AQLISP: A LISP Program for
Inductive Generalization
of V1i.» Event Sets

P. Richards

MLI 79-9

A publication of the Machine Learning and Inference Laboratory
Artificial Intelligance Center

George Mason University

Fairfax, Virginia 22030-4444 U.S.A.

(703} 764-6259

Editor: R. S. Michalski
Assistant Editors: J. Ralston and J. Zhang

The MLI Reports replace ISG Reporls
published until December 1987

by the Artificial Intelligence Laboratory,
Department of Computer Science
University of lllinois,

Urbana, lllinois 61801

AQLISP:
A LISP Program for Inductive Generalization

of VLl Event Sets

Paul Richards

Internal Report 12-15-79
Department of Computer Science
University of Illinois at Urbanha-Champaign
Urbana, Illinois 61801

AQLISP: 2
A LISP Program for Inductive Generalizationm

of ‘U"Ll Event Sets

This paper describes the operation and internal structure of a program
called AQLISP, revision 10-Apr-79. AQLISP is an interactive LISP 1.5 program
for generalization and optimization of discriminant descriptions of object
classes. The descriptions are expressed as disjunctive normal expressions

in variable valued logic system VL_ [6]. Such expressions are unions of

1l
conjunctive statements (complexes) involving relations on multiple-valued

variables. Input data to the program are sets of VL, events (sequences of

1
attribute-value pairs) describing individual objects. Each set of events is

associated with a given class name.

It is beyond the scope of this paper to describe the VL1 system, or
algorithm AQ in detail. The reader is referred to [6] for further information
on VL1, and [7,8] for a detailed description of the theory behind the algorithm

implemented.

1 Why AQ in LISP?

There are several motivations for implementing algorithm AQ in LISP.
The most significant one 1s the ease with which dynamic structures are
constructed and destroyed, which is essential to the algorithm. Addition-
ally, LISP lends itself to interactive communication with the user. This
allows the program to be used as a "suunding.hoard“ for testing new {ideas
quickly and easily. Finally, many of the applications for AQ are in areas
of pattern recognition and artificial intelligence, which are often ex-

plored using LISP programs.

Section 2 describes the operation of the top level function (AQVAL),

AQLISP Users Guide

to interacéively use the AQLISP system. Described are the formats of
event and class input, parameter specification, mode selection, and output
format. Sections 2.7 and 2.8 provide an example of the interactive system
dialog and the output generated by the various modes. Section 3 describes
the data structures required by the system, and a description of the prin-
cipal interface to the implementation, function (AQ), which permits use of
the AQ system within user written programs. Section 4 offers some compari-
sons of AQLISP and AQ7, a PL/l implementation of algorithm AQ. Listings
of the system functions, and installation dependent operating instructioms

are provided in the appendices.

2 Interactive Operation.

Once the AQLISP system is loaded into a LISP interpreter, it may be
invoked Iinteractively by calling the function "(AQVAL)". AQVAL then be-
gins an interactive dialog with the user, requesting (1) parametric infor=-
mation, (2) variable descriptions, (3) event and class specifications, and
(4) an operating mode. AQLISP uses the standard LISP functions (READ),
(PRINI ...), (PRINT ...), and (TERPRI) for all input and output, and as-
sumes that these are directed to the users terminal. It also assumes
(READ) echos {input provided to it; AQLISP does no echoing of its input.
(READ) must also allow several S-expressions to be supplied by the user on
the same physical line. The dialog of each section mentioned above is

demonstrated by showing the prompt provided by AQLISP on the left, and an

AQLISP Users Guide
Interactive Operation

explanation of possible answers to the right. (S5ee Appendix A for

installation-specific properties of the interactive system).

2.1 Parametric Specifications.

Currently, two parameters may be specified interactively to the
AQLISP system: MAXSTAR, the maximum star size permitted when generating
stars, and CUTSTAR, the sgize to which a star will be trimmed when it

exceeds MAXSTAR in size. These questions rum as follows:

ENTER MAXIMUM STAR SIZE FOR THIS RUN:

Enter an integer number greater tham zero.
The upper bound on this parameter is deter-
mined by space available to the program, and
CPU time available for processing. Too large
a value may cause excesslve garbage collec-
tions, complete exhaustion of free-space, or
use very large amounts of computer time. Too
small a wvalue will cause excessive trimming
of the stars generated, which lowers the pro-
bablilty that a truly optimal cover will be
found. (Note that if any trimming 1s dome at
all, the covers generated by AQ are not
necessarly optimal).

ENTER SIZE TO CUT STAR WHEN TRUNCATING:

Enter an Integer number greater than - zero,
and less than CUTSTAR, mentioned above. The
closer this value 1s to CUTSTAR, overhead
caused by star trimming will increase, with
subsequent Increase in CPU time usad.

The parameter that determines optimality criteria, CRITERIA&TOLERANCELIST,

AQLISP Users Guide
Interactive Operation

is always initialized to ((#COVERED 0.0) (NUMBEROFSELECTORS 0.0)), which
causes the covers produced by the interactive system to always be selected
from the complexes that cover the largest number of events, and in the
case of ties, those with the fewest number of terms in VL1 format. The
parameter RESTRICTIONLIST is always initialized to NIL. (See section 3.3

for more information on the parameters.)

2.2 Defining Variables.

Every variable to be used in the current AQLISP run must be expli-
eitly declared after entering parameters. Additionally, the type and
domain of these variables must be provided. Variables may either be NOMI-
NAL (assume discrete values) or LINEAR (assume interval values on the

range [0 .. <maximum Integer on system>]).

DEFINE VARTABLES FOR YOUR PROBLEM:
(END WITH “*°)

This message indicates varilable declarations
are to be entered. Variables should be en-
tered in groups that have i1dentical domains
and types. After all groups are entered and
the program again prompts for variable names,
enter ‘*° to indicate you wish to enter
classes and events. -

VARTABLE NAME(S):

Enter names of all variables that belong to
the next group of didentical domains and

AQLISP Users Guide
Interactive Operation

DOMAIN TYPE:

types. Varlable names should be composed of
the letters A-~Z and digits 0-9, and should
start with a letter (conforming to the in-
stallation conventions for non-numeric atoms
- see appendix A). Several variables may be
entered on a line (or several lines),
seperated by either commas or spaces. The
last wariable should be followed by the sym-
bol “*° to denote the end of the name list.

If all variables have been entered, enter
only “*° to start entry of events and
classes.

Two possible answers may be specified here.
Either enter:

NOMINAL
to specify that these variables may as-
sume only discrete values that are ele-
ments of the domain specified 1a the
next question, or

LINEAR
to specify that these wvariables assume
interval wvalues on the range of non-
negative integers [0 .. <max integer on
system>]. The domain of these variables
1s also specified in the next question.

If the domain type NOMINAL was specified, the following prompt is issued:

WHAT ARE THE PERMISSIBLE VALUES:
(GIVE VALUES, SEPERATED BY SPACES OR COMMAS, END WITH “%°)

Enter all the possible wvalues the current
variable(s) may assume. These may be any
atomic symbol permitted by the LISP implemen-
tation. (Note - a restriction on the total
number of nominal values {is imposed - see
secton 3 and Appendix A). The last value
specified should be followed by a space or
comma, and a "%*°.

AQLISP Users Guide
Interactive Operation

If the domain type specified was LINEAR, the following prompt is issued:

WHAT IS THE RANGE OF PERMISSIRLE VALUES:

(TYPE AS "LOWVALUE,HIGHVALUE")
Enter the range of values or intervals the
current wvariables may contain. The limits
should be elements of the integer interval
(0 .. maximum 1integer on system>], with
LOWVALUE<HIGHVALUE. Only one interval may be
specified for the domain of a linear vari-
able.

After the domain of the current group of variables 1s specified, AQLISP
will prompt again for variable names. If more variables are to be de-

fined, enter another group. If there are no more variables to be defined,

enter “*°, and the system will begin requesting events and classes.

2.3 Entering Events and Classes.

Events are entered to AQLISP inm a VLl-like format, ome VL1 formula
to each event specified. The VL1 formulae are formed by the conjunction

of terms (or selectors). Each selector takes either of two forms:

1) for a NOMINAL variable, the selector format is
[<var> <relation> <va11> i fvalu>]

where
<vars is a NOMINAL type variable

<relation> is either "=" or "#" to specify equality or inequality
to the values specified

AQLISP Users Guide
Interactive Operation

<val > is a walid value from this wvariable’s domain. More
than one value may be specified to indicate several
values belong to the same event.
2) for a LINEAR variable, the selector format is:
[<var> <relation> <lowvalue> .. <highvalue>]
or
[<var> <relation> <value>]

where
<var> is a LINEAR wvariable

<relation> {is either "=" or "§"

<lowvalue> {s the lower bounding value of the interval for the
event

<highvalue> {8 the upper bounding value of the interval for the
event

<value> may be specified 1f only a specific point value is to

be included, i.e., when <lowvalue>=chighvalue>.
Spaces must be placed between the variable name, relation, and values, as
these must be 1nput to AQLISP as seperate atoms. The conjunction of
selectors (i.e. complexes) is indicated by entering the selectors adjacent
to each other, and the end of the conjunctive formula is indicated by a
";". Thus, if Ll and L2 are linear variables on [0 .. 4], and N1 is a

nominal wvariable with domain (A, B, C), a complete VL1 expression for an

event could be:
[Ll = 2 ,. 3][NL = B][L2 = 1];

The square brackets around the terms may be replaced by parenthests, if

desired or if they do not represent super-parenthesis on the current LISP.

AQLISP Users Guide
Interactive Operation

Class names can be any atomic symbol the user desires. The dialog

for class and event entry runs as follows:

ENTER EVENTS AND CLASSES:

EVENT:
A VL] formula expressing a new event (com

plex) should be entered here. If no more
events are to be specified, enter a ";".
The VL1 formula may be continued over

more than one 1line 1f the (READ) function
permits contiouation of S-expressions.

CLASS:
The class name to which the preceeding event

belongs should be typed here. Any atomic sym-
bol is permitted as a class name.

2.4 Operating mode selectionm.

There are four "modes" in which the AQ algorithm may be applied to
the event clusters: (1) Intersecting covers, (2) Non-intersecting covers,

(3) DMisjointcomplex covers, and (4) Sequential covers.

2.4.1 Intersecting covers =

Intersecting covers are generated by applying AQ 1in the following
manner: let E, represent the set of events to be covered for class 1 and F
be the set of all events specified to the system. Each cover ﬂi is con=-

structed by applying AQ to E1 against F - Ei' Thus, the intersection of

AQLISP Users Quide
Interactive Operation

any two covers ciric s 1#¥j may be non-null. The intersection will not
contain any event points originally specified as an event, it only can oc-

cur over unspecified events.

2.4.2 Non-intersecting covers =

Nonintersecting covers are generated by applying AQ in this manner:
Sort the classes into alphabetic order by classname, and assign each class
a unique index i. Thus, E, = <events in class with “first” alphabetic
name>, and so on. Let F 'uH{Ei}’ i.e., all events explicitly specified.
The covers for class i are generated by applying AQ to Ei against F - Ei +

U{ﬂj}, where €, = <cover of class j>. In this manner, it 1s guaranteed

]
that C,N cj-{}, 1#4.

2.4.3 Disjoint Complexes -

Disjoint complex covers are produced in a similar manner to Nom-
intersecting covers, except that the star generation of AQ is performed in
such a way to guarantee each complex in the cover is disjoint. In the In-
tersecting and Non-intersecting cover modes, this may not be the case -

complexes within the same cover can have non-null intersections im those

modes.

AQLISP Users Guide
Interactive Operation

2.4.4 Sequential mode -

Sequential mode produces covers in the following manner: first, the
classes are sorted as before in Non-intersecting covers. Then, the cover
Ci for class 1 1s produced by applying AQ to Ei agailnst F = Ea. To util-
ize the covers produced by this mode, they must be tested in the same
sequential order that they were constructed (ie, alphabetic classname ord-
er). Each cover may contain any event points allocated to a previously
generated cover. This mode 1s useful in classifying new events with a

minimum of wvariable testing, since fewer complexes are needed to specify

Some covers.

2.4.5 Specifying the operating mode.

The operating mode choice is entered in response to:

MODE OF OPERATION IS:
enter:
INTERSECTINGCOVERS,
NOHIHTERSEETIHGCGFERS,
DISJOINTCOMPLEXES, or
SEQUENTTIAL
to select the mode desired.

After the mode 1s selected, AQ will be applied as described, and the cov-
ers will be computed and printed. After all of the covers are printed

the following question is printed:

11

AQLISP Users Guide 12
Interactive Operatiom

DO YOU WANT TO TRY ANOTHER MODE?

Enter YES 1f you want to try another mode om
the same data, otherwise enter NO. This al=-
lows you to try any of the four modes om the
game data. If YES is entered, the MODE ...
prompt is re-issued. If NO is entered, a
garbage collection is performed, and (AQVAL)
returns to the c¢alling function (usually
top-level EVAL).

2.5 Program Cutput.

Interactive AQLISP produces its covers as a serles of disjunctive
VL1 formulas for each class. Each 1s printed in the same VLl format as was

used for input. The output appears as:

THE COVERS ARE:
COVER OF CLASS: «<first class in alpha order>

[<vl term 1>][<vl term 2>]...[<vl term n>]
[<vl term n+l>] [<v]l term n+2>]...[<v]l term n+m>]

where each line represents a seperate interval. The cover 1s the union of
all 1intervals printed under the heading line. This 13 repeated for each
class AQ covered. If no intervals are printed, the cover 1s the entire

event space.

2.6 Other messages printed by AQLISP

Certain questions accept only a few specific answers, such as when

AQLISP Users Guide
Interactive Operation

mode i3 to be selected, or the domain type of a variable 1is defined. If
the message:
Not an acceptable answer!
Please enter one of these:
<answer choice 1>

<answer choice 2>

-

is printed, the user has entered a response that is not acceptable. One of
the choices indicated must be entered. On terminals equipped with both

upper and lower case, case shifting may be significant.

Several places within AQLISP, consistancy checks are made on the
internal structures of AQ. If unexpected forms are detected, an undefined
function (SHOULDNT) is invoked to force LISP to abort the rum. These
aborts are usually caused by improper data entry of variables, events, or
class names (mismatched parenthesis, omitted spaces, non-atomic names,

etc.) After one of these aborts, AQVAL must be started from the beginning

dialog.

2.7 Sample AQLISP Dialog.

Below 13 an example terminal dialog, entering wvariables,

events/classes, and associated output that will be used in section 2.8.

(User-entered text 1s underlined).

AQLISP Users Guide 14
Interactive Operation

WELCOME TO AQLISP: REVISION 10-APR-79

ENTER MAXIMUM STAR SIZE FOR THIS RUN:
25

ENTER SIZE TO CUT STAR TO WHEN TRUMCATING:
10

DEFINE VARIABLES FOR YOUR PROBLEM: (END WITH “"#°)

VARIABLE NAME(S):

vi V3 * |

DOMATN TYPE:

NOMINAL

WHAT ARE THE PERMISSIBLE VALUES:

(GIVE VALUES, SEPARATED BY SPACES OR COMMAS, END WITH "#*°)
1 2 #*

VARIABLE NAME(S):

v2 V4 *

DOMAIN TYPE:

NOMINAL

WHAT ARE THE PERMISSIBLE VALUES:

(GIVE VALUES, SEPARATED BY SPACES OR COMMAS, END WITH “%*°)
123 =*

VARTABLE NAME(S):
*

ENTER EVENTS AND CLASSES:

EVENT:

(V1 = 1](V2 = 1] (V3 = 1] (V4 = 1];
CLASS:

I

EVENT:

(V1 = 1][V2 = 3][V3 = 1]([V4 = 3);
CLASS:

I

EVENT:

(V1 = 2] (V2 = 2] [V3 = 2] (V4 = 3];
CLASS:

I

AQLISP Users Guide
Interactive Operation

EVENT:

(VL = 1] (V2 = 2] (V3 = 1] (¥4 = 2];
CLASS:

II

EVENT:

(V1 = 1][V2 = 2][V3 = 2] (V4 = 1];
CLASS:

IL

EVENT:

[V1 = 11[V2 = 1) (V3 = 2] (V4 = 2];
CLASS:

IT

EVENT:

(V1 = 2)[v2 = 11[¥3 = 1] (V4 = 2]:
CLASS:

IIT

EVENT:

W1 = 21 (V2 = 3] (¥3 = 1) (V4 = 2];
CLASS:

1

EVENT: :

(V1 = 2] [V2 = 3] (V3 = 2] (V4 = 2];
CLASS:

111

EVENT:

-
¥

MODE OF OPERATION IS:
INTERSECTINGCOVERS

THE COVERS ARE:
COVER OF CLASS: T
[V4 = 3)

[V2 = 1,3)[V4 = 1,3)

COVER OF CLASS: 1II
[VI = 1][V3 = 2]
[Vl = 1][v2 = 2]

15

AQLISP Users Guide
Interactive Operation

COVER OF CLASS: TIII
[V1 = 2][V2 = 1,3]

DO YOU WANT TO TRY ANOTHER MODE?
YES

MODE OF OPERATION IS:

NONINTERSECTINGCOVERS £

THE COVERS ARE:
COVER OF CLASS: I
[V4 = 3]

[V2 = 1,3][V4 = 1, 3]

COVER OF CLASS: II
[VI = 1] [V4 = 2]
[V2 = 2] [V4 = 1,2]

COVER OF CLASS: 1III
[VI = 2] [V2 = 1,3] [V§ = 2]

YOU WANT TO TRY ANOTHER MODE?

58

MODE OF OPERATION IS:
DISJOINTCOMPLEXES

THE COVERS ARE:
COVER OF CLASS: I
[VI = 2] [V2 = 2]

V2 = 1,31 [V4 = 1,3]

COVER OF CLASS: 1II
[VI = 1][V2 = 1,3] [V4 = 2]
[VL = 1][V2 = 2]

16

AQLISP Users Guide
Interactive Operation

COVER OF CLASS: IIT
(VI = 2][v2 = 1,3)[v4 = 2]

DO YOU WANT TO TRY ANOTHER MODE?
YES

MODE OF OPERATION IS:

SEQUENTIAL

THE COVERS ARE:
COVER OF CLASS: I
[V4 = 3]

(V2 = 1,3]1[V4 = 1,3)

COVER OF CLASS: 1IT
(VI = 1]

COVER OF CLASS: TIII

DO YOU WANT TO TRY ANOTHER MODE?
NO

THIS RUN USED 12.954 SECONDS CPU TIME

17

AQLISP Users Guide 18
Interactive Operation

2.8 Examples of different operating modes.

Below are displayed (using "generalized logical diagrams") the cov-

ers produced by the preceeding dialog on the interactive system.

2.8.1 Intersecting covers = = ' ?E?
¥l v i 3 i
111 \ g [8
1 2 -E I _‘I;[I Qaver |J
-3' .. ﬂff—-_‘ [; olass ..E
1. s Lﬂ.
2 2 T |
s TV w [\ = T i
1 1z i
1 2]
3 T cover a
1 LN Glast
*) T
=) o o
11T T
[I I
3 T Raver p
1 C_ ﬁ;__m_ -'; class
A 2 ;] r
OO B s g |
f1aj3|1j=a]a v
. 2 | vJ

AQLISP Users Guide
Interactive Operation

2.8.2 Nonintersecting covers -

vlﬂ- 1 I 1 L
= 2wl
1 a T T q I
3TV TET AT aover <
(I mw [J L[el T
4 2 [T |
s\ = oMz [T
e (T
I 2] & i
3 T Tes
1 YT elass I
2 e g o]
3 i s
1 1 iy
1 2 o T
3 'I- i gaver .p-}
1 C'_‘) class ID
2 2 T
3 @ =
1tal3jtiala] vy
1 2 et

AQLISP Users Guide 20
Interactive Operation

2.8.3 Disjointcomplexes -

Vi vl . | \
1 iR
T B T T
3 Qpuel p}'

olags T

=

o |-
i

1
173

3 15

1
2. a

3 oL o

L 18

1 T

pover ;E—‘

o] ass L

i ol SN P (

fover &

Ny elass IT
I

':u,k:}.-kmp--s

_;,u@@ﬁ

AQLISP Users Guide
Interactive Operation

2.8.4 Sequential -

viova :

11> T
1 2 T iy

3 -ﬁ\ favel a‘{'

1 o class L
2 2 | Ti

ST\ w ll @)

1 T
1 a L I |

3 — favér a

-1]11- C_{F-I'.f
4 2 T

3 s 1 Uiy

— e =y

1 I
1 a T T

3 T Qoyer a{:

T T elas L
2 2 T

£ L i

1 2 13 41 1= |3
1 -

AQLISP Users Guide
Direct use of the (AQ) function

3 Using the AQ function internally

In addition to using the AQVAL driver for the AQ algorithm, 1t 1is
possible to use the AQ function within other LISP programs, provided that
the proper data structures are constructed prior to calling AQ. The next
few sections deal with the construction of these structures, and the actu-

al invocation of AQ.

3.1 Variable definitions.

The most basic structure in AQ 1s the wvariable. These are
represented by non-numeric atoms with several special properties on their
property lists. All variables referenced in any events must be prepared
prior to calling AQ. We will divide variables into two different types:

NOMINAL and LINEAR.

3.1.1 Nominal variables

Mominal variables are those that can only assume distinct discrete
values. Bach wvalue permitted to a nominal variable is represented by a
bit position in a full-word numeric atom. Bit positions are assigned
starting with the least signifiicant bit and wmoving to the most signifi=-

cant position. All values of all nominal wvariables must fit into one

22

AQLISP Users Guide
Direct use of the (AQ) function

full-word. See appendix A for installation size limits on full-word

spaces.

The atoms that are declared to be NOMINAL must appear in a 1list
named "NOMINALVARS". The order that variables appear in this list must
correspond to the order that bit groups are assigned to the wvalue seat.
The property "VALUESET" on each variable represents a list of possible
values (literal atoms) that the variable may assume, the wvalues also 1in
the order of the assignments to bits within a bit group. Property "MASK-
BIT" represents a numeric atom that contains a single bit aligned with the
first bit position allocated to this variable in the nominal full-word.
Property "MASK" contains a numeric atom consisting of all possible bits in
this variables group (all posible values). These bits correspond to the
values in the VALUESET list, and must be adjacent. For example, 1if N1, Nz,

and N3 are nominal wariables with:

‘NOMINALVARS = (N1 N3 N2)
valueset(N1) = (A B C)

valueset(N2) = (D E)
valueset(N3) = (A F)

then

MASKBIT of N1 = 1Q (Q suffix indicates octal)

MASE of N1 = 70
MASKBIT of N2 = 400Q
MASK of N2 = 140Q
MASFBIT of N3 = 10Q
MASE of N3 = 30Q

23

AQLISP Users Guide 24
Direct use of the (AQ) function

where
bit 0 (1Q) represents value A of Nl
bit 1 {2Q) B of Nl
bit 2 {4Q) C of NI
bit 3 (10Q) A of N3
(different from A of Nl)
bit & (20Q) F of N3
bit 5 (40Q) D of N2
bit 6 (100Q) E of N2

Bits are set to indicate the presence of a value. In addition, global
list MASKLIST must be a list of all MASKs corresponding to wvarlables in
NOMINALVARS. An intermal function, (SETUPMASKLIST NOMINALVARS), is provid-
ed to make these bit assignments for the user 1f desired. Finally, each

NOMINAL variable must have property DOMAINTYPE with value "NOMINAL".

3.1.2 Linear variables

Linear variables are those that can assume either point wvalues or
interval values on the non-negative integers. Their declarative structure
is quite simple: each linear variable must be a member of list LINEARVARS,
and must have property DOMAINTYPE set to "LINEAR". Also, three additional
properties must be constructed on each LINEAR variable:

LOW - lowest integer value this wvariable may assume. Must be
non-negative.

HIGH and
MAXBOUND - highest integer wvalue this variable may assume. Must

be non-negative, and greater than or equal to LOW(var)

Mote that these structures only define the domain of each wvarlable, and do

AQLISP Users Guide
Direct use of the (AQ) function

not assign values to the wvariabla.

3.2 BEvent and Class structures.

Events in AQLISP are specified by the conjunction of VL1 selectors.
Selectors specify the specific values variables hold at particular event
points. This conjunction of selectors forms a COMPLEZX. A complex in

AQLISP 1s represented by the following structure:

Carmp IC-.-

Ly =

¢ : (e Lt art win
sl b valae " B R
v selache
fudt = werd

e I Pt s 1
¢ Lo i
ﬂlr‘!'ﬁ-n"' r{lti-.hf -II- [Lomeer relect fomi=r I""ﬂl-'“. "

Note all nominal selectors are collapsed into one full-word, but an arbi-

AQLISP Users Guide
Direct use of the (AQ) function

trary number of linear selectors may be specified for an event, limited
only by free space. The list of linear selectors in sorted into order us-
ing function (EARLIER aall aelz] to indicate the ordering. This structure
{8 built during interactive use by (READEVENTS). Classes are represented
by lists of these complexes. In the interactive versiom, two global lists
are maintained - "CLASSLIST", which 18 a 1list of all classes, and
"CLASSNAMES", a list of all names assoclated with the corresponding item

in CLASSLIST.

3.3 Parameter specifications

Several parameters must be supplied to AQ by global 1lists or vari-

ables. These are:

MAXSTAR

set to a non-negative integer value that specifies the maximum
size a star may assume during star generation in AQ.

CUTSTAR -
set to a non-negative Integer number 1less than MAXSTAR that
specifies the size to which a star is trimmed when its size
exceeds MAXSTAR.

CRITERIAGTOLERANCELIST

a list of doublets in the following format: (<function-
name> <tolerance>), where <tolerance> is between 0.0 and 1.0.
These are used to compute the cost factors used to trim complexes
from a star when necessary. When called, the function is sup=
plied with three arguments:

1) a complex
2) a list of complexes from all “‘other’ classes (those

events not to be covered)

26

AQLISP Users Guide
Direct use of the (AQ) function

3} all complexes in the class to be covered that have not
yet been covered.

Using these arguments, the function should compute and return a
numeric "cost" representing the expense of including the speci-
fied complex in the star. The numeric values of the cost can be
of an arbitrary scale, as long as increasing cost 1s represented
by a more positive number returned. The <tolerance> 1is used to
compute a allowable range of optimality. This range is computed
by first applying the function to all complexes in the star, to
determine the maximum and minimum cost of elements in the star.
A limit is then computed as

LIM = min + (max - min)*<tolerance>

If a complex’s cost is less than or equal to LIM, it i1is con=-
sidered optimal, and is not trimmed unless only optimal intervals
remain in the star, and the star must still be trimmed further.

These cost functions are applied in the order in which they
appear in the CRITERIASTOLERANCE list. This determines the most
significant eriteria, and the successive tie-breaking criteria.

Two cost functions are provided in the AQLISP source -
#COVERED which computes how many events in the yet-to=-be-covered
list are covered by the complex, and NUMBEROFSELECTORS, which
computes the cost of the number of selectors used to represent

the complex.

RESTRICTIONLIST
must be set to NIL. This parameter 1{is being wused for future

development in AQLISP.

-

3.4 The AQ function.

Once all variables are defined, and all events are constructed and

organized into classes, AQ may be invoked by the following LISP call:

(AQ ELIST FLIST DISJOINTCOMPLEXFLG)

AQLISP Users Guide
Direct use of the (AQ) function

where
ELIST 1s a list of all complexes in the class to be covered by AQ

FLIST is a list of all other specified complexes that are not to be
covered by AQ.

DISJOINTCOMPLEXFLG is NIL if the cover can be constructed of inter-
secting complexes, or T if the cover must be constructed of dis-

joint complexes.

(AQ) returns the following structure:

§ o JHEratibal . &
. .ﬁﬂ Fl--l"-' o i F [
L l 1

]
n::»n,ulh { Complen & :—_.-a-p-lun

The union of events covered by all complexes is the cover of the specified
class ELIST. The complxes may be decoded by reversing the process used to

construct complexes - see function "PPCOMP" in Appendix B for an example

of this.

28

AQLISP Users Guids
Direct use of the (AQ) function

3.5 Other functions available.

Many internal functions may prove useful to the user utilizing AQ as
a callable function. Appendix B lists the entire AQLISP system, with brief
comments about each function. The functions are grouped into four cata-
gorles =~ those used directly to implement algorithm AQ, data structure
manipulation functions, input/output functions, and library support fune-

tions.

4 Comparison with other implementations of AQ

AQLISP 1s but one of several approaches to implementing algorithm AQ.
Another readily accessible implementation 1is AQ7, a PL/]1 based system.
There are several important differences between AQLISP and AQ7, which will

be described below.

Internally, the method of storing the events, complexes, and wvari-
ables are radically different between AQ7 and AQLISP. AQ7 stores all
event-related information as sequences of bit strings, with the obvious
computational efficiency benifiting this approach. However, this imposes
some size constraints on problem domains that AQ7 can process (<64 events,
<64 wvariables). Also, AQ7 has an advantage of being in a complled
language, which dramatically improves execution time. AQ7 1is currently

available ony in a batch environment.

29

AQLISP Users Guide
Direct use of the (AQ) function

AQLISPF on the other hand, offers greater flexibility than AQ7, at the
expense of execution efficlency. Test runs on small (<10 variables) prob-
lems show an increase of at least a factor of 10 in execution time over

AQ7, even when AQLISP is run on a CYBER 175, versus AQ7 on a IBM 360/75.

However, AQLISP offers anm interactive interface, which makes it con-
vienent to use when testing new ideas. Also, AQLISP is not as restricted
on the size of the problem dnﬁain as AQ7, since an unlimited noumber of
linear selectors with much greater range than AQ7 can be accomodated (see
3.3). In addition, AQLISP has potentidl to handle other selector formats

than interval and nominal.

5 Conclusions

The operating characteristics of AQLISP has been described and demon-
strated. An interactive interface to the AQ function has been documented,
and a sample execution shown. Finally, the calling requirements of AQ are
1llustrated, and the primary data structures diagrammed. A complete pro=-

gram listing of AQ appears in Appendix B.

30

AQLISP Users Guide

1.

2.

3.

5.

6.

References

== ; Interlisp Reference Manual, Warren Teitelman, ed., Xerox Palo
Alto Research Center, California, 1974.

Bobrow, D.G., and R. S. Michalski, Source listings for AQLISP on In-
terlisp-10, Installed on Bolt, Beranek, and Newman system BBND, 1978,

Greenwalt, E. M., Johnathan Slocum, and Robert A. Amsler, UT LISP Do-
cumentation, Version 4.0, University of Texas at Austin Computation

Center, 1975.

Larson, James, and R. S. Michalski, "AQVAL/1l (AQ7) Users GCuide and
Program Description", Report number 731, Department of Computer Sci-
ence, University of Illinois, Urbana, June 1975.

Michalski, R. S., "A Geometrical Model for the Synthesis of Interval
Covers", Report number 461, Department of Computer Science, Iniversity

of Illinois, Urbana, June, 1971.

Michalski, H. S-,‘"Fariable-?hlued Logic: System VL1,", 1974 Interna-
tional Symposium on Multiple-Valued Loglie, West Virginia University,

Morgantown, West Virginia, May 1974.

Michalski, R. S., and McCormick, B. H., "Interval Generalization of
Switching Theory", Report number 442, Department of Computer Science,
University of Illinois, Urbana, May 1971.

Michalski, R. S. and Larson, J. B., "Selection of Most Representative
Training Examples and Incremental Generation of VL, Hypotheses: the
underlying methodology and the description of programs ESEL and AQl1,"
Report Number 867, Department of Computer Science, University of
Illinois, Urbana, May 1978. _

il

AQLISP Users Guide

Appendix A

CYBER Speclfic Operating Instructions

AQLISP is available in two forms on the CYBER - a LISP core-image
overlay, and the original LISP source files. The core image is a pre-
built AQLISP system that immediately invokes (AQVAL) as the top level
function. It 1is recommended for users that do not require a change to
CRITERIASTOLERANCELIST, access to internal routines, or to LISP itself.

Using the core-image significantly reduces overhead when loading AQLISP.

Currently, the AQLISP system requires a RFL of at least 140000B, but
larger (160000B - 200000B) settings are recommended to reduce garbage col-
lector time. The source is written for the UT LISP interpreter, which may

be accessed by "GRAB,LISP".

The files for AQLISP are currently stored in user number 3RSMRSM.
For accessing th core image version, a procedure file is available. Type:
[GET, AQBEGIN/UN=3RSMRSM
J-AQBEGIN
which loads LISP and obtains a local copy of the core image file "AQCORE".

To start the Interactive system, type:

32

AQLISP Users Guide
Appendix A

/-AQRUN
or I-AQRUN(CHD-<1nputf11E>J

If the "CMD=" parameter is supplied, AQLISP will read all input from the
specified file, rather than the terminal, which allows files containing AQ
commands to be prepared in advance. Otherwise, AQLISP begins execution
and prompts the user as specified in section 2. Using the core image 1n
this manner also produces a local file “AQLOGGR”, which contains a copy of

all commands and prompts issued during the run.

To access the source files, you must load LI5P, and type
/GET,AQLISP,LISPLIB/UN=3RSMRSM.
The incantation to LISP is

IRWFI
ILISP,C,E,KalEﬂK,B-ZODG,&=BS.&QLIEP,LISPLIE.
At the top level of LISP, *EVAL:, use SETQ to plnitialize the parameters

described in 3.3, and then issue (AQVAL) to *EVAL:.

The word size on the CYBER LISP is 60 bits, so at most 60 nominal
values may be specified. However, the maximum integer value for Linear
variables is 2&5, because of arithmetic restrictions imposed by CYBER
LISP. Atomic names may be up to 30 display characters long, but if lower
case 1s used each lower case character_takes two display characters. Case

1s significant in CYBER LISP.

AQLISP Users Guide

Appendix B-1
Source Listing

AQ Functions

Function: #COVERED

Purpose: Determines the number of events 1in EVENTS covered by
COMF.

Calls:
INCLUDES

Function Listing:

(#COVERED
(LAMBDA (COMP EVENTS *#DUMMY#**)
(MINUS
(PROG (**LST1 EV **VAL)
(SETQ **LST1 EVENTS)
(SETQ **VAL 0)
#*LP (SETQ EV (CAR (OR (LISTP **LST1) (GO **0UT))))
(AND (INCLUDES COMP EV) (SETQ *#*VAL (ADD1 **VAL)))
#*[TERATE (SETQ **LST1 (CDR **LST1))
(CO **LP)
**%QUT (RETURN **VAL)))))

Function: ABOVE

Calls:
ABOVE
PARENTS

Called By:
ABOVE

Function Listing:

{ABOVE
(LAMBDA (VAL VALLIST VAR)
{PROG (**LST1 **VAL V)
(SETQ #**LST1 VALLIST)
*%LP (SETQ V (CAR (OR (LISTP **LSTl) (GO **0UT))))
(COND ((OR (EQ VAL V) (ABOVE VAL (PARENTS V VAR) VAR))
(SETQ *#*VAL V)
; (GO **0UT)))
#%TTERATE (SETQ **LST1 (CDR **LST1l))
(GO **LP)
*#%0UT (RETURN *#VAL))))

34

AQLISP Users Guide
Appendix B-1

Function: AQ

Purpose: Top level function of AQ algorithm. Finds a cover of
events in ELIST that do not cover any events in FLIST.
If DISJOINTCOMPLEXFLAG 1s T, all complexes in the cover
will be disjoint. Returns a list with first element
being the number of iterations during part 2 of the
algorithm, and the second element a list of complexes
that compose the cover.

Calls:
STAR
ENOCROUT
BESTCOMP

Called By:
INTERSECTINGCOVERS
DISJOINTCOMPLEXCOVER
DISJOINTCOVERS
INCREMENTALGEN
ORDEREDCOVER

PPAQ

Function Listing:

(AQ
(LAMBDA (ELIST FLIST DISJOINTCOMPLEXFLG)
(PROG (**VAL SMALLELIST UNCOVEREDELIST COVER DEL COUNTDEL)
(SETQ SMALLELIST (COPY ELIST))
(SETQ UNCOVEREDELIST (COPY ELIST))
(SETQ DEL 0)
**LP (COND ((NOT SMALLELIST) (GO **0UT)))
(SETQ EVENT (CAR SMALLELIST))
(SETQ STAR
(STAR EVENT
(COND (DISJOINTCOMPLEXFLG (APPEND COVER FLIST))
(T FLIST))
ELIST
UNCOVEREDELIST))
(MAPC STAR
(FUNCTION
(LAMBDA (COMP)
(SETQ SMALLELIST (KNOCKOUT COMP SMALLELIST)))))
(SETQ COVER (CONS (BESTCOMP STAR ELIST UNCOVEREDELIST) COVER))
(SETQ UNCOVEREDELIST (KNOCKOUT (CAR COVER) UNCOVEREDELIST))
(COND (COUNTDEL (SETQ DEL (PLUS DEL 1))))
**ITERATE (GO **LP)

**0UT (COND ((NULL UNCOVEREDELIST) (RETURN (LIST DEL COVER)))
(T (SETQ COUNTDEL T)
(SETQ SMALLELIST UNCOVEREDELIST)
(GO **ITERATE)))
(RETURN *#*VAL))))

35

AQLISP Users Guide
Appendix B-1

Function: AQVAL

Purpose: Interactive driver for AQ functiom.

Callsa:
READVARIABLES
READEVENTS
SHOWCOVERS
INTERSECTINGCOVERS

Function Listing:

(AQVAL
(LAMBDA NIL
(PROG (CLASSNAMES)
(READVARIABLES)
(SETQ CLASSNAMES (READEVENTS))
(SETQ CLASSLIST (MAPCAR CLASSNAMES (FUNCTION EVENTS)))
LP (SHOWCOVERS
(SELECT
(ASKUSER NIL
NIL
*((TERPRI) (TERPRI) MODE OF OPERATION IS: _)
* (INTERSECTINGCOVERS NONINTERSECTINGCOVERS
DISJOINTCOMPLEXES SEQUENTIAL)
NIL)
(“INTERSECTINGCOVERS (INTERSECTINGCOVERS CLASSLIST))
(“NONINTERSECTINGCOVERS (DISJOINTCOVERS CLASSLIST))
(’DISJOINTCOMPLEXES (DISJOINTCOMPLEXCOVER CLASSLIST))
(“SEQUENTIAL (ORDEREDCOVER CLASSLIST))

(SHOULDNT))

CLASSNAMES)

(SELECT

(ASKUSER NIL
NIL
(DO YOU WANT TO TRY ANOTHER MODE?)
*(YES NO)
T)

(“YES (GO LP))
(“NO (RETURN (RECLAIM)))
(SHOULDNT)))))

36

AQLISP Users Guide
Appendix B-l

Function: BESTCOMP

Purpose: Finds ‘best” complex from a 1list of complexes (STAR)
given the list of events to cover (POSITIVEEVENTS) and
those events yet to be covered (UNCOVEREDEVENTS).

Calls:
TRUNCATE

Called By:
AQ
INCREMENTALGEN

Function Listing:

{ EESTCOMP
(LAMBDA (STAR POSITIVEEVENTS UNCOVEREDEVENTS)
{CAR
(TRUNCATE STAR 1 1 CRITERIASTOLERANCELIST POSITIVEEVENTS
UNCOVEREDEVENTS))))

Function: BESTN

Purpose: Returns the list of the first N elements of list LL.

Called By:
TRUNCATE

Function Listing:

(BESTN
(LAMBDA (LL N)
(PROG (**LST2 *#*VAL I #%END L #*TEM] #*TEM2)
(SETQ **LST2 LL)
(SETQ I 1)
(SETQ **END N)
*%LP (SETQ L (CAR (OR (LISTP **LST2) (GO **QUT))))
(COND ((GREATERP I **END) (GO **QUT)))
(SETQ **TEM1 L)
(COND (**TEM2 (RPLACD **TEM2 (SETQ **TEM2 (LIST #**TEM1))))
(T (SETQ **VAL (SETQ **TEM2 (LIST **TEM1)))))
**[TERATE (SETQ I (PLUS I 1))
(SETQ **LST2 (CDR **LST2))
(GO **LP)
#%0UT (RETURN #*#*VAL))))

-

iz

AQLISP Users Guide
Appendix B-1

Function: CANCELNOMINAL

Purpose: Determine if any values in NEWNOMINAL, a full-word, are
in the nominal portion of nominal selector SEL.

Calls:
MASK

Function Listing:

(CANCELNOMINAL
(LAMBDA (NEWNOMINAL SEL)
(ZEROP (LOGAND (MASK SEL) NEWNOMINAL))))

Function: COVERINCLUDES

Purpose: Returns the first complex in COVER that includes EVENT s
points, or NIL otherwise.

Calls:
INCLUDES

Called By:
INCREMENTALGEN

Function Listing:

(COVERINCLUDES
(LAMBDA (COVER EVENT)
(PROG (**LST1 **VAL COMP)
(SETQ **LST1 COVER)
#*LP (SETQ COMP (CAR (OR (LISTP **LST1) (GO **0UT))))
(COND ((INCLUDES COMP EVENT) (SETQ **VAL COMP) (GO **0UT)))
**[TERATE (SETQ **LST1 (CDR **LST1))
{GO **LP)
**QUT (RETURN **VAL))))

AQLISP Users Guide 19
Appendix B-1

Function: CUTSTAR

Purpose: Trim a star STAR to those complexes that are optimal
according to function CRITFN applied with TOLERANCE.

Called By:
TRUNCATE

Function Listing:

(CUTSTAR
(LAMBDA (STAR CRITFN TOLERANCE POSITIVEEVENTS UNCOVEREDEVENTS)
(PROG (PLIST MAX MIN)
(SETQ PLIST
(MAPCAR STAR
(FUNCTION
(LAMBDA (COMP)
(PROGN
(SETQ VAL
(APPLY CRITFN
(LIST COMP POSITIVEEVENTS
UNCOVEREDEVENTS)))
(COND ((OR (NULL MAX) (GREATERP VAL MAX))
(SETQ MAX VAL)))
(COND ((OR (NULL MIN) (LESSP VAL MIN))
{SETQ MIN VAL)))
(CONS VAL COMP))))))
(RETURN
(PROG (**LST] #**VAL PATR TOL **TEMl **TEM2)
(SETQ **LST1 PLIST) -
(SETQ TOL
(PLUS (TIMES TOLERANCE (DIFFERENCE MAX MIN)) MIN))
**LP (SETQ PAIR (CAR (OR (LISTP **LSTI) (GO **0UT))))
(COND ((GREATERP (CAR PAIR) TOL) (GO **ITERATE)))
(SETQ **TEMI (CDR PAIR))
(COND (**TEM2
(RPLACD **TEM2 (SETQ **TEM2 (LIST **TEM1))))
(T (SETQ **VAL (SETQ *#TEM2 (LIST **TEM1)))))
**ITERATE (SETQ #*LST1 (CDR **LST1))
(GO **LP)
**0UT (RETURN #*VAL))))))

AQLISP UOsers Guide
Appendix B-1

Function: DISJOINTCOMPLEXCOVER

Purpose: Apply AQ to produce disjoint complexes 1in the cover.
(Interactive system).

Calls:
AQ

Functlon Listing:

(DISJOINTCOMPLEXCOVER
(LAMBDA (CLASSES)
(PROG (**LSTl **VAL CLASS #**TEM1 #*TEM2)
(SETQ **LST1 CLASSES)
**LP (SETQ CLASS (CAR (OR (LISTP **LST1) (GO **QUT))))
(SETQ **TEMI -
(AQ CLASS
(APPEND
(MAPCON #**VAL
(FUNCTION
(LAMEDA (C)
(PROGN (SETQ C (CAR C)) (APPEND (CADR C))))
})
(APPENDX (REMOVE CLASS CLASSES)))
T}) i
(COND (**TEM2 (RPLACD **TEM2 (SETQ **TEM2 (LIST **TEML))))
(T (SETQ **VAL (SETQ **TEM2 (LIST #**TEM1)))))
#*[TERATE (SETQ **LST1 (CDR **LST1)) -
(GO **LP)
*#*0UT (RETURN **VAL))))

AQLISP Users Guide
Appendix B-|]

Function: DISJOINTCOVERS

Purpose: Apply AQ to produce disjoint (but with possibly
intersecting interval) covers. (Interactive system).

Calls:
AQ

Function Listing:

(DISJOINTCOVERS
(LAMBDA (CLASSES)
(PROG (**LST1 **VAL CLASS #*TEM] #+TEM2)
(SETQ **LST1 CLASSES)
LP (SETQ CLASS (CAR (OR (LISTP **LST1) (GO #0UT))))
(SETQ **TEM]
(AQ CLASS
(APPEND
(MAPCON #**VAL
(FUNCTION
(LAMBDA (V)
(PROGN (SETQ V (CAR V)) (APPEND (CADR Viyn)
J)
(APPENDX (REMOVE CLASS CLASSES)))
NIL))
(COND (**TEM2 (RPLACD **TEM? (SETQ **TEM2 (LIST **TEM1))))
(T (SETQ **VAL (SETQ **TEM2 (LIST **TEM1)))))
**]TERATE (SETQ **LST1 (CDR **LST1)) -
(GO *+LP)
**0UT (RETURN **VAL))))

Function: EARLIER

Purpose: Used to order selectors within 4 complex. Sorts by
ADDRESS of selector cell.

Called By:
INCLUDESSELECTORS
NEWCOMPLEXFROMLINEAR
EARLIERVAR

Function Listing:

(EARLIER (LAMBDA (X Y) (LESSP (ADDR- X) (ADDR Y))))

41,

AQLISP Users Guide
Appendix B-1

Function: EPSILON
Called By:
EXTENDAGATINSTL
LINEARPRODUCTDIFREL

Function Listing:

(EFSILON (LAMBDA (VAR) (OR (GET VAR "EPSILON) 1)))

Function: EQUALNOMINAL
Purpose: Determine if two NOMINAL fullwords are equal.
Function Listing:

(EQUALNOMINAL (LAMBDA (X Y) (EQN X Y)))

Function: EXTENDAGAINST

Purpose: Build a new complex by extending cover Cl against C2.

Calls:
EXTENDAGAINSTNOMINAL
EXTENDAGAINSTLINEAR
EXTENDAGAINSTSTRUCTURE

Called By:
STAR

Function Listing:

(EXTENDAGAINST
(LAMBDA (Cl C2)
(APPEND (EXTENDAGAINSTNOMINAL Cl C2)
(APPEND (EXTENDAGAINSTLINEAR Cl C2)
(EXTENDAGAINSTSTRUCTURE Cl C2)))})

42

AQLISP Users Guide 43
Appendix B-1

Function: EXTENDAGAINSTL

Purpose: Extends the range of the 1linear part of selector ES
daganst linear part of selector FS. Produces a linear
selector list,

Calls:
HIGH
Low
BUILDLINEAR
VAR
EPSILON
MAXBOUND

Called By:
EXTENDAGAINSTLINEAR

Function Listing:

(EXTENDAGAINSTL
(LAMBDA (ES FS)
(COND ((LESSP (HIGH ES) (LOW FS))
(BUILDLINEAR (VAR ES)
0
(DIFFERENCE (LOW FS) (EPSILON (VAR ES)))))
(T
(BUILDLINEAR (VAR ES) -
(PLUS (HIGH FS) (EPSILON (VAR F3)))
(MAXBOUND (VAR FS)))))))

AQLISP Users Guide
Appendix B-1

Function: EXTENDAGAINSTLINEAR

Purpose: Generates a star of linear-selector-only complexes that
are extensions of elements 1n complex E against
elements in complex f.

Calls:
LINEAR
FINDSELECTOR
VAR
LOW
BUILDCOMP
EXTENDAGAINSTL

Called By:
EXTENDAGAINST

Function Listing:

(EXTENDAGAINSTLINEAR
(LAMBDA (E F)
(PROG (**LST1 #*VAL ELS FLS LF **TEM1 #**TEM2)
(SETQ **LST1 (LINEAR E))
(SETQ LF (LINEAR F))
LP (SETQ ELS (CAR (OR (LISTP #LST1) (GO **0OUT))))
(COMD ((NOT
(AND (SETQ FLS (FINDSELECTOR LF (VAR ELS)))
(NOT (EQN (LOW ELS) (LOW FLS)))))
(GO **ITERATE)))
(SETQ **TEM1
(BUILDCOMP NIL (LIST (EXTENDAGAINSTL ELS FLS)) NIL))
(COND (**TEM2 (RPLACD **TEM2 (SETQ **TEM2 (LIST **TEML))))
(T (SETQ **VAL (SETQ **TEMZ (LIST **TEM1)))))
%[TERATE (SETQ **LST1 (CDR **LSTl))
(GO *%LP)
*%*QUT (RETURN **VAL))))

44

AQLISP Users Guide
Appendix B-1

Function: EXTENDAGAINSTNOMINAL

Purpose: Builds a star of nominal-selector-only complexes that
are extensions of Cl against C2.

Calls:
NOMINAL
NEGATION
MASKLOGAND
BUILDCOMP
MASKLOGOR
MASFLOGXOR

Called By:
EXTENDAGAINST

Function Listing:

(EXTENDAGAINSTNOMINAL
(LAMBDA (Cl1 C2)
(PROG (*XLST1 **VAL MASK N1 N2INVERSE #**TEM] *%XTEM2)
(SETQ **LST1 MASKLIST)
(SETQ N1 (NOMINAL C1))
(SETQ N2INVERSE (NEGATION (NOMINAL C2)))
*%LP (SETQ MASE (CAR (OR (LISTP **LST1) (GO **QUT))))
(COND ((ZEROP (MASKLOGAND MASK N1 N2INVERSE)) (GO **ITERATE)))
(SETQ **TEM]
(BUILDCOMP oy
(MASKLOGOR (MASKLOGXOR MASK T77777777777777777177Q)
(MASKLOGAND MASK N2INVERSE NIL))
NIL
NIL))
(COND (**TEM2 (RPLACD **TEM2 (SETQ **TEM2 (LIST **TEM1))))
(T (SETQ **VAL (SETQ *#*TEM2 (LIST **TEM1)))))
**ITERATE (SETQ **LST1 (CDR **LST1))
(GO **Lp)
**0UT (RETURN *#VAL))))

45

AQLISP Users Guide
Appendix B-1

Function: EXTENDAGAINSTSTRUCTURE

Calls:
STRUCTURE
FINDSELECTOR
VAR
VALS
BUILDCOMP
BUILDSTRUCTURE
EXTENDAGAINSTSTRUCVAL

Called By:
EXTENDAGAINST

Function Listing:

(EXTENDAGAINSTSTRUCTURE
(LAMBDA (E F)
(PROG (**LST1 **VAL ES FS SF *ATEM1 A*TEM2)
(SETQ **LST1 (STRUCTURE E))
(SETQ SF (STRUCTURE F))
*%LP (SETQ ES (CAR (OR (LISTP **LST1) (GO **QUT))))
(COND ((NOT
(AND (SETQ F5 (FINDSELECTOR SF (VAR ES)))
(NOT (EQUAL (VALS ES) (VALS FS)))))
(GO **ITERATE)))

(SETQ **TEMI]
(BUILDCOMF NIL
NIL
(LIST

(BUILDSTRUCTURE (VAR ES)
(EXTENDAGAINSTSTRUCVAL ES FS))
)
(COND (**TEM2 (RPLACD **TEM2 (SETQ **TEM2 (LIST **TEM1))))
(T (SETQ **VAL (SETQ **TEM2 (LIST #**TEM1)))))

**TTERATE [EETQ **[ST1 (CDR *%xL.ST1))

(GO **LP)
x*QUT (RETURN **VAL))))

46

AQLISP Users Guide
Appendix B-l

Function: EXTENDAGAINSTSTRUCVAL

Calls:
VALS
SIBLINGS
VAR
PARENT
ALLPARENTS

Called By:
EXTENDAGAINSTSTRUCTURE

Function Listing:

(EXTENDAGA INSTSTRUCVAL
(LAMBDA (ES FS)
(COND ((MEMBER (VALS ES) (SIBLINGS (VALS FS) (VAR FS)))
(SIBLINGS (VALS FS) (VAR FS)))
(T
(PROG (**VAL VAR EV EVP FVPARENTS)
(SETQ VAR (VAR ES))
(SETQ EV (VALS ES))
(SETQ EVP (PARENT (VALS ES) (VAR ES)))
(SETQ FVPARENTS (ALLPARENTS (VALS FS) (VAR FS)))
**LP (COND ((MEMBER EVP FVPARENTS) (GO ##%0UT)))
(SETQ EV EVP)
(SETQ EVP (PARENT EVP VAR))
**ITERATE (GO **LP)
**0UT (RETURN EV))))))

Function: FINDSELECTOR

Purpose: Locates the selector in the list SELLIST that defines a
value/interval for variable VAR.

Calls:
VAR

Called By:
EXTENDAGAINSTLINEAR
EXTENDAGAINSTSTRUCTURE
RESTRICT

Function Listing:

(FINDSELECTOR
(LAMBDA (SELLIST WVAR)
(PROG (**LST1 **VAL SEL)
(SETQ **LST1 SELLIST)
LP (SETQ SEL (CAR (OR (LISTP **LST1) (GO #0UT))))
(COND ((EQ (VAR SEL) VAR) (RETURN SEL)))
**ITERATE (SETQ **LST1 (CDR **LST1))
(GO **LP)
*#*0UT (RETURN **VAL))))

AQLISP Users Guide
Appendix B-1

Function: INBOUNDS

Purpose: Determines if linear selector OUTERSEL contains 1lin.
sel. INNERSEL.

Calls:
RELATION

Function Listing:
(INBOUNDS

- (LAMBDA (OUTERSEL INNERSEL)
(SELECT (RELATION OUTERSEL)

=
(SELECT (RELATION INNERSEL)
[=
(AND (NOT (LESSP (LOW INNERSEL) (LOW OUTERSEL)))
(NOT
(GREATERP (HIGH INNERSEL) (HIGH OUTERSEL)))))
(SHOULDNT)))
(‘¢

(OR (LESSP (HIGH INNERSEL) (LOW OUTERSEL))
(GREATERP (LOW INNERSEL) (HIGH OUTERSEL))))
(SHOUDNT))))

Funection: INCLUDES

Purpose: Determines 1f complx COMP includes all points in EVENT.
Calls: ;
INCLUDESNOMINAL
NOMINAL
INCLUDESLINEAR
LINEAR
INCLUDESSTRUCTURE
STRUCTURE

Called By:
#COVERED
RESTRICT
ENOCROUT
COVERINCLUDES
INCREMENTALGEN

Function Listing:

(INCLUDES

(LAMEDA (COMP EVENT)

(AND (INCLUDESNOMINAL (NOMINAL COMP) (NOMINAL EVENT))
(INCLUDESLINEAR (LINEAR COMP) (LINEAR EVENT))
{(INCLUDESSTRUCTURE (STRUCTURE COMP) (STRUCTURE EVENT)))))

48

AQLISP Users Guide 49
Appendix B-1

Function: INCLUDESLINEAR

Purpose: Returns T if linear selector in 1list LI includes all
points defined by selectors in L2.

Calls:
INCLUDESSELECTORS

Called By:
INCLUDES

Function Listing:

(INCLUDESLINEAR
(LAMBDA (L1 L2)
(INCLUDESSELECTORS L1 L2 (FUNCTION INBOUNDS))))

Function: INCLUDESNOMINAL

Purpose: Returns T if nominal selector in Nl contains all points
in N2.

Calls:
MASKEQUAL
MASKLOGAND

Called By:
INCLUDES

Function Listing:

(INCLUDESNOMINAL

(LAMBDA (N1 N2)

(OR (EQN N1 777777777777777771777Q)
(MASKEQUAL (MASKLOGAND N1 N2 NIL) N2))))

AQLISP Users Guide
Appendix B-1

Function: INCLUDESSTRUCSEL

Calls:
RELATION

Function Listing:

(INCLUDESSTRUCSEL
(LAMBDA (SOUTER SINNER)
(SELECT (RELATION SOUTER)

o

(SELECT (RELATION SINNER)
("=
(COND ((LISTP (VALS SOUTER))
(COND ((LISTP (VALS SINNER))
(PROG (**LST1 INVAL **VAL)
(SETQ **LST1 (VALS SINNER))
- (SETQ **VAL T)
*4LP (SETQ INVAL
(CAR
(OR (LISTP **LST1) (GO **0UT))

1)
(COND ((NULL
(PROG (**LST1 **VAL OUTVAL)
(SETQ **LST1 (VALS SOUTER))
#*LP (SETQ OUTVAL
. (CAR
(OR (LISTP **LST1) (GO **QUT))
1)
{COND ((ABOVE OUTVAL INVAL)
(SETQ **VAL OUTVAL)
(GO **0UT)))
**ITERATE (SETQ **LST1 (CDR **LST1))
(GO **LP)
*%*0UT (RETURN **VAL)))
(SETQ **VAL NIL)
- (GO **%0QUT)))
**ITERATE (SETQ **LST1 (CDR *#LST1))
(GO **LP)
**%QUT (RETURN **VAL)))
(T
(PROG (**LST1 **VAL OUTVAL)
(SETQ **LST1 (VALS SOUTER))
**LP (SETQ OUTVAL
(CAR
(OR (LISTP **LST1) (GO **0UT))
M

50

AQLISP Users Guide
Appendix B-1

(COND ((ABOVE OUTVAL INVAL)
(SETQ **VAL OUTVAL)
(GO **0UT)))
**ITERATE (SETQ **LST1 (CDR **LST1))
(GO **LP)
**QUT (RETURN **VAL)))))
((LISTP (VALS SINNER))
(PROG (*#LST1 INVAL OUTVAL **VAL)
(SETQ **LST1 (VALS SINNER))
(SETQ OUTVAL (VALS SOUTER))
(SETQ **VAL T)
**LP (SETQ INVAL
(CAR
(OR (LISTP **LST1) (GO #%0UT)))
)

(COND ((NULL (ABOVE OUTVAL INVAL))
(SETQ **VAL NIL)
(GO *%0UT)))
ITERATE (SETQ **LST1 (CDR #LSTI))
(GO **LP)
0UT (RETURN #VAL)))
((ABOVE (VALS SOUTER) (VALS SINNER)))))
(*# (SHOULDNT))
(SHOULDNT)))
(“# (SHOULDNT))
(SHOULDNT))))

Function: INCLUDESSTRUCTURE

Calls:
INCLUDESSELECTORS

Called By:
INCLUDES

Function Listing:

(INCLUDESSTRUCTURE

(LAMBDA (OUTERSTRUC INNERSTRUC)

(INCLUDESSELECTORS OUTERSTRUC INNERSTRUC (FUNCTION INCLUDESSTRUCREL))
))

AQLISP Users Guide
Appendix B=l

Function: INCREMENTALGEN

Calls:
SETEVENTS
EVENTS
COVERINCLUDES
FORMULA
INCLUDES
LISTDIFFERENCE
MULTIPLY
NEGATECOMPLEX
BESTCOMP
SETFORMULA

AQ
Function Listing:

(INCREMENTALGEN
(LAMBDA (EVENT CLASSNAME CLASSNAMELIST)
(SETEVENTS CLASSNAME (CONS EVENT (EVENTS CLASSNAME)))
(PROG (**LST1 **VAL V2 INCREMENTALGENTHRESHOLD EVENTCOVER
COVEREDV2EVENTS REDUCEDCOVER NEWCOVER V2COVER)
(SETQ **LST1 (REMOVE CLASSNAME CLASSNAMELIST))
(SETQ INCREMENTALGENTHRESHOLD
(OR (NUMBERP (EVALV “INCREMENTALGENTHRESHOLD)) 0))
#%LP (SETQ V2 (CAR (OR (LISTP **LSTl) (GO **QUT))))
(COND ((NOT (COVERINCLUDES (FORMULA V2) EVENT)) (GO **ITERATE))
)
(SETQ EVENTCOVER
(SUBSET (FORMULA V2)
(FUNCTION
(LAMBDA (COVERCOMP)
(INCLUDES COVERCOMP EVENT)))
NIL))
(SETQ V2COVER (LISTDIFFERENCE (FORMULA V2) EVENTCOVER))
(SETQ COVEREDVZ2EVENTS
(SUBSET (EVENTS V2)
(FUNCTION
(LAMBDA (EV)
(AND
(PROG (**LST1 **VAL COMP)
(SETQ **LST1 EVENTCOVER)
**LP (SETQ COMP
(CAR (OR (LISTP **LSTL) (GO **QUT))
))
(COND ((INCLUDES COMP EV)
(SETQ **VAL COMP)

AQLISP Users Guide
Appendix B-1

(SETQ **VAL
(SETQ **TEM2 (LIST **TEM1)))))
**ITERATE (SETQ **LST1 (CDR **LSTI))
(GO *#LP)
**QUT (RETURN **VAL)))
(SETQ NEWCOVER
(CONS
(BESTCOMP REDUCEDCOVER COVEREDV2EVENTS
COVEREDV2EVENTS)
NEWCOVER)) :
(COND ((SETQ COVEREDV2EVENTS
(SUBSET COVEREDV2EVENTS
(FUNCTION
(LAMBDA (EV)
(NOT (INCLUDES (CAR NEWCOVER) EV))

1))
(GO LFP))
{T (SETFORMULA V2 {(APPEND NEWCOVER V2COVER)})))
(T
(SETQ NEWCOVER
(APPEND
{AQ COVEREDVZEVENTS
(MAPCON CLASSNAMELIST
(FUNCTION
(LAMBDA (CN)
{PROGN (SETQ CN (CAR CN))
(AND (NOT (EQ CN V2))
{APPEND
{(OR (EVENTS CN) (FORMULA CN)))
- NN
**]TERATE (SETQ **LST1 (CDR *#*LSTl))
(GO **LP)
**QUT (RETURN **VAL))
(COND ((COVERINCLUDES (FORMULA CLASSNAME) EVENT))

(T
(SETFORMULA CLASSNAME
(APPEND
(CADAR

(AQ (LIST EVENT)
(MAPCON CLASSNAMELIST

(FUNCTION

(LAMBDA (CN)

(PROGN (SETQ CN (CAR CN))
(AND (NOT (EQ CN CLASSNAME))
(APPEND
(OR (EVENTS CN) (FORMULA CN)))

I

(FORMULA CLASSNAME)))))}))

54

AQLISP Users Cuide
Appendix E-1

(GO

**0UT)))

**ITERATE (SETQ **LSTI (CDR **LST1))

(GO *+Lp)

**0UT (RETURN **VAL))

(PROG (**LST1 coMP *EVALY
(SETQ **LST1 V2COVER)
(SETQ **VAL T)

**LP (SETQ COMP
(CAR

(OR (LISTP **LST1) (GO **0UT))
))

(COND ((NULL (NOT (INCLUDES COMP EV)))
(SETQ **VAL NIL)

(GO

**0UT)))

**ITERATE (SETQ **LST1 (CDR *ALST1))

(GO **LP)

**QUT (RETURN **VAL)))))))
(SETQ REDUCEDCOVER (MULTIPLY EVENTCOVER (NEGATECOMPLEX EVENT))}

LP (COND ((SETQ REDUCEDCOVER
(PROG (**LST1 #**VAL

COMP #*ATEM] **TEM2)

(SETQ **LST1 REDUCEDCOVER)

**LP (SETQ COMP

(CAR (OR (LISTP

(COND ((NOT
{PROG

*A[P

**ITERATE

®%xOUT

**LST1) (GO **0UT))))

(**LSTL EV **VAL)

(SETQ **LST1 COVEREDV2EVENTS)

(SETQ **VAL 0)

(SETQ EV

(CAR

(OR (LISTP **LST1) (GO **0UT))
n :))

(COND ((GREATERP ##VAL

INCREMENTALGENTHRESHOLD)

(GO **0UT))

((NOT (INCLUDES COMP EV))

(GO **ITERATE)))

(SETQ **VAL (PLUS #**vAL 1))

(SETQ **LST1 (CDR **LST1))

(GO *#Lp)

(RETURN

(GREATERP #*#*VAL

INCREHENTALGEHTHRESHULD})}J

(GO **ITERATE)))
(SETQ **TEM1 COMP)

(COND (**TEM2

(RPLACD #**TEM2

(T

(SETQ **TEM2 (LIST #*TEMI))))

AQLISP Users Guide
Appendix B-1

Function: INCLUDESSELECTORS

Purpose: Using function INCLUDESFN, decide if all selectors in
list INSIDESELECTORS are contained within the range
defined by OUTSIDESELECTORS.

Calls:
NON-TRIVIAL
VAR
EARLIER

Called By:
INCLUDESLINEAR
INCLUDESSTRUCTURE

Function Listing:

(INCLUDESSELECTORS
(LAMBDA (OUTSIDESELECTORS INSIDESELECTORS INCLUDESFN)
(PROG (**LST1 SEL **VAL)
(SETQ **LST1 OUTSIDESELECTORS)
(SETQ *#VAL T)
*%LP (SETQ SEL (CAR (OR (LISTP **LST1) (GO **0UT))))
(COND ((NOT (NON-TRIVIAL SEL)) (GO **ITERATE)))
(COND ((NULL
(PROG (**VAL)
*%P (COND ((OR (NULL INSIDESELECTORS)
(EQ (VAR (CAR INSIDESELECTORS))
(VAR SEL))
(EARLIER (VAR SEL)
(VAR (CAR INSIDESELECTORS))))
(GO **0UT)))
(SETQ INSIDESELECTORS (CDR INSIDESELECTORS))
**ITERATE (GO **LP)
**QUT (RETURN
(AND (EQ (VAR (CAR INSIDESELECTORS)) (VAR SEL))
(APPLY INCLUDESFN
(LIST SEL (CAR INSIDESELECTORS))))))
)
(SETQ **VAL NIL)
(GO **QUT)))
*#ITERATE (SETQ **LST1 (CDR **LST1))
(GO **LP)
#%QUT (RETURN **VAL))))

56

AQLISP Users Guide
Appendix B-1

Function: INTERSECTINGCOVERS

Purpose: Generates a cover of classes im an intersecting-cover
mode. (Interactive system).

Calls:
AQ

Called By:
AQVAL

Function Listing:

(INTERSECTINGCOVERS
(LAMBDA (CLASSES)
(MAPCAR CLASSES
(FUNCTION
(LAMBDA (CLASS)
(AQ CLASS (APPENDX (REMOVE CLASS CLASSES)) NIL))))))

AQLISP Users
Appendix B-l

Guide

Function: LINEARPRODUCT

Calls:

RELATION

HIGH

LOW

BUILDLINEAR

VAR
LINEARPRODUCTDIFREL

Function Listing:

(LINEARPRODUCT
(LAMBDA (SELL SEL2)
(PROG (REL LOW HIGH)

(COND

((EQ (RELATION SEL1) =)
(COND ((EQ (RELATION SEL2) “=)
(COND ((OR (LESSP (HIGH SEL1l) (LOW SEL2))
(GREATERP (LOW SEL1) (HIGH SEL2)))
(RETURN °“CANCEL)))
(COND ((LESSP (LOW SEL1) (LOW SEL2))
(SETQ LOW (LOW SEL2)))
(T (SETQ LOW (LOW SEL1))))
(COND ((GREATERP (HIGH SEL1) (HIGH SEL2))
(SETQ HIGH (HIGH SEL2)))
((EQN LOW (LOW SEL1)) (RETURN "ABSORB))
(T (SETQ HIGH (HIGH SEL1))))
(RETURN
(CONS “NON-DISJUNCTION
(BUILDLINEAR (VAR SEL2) “= LOW HIGH))))
((OR (NOT (LESSP (LOW SEL2) (HIGH SEL1)))
(NOT (GREATERP (HIGH SEL2) (LOW SEL1))))
(RETURN “ABSORB))
(T (RETURN (LINEARPRODUCTDIFREL SEL2 SELI)))))
((EQ (RELATION SEL2) “=)
(RETURN (LINEARPRODUCTDIFREL SEL1 SEL2)))

(T
(SETQ LOW
(LOW
(COND ((LESSP (LOW SEL2) (LOW SEL1)) SEL2)

(T SEL1))))
(COND ((GREATERP (HIGH SEL2) (HIGH SEL1))
(SETQ HIGH (HIGH SEL2)))
((EQN LOW (LOW SEL1)) (RETURN ‘ABSORB))
(T (SETQ HIGH (HIGH SEL1))))
(RETURN
(CONS ‘NON-DISJUNCTION

(BUILDLINEAR (VAR SEL2) ‘# LOW HIGH))))))))

58

AQLISP Users Guide
Appendix B-]

Function: ENOCKOUT
Purpose: Removes all events in EVLIST that the cover COMP covers.

Calls:
INCLUDES

Called By:
AQ

Function Listing:

(ENOCKOUT

(LAMBDA (COMP EVLIST)

(SUBSET EVLIST (FUNCTION (LAMBDA (EV) (NOT (INCLUDES COMP EV)))) NIL)
))

AQLISP Users Guide
Appendix B-1l

Function: LISTDIFFERENCE

Called By:
INCREMENTALGEN

Function Listing:

(LISTDIFFERENCE
(LAMBDA (XL YL)
(SUBSET XL (FUNCTION (LAMBDA (X) (NOT (MEMB X YL)))))))

Funection: HASK

Purpose: Returns the mask corresponding to the variable that is
used in nominal selector SEL.

Called By:
CANCELNOMINAL
NEGATECOMPLEX
NOMINALPRODUCT

Function Listing:

(MASK
(LAMBDA (SEL)
(PROGN (SETQ SEL (LOGXOR ????????????????????Q SEL))
(PROG (**LST1 #**VAL MASK)
(SETQ **LST1 MASKLIST)
#%P (SETQ MASK (CAR (OR (LISTP **LST1) (GO **0UT))))
(COND ((NOT (ZEROP (LOGAND MASK SEL))) (RETURN MASEK)))
[TERATE (SETQ #LST1 (CDR *%LS5T1))
(GO **LP)
**QUT (RETURN 77777777777777777777Q)))))

60

AQLISP Users Guide
Appendix B-1l

Function: LINEARPRODUCTDIFREL

Calls:
Low
HIGH
BUILDLINEAR
VAR
EPSILON

Called By:
LINEARPRODUCT

Function Listing:

(LINEARPRODUCTDIFREL
(LAMBDA (INEQSEL EQSEL)
(PROG (LOW HICH)
(COND ((AND (LESSP (LOW EQSEL) (LOW INEQSEL))
(GREATERP (HIGH EQSEL) (HIGH INEQSEL)))
(RETURN
(LIST “DISJUNCTION
(BUILDLINEAR (VAR EQSEL)
=
{LOW EQSEL)
(DIFFERENCE (LOW INEQSEL)
(EPSILON (VAR EQSEL))))
(BUILDLINEAR (VAR EQSEL)

(PLUS (HIGH INEQSEL)
(EPSILON (VAR EQSEL)))
(HIGH EQSEL))))))
(SETQ LOW
(COND ((LESSP (LOW EQSEL) (LOW INEQSEL)) (LOW EQSEL))
((NOT (LESSP (HIGH INEQSEL) (HIGH EQSEL)))
(RETURN “CANCEL))
((LESSP (HIGH INEQSEL) (LOW EQSEL)) (RETURN EQSEL))
(T (PLUS (HIGH INEQSEL) (EPSILON (VAR EQSEL))))))
(SETQ HIGH
(COND ((GREATERP (HIGH EQSEL) (HIGH INEQSEL))
(HIGH EQSEL))
((GREATERP (LOW INEQSEL) (HIGH EQSEL))
(RETURN EQSEL))
(T (DIFFERENCE (LOW INEQSEL) (EPSILON (VAR EQSEL)))

(RETURN (BUILDLINEAR (VAR EQSEL) ‘= LOW HIGH)))))

59

AQLISP Users Guide
Appendix B-1

Function: MULTIPLY

Calls:
PRODUCTSC
SELECTOROFTRIVIALCOMPLEX

Called By:
STAR
INCREMENTALGEN

Function Listing:

(MULTIPLY
(LAMBDA (COMPSET SELSET)
(PROG (**LST1 **VAL COMP)
(SETQ **LST1 COMPSET)
**xLP (SETQ COMP (CAR (OR (LISTP **LST1) (GO **QUT))))
(SETQ **VAL
{NCONC #*VAL
(PROG (**LST] #**VAL SEL PRODUCT)
(SETQ **LST1 SELSET)
**LP (SETQ SEL
(CAR (OR (LISTP **LST1) (GO **0UT))))

(COND ((EQ
(SETQ PRODUCT
(PRODUCTSC
(SELECTOROFTRIVIALCOMPLEX SEL)
COMP
NIL))
*ABSORB)

(GO **QUT))) ~
(SETQ **VAL (NCONC **VAL PRODUCT))
**ITERATE (SETQ **LSTI1 (CDR **LST1))
(GO **LP)
#*0UT (RETURN
(SELECT PRODUCT
(*ABSORB (LIST COMP))
*4&VAL)))))
**ITERATE (SETQ **LST1 (CDR **LST1))
(GO **LP)
**QUT (RETURN **VAL))))

62

AQLISP Users Guide
Appendix B-1

Function: MINLIST

Calls:
DOMINATE

Called By:
STRUCFRODUCT

Function Listing:

(MINLIST
(LAMBDA (VALS1 VALS2 VAR)
(PROGN
(SETQ VALS1
(MAPCON (OR (LISTP VALS1) (LIST
(FUNCTION
(LAMBDA (VAL1)
(PROGN (SETQ VALl (CAR

VALS1))

VALL))

(MAPCON (OR (LISTP VALS2) (LIST VALS2))
(FUNCTION
(LAMBDA (VAL2)

(PROGN

(SETQ VALS1 (INTERSECTION VALS1 VALSI)
(COND ((CDR VALS1) VALSI)
(T (CAR VALS1))))))

(SETQ VALS2 (CAR VALS2))
(COND ((DOMINATE VAL2 VALl VAR
)

(LIST VALL))

((DOMINATE VALl VAL2 VAR)
(LIST VAL2))))})))))))

)

61

AQLISP Users Guide
Appendix B-l

Function: NEGATELINEARSELECTOR

Calls:
BUILDLINEAR

VAR
RELATION
VALS

Called By:
NEGATECOMPLEX

Function Listing:

(NEGATELINEARSELECTOR
(LAMBDA (SEL)
(BUILDLINEAR (VAR SEL)

{SELECT (RELATION SEL) ("= "#) ("# "=) (SHOULDNT))

(VALS SEL))))

Function: NEGATESTRUCTURESELECTOR

Calls:
BUILDSTRUCTURE

VAR
RELATION
VALS

Called By:
NEGATECOMFLEX s

Function Listing:

(NEGATESTRUCTURESELECTOR
(LAMBDA (SEL)
(BUILDSTRUCTURE (VAR SEL)
(SELECT (RELATION SEL) ("= “#) ("# “=) (SHOULDNT))

(VALS SEL))))

B4

AQLISP Users Guide
Appendix B-1

Function: NEGATECOMPLEX

Purpose: Returns the “negative” of a complex, i.e., all points
not within the complexes space.

Calls:
MASE
BUILDCOMP
MASKLOGOR
NEGATION
MASELOGXOR
NOMINAL
LINEAR
NEGATELINEARSELECTOR
STRUCTURE
NEGATESTRUCTURESELECTOR

Called By:
INCREMENTALGEN

Function Listing:

(NEGATECOMPLEX
(LAMBDA (COMPLEX)
(APPEND
(MAPCAR MASKLIST
(FUNCTION
(LAMBDA (MASK)
(BUILDCOMP
(MASKLOGOR (NEGATION MASK)
(MASKLOGXOR MASK (NOMINAL COMPLEX)))
NIL
NIL))))
(APPEND
(MAPCAR (LINEAR COMPLEX)
(FUNCTION
(LAMBDA (SEL)
(BUILDCOMP NIL (NEGATELINEARSELECTOR SEL) NIL))))
(MAPCAR (STRUCTURE COMPLEX)
(FUNCTION
(LAMBDA (SEL)

(BUILDCOMP NIL NIL (NEGATESTRUCTURESELECTOR SEL)))))))))

63

AQLISP Users Guide
Appendix B-1

Function: NUMBEROFSELECTORS
Purpose: Count the number of selectors in a complex COMP.

Calls:
NEGATION
NOMINAL
LINEAR
STRUCTURE

Function Listing:

(NUMBEROFSELECTORS
(LAMBDA (COMP **DUMMYl** #*DUMMY2*%*)
(PLUS
(PROG (**LST1 MASK NEGNOM ®*VAL)
(SETQ **LST1 MASKLIST)
(SETQ NEGNOM (NEGATION (NOMINAL COMP)))
(SETQ **VAL 0)
%% P (SETQ MASK (CAR (OR (LISTP **LST1) (GO **0UT))))
(SETQ **VAL
(PLUS **VAL
(COND ((ZEROP (LOGAND NEGNOM MASK)) 0)
(T 12)))
#*[TERATE (SETQ **LST1 (CDR **LSTl))
(GO *#*LP)
0UT (RETURN #VAL))
(LENGTH (LINEAR COMP))
(LENGTH (STRUCTURE COMP))})}))

Punction: ORDEREDCOVER

Calls:
AQ

Function Listing:

(ORDEREDCOVER
(LAMBDA (CLASSES)
(MAPLIST CLASSES
{ FUNCTION
(LAMBDA (CLASSTAIL)

(AQ (CAR CLASSTAIL) (APPENDX (CDR CLASSTAIL)) NIL)}))))

66

AQLISP Users Guide 6!
Appendix B-1

Function: NEWCOMPLEXFROMLINEAR

Purpose: Bullds a new complex with linear selector NEWSELECTOR
substituted for OLDSELECTOR.

Calls:
BUILDCOMP
NOMINAL
LINEAR
EARLIER
VAR
STRUCTURE

Function Listing:

(NEWCOMPLEXFROMLINEAR
(LAMBDA (COMP OLDSELECTOR NEWSELECTOR)
(BUILDCOMP (NOMINAL COMP)
(SORT
(CONS NEWSELECTOR (REMOVE OLDSELECTOR (LINEAR COMP)))
(FUNCTION (LAMBDA (X Y) (EARLIER (VAR X) (VAR Y)))))
(STRUCTURE COMP))))

Function: NOMINALPRODUCT

Purpose: Finds the product (intersection) of all nominal points
in SEL and NOM.

Calls: -
MASK

Function Listing:

{NOMINALPRODUCT
(LAMBDA (SEL NOM)
(LOGOR (LOGAND SEL NOM)
(LOGAND (LOGXOR 177777777777777777177Q (MASK SEL)) NOM)))

AQLISP Users Guide
Appendix B-1

(FUNCTION EARLIERVAR))
(STRUCTURE COMP))))))
{“STRUCTURED
{(COND ((SETQ OLDSELECTOR
(FINDSELECTOR (STRUCTURE COMP) (VAR SEL)))
(SELECT (SETQ PRODUCT (STRUCPRODUCT OLDSELECTOR SEL))
{*ABRSORE “ABSORB)
(“CANCEL NIL)
{LIST
(NEWCOMPLEXFROMSTRUCTURE COMP OLDSELECTOR
PRODUCT))))
(T
(LIST
(BUILDCOMP (NOMINAL COMP)
(LINEAR COMP)
(SORT
{APPEND (STRUCTURE COMP) (LIST SEL))
{FUNCTION EARLIERVAR))}))))) :
(SHOULDNT))))

Function: PRODUCTSCI

Calls:
PRODUCTSC

Function Listing:

(PRODUCTSC1

(LAMBDA (SEL COMP)

(PROGN (SETQ SEL (PRODUCTSC SEL COMP))
(SELECT SEL (“ABSORB COMP) SEL))))

68

AQLISP Users Guide
Appendix B-]

Function: PRODUCTSC

Calls:
SELECTORTYPE

Called By:
MULTIPLY
PRODUCTSC1

Function Listing:

(PRODUCTSC
(LAMBDA (SEL COMP PRODUCT)
(SELECT (SELECTORTYPE SEL)
(“NOMINAL
(SETQ NEWNOMINAL (NOMINALPRODUCT SEL (NOMINAL COMP)))
(COND ((EQUALNOMINAL NEWNOMINAL (NOMINAL COMP)) “ABSORB)
((CANCELNOMINAL NEWNOMINAL SEL) NIL)

(T
(LIST
(BUILDCOMP NEWNOMINAL
(LINEAR COMP)
(STRUCTURE COMP))))))
(“LINEAR

(COND ((SETQ OLDSELECTOR
(FINDSELECTOR (LINEAR COMP) (VAR SEL)))
(SELECT
(SETQ PRODUCT (LINEARPRODUCT OLDSELECTOR SEL))
("ABSORB “ABSORB)
(“CANCEL NIL) o
(COND ((EQ (CAR PRODUCT) ‘DISJUNCTION)
(LIST
(NEWCOMPLEXFROMLINEAR COMP
OLDSELECTOR
(CADR PRODUCT))
(NEWCOMPLEXFROMLINEAR COMP
OLDSELECTOR
(CADDR PRODUCT))))

(T
(LIST
(NEWCOMPLEXFROMLINEAR COMP
OLDSELECTOR
(CDR PRODUCT)})))))
(T
(LIST

(BUILDCOMP (NOMINAL COMP)
(SORT (APPEND (LINEAR COMP) (LIST SEL))

AQLISP Users Guide
Appendix B-1

Function: SELECTORTYPE
Purpose: Return the type of the selector SEL.

Calls:
NOMINALP
VAR

Called By:
PRODUCTSC

FUnctinﬁ Listing:

(SELECTORTYPE
(LAMBDA (SEL)
(COND ((NOMINALP SEL) "NOMINAL)
((AND (LISTP SEL) (GET (VAR SEL) ‘DOMAINTYPE)))
(T (SHOULDNT)))))

Function: STAR
Purpose: Generates the star of complxes of E against FLIST.

Calls:
BUILDCOMP
EXTENDAGAINST
TRUNCATE
MULTIPLY

Called By: =
AQ
PPSTAR

Function Listing:

(STAR
(LAMBDA (E FLIST POSITIVEEVENTS UNCOVEREDELIST)
(PROG (**LST1 **VAL F PRODUCT)
(SETQ #**LST1 FLIST)
(SETQ PRODUCT (LIST (BUILDCOMP NIL NIL NIL)))
*#LP (SETQ F (CAR (OR (LISTP **LSTL) (GO **0UT))))
(SETQ NEWPRODUCT (EXTENDAGAINST E F))
(SETQ PRODUCT
(TRUNCATE (MULTIPLY PRODUCT NEWPRODUCT)
MAXSTAR
CUTSTAR
CRITERIA&TOLERANCELIST
POSITIVEEVENTS
UNCOVEREDELIST))
ITERATE (SETQ **LST1 (CDR #LSTl))
(GO **LP)
*%QUT (RETURN PRODUCT))))

AQLISP Users Guide
Appendix B-l

Function: RESTRICT

Calls:
INCLUDES
BUILDCOMP
MASKLOGOR
NOMINAL
MASKLOGAND
LINEAR
FINDSELECTOR
VAR
STRUCTURE

Called By:
TRUNCATE

Function Listing:

(RESTRICT
(LAMBDA (COMPLEX RESTRICTION)
(COND ((INCLUDES (CONDITION RESTRICTION) COMPLEX)
(BUILDCOMP
(MASKLOGOR (NOMINAL (RHS RESTRICTION))
(MASKLOGAND
(TRIVIALVARMASK (NOMINAL (RHS RESTRICTION)))
(NOMINAL COMPLEX)
NIL))
(PROG (**LST]1 #**VAL SEL LINEAR)
(SETQ **LST1 (LINEAR (RHS RESTRICTION)))
(SETQ LINEAR (COPY (LINEAR COMPLEX)))
**LP (SETQ SEL (CAR (OR (LISTP **LST1) (GO **0UT))))
(SETQ LINEAR
(REMOVE (FINDSELECTOR LINEAR (VAR SEL)) LINEAR))
**ITERATE (SETQ **LSTl (CDR **LST1))
(GO *%Lp)
**%0UT (RETURN
(SORT (APPEND (LINEAR (RHS RESTRICTION)) LINEAR)
(FUNCTION EARLIERVAR))))
(PROG (**LST1 **VAL SEL STRUCTURE)
(SETQ **LST1 (STRUCTURE (RHS RESTRICTION)))
(SETQ STRUCTURE (COPY (STRUCTURE COMPLEX)))
**LP (SETQ SEL (CAR (OR (LISTP **LST1) (GO **0UT))))
(SETQ STRUCTURE
(REMOVE (FINDSELECTOR STRUCTURE (VAR SEL))
STRUCTURE))
**ITERATE (SETQ **LSTl (CDR **%LST1))
(GO #**LPp)
**0UT (RETURN
(SORT (APPEND (STRUCTURE (RHS RESTRICTION)) STRUCTURE)
(FUNCTION EARLIERVAR))))))

(T COMPLEX))))

AQLISP Users Guide
Appendix B-1

Function: TRUNCATE

Purpose: Cuts (trims) the size of a star to CUTSTAR if it exceeds

MAXSTAR in size, wusing the optimality criterion
specified in CETLIST. (sea 3.3)

Calls:
RESTRICT
CUTSTAR
BESTN

Called By:
STAR
BESTCOMP

Function Listing:

(TRUNCATE
(LAMBDA (STAR MAXSTAR CUTSTAR C&TLIST POSITIVEEVENTS UNCOVEREDEVENTS)
(COND ((LESSP (LENGTH STAR) MAXSTAR) STAR)
(T
(PROG (**VAL STARTAIL)
(SETQ STARTAIL STAR)
**LP (COND ((NOT (LISTP STARTAIL)) (GO ##*0UT)))
(RPLACA STARTAIL
(PROG (**LST1 **VAL RESTRICTION COMP)
(SETQ **LST1
(LISTP (EVALV “RESTRICTIONLIST)))
(SETQ COMP (CAR STARTAIL))
##LP (SETQ RESTRICTION
(CAR (OR (LISTP *ALST1) (GO **OUT)))
)
(SETQ COMP (RESTRICT COMP RESTRICTION))
**ITERATE (SETQ **LST1 (CDR **LST1))
(GO **LP)
**0UT (RETURN COMP)))
#*ITERATE (SETQ STARTAIL (CDR STARTAIL))
(GO **LP)
**0UT (RETURN **VAL))
(PROG (**LST1 **VAL C&T)
(SETQ **LST1 C&TLIST)
%P (SETQ C&T (CAR (OR (LISTP **LST1) (GO **0UT))))
(COND ((LESSP (LENGTH STAR) CUTSTAR) (GO **QUT)))
(SETQ STAR
(CUTSTAR STAR
' (CAR C&T)
(CADR C&T)

72

AQLISP Users Guide
Appendix B-l

Function: STRUCPRODUCT

Calls:
MINLIST
VALS
VAR
BUILDSTRUCTURE

Function Listing:

(STRUCPRODUCT
(LAMBDA (SELL SEL2)
(COND ((SETQ MINLIST (MINLIST (VALS SEL1) (VALS SEL2) (VAR
(COND ((NOT (EQUAL MINLIST (VALS SEL1)))
(BUILDSTRUCTURE (VAR SEL1) "= MINLIST))
(T “ABSORB)))
(T “CANCEL))))

SEL1)))

71

AQLISP Users Guide
Appendix B-1

Appendix B-2

Data Structure Functions

Function: ADDLINEAR

Calls:
SETLINEAR
BUILDLINEAR
LINEAR

Function Listing:

{ADDLINEAR
(LAMBDA (SELECTOR COMPLEX)
(SETLINEAR COMPLEX
(SORT
(CONS
(BUILDLINEAR (CAR SELECTOR)
(CADR SELECTOR)
(CADDR SELECTOR)
{CADDDR SELECTOR})
(LINEAR COMPLEX))
(FUNCTION EARLIERVAR)))))

T4

AQLISF Users Guide
Appendix B~-]

POSITIVEEVENTS
UNCOVEREDEVENTS))
**ITERATE (SETQ **LST1 (CDR **L5T1))
(GO #**LPp)
**0UT (RETURN **VAL))
(COND ((LESSP (LENGTH STAR) CUTSTAR) STAR)
(T (BESTN STAR CUTSTAR)))))))

AQLISP Users Guide
Appendix B-2

Function: ALLPARENTS

Calls:
PARENT

Called By:
EXTENDAGAINSTSTRUCVAL

Function Listing:

(ALLPARENTS
(LAMBDA (NODE VAR)
(PROG (**VAL **TEM1 *+*TEM2)
#*LP (COND ((NOT (SETQ NODE (PARENT NODE VAR))) (GO **0UT)))
(SETQ **TEM1 NODE)
(COND (%**TEM2 (RPLACD **TEM2 (SETQ **TEM2 (LIST #**TEM1))))
(T (SETQ **VAL (SETQ **TEM2 (LIST **TEM1)))))
**ITERATE (GO **LP) .
**QUT (RETURN **VAL})))

Function: BUILDCOMP

Calls:
TOTALMASK

Called By:
STAR
EXTENDAGAINSTHOMINAL
EXTENDAGAINSTLINEAR
EXTENDAGAINSTSTRUCTURE
RESTRICT
READVL1
NEGATECOMPLEX |
NEWCOMPLEXFROMLINEAR
NEWCOMPLEXFROMSTRUCTURE

Function Listing:

(BUILDCOMP
(LAMBDA (NOMINAL LINEAR STRUC)

LIST
((LGGAHD (TOTALMASK MASKLIST) (OR NOMINAL 777TTT7ITTITTIINITTTITIQ))

LINEAR
STRUC)))

76

AQLISP Users Guide
Appendix B-2

Function: ADDNOMIMAL

Calls:
SETNOMINAL
MASKLOGOR
MASFLOGAND
NOMINAL
NEGATION
GETMASK
BUILDMASE

Function Listing:

(ADDNOMINAL
(LAMBDA (SELECTOR COMPLEX)
(SETNOMINAL COMPLEX
(MASKLOGOR
(MASKLOGAND (NOMINAL COMPLEX)
(NEGATION (GETMASK (CAR SELECTOR)))
NIL)
(COND ((EQ (CADR SELECTOR) ‘=)
(BUILDMASK (CAR SELECTOR) (CDDR SELECTOR)))
(T
(NEGATION
(BUILDMASK (CAR SELECTOR) (CDDR SELECTOR))))))))
)

Function: ADDSTRUCTURED o

Calls:
SETSTRUCTURED
BUILDSTRUCTURE
STRUCTURE

Function Listing:

(ADDSTRUCTURED
(LAMBDA (SLECTOR COMPLEX)
(SETSTRUCTURED COMPLEX
(SORT
(CONS
(BUILDSTRUCTURE (CAR SELECTOR)
(CADR SELECTOR)
(CDDR SELECTOR))
(STRUCTURE COMPLEX))
(FUNCTION EARLIERVAR)))))

AQLISP Users Guide
Appendix B-2

Function: BUILDMASK

Calls:
MASKLOGOR
MASKBIT

Called By:
ADDNOMINAL

Function Listing:

(BUILDMASK
(LAMBDA (VAR VALIST)
(COND ((GET VAR ‘VALUESET)
(PROG (**LST1 **VAL V VALUESET)
(SETQ **LSTLl VALIST)
(SETQ VALUESET (GET VAR °VALUESET))
#*[P (SETQ V (CAR (OR (LISTP **LST1) (GO **0UT))))
(COND ((NOT (MEMBER V VALUESET))
(PRIN1 V)
(PRINL “$$" IS NOT A VALID VALUE FOR VARI")
(PRIN1 “$$"ABLE ")
(PRINT VAR)))
**[TERATE (SETQ **LSTl (CDR **LST1))
(GO **LP)
*#*0UT (RETURN *#*VAL))
(PROG (**LST1 **VAL VAL MASK I)
(SETQ **LST1 (GET VAR ‘VALUESET))
(SETQ MASK 0)
(SETQ I 0)
**LP (SETQ VAL (CAR (OR (LISTP **LST1) (GO **QUT))))
(COND ((NOT (MEMBER VAL VALIST)) (GO **ITERATE)))
(SETQ MASK (MASKLOGOR MASK (LEFTSHIFT (MASKBIT VAR) I)))
#*ITERATE (SETQ *#*LST1 (CDR *#*LST1))
(SETQ I (PLUS I 1))
(GO **LP)
*%0UT (RETURN MASK)))
(T
(PROG (**LST1 **VAL VAL MASK)
(SETQ **LST1 VALIST)
(SETQ MASK 0)
**LP (SETQ VAL (CAR (OR (LISTP **LST1) (GO **0UT))))
(SETQ MASK
(MASKLOGOR MASK (LEFTSHIFT (MASKBIT VAR) VAL)))
[TERATE (SETQ #LST1 (CDR **LST1))
(GO **LP)
*%0UT (RETURN MASK))))))

AQLISP Users Guide
Appendix B-2

Function: BUILDLINEAR

Called By:
EXTENDAGAINSTL
NEGATELINEARSELECTOR
LINEARPRODUCT
LINEARPRODUCTDIFREL
ADDLINEAR

Function Listing:

(BUILDLINEAR (LAMEDA (VAR REL LOW HIGH) (LIST VAR REL LOW HIGH)))

AQLISP Users Guide
Appendix B-2

Function: EARLIERVAR
Calls:
EARLIER
VAR

Function Listing:

(EARLIERVAR (LAMBDA (X Y) (EARLIER (VAR X) (VAR Y))))

Function: EVENTS
Called By:
READEVENTS
INCREMENTALGEN
Funetion Listing:

(EVENTS (LAMEDA (NAME) (GET NAME “EVENTS)))

Function: FORMULA

Called By:
INCREMENTALGEN =

Function Listing:

(FORMULA (LAMBDA (NAME) (GET NAME "FORMULA}))

Function: GETMASK

Called By:
ADDNOMINAL

Function Listing:

(GETMASK (LAMBDA (VAR) (GET VAR "MASK)))

BO

AQLISP Users Guide
Appendix B-2

Function: BUILDSTRUCTURE

Called By:
EXTENDAGAINSTSTRUCTURE
NEGATESTRUCTURESELECTOR
STRUCPRODUCT
ADDSTRUCTURED

Function Listing:

(BUILDSTRUCTURE (LAMBDA (VAR RELATION VAL) (LIST VAR RELATION VAL)))

Function: DOMAINTYPE

Called By:
READVL1

Function Listing:

(DOMAINTYPE (LAMBDA (VAR) (GET VAR “DOMAINTYPE)))

Function: DOMINATE

Calls: -
DOMINATE
PARENTS

Called By:
DOMINATE
MINLIST

Function Listing:

(DOMINATE

(LAMBDA (V1 V2 VAR)
(COND (V2 (OR (EQ V1 V2) (DOMINATE V1 (PARENTS V2 VAR) VAR))))))

AQLISP Users Guide
Appendix B-2

Function: MASEKBIT

Called By:
BUILDMASE

Function Listing:

(MASKBIT (LAMBDA (VAR) (GET VAR "MASKBIT)))

Function: MASKEQUAL

Called By:
INCLUDESNOMINAL

Function Listing:

(MASKEQUAL (LAMBDA (X Y) (EQN X Y)))

Function: MASELOGAND

Called By:
INCLUDESNOMINAL
EXTENDAGAINSTNOMINAL
RESTRICT
ADDNOMINAL

Function Listing:

(MASKLOGAND (LAMBDA (X Y Z) (LOGAND X Y (OR Z 77777777777777777777Q)))
)

Function: MASELOGOR

Called By:
EXTENDAGAINSTNOMINAL
RESTRICT
NEGATECOMPLEX
ADDNOMINAL
BUILDMASEK

Function Listing:

{MASKLOGOR (LAMBDA (X Y) (LOGOR X Y)))

82

AQLISP Users Guide
Appendix B-2

Function: HIGH

Calls:
LOW

Called By:
EXTENDAGAINSTL
LINEARPRODUCT
LINEARPRODUCTDIFREL
PRINTLINEAR

Function Listing:

(HIGH (LAMBDA (X) (OR (CADDDR X) (LOW X))))

Function: LINEAR

Called By:
INCLUDES
EXTENDAGAINSTLINEAR
RESTRICT
SELECTOROFTRIVIALCOMPLEX
NEGATECOMPLEX
NEWCOMPLEXFROMLINEAR
NUMBEROFSELECTORS
ADDLINEAR
NEWCOMPLEXFROMSTRUCTURE

PPCOMP

Function Listing:
(LINEAR (LAMBDA (X) (CADR X)))

Function: LOW

Called By:
EXTENDAGAINSTLINEAR

HIGH
EXTENDAGAINSTL
LINEARPRODUCT
LINEARPRODUCTDIFREL
PRINTLINEAR

Function Listing:

(LOW (LAMBDA (X) (CADDR X))

81

AQLISP Users Guide
Appendix B-2

Function: NEWCOMPLEXFROMSTRUCTURE

Calls:
BUILDCOMP
NOMINAL
LINEAR
STRUCTURE

Function Listing:

(NEWCOMPLEXFROMSTRUCTURE
(LAMBDA (COMP OLDSELECTOR NEWSELECTOR)
(BUILDCOMP (NOMINAL COMP)
(LINEAR COMP)
{SORT
(CONS NEWSELECTOR (REMOVE OLDSELECTOR (STRUCTURE COMP)))
(FUNCTION EARLIERVAR)))))

Function: NOMINAL

Called By:
INCLUDES
EXTENDAGAINSTNOMINAL
RESTRICT
SELECTOROFTRIVIALCOMFLEX
READVARTABLES
NEGATECOMPLEX
NEWCOMPLEXFROMLINEAR
NUMBEROFSELECTORS
ADDNOMINAL
NEWCOMPLEXFROMSTRUCTURE
PPCOMP

Function Listing:
(NOMINAL (LAMBDA (X) (OR (NUMBERP (CAR X)) 77777777777777777777Q)))

Function: NOMINALP

Called By:
SELECTORTYPE

Function Listlng:

(NOMINALP (LAMBDA (X) (NUMBERF X)))

B4

AQLISP Users Guide
Appendix B-2

Function: MASKLOGXOR

Called By:
EXTENDAGAINSTNOMINAL
NEGATECOMPLEX
Function Listing:

(MASKLOGXOR (LAMBDA (X Y) (LOGXCR X Y)))

Function: MAXBOUND

Called By:
EXTENDAGATNSTL

Function Listing:

(MAXBOUND (LAMBDA (VAR) (OR (GET VAR "HIGH) 100000000)))

Function: NEGATION

Called By:
EXTENDAGAINSTNOMINAL
NEGATECOMPLEX
NUMBEROFSELECTORS
ADDNOMINAL

Function Listing:

(NEGATION (LAMBDA (X) (LOGXOR 177777777777717777177Q X)))

-

AQLISP Users Guide
Appendix B-2

Function: SELECTOROFTRIVIALCOMPLEX
Calls:
NOMINAL
TOTAIMASEK
LINEAR
STRUCTURE

Called By:
MULTIPLY

Function Listing:
(SELECTOROFTRIVIALCOMPLEX

({LAMEDA (COMP)

(COND ((NOT (EQN (NOMINAL COMP) (TOTALMASK MASKLIST)))
(NOMINAL COMP))
((CAR (OR (LINEAR COMP) (STRUCTURE COMP)))}))))

Function: SETEVENTS
Called By:
READEVENTS
INCREMENTALGEN
Function Listing:

(SETEVENTS (LAMBDA (NAME VAL) (PUTPROP NAME “EVENTS VAL)))

Function: SETFORMULA

3 Called By:
INCREMENTALGEN

Function Listing:

(SETFORMULA (LAMBDA (AT VAL) (PUTPROP AT ‘FORMULA VAL)))

86

AQLISP Users Guide
Appendix B-2

Function: NON-TRIVIAL

Called By:
INCLUDESSELECTORS

Function Listing:

(NON-TRIVIAL (LAMBDA (X) T))

Function: PARENT

Called By:
EXTENDAGAINSTSTRUCVAL

ALLPARENTS
Function Listing:
(PARENT (LAMBDA (VAL VAR) (CADR (GET VAL VAR))))

Function: PARENTS

Called By:
ABOVE
DOMINATE

Function Listing:

(PARENTS (LAMBDA (VAL VAR) (CADR (GET VAL VAR})))

Function: RELATION

Called By:
INBOUNDS
INCLUDESSTRUCSEL
NEGATELINEARSELECTOR
NEGATESTRUCTURESELECTOR
LINEARPRODUCT
PRINTLINEAR

Function Listing:

(RELATION (LAMBDA (X) (CADR X)))

85

AQLISP Users Guide
Appendix B-2

Function: STRUCTURE

Called By:
INCLUDES
EXTENDAGAINSTSTRUCTURE
RESTRICT
SELECTOROFTRIVIALCOMPLEX
NEGATECOMPLEX
NEWCOMPLEXFROMLINEAR
NUMBEROFSELECTORS
ADDSTRUCTURED
NEWCOMPLEXFROMSTRUCTURE
PPCOMP

Function Listing:

(STRUCTURE (LAMBDA (X) (CADDR X)))

Function: TOTALMASK

Called By:
BUILDCOMP
SELECTOROFTRIVIALCOMPLEX

FRINTNOMINAL

Function Listing:

{TOTALMASK
(LAMBDA (MASKLIST) s
(PROG (**LST1 #**VAL MASK TOTALMASK)

(SETQ **LST1 MASKLIST)

(SETQ TOTALMASK 0)
#*LP (SETQ MASK (CAR (OR (LISTP **LSTl) (GO **0UT))))

(SETQ TOTALMASK (LOGOR MASK TOTALMASK))
*#*ITERATE (SETQ **LST1 (CDR **LSTl))

(GO **LP)
**00UT (RETURN TOTALMASK))))

Function: VALS

Called By:
EXTENDAGAINSTSTRUCTURE

EXTENDAGAINSTSTRUCVAL
NEGATELINEARSELECTOR
NEGATESTRUCTURESELECTOR
STRUCPRODUCT

Function Listing:

(VALS (LAMBDA (X) (CADDR X)))

88

AQLISP Users Guide
Appendix B-2

Function: SETLINFAR

Called By:
ADDLINEAR

Function Ligting:

(SETLINEAR
(LAMBDA (COMPLEX LIN)
(PROGN (RPLACA (CDR COMPLEX) LIN) COMPLEX)))

Function: SETNOMINAL

Called By:
ADDNOMINAL

Function Listing:

(SETNOMINAL (LAMBDA (COMPLEX NOM) (RPLACA COMPLEX NOM)))

Function: SETSTRUCTURED

Called By:
ADDSTRUCTURED

Function Listing: =
(SETSTRUCTURED

(LAMBDA (COMPLEX STRUC)
(PROGN (RPLACA (CDDR COMPLEX) STRUC) COMPLEX)))

Function: SIBLINGS

Called By:
EXTENDAGAINSTSTRUCVAL

Function Listing:

(SIBLINGS (LAMBDA (VAL VAR) (CADDDR (GET VAL VAR))))

87

90

AQLISP Users Guide
Appendix B-2

Appendix B=3

Input/Output Functions

Function: BITS

Called By:
PRINTNOMINALVAR

Function Listing:

(BITS
(LAMBDA (MASE)
(PROG (**VAL I)
(SETQ I 1)
LP (COND ((NOT (ZEROP (LOGAND I MASK))) (GO #0UT)))
(SETQ T (PLUS I I))
**ITERATE (GO *#*LP)
*%0UT (RETURN
(PROG (**VAL J **TEM1 **TEM2)
(SETQ J I)
%,P (COND ((ZEROP (LOGAND J MASK)) (GO *#0UT)))
(SETQ **TEM1 (PROGL J (SETQ J {PLUS J I
(COND (**TEM2
(RPLACD **TEM2 (SETQ **TEHE (LIST #**TEML))))
(T (SETQ **VAL (SETQ **TEM2 (LIST **TEM1)))))
*%ITERATE (GO **LP) .
**0UT (RETURN **VAL))))))

AQLISP Users Cuide
Appendix B-2

Function: VAR

Called By:
INCLUDESSELECTORS
FINDSELECTOR
EXTENDAGAINSTLINEAR
EXTENDAGATINSTL
EXTENDAGAINSTSTRUCTURE
EXTENDAGAINSTSTRUCVAL
RESTRICT
SELECTORTYPE
NEGATELINEARSELECTOR
NEGATESTRUCTURESELECTOR
LINEARPRODUCT
LINEARPRODUCTDIFREL
NEWCOMPLEXFROMLINEAR
STRUCPRODUCT
EARLIERVAR
PRINTLINEAR

Function Listing:

(VAR (LAMBDA (X) (CAR X)))

AQLISP Users Guide
Appendix B-3

Function: PPCOMP

Calls:
PRINTNOMINAL
NOMINAL
PRINTLINEAR
LINEAR
PRINTSTRUCTURE
STRUCTURE

Function Listing:

(PPCOMP

(LAMBDA (COMP)

(PROGN (PRINTNOMINAL (NOMINAL COMP))
(PRINTLINEAR (LINEAR COMP))
(PRINTSTRUCTURE (STRUCTURE COMP))
{(TERFRI))))

Function: PPCOMPS
Called By:
SHOWCOVERS
PPAQ
PPSTAR
Function Listing:

(PPCOMPS (LAMBDA (CL) (MAPC CL (FUNCTION PPCOMP)))})

Function: PPSTAR
Calls:

PPCOMPS
STAR

Function Listing:

{(PPSTAR (LAMBDA (X Y) (PPCOMPS (STAR X Y))))

92

AQLISP Users Guide
Appendix B-3

Function: PN

Calls:
PRINTNOMINALVAR

Function Listing:

(PN
(LAMBDA (NOMINAL)
(PROG (**LST2 #ALST1 **VAL MASK VARNAME)

(SETQ **LST2 NOMINALVARS)

(SETQ **LST1 MASKLIST)

**LP (SETQ MASK (CAR (OR (LISTP **LST1) (GO **0UT))))
(SETQ VARNAME (CAR (OR (LISTP **LST2) (GO **0UT))))
(PRINTNOMINALVAR VAR (LOGAND MASK NOMINAL) MASK)

**ITERATE (SETQ **LST1 (CDR **LST1))
(SETQ **LST2 (CDR **LST2))
(GO *#Lp)

**OUT (RETURN *%*VAL))))

Function: PPAQ

Calls:
PPCOMPS

AQ
Function Listing:

(PPAQ o
(LAMBDA (ELIST FLIST)
(PRIN1 “$$"POSITIVE EVENT SET IS:" ")
(PPCOMPS ELIST)
(TERPRI)
(PRIN1 “$$"NEGATIVE EVENT SET IS:" "y
(PPCOMPS FLIST)
(TERPRI)
(SETQ ELIST (AQ ELIST FLIST NIL))
(PRIN1 “$5"COVER IS:" ')
(PPCOMPS (CADR ELIST))
(AND (NOT (ZEROP (CAR ELIST)))
(PRIN1 “$$"EXCESS COMPLEXES NEEDED = ")
(PRINT (CAR ELIST)))
(PACK)))

91

AQLISP Users Guide
Appendix B=3

Funetion: PRINTNOMINAL

Calls:
TOTALMASE
PRINTNOMINALVAR

Called By:
PPCOMP

Function Listing:

(PRINTNOMINAL
(LAMBDA (NOMINAL)
(AND NOMINAL
(NOT (EQN NOMINAL (TOTALMASK MASKLIST)))
(PROG (**LST2 *ALST1 **VAL MASK VARNAME)
(SETQ **LST2 NOMINALVARS)
(SETQ **LST1 MASKLIST)
**LP (SETQ MASK (CAR (OR (LISTP **LST1) (GO **0UT))))
(SETQ VARNAME (CAR (OR (LISTP *#%LST2) (GO **0UT))))
(PRINTNOMINALVAR VARNAME (LOGAND MASK NOMINAL) MASK)
#%*[TERATE (SETQ *#*LST1 (CDR *#*LSTl))
(SETQ #**LST2 (CDR **LST2))
(GO *#LP)
0UT (RETURN #VAL)))))

AQLISP Users Guide
Appendix B-3

Functien: PRINTLINEAR

Calls:
VAR
RELATION
Low
HIGH

Called By:
PPCOMP

Function List ing:

(PRINTLINEAR
(LAMBDA (X)
(AND X
(MAPC X
(FUNCTION
(LAMBDA (SEL)
(PROGN (PRINI _[)
(PRIN1 (VAR SEL))
(PRIN1 _)
(PRIN1 (RELATION SEL))
(PRINL _)
(COND ((NOT (EQN (LOW SEL) (HIGH SEL)))
(PRIN1 (LOW SEL))
(PRINL *$$"..™)
(PRIN1 (HIGH SEL)))
(T (PRINI (LOW SEL))))
(PRINI _]))))))))

93

AQLISP Users Guide
Appendix B=3

(SETQ I (PLUS I 1))
(GO **LP)
**0UT (RETURN **VAL)}))
(PRINL _]1)))))

Funetion: PRINTSTRUCTURE

Called By:
PPCOMP

Function Listing:

(PRINTSTRUCTURE (LAMEDA (X) (AND X (PRINL X))))

96

AQLISP Users Guide
Appendix B-3

Function: PRINTNOMINALVAR

Calls:
BITS

Called By:
PN

PRINTNOMINAL

Function Listing:

(PRINTNOMINALVAR

(LAMBDA (VARNAME BITS MASK)
(COND ((EQN BITS MASK) NIL)

(T (PRINI [)

(PRIN1 VARNAME)

(PRINI “35" =

l'I]

(COND ((GET VARNAME “VALUESET)

(PROG

®A[P

**ITERATE

**0UT
(T
(PROC

**LP

**ITERATE

(**LST2 *ALST] **VAL B ALLBITS LOWORDER PRINTED
VARVALUE)
(SETQ **LST2 (CET VARNAME "VALUESET))
(SETQ .**LST1 (BITS MASK))
(SETQ ALLBITS (BITS MASK))
(SETQ LOWORDER (CAR (BITS MASK)))
(SETQ B (CAR (OR (LISTP **LST1) (GO **%QUT))))
(SETQ VARVALUE
(CAR (OR (LISTP #*L5T2) (GO *%0UT))))
(COND ((ZEROP (LOGAND B BITS)) (GO **ITERATE)))
(AND PRINTED (PRINL _,))
(PRIN1 VARVALUE)]
(SETQ PRINTED (OR PRINTED T))
(SETQ **LST1 (CDR **LST1))
(SETQ **LST2 (CDR *XLST2))
(GO **Lp)
(RETURN #*VAL)))

(**LST1 **VAL B ALLBITS LOWORDER PRINTED I)
(SETQ **LST1 (BITS MASK))

(SETQ ALLBITS (BITS MASK))

(SETQ LOWORDER (CAR (BITS MASK)))

(SETQ I 0)

(SETQ B (CAR (OR (LISTP **LST1) (GO **QUT))))
(COND ((ZEROP (LOGAND B BITS)) (GO **ITERATE)))
(AND PRINTED (PRIN1 _,))

(PRINI I)

(SETQ PRINTED (OR PRINTED T))

(SETQ **LST1 (CDR **LST1))

95

AQLISP Users Guide
Appendix B=3

Function: READCOMPLEX

Calls:
READVL1

Called By:
READEVENTS

Function Listing:

(READCOMPLEX
{LAMBDA NIL
{READVL1
(PROG (**VAL NEWSEL #*#*TEM1 **TEM2)
*#*LP (COND ((EQ (SETQ NEWSEL (READ)) “;) (GO **0UT)))
(SETQ **TEM]1 NEWSEL) _
(COND (**TEM2 (RPLACD **TEM2 (SETQ **TEM2 (LIST #**TEM1)))})
(T (SETQ **VAL (SETQ **TEM2 (LIST **TEM1)))))
#%[TERATE (GO **LP)
*%*0UT (RETURN *%VAL)))))

98

AQLISP Users Guide
Appendix B-3

Function: SHOWCOVERS

Calls:
PPCOMPS

Called By:
AQVAL

Function Listing:

(SHOWCOVERS
(LAMBDA (CS CLASSNAMES)
(PROGN (TERPRI)
(TERPRI)
(PRIN1 “$$"THE COVERS ARE:")
(TERPRI)
(COND (CLASSMAMES
(PROG (**LST2 #**LST] *#VAL C CLASSNAME)
(SETQ **LST2 CLASSNAMES)
(SETQ **LST1 CS)
**LP (SETQ C (CAR (OR (LISTP *4LSTI) (GO **0UT))))
(SETQ CLASSNAME
(CAR (OR (LISTP #*ALST2) (GO **0UT))))
(PRINZ (LIST “$$"COVER OF CLASS: " CLASSNAME))
(TERPRI)
(PPCOMPS (CADR C))
(TERPRI)
(TERPRI)
**ITERATE (SETQ **LST1 (CDR **LST1))
(SETQ **LST2 (CDR **LST2))
(GO **[p) =
**%0UT (RETURN **VAL)))
(T
(PROG (**LST1 **VAL C T)
(SETQ **LST1 CS)
(SETQ I 1)
LP (SETQ C (CAR (OR (LISTP **LST]) (GO #0UT))))
(PRINZ (LIST “$3"COVER OF CLASS #" 1))
(TERPRI)
(PPCOMPS (CADR C))
(TERPRI)
(TERPRI)
**ITERATE (SETQ **LSTL (CDR *ALSTI))
(SETQ I (PLUS I 1))
(GO **LP)
**QUT (RETURN **VAL)})))))

AQLISP Users GCuide 100
Appendix B=3

Function: READVARIABLES

Calls:
SETUPHMASKLIST
NOMINAL

Called By:
AQVAL

Function Listing:

(READVARIABLES
(LAMBDA NIL
(PROGN (PRIN1 “$$"DEFINE VARIABLES FOR YOUR PROB")
(PRINI “$$"LEM: (END WITH “*°)™)
(TERPRI)
(PROG (**VAL VARS VALUESET LOWVALUE HIGHVALUE DOMAINTYPE)
(SETQ NOMINALVARS
(SETQ LINEARVARS (SETQ STRUCTUREDVARS NIL)))
**LP (COND ((NOT
(SELECT
{CAR
(SETQ VARS
(PROGN (TERPRI)
(PRIN1 “$S"VARIABLE NAME(S): ")
(READLINE})))
(‘% NIL)
VARS))
(SETQ MASKLIST (SETUPMASKLIST NOMINALVARS))
(RETURN **VAL)))
(SET() DOMAINTYPE o
(ASKUSER NIL
‘N
*($$"DOMAIN TYPE: ")
* (NOMINAL LINEAR STRUCTURED)
T))
(SELECT DOMAINTYPE
(“NOMINAL
(PRIN1 “$$"WHAT ARE THE PERMISSIBLE VALUE")
(PRIN1 “$5"s: ™)
(TERPRI)
(PRIN1 “$$"(GIVE VALUES, SEPARATED BY SPA")
(PRIN1 “$$"CES OR COMMAS, END WITH “%°)")
(SETQ VALUESET (READLINE))
(MAPC VARS
(FUNCTION
(LAMBDA (VAR)

AQLISP Users Guide

Appendix B-3

Functionm: READEVENTS

Calls:

READCOMPLEX
SETEVENTS
EVENTS

Called By:

AQVAL

Function Listing:

(READEVENTS
(LAMBDA NIL

(PROGN (TERPRI)
(TERPRI)
(PRINT “$$"ENTER EVENTS AND CLASSES: "
(PROG (**VAL PREVCLASS CLASS CLASSLIST)
**LP (COND ((NOT

(PROGN (PRIN1 “$$"EVENT: ")
(SETQ COMP (READCOMPLEX))))
(GO *%0UT)))
(SETQ PREVCLASS
(OR
(PROGN (PRINI “$$"CLASS: ")
(SELECT (SETQ CLASS (READ)) (NIL) CLASS))
PREVCLASS))
(SETEVENTS PREVCLASS
(NCONC (EVENTS PREVCLASS) (LIST COMP) })
(SETQ CLASSLIST (UNION (LIST PREVCLASS) CLASSLIST))

**ITERATE (GO **LP) -=
**0UT (RETURN (SORT CLASSLIST NIL))))))

99

103

AQLISP Users Guide
Appendix B-3

Function: SETUPMASEKLIST

Called By:
READVARTIABLES

Function Listing:

(SETUPMASKLIST
(LAMBDA (NOMINALVARS)
(PROG (**LST1 **VAL VAR SHIFT **TEM] **TEM2)
(SETQ **LST1 NOMINALVARS)
(SETQ SHIFT 0)
**LP (SETQ VAR (CAR (OR (LISTP **LST1) (GO #*%0UT))))
(SETQ **TEM1
(PROG1
(PROG (**LSTl **VAL VAL MASK)
(SETQ *ALST1 (CDR (GET VAR °VALUESET)))
(SETQ MASK 1)
**LP (SETQ VAL (CAR (OR (LISTP **LST1) (GO **0UT))))
(SETQ MASK (LOGOR 1 (LEFTSHIFT MASK 1)))
**ITERATE (SETQ **LST1 (CDR *%LST1))
(GO **LP)
**QUT (PUTPROP VAR "MASKBIT (LEFTSHIFT 1 SHIFT))
(RETURN (PUTPROP VAR “MASK (LEFTSHIFT MASK SHIFT))
3]
(SETQ SHIFT (PLUS SHIFT (LENGTH (GET VAR ‘VALUESET))))))
(COND (**TEM2 (RPLACD **TEM2 (SETQ **TEM2 (LIST **TEM1))))
: (T (SETQ **VAL (SETQ **TEM2 (LIST **TEMI)))))
**ITERATE (SETQ **LST1 (CDR **LST1))
(Gﬂ **LP] -
*%QUT (RETURN **VAL))))

AQLISP Users Guide
Appendix B-3

(PROGN
(PUTPROP VAR ‘DOMAINTYPE “NOMINAL)
(PUTPROP VAR ‘VALUESET VALUESET)
(SETQ NOMINALVARS
(NCONC NOMINALVARS (LIST VAR)))))
)))
(“LINEAR
(PRIN1 “$$"WHAT IS THE RANGE OF PERMISSIB")
(PRIN1 “$$"LE VALUES: ")
(TERPRI)
(PRIN1 “$8"(TYPE AS "LOWVALUE, HIGEVALUE’")
(PRIN1 “$s8") ™)
(SETQ LOWVALUE (READ))
(SETQ HIGHVALUE (READ))
(MAPC VARS
(FUNCTION
(LAMBDA (VAR)
(PROGN (PUTPROP VAR ‘DOMAINTYPE ‘LINEAR)
(PUTPROP VAR “LOW LOWVALUE)
(PUTPROP VAR “HIGH HIGHVALUE)
(SETQ LINEARVARS
(NCONC LINEARVARS (LIST VAR)))
)N
(*STRUCTURED
(PRIN1 “$$"SORRY, CAN’T DO THAT YET")
(RPRI))
(SHOULDNT))
**ITERATE (GO *#*LP)))))

101

