

Before decribing the program in detail, several examples will be presented

and explained (the examples can be found in figure ;i

The first example is a data rule extracted fram the eastbound-westbound
trains example used in "Pattern Recognition as Knowledge Guided Computer
Induction” by R. S. Michalski. (reference 2). This example illustrates
several features of the paraphrase. The paraphraser can print tokens
just as they are received (such as "PHERE EXISTS") or it caﬁ change the
value of tokens (such as the change from "CARL" to "THE FIRST CAR") or
it can produce words that have no input token in that spot in the rule
(such as the words "SUCH THAT"). It can also do some reordering, such
as the paraphrase of "CONT-LOAD(CAR2,LOAD1)" to "THE SECOND CAR CONTAINS

THE FIRST LOAD".

3.2 CLASSIFICATION RULE »

This example also demonstrates all of the features mentioned in the
previous section.

3.3 RULE WITH INTERNAL OPERATORS

This rule demonstrates that internal conjunction and internal disjunection

operators are recognized and can be paraphrased in a reasonable manner.

&
&

FIRST LOAD
ONT=LOADICA21,LCAD])

F

Fait

R
k ¥

Ta,

T
1

& 3
Ffapw ARD TE=

T =

P A leCAET Cba

R

I~
ik

-
F

o
SH A

fLls 1o
- T

AFg T=-

FryaTS
FIos "

=h%0

F.

THE

THE
YHE SECCHMT

15 1IN
AND TH

T

I3

AR AND T4¥

L

L il |

3
% T
Lr
=

Tik

T
=
LR
o S
:HD
S

P
—
T
4
u.r‘pT

(PR PRSI FINNITY o8
JEL1T1
Ll ol 2 o

=
R

THE SHARPE 7 F
[

IN

CAR=SHALE(CAR2)
EN

S CH THAT
5 AR

L]
T
E

r;rju:! ree
e CCMD TAR

TH ¢
TF THT
F'igurf- 1.

£y

rAD
'-Z'-I.!-, D_I_

L2 TCAR=SYAPEICART)
N|=SHAREM"],

THE FIPST
ERTT ThrE
12 =Shpw

PPED

L]
4

T Ti%

;_.':-!-t-‘ru

JAGGFN=T

THERE
TH= FTC

L, OVERVIEW OF THE PROGRAM

k,1 GENERAL INFORMATION

The program has been written on the CDC CYBER 175 in the standard version

of Pascal as described in Pascal User Manual and Beport by Kathleen

Jensen and Niklaus Wirth (reference 3). It contains approximately 1500

lines of code and comments and requires 75K of memory to compile.

The program was written to be reasonably efficient; however, great
emphasis was not placed on speed efficiency, since the only real requirement
is that the paraphrase be produced in real time. The program performs

well within this bound.

The program also does not use a large smount of main memory, which is
important if this program is to be integrated with other programs.
There are some space utilization improvements that can be done; these

are described in section 8 of this paper.

4,2 LEXICAL ANALYSIS
The first major part of the program is the lexical analyzer, which
determines if the current input string starts with one of the types of

tokens which the parser expects at that point.

The lexical analyzer is rule driven; that is, it interprets the rules
which the'user supplies to indicate the format of the fourty terminals

in the grammar. A Backus-Naur Form (2NF) description of the grammar

for these terminal specification rules follows (nonterminals are typed

in lowercase, teiminals are underlined, and alternate options are specified

by the "!" character):

specification ::= ALPHA ! DIGIT !

! specification
[specification] ! / specification [!
specification ! specification !
specification , specification !

{ specification)

ALPHA specifies one alphabetic character, DIGIT specifies one digit,

'‘characters' specifies a string consisting of those printable characters

(for example, 'CAR' specifies the string consisting of the three letters

C, A, and R), [specification] specifies repetition of specification

zero or more times, / specification / specifies one or more repetitions,

| between specifications means that both specifications are allowed, &

comma hetweeﬁ specifications means concatenation (for example, 'CAR',/DIGIT/

means the string CAR followed by one or more digits). Parentheses can

be used to override the default 1mp11nit-pare;theaization, which is

right parenthesization (that is, 'CAR'!'LOAD',/DIGIT/ means 'CAR'!('LOAD',/DIGIT/)).

Appendix A contains the terminal specification rules used to generate

the examples of figure 1. The rules must be typed in the order shown.

4,3 PARSING

A top-down, recursive parser is used to parse fcrmylas, producing an
explicit parse tree as it does so. The grammar that is parsed reflecis
VL2l syntax as specified in "Pattern Recognition as Knowledge-guided
Computer Induction" (reference 2). A BNF description of the grammar that

is accepted by the parser can be found in Appendix B.

Note that this grammar is quite general; for example, constants, variables,
and functions are accepted as arguments to functions. Also, note that
constants can (but need not be) in quotes; therefore, ambiguity arising
from the possible confusion between functions and constants as references
can be handled by placing quotes around the constants, but if no confusion

is possible, quotes are not needed.

One thing to note about the parser ig that it tells the lexical analyzer
which token to look for, therefore simplifying the lexical analyzer's
.jnb. Most lexical analyzers do there job independently of the parser,
so that it must decide out of all possible types of terminals into which

class the current one fits.

The advantage to the user of using the type of lexical analyzer that the
paraphraser uses is that it gives the user greater fresedom in choosing

the format of different terminals; for e*ampl;, the symbel chosen for

aﬁe of the selector operators could be the same as one chosen for one of
the metaimplication operators and no confusion would arise (since at no
point does the parser expect both a selector operator and a metaimplication

opérator to be possible valid input}.

For each grammatical contruction that the parser recognizes, some binary
tree representation of that structure is produced. Illustrations showing

the structure of the tree for each terminal in the grammar are presented

in Appendix C.

An understanding of these tree structures is essential in order to
specify the paraphrase rﬁlea that are described in the next section.
Understanding most of these structures is not difficult, however.

Binary operators such as the selector cperators are placed in & node
with its operands as itz laft and right subtrees. List separators such
as argument 1ist separators are considered to be binary operators with
the parts of the list that it separates as operands. Unary operators
sﬁch as NOT have only one non-nil subtree {the right subtree}.' Functions
are are considered to be unary operators with their argument list as
their operand. HNullary functions such as variables and constants have

no non-nil subtrees.

The parse tree that was contructed for the paraphrase of the third
example in figure 1 is shown in figure 2. This example shows each of

the types of subtrees described in the previous paragraph.

4,4 PARAPHRASING:*

After the parser (with the help of the lexical analyzer) has successfully
parsed the formula and produced & binary parse tree, & routine is called
upon to traverse the tree and produce & paraphrase as it does so. This
routine functions by interpreting user-supplisd rvles thaf specify the

format of the paraphrase to be performed for each terminal; or, to be

THELE EYISTS

CARZ-SHAPE CRA-SHAPF

-

T
-

4
ot
' J
n
o\
)
o8
)
o
r
il

more specific, the rule for each terminal specifies how to paraphrase

the subtree of which that terminal is the root node.
A BNF descriptién of the grammar of the paraphrase rules is:
paraphraserule := inputspecification :

outputspecification .

inputspecification ::= terminalidentifier !

terminalidentifier = ' valueofterminal '

terminalidentifier ::= characters(except : =) 1

outputspecification ::= empty ! putputitem |
outputspecification outputitem

outputitem ::= ' characters i ! ¥ !
leftorright P

leftorright ::= L ! R ! leftorright .L- !

leftorright R

The rule interpreter attempts to match the input specification part of
the rules for the current token being paraphrased. Note that there are

twvo formats for input specifications. The first format consists of only

a terminal identifier, which is a character string which labels the
corresponding terminal or is a " (which mgans-that the label éf the last
rule to have a character string applies to the current rule). For
example, FUHCTIGHHAHE could be the terminal identifier of a rule and "~
could be the terminal identifier of the following rule {indicating
another function name rule). The second format of input specifications
allows the specification of a value for the terminal; for example,
FUNCTIONNAME = 'INFRONT' will match only the function whose value is

INFRONT.

The output specificatiocn part can be empty, in which case no output is
produced for that input specification. If it is ¥V, then the value of
the terminal is printed out. If it is a string of printable characters
eﬁclcsed in quotes, then that string is printed out. If it is P precéded
by a series of one or more R's or L's (R meaning traverse right, L
meaning traverse left, and P meaning paraphrase), then the paraphrase
routine will recursively call itself to paraphrase the part of the tree
specified by the L's and the R's. For example, RP says to paraphrase
the right subtree, and RLP says to paraphrase the subtree obtained by
traversing right and then left from the current node, BSpecifications
such as RLP and RRP are especially useful for paraphasing function

arguments.

A.listing of the rules used to produce the paraphrases shown in figure 1
can be found in Appendix D. They.illustrate all of the features decribed
in this section. MNote that the terminal specifications are actually

Just comments as far as the paraphrase rule interpreter is concerned,
thus & quote must be used to indicate a another rule for the preceding
non-quote terminal specification. The order of the rules'must be as

showWn.

Also note that the rule interpreter checks the rules for the current
token in the order in which they are given; therefore, more than one
rule may potentially match the current token put only the first rule
+hat matches 1s used. This feature is useful for specifying an "alse"

rule. For example, the last CONSTANT rule in Appendix D is

which is matched for ﬁnr constants (such as ngmbers} which

i

do not match previous rules. This allows one to bother to write a

special rule for only those cases which need special paraphrasing.

5. RUNNING fﬁE PROGRAM

".
All programs and data files are presently in the account with user
number 3KNPU30. The source is in the file named PARA, the terminal rules
in Appendix A are in TRULES2, the variable valued logic rules are in '
-?HULESE, and the paraphrase rules are-in FRULESZ2. To compile the source

program, use the following commends (follow all CET commends with /UN=3KNPU3Q):

GET,PARA
GRAB,PASCAL
RFL,T5000

PASCAL,PARA,LIST

To run the program, type

GET,TRULESZ

GET,VRULESZ

_ GET,PRULESZ2

LGO,TRULES2,VRULES2, PRULES2 ,RESULTS

This will place the paraphrase in the file named RESULTS. Using CUTPUT
instead of RESULTS should print the output to the screen.

6. PROPOSED CHANGES AND EXTENSIONS

6.1 EXTENSIONS

One nice feature that should be added to the input specification part of
the paraphrase rules is some method of checking the right né left subtree
for the occurrence of some input specification. This feature would

allow the selector operator '=' to be paraphrased as 'is' when the
referee is singular and 'are' when it is plural. Also, by being able to
check for nil subtrees, a list of values like CARl, CAR2, CAR3 could be
paraphrased as CARl, CAR2 and CAR3' as is done in English. See figure 1

if it is not apparent that this could be done with this feature added.

Another extension would be to allow some terminals to have empty value
in some cases (such as "and" between selectors). Allowing any terminal

to be empty in all cases invites ambiguity problems, however.

6.2 IMPLEMENTATION IMPROVEMENTS

Several things could be improved in the program. First, the format of
the terminal specification rules could be made more flexible. Presently,
no blanks are allowed in the rules. Also, each rule should have some

way of specifying which terminal it is defining.

Better detection of errors in the rules used by the program would be
desirable. Recovery from some errors would also be desirable.
In addition, more clever, space efficient data structures could be used

to save some of the space used for rule storage.

T. BIBLIOGRAPHY

(1) Dpavis, R., Buchanan, B. and Shortliffe, E., "Production Rules as a
Representation for a Knowledge-Based Consultation Program", Stanford

Artificial Intelligence Leboratory Memo AIM-266, October 1975.

(2) Michalski, R. S., "Pattern Recognition as Knowledge-Guided Computer
Induction”, Department of Computer Science, University of Illinois at

Urbana-Champaign Report No. UTUIDCS-R-T8-92T, June 1978.

(3) Jensen, Kathleen, and Wirth, Niklaus, "Pascal User Manual and Report",
P

Springer-verlag,]9Th.

APPENDIX A

%ﬁnﬁ. DEScRIPTioN

My A rﬂm#nlj":-"-—“
diBuT. WET JEFERAOL i

PIRAIOATEN L CARS =LY

ARJMOLE VR S TE YT v L T g R STV LA LASS
wil. WsT sEeararoe ! .

o Al ﬁ:’;‘fﬁ'bgfrqﬂi'

“SEE gwisTH "t B

ZXCEPT vl

“PucATion) - : o
S YALERCE ":'"('T i

asiom Assis, (12

TEREMCE iy

SuEtanaames i<

EH;:" g4y veR Ty

i, oA tered

Y PELQUEMpIEN b

R LEFT cofE T

~M, Budr Cuest IyAT

L T VT

FAGE LSt

A MK o e

.Jﬂﬁﬂljpr“ﬂ‘|1|

aert M ToLl

L BaMT, N

weron) NAMBS [i e e o, A O T

"MRWHEFLS' ! 'NR=PTS=LOADT ' POSITICNY

TQRuALS Yo

EH\:G'!'IE,'i'!ll_,-:h;l-'l"-}"*f'r-:;, el LI

CONSTANT {

ﬂmﬂ'ﬂﬂﬂ‘ b A

L UST. LEST Cosed
- ST BT wal
. LSt SRAAZATML ot

il TITROL YO GA L SR AaTARE I JARrT 3T s
TEASTBOUND 't "WwESTBOUNDY 1 /DIGIT/ -

—_—

-7
R |

N

uFJnhqll1LE‘¢TH'!IPJ“fAL::'!'ﬁf”[-LrﬂAillL:lF—lefi.!.“:ETQ'Lfirl

APPENDIX B

anf niredTEY[(AF Ty2ICA) WASIATLS et Y P LOGIC Eoawilla SYSTAY.
‘wyfjr ®ferrulsr Vs fylfarruln® {w;i-;rgnr|hT:_u;.1Tr:}
gl tapmyl oy o iE 1"'-i'iﬂ-"Tjrl‘if',;:-*i';l"t trat > fargnpege iar™ |
75%nr2531102
faquart iticr=tin f > #1x ¢agsmtificatian? 3
eaviantitication Eigtd CouiN] iy cvogpedllan c~yartificaticn>

zﬂ\jﬂrtiriﬂ:tiarj HE f}uan*il‘iﬁr} eyariarte list>
Pyarisats llntd 228 crpwTpaLey !

2 Tvardatle 1ist? ZTToT R LT T .00 Srrbs 51022 TvarTicieas
{GUHﬂti‘inrﬁ L= LFC= ALL?Y ' T4 RS EIETTE)
TERoreR LAl T3F 55 T EeffAcSICN? -

Cex xnr2s3i6nd <”"ﬂCF*F“?Or3 CgUrEXSression?

(:rfﬂilrf5 !

‘eyprvwaracgiand ¥
{iutuirrnislrr} ZEV¥L=rP1? <crocruct?
fmetarnaratpr®» 1@ (I“'LTF‘T'r\} T IYALAMETY CATETISTION LSTIEAYINTY |
: SETERenais y eqfn ian i aTqENy f €Sl manTIl FRUTYALINCED
srproTuctk> &te (fnrrrf} H
Appatucty €2F crner3tar? c¥tactar

T AEFTIrery fis <l (LCTTve BP9 YR LT EI L kD
s€aptory t's Lterm> v ¢facterd €4MDD crarmy
TTerns 1'% e TSR e xLlFEIinmr > T T TR) =TFeTS 1

i."--r'l"\ 'c‘ﬂ"nrl‘-';iﬂﬂ'? =

Byzons 0 erpproy 1 L1 aeinuiy |

"’vgf.F..-.*lnr", H st FapT! 3
Cselanteory 'is %€ EEETSS LEEY _CLUFZ0 creferae> €selector 303 ¢referencad

' gempe ST PIGHT CLOSED o
s -L?T.-: LEFT FLAS -2 frafzrosd CRTLFACICS 21rAUT FLISTD
erefopren tim Cavarir fapptjory !
oL R el R RN AL (CENLACTIRNE Catovie fupctinr>
Fafasic fTurcfiony T TCIRLT I L, Rir - * r
CPIufTION wamed Caraumant Jistd ! <VARTAFLED
Zgpjontar c2> 1's corpaly Vo €T CHaL>) CCaZATie Tuen» 1 C1F35 TrAv> @
[4 N T rea ™ 3 - l_--';.> l| {In_.._J]'_.'lllu i__-.' g L"'L"

frefFearennc t'r frafoarprce jtems !

i fr_--Fflr.:_ﬁr_:i'j (T\LT’. En AL CT"‘-.‘_'.I."CTT S frefprarres jra=my
frefprpt:wra jtar>» 11T faxrunted fumctin> |
covtenden 1un.-1-|¢r.'} FLANCE CPRPLEATOED ¢cestendad functicr2
Texter*=" T afr 1"y TE CFT 0T I
fFLr’T"" pAMed Caraument list®» | cyrs TAAL =Y
CLFFT 20NTED CLrLSTARTS CRICHT ALOT=> 1 CCCRSTANTD
capayumrert Pigt> 1% 1T RIGHT CLOSES

s €500 LISY LFET CLOSFD ¢arourarts> <AFG L

¢arcymented tis ¢pxtanded functicr® 1

farpuFrsptey €20 erzpATCES faytended functiond

APPENDIX C

MAIN VL FORMULA .

MAN
YLFORMWLA
TERMINATOR

WL FO ML -':

L FORMULA :

VL FORMULA

QUANTIEication EXPTESSIan
LIsT c4
NG

QUANTIFICATION LIST:

QUANTIFIL ATION
LT
SEPARATOR

QUANTFICATION GUANTIFILATION
LIsST

QUANTIF‘I_(,&T:&N:

— ‘JﬁlkllﬂrELE
= LisST

QUANTIFICATION

THERE
EXISTS

-

YARIABLE
LisT

VARIABLE LIST .

OR VARIAALE
SEPARATOR
VARIABLE
VARIABLE VARIABLE
LIST
VARIABLE ¢
VARIABLE

—
-

EXPRESSION:

l es

SUBEXPRESSION

} EXPRESSION SUBEXPRESSION

SUREXPRESSION:

PRODuUCT

SUREXPRESSIDM PRODUCT

PRODUCT

.

INCLUSIVE O
=1 %

FACTOR EvcLusive oe
PRODUCT FACTOR
FACTOR
'l' R
TERM - AND
FACToM TEA™
[ERM
EXPRESSION ,p NOT or

ey orR FALSE

‘

'f-

vl

SELECTOR

SELECTOR
OPERATOR

REFEREE

REFEREE REFEEENLE

l INTERNAL
AToM ¢ CONTUNMCTION
Fuwerion
REFEREE ATormic
FuncTiaa)
ATOMIC FUNCTION
oR
VARIAGLE
ARGUMENT
- LIST
REFER E N CE
l [urmuu
REFERENCE DisTuncTION
I TE™M

RE rsarutﬁ "‘5 S RRRR
ITEM

REFERENCE ITEM

EXTENDED —
FumncTION

RANGE
OPERATOR

EXTENDED EXTENDED
FuweTionw FUNCTION

EXTENDED FUNCTION

FuncTion
NAME o8 VARIABLE | o CONSTANT

. hEGuﬁhﬂI‘T
LisT

‘]

ARGUMENT LIST

l

ARGUMENTS

ARGUMENTS

[

FuncTion) —

ARGUMENT
LIST
SEPARATOA

ARouments EXTENDED
FluneTion

APPENDIX D

Lt

LiJ
"
L L
L1}

V0L ErDw

b
-
‘e
a
-
- -
L*] ™
-
[Fa 4
— 3
£ i
T3 —i»
L n
] sy
1
= — &
— 'y
- L
= -
“r -l =
[[#] |
L “r ™
Fa rr Lr.*l 0
-1 - =T .»
¥ - -y =¥
= LA el
w [} LA ¢ B B ol S S |
- [o |
M - e ==kl =
] ¥ TR NN ST
s L . =L a0, - - = L]
i L -0 - L [T osk = i [#1 -
Lo E L B [YO - R - T v [
[fee G b= B e s} o
I - - AT 3 o v = - I s |
[] o - = | w oJ OOTE 1) i L e 8
- fa [- | - E e s Fall s | - laym | LB
L1% i (0 T 15 - - . TR S .
- e (= b= al & LES w fooa i - = L el e R |
. b= L T = e |l gTnnJ7Ira3 T S — LN LT o
L s | 1] U ¥ o b = Ll L] FEELE S
Aadevl o v -l o e o - N " SR I L
iy = - LSEE - | l— e _n - - Loe Lo
L - L] F PREST S IR PR T . -_ g TR W
- T i a - I - =3 = - L PR | S a1 S |
L= e = T Ak -y - L I L LTI -
- ey W [T 01T - L IRT SETEN S - I
B Wik | wh= e i), fo = o ik W IS T S T - Ll
- el o= e Fam oy | L A i BT 1 [t e - e -
uls - gt f o L T [T T=[1 1 [+] -
LN I hy = e LR TR B [P (ol SNl I Lom
| TF i (L b e o il o e e e =T & - o -y BT -
bl ol R N VT I Lo LT PO PR I i AT IATh TR - ot -
LR LI T R T S Flov TR =L T e P s SUTRN o O R LN G W T o LU L
k. B PRI Y - P-4 - e L g Lo] L LS PR 1 == — ke | e UL 1.
L I e (R PR Tt TR, T i sl == = = = o= | ea oawr [R wp o, e f o L" LT Tl
Lobmim w2 il - - = - A S P Y S i = _ g el Ll
w oo T - £y @LF Wl gl ta WMo oW W R(H oW M= RY D oLyt e e - n L.f: = Lobr—
LI LIS R B e U) E R T AP AR A Pl LR T el 1 S o N L B T T
o, o e e | PR ke, "R, R - =t m e S e
e G R e mi e Lot R s ¥ L. oL [P O P - J X
LA I T w2l ta ol e L T [T RT— (U TR R A I - 1
(P8 LD o T S PN T L (N S s I A = = = & e o= O b = i— L
Lo mtea b=t TR gl 3] o e 1] - R . - = []
- L L (PR ST A T =s Pl St szsphOncleu el i .
A e L el o e L= = ke bar el e T = C e ”
Lan S L LS Wl o O TPl N T I I T L Ml fha S E T 5 k=t
L.) TR T FRTTE . B R e] (TET i PR TTLRNT I e TR ST T
PPE(PUF.FNM..LF.LGD Op=Tr | =2 = oL (8L g L
OT 3 Ol F il Zbe 7 o = Ll Wi o , AL b= e o e i e OF tn
Sl S el S LU el S -l LY P D D ey L O = =X =2,

