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1. Introduction

This document is a companion to the thesis and user's guide (appendix II of the
thesis) which describe the Eleusis program. Programmers who seek to understand,
maintain, and improve the Eleusis program should find this document helpful in
elucidating the data structures, procedures, flow of control, and (alas) kludges in
the program.

2. Overview

The Eleusis program is a large (9818 lines, 143 procedures) PASCAL program.
Fortunately, it is broken down into 5 layers which are similar to each other in
many ways. Each layer performs 3 basic functions:

a) Learning Element (LE) - which discovers plausible descriptions of the layout.

b) Performance Element (PE) - which develops a description of the set of legal
cards which could extend the sequence.

¢) Critic (CR) - which tests a description of the layout to see that all correctly
played cards satisfy the description and that no incorrectly played card
satisfies the description.

As described in the thesis, the execution of each task (LE, PE, CR) involves de-
scending through the layers from layer 5 down to layer 1 and then returning. For
example, in the LE task, each layer performs three basic steps:

1. Transform the data structures to the representation appropriate to this level.

2.Search the space of possible descriptions at this level by invoking the level
immediately below to process the data.

3.Evaluate the results of the search to eliminate implausible rules.

The PE and CR tasks operate in similar ways.

The data structures used by the program are described in section 3. Section 4
describes the three tasks of the program (LE, CR, and PE) and discusses the data
transformations and flow of control of each task. Section 5 describes the lexical
analyzer and parser that make up the user interface to the program. And finally,
section B provides advice on maintaining the program and suggestions for solving
some of the more blatant problems of the present implementation.

This document should be read in conjunction with a source listing of the program.
As noted in the program preamble, the program is divided into 9sections. References
will be made to these sections throughout this programmer’s guide.
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3. Data Structures and Data Transformations.

This section is best read in conjunction with section 2 of the program source. The
program has 3 fundamental structures: symbol tables, layouts, and rules. The
layouts are sequences of events, the rules are possible descriptions of the layouts,
and the symbol tables define the meaning of the variables in both the layouts and
the rules. Let us start with the simplest data type: layouts.

3.1 Layouts (tsevents)

Conceptually, a layout is a sequence of events laid out exactly as cards are laid
out in Eleusis. The fundamental type is the tsevent, a packed record with the
following fields:

complex: a canonical VL) complex describing the event

negcomplex: a linked list of canonical VL, complexes describing negative
events which followed the positive event represented by complex.

nextevent: a link to the next tsevent in the layout.

segstart: a link toa tsevent in another layout (see below).

Thus, the Eleusis layout:

AC 2H 5D
3D
45

is stored internally as a singly-linked list of tsevent records as in Figure 1.

Figure 1.

Each tsevent is represented by 3 boxes, one each for the complex, negcomplex,
and nextevent fields (segstart is omitted). Each layout has a head and tail
pointer. The head and tail have the following names:

2



Level Head Variable Name Tail Variable Name

5 layout layouttail
4 l4layout l4layouttail
3 13layout l3layouttail

The head points to the first tsevent in the layout. The tail points to the last
tseveant.

Exceptions

During level 2, the negative events are shifted right one tsevent so that each
tsevent contains all cards which were played after the positive event in the pre-
vious tsevent. The procedures shiftnegcomplex and unshiftnegcomplex
perform and undo this shift. When negative events are shifted, it is possible to
have a tsevent which contains no positive complex. S8hiftnegcomplex must
create this tsevent and unshiftnegcomplex must destroy it.

During level2pe, the 121ayout is temporarily distorted by appending a dummy
event to the tail of the layout. In this case, the 121ayout tail pointer is not
updated to point to this dummy event. This modification is very temporary and
12layouttail is used to remove the dummy event when it is no longer needed.

3.1.1 VL; Complexes.

Layouts point to lists of VL) complexes. Conceptually, a VL, complex is a con-
junction of VL, selectors. Each selector involves a variable, a set of values called
the reference, and a relation between the variable and the set of values. In data
structure terms, a vlicomplex is an array of vliselectors and each selector
is a record which contains fields for the relation and the reference of the selec-
tor. The variable corresponding to the selector is implicit in the position of the
selector in the array. A viicomplex can only be interpreted if it is associated
with a vlisymboltable. The symbol table defines the characteristics of each
VL, variable. The ith VL, variable in the given symbol table has values specified
by te ith selector in the vlicomplex.



The precise layout of a vliselector is:

reference: aPASCAL setofvaluesfrom0Otomaxvalue. Each VL;variable
has a specific set of values, its domain. For example, the suit of a card
has the domain {clubs, diamonds, hearts, spades} . The set elements
0 through 3 are used to represent these reference values. The value *,
denoting any value, is precisely the set [0..3]. Thus, the representation
of * differs from variable to variable.

relation: a scalar type specifying the relationship between the value
and the reference. Relation has an intimate connection with the
printref fields. Usually, this relation field has the value releq

(equals).

useprintref: a boolean. If this is true, then the values specified in
printref must be used to interpret the selector. However, the refer—
ence field is always set properly too.

printref: an array of two values used as described below.

For example, the selector [value > 10] is represented by the selector record:
reference= [10,11,12] (this is not an error, see biassing below)
relation= relgt
useprintref= true
printref([i]l= 10
printref[2]= don't care

The selector [suit = dubs..diamonds| is represented as:
reference= [0,1]
ralation= raleq
useprintref= true
printref[i1i]l= ©
printref[2]= 1

In general, if useprintref is true, only the first element of printref is used
except when the relation is releq and the variableis a 1inear (or dlinear,
clinear, etc.) domain.

Each VL, complex contains the array of selectors called selectors. It also con-
tains:
nextcomplex: a link to the next complex when the complexes are linked
in a linked list
play: indicating what play this card was played during. The first card
played is play 1. Each card in a string of cards played in one turn is
given the same value for play. '
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fp.fq: flags used during the A7 algorithm.

Interpretation of vlicomplexes is tied directly to the viisymbol tables defined
at each layer:

Layer Symbol Table Name

5 none (see exceptions)
4 l4symboltable
3 l3symboltable
2 l2symboltable

Exceptions:

At layer 5, a vlicomplex is referred to in the program (in the commentary) as
a simple vlicomplex or svlic. A simple VL complex contains only 2 selec-
tors, one for suit and one for value. The variables are permanently fixed at
indices vlivaluex and vlisuitx in the vl2symboltable at level 5 (and in the
l4symboltable at level 4).

At level 4, v11complexes are sometimes used to describe segmentation conditions.
Segmentation conditions are always defined as delta variables, but unfortunately,
delta variables are not defined at level 4 in the 14symboltable but only at
level 2 in the 12symboltable. The solution (which has other advantages which
are described below) involves using 14symboltable to define these delta vari-
ables such that where 14symboltable says that the variable is color (for ex-
ample), we interpret it to mean dcolor (delta color). Thus, the domain definitions
for the 14symboltable are incorrect when applied to segmentation conditions.
This causes other problems and is the principle reason why you cannot print out
VL, segmentation complexes.

When v11icomplexes are used in v1irules, the selectors are always interpreted
using the 12symboltable (except for the segmentation conditions which are
interpreted using the 14symboltabla).

V Ly complexes are described in 3.4 in a section devoted to the peculiarities of VIL;.
3.2 Symbol Tables

The second major structure which we must consider is the symbol table. A symbol
table in Eleusis defines the semantics of each variable and its relationships to other
variables. Much of the information in the symbol table is crucial to the inference
capabilitics of the Eleusis program. There are 4 different symbol tables in the
program (one each in levels 2, 3, 4, and 5). One could imagine combining these and
eliminating a good deal of redundancy. However, it is important, in the knowledge-
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layer methodology, to isolate the layers from each other as much as possible. A
common symbol table would destroy the independence of the layers.

The most basic symbol table type is the vlisymboltable. It is merely an
array of records called vlivariables. One vlivariable is defined for each
VL, variable in the particular problem at hand. In particular, the variables in
the viisymboltable are in one-to-one correspondence with the selectors in the
vlicomplexes at any given layer of the program.

A vlivariable is decomposed into three subparts. The first subpart is the name.
This is a 10 character name which describes the variable. A d is prepended to the
name if the variable is a “delta” variable (diference variable). An s is prepended
if the variable is a “sum” variable. Subscripts are appended to the name according
to the subscripting convention described in the thesis. A subscript of 0 indicates
that this variable refers to the current card. A subscript of 1 refers to the card
immediately preceeding, and so on.

The second subpart of a vlivariable is the domain, This is a record of infor-
mation describing the domain set of the variable. It includes the fields:

dtype: the domain type of the variable. There are 8 domain types in
Eleusis which are described below in section 3.2.1.

max: This gives the largest element of the domain which legally exists in
the reference. In other words, the domain is represented by the set
{0,1,...,maz}. There are max+1 elements in the domain.

bias: This gives an amount which is to be added to the reference values
before they should be printed out. It is only relevant for numeric
valued variables. Example: the value of card is represented by the
domain dtype=linear, max=12, bias=1. In other words, a card
can assume values from the set {A,2,3,4,...,9,10,J,Q,K}. This is
represented by the PASCAL set [0..12] with a bias of 1.

zero: This indicates which element of the domain corresponds to zéro.
This is redundant information since it could be computed from max
and bias. It is used for generalizing d1inear variables.

cors: This indicates whether this variable describes cards or describes
strings of cards. The only variables that describe strings of cards are
length and derived descriptors based on length. Cors basically tells
how to interpret the bits in the refsyms table (see below).

The third subpart of the vlivariable is advice. This is a record of information
which provides advice to the program about which variables to derive and about
how plausible they are.



plausibility: arealnumber between 0 and 1. Plausibility isused to
compute cost functions in aqcost and distances in the decomposition
algorithm (procedure mergeunions).

gen: a set of derivecode. Gen tells level 2 whether or not it should
generate sum or difference variables based on this variable. Gen
also indicates if this variable is a builtin variable (e.g. value, suit,
or length) or a derived variable. The bitset element of gen indicates
that this variable can be derived using the values setein refsyns. In
the current program, bi tset is always set (all variables have refsyms
entries).

3.2.1 Domain Types

The Eleusis program supports eight different domain types. There are three fun-
damental types: nominal, linear, and clinear. The remaining types are based on
sums and differences of these fundamental types.
nominal: Valuesinanominal domain have no particular relationship to
each other. A nominal variable can be generalized by extending the
reference by adding any value from the domain.
linear: Valuesinalinear domain set are totally ordered. They are also
considered to be equally spaced. The reference of a 1inear variable
can be generalized by closing intervals and creating one-sided intervals.
For example, [value = 3,8] may be generalized to [value = 3, 4,5, 6].
[value = 8,13] may be generalized to [value > 7] (since 13 is the
largest value in the domain).
clinear: Values in a clinear domain set are cyclically ordered. The
reference of a clinear variable can be generalized by closing the
shortest interval in the set. For example, [suit = dubs, spades] can be
generalized to [suit = spades..clubs] (an end-around interval).

Difference variables represent the change between two events. Special domain
types are defined for “difference” or “delta™ variables.
dnominal: A dnominal variable has the domain {0,1}. It takes value
0 if the two events have the same value of this variable, otherwise a
dnominal variable takes the value 1. There are no simple generaliza-
tions of a dnominal variable.
dlinear: Adlinear variablehasthedomain{—(maz+1),..,0,... maz+
1} where maz is the max field of the domain. There are several ways
to generalize a d1inear variable as indicated in the examples below:
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[dvalue = —3,—1]
[dvalue = —3, +7]
[dvalue = —3,+3]
[dvalue = —3,0,+3]
[dvelue = —3, 0]

[dvadlue < 0]

ldvalue <> 0]
[dvalue = —3, 43|
[dvalue = —3.. 4 3]
[dvalue <= 0]

ARRARRN

dclinear: A dclinear variable has exactly the same domain as the
clinear variable from which it was computed. It is generalized in the
same way.

Sum variables can be created for linear and clinear variables. The sum of
nominal values is not defined.
slinear: A slinear variable as the value of the sum of two linear
variables. Its domain runs from {2bas,...,(2maz) 4 (2bias)}. It is
generalized in the same way as'a linear variable.
sclinear: An sclinear variable is just the sum of two clinear vari-
ables (modulo (maz -+ 1)). It has the same domain and the same
generalization rules as the corresponding clinear variable.

3.2.2 Reference Symbols (Descriptor Semantics)

The rsymbols field in the domain definition is very important. It indexes into a
table of so-called reference symbals. This table was originally intended to store
the definitions of symbolic domain values such as “ACE"” or “CLUBS." However,
as the program was developed, this table become the portion of the program which
defined the semantics of each variable and its relationships to other variables.
These semantics are based on characteristics of the deck of cards and of typical
card descriptors. Thus, they are quite domain specific. As noted in the thesis, this
domain dependence causes level 3 to be less general than it should be.

All defined descriptors have a non-zero rsymbols field (except for dummy vari-
ables in VILg ). This points into the refsyms array to the start of a contiguous
block of refsyma entries, one for each value in the domain of the descriptor.

Each entry in refsyms defines the set of cards in the deck which have that par-
ticular value. The type cardset is a set of integers which represent the cards in
the deck in the standard Bridge order (AC, 2C, 3C, ..., KC, AD, 2D, ..., KD, AH,
..., KH, AS, ..., KS). Each refsyms entry contains the fields:
values: a cardset of the cards which have this value. For example, if
the descriptor involved is color, and the domain value was red, then
values= [AD, 2D, ..., KH].
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refvalue: The number of the corresponding domain element. This value
has been biassed so that the smallest element in the domain has a ref -
valueof zeroand the largest element hasa refvalueofdomain.max.

last: a boolean flag which marks the last refsyms entry for this descrip-
tor. It is false for all other refsyms entries.

{sname: a boolean flag indicating whether this domain value is an al-
phanumeric character string or an integer. If isname is true then the
name field contains a character string representing the name. If is—
name is false, the number field contains an integer to be printed for
this value.

Three basic descriptors, suit, value, and length are predefined by the procedure
initsymbols. This is a good place to look in order to understand how the
refsyms array is used.

When additional descriptors are defined using the DEFINE command, refsyns
entries are built for their values by the procedure vl2ctoset which converts a
vl2complex to a cardset.

e rateyme - =
PR values refval | last
it | 3 -
club [aC .. KC] 0 | F
diamand [AD .. KD} : F
| heat | (AWl ¢ 2 1 F
mpace o kst | 3T

The refsyms entries are used in layer 5 to define new descriptors, in layer 4 to
add derived descriptors to the layout, and in layer 3 to determine which variables
remain constant under the segmentation condition. Layer 3 also uses refsyms to
derive length-related variables.

Exceptions

When cors = forstring, the interpretation of each refsyms entry is slightly
different. Instead of interpreting values as a set of cards, the elements of values
correspond to possible lengths of a string of cards. For example, if we define the
descriptor lengthmod2 to have a domain of 0 (if 1ength is even) and 1 (if 1ength
is odd), then l1engthmod2 has two refsyms entries. The 0 entry has values =

9
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[0,2.4.,6,...,50] and the L entry has values = [4.3,5.7,.:.,51). Layer
3 is the only layer that makes use of this interpretation.

3.2.3 Relevant Program Variables.

There is only one refsyms array. All four symbol tables point into this array.
The [our symbol tables are:

name layer number of used elements
vl2symboltable 5 nvl2vars
l4symboltable 4 nldvars
13symboltable 3 nl3vars
12symboltable 2 nl2vare

There are many additional variables which play some role in the symbol table.
Firstly, there are global variables which indicate the number of elements in each
symbol table that are actually being used: nvl2vars, nldvars, nl3vars, and
nl2vars. Secondly, there are cross-reference arrays which tell how a variable in
one symbol table is related to a variable in another symbol table. For example,
from34 is an array which tells, for a given level 3 variable, the index of
the corresponding level 4 variable in 14symbol table.
to32 is an array which tells, for a given level 3 variable, the index of the
corresponding level 2 variable in 12symboltable.

These mappings are not 1-1 or onto. For example, geveral level 2 variables may
be defined (with different subscripts, etc.) from a single level 3 variable.

3.3 VL, Rules

A VL, rule is conceptually a disjunction of VLjcomplexes. Thevlirule datastruc-
ture is a record which contains, among other things, a linked list of vlicomplexes
representing this disjunction. The fields of the viirule record are:

10



complexes: alinkedlistof vlicomplexesinterpreted using thel2symbol-
table. For the DNF and DECOMP models, this represents a disjunction
of complexes. For the PERIODIC model, each complex is understood as
describing one phase of the period. The first complex in the list describes
the phase which includes the first card on the layout. The second
complex describes the second phase, and so on. The fact that VL rules
are interpreted using the 12symboltable causes some difficulties.
In particular, a new 12symboltable is built for each segmentation
condition at level 3. The rules developed using one segmentation con-
dition must be “harvested"” and processed by the upper layers before
the 12symboltable is destroyed. The solution involves the use of a
coroutine linkage (a kludge) between layers 3 and 4. Just after each
call to 1level2le, level 3 calls leveldexamine which inspects the
vlirulebase (see below) to snatch the good vlirules and convert
them to VL, before the 12aymboltable changes. This kludge could
be avoided if symbol information were stored with the rule rather than
being implicit in the representation of the vlicomplex. The tradeoff
is between storage and elegance.

segcomplex: This is 8 vlicomplex which describes the segmentation
criterion (if any) that was applied to discover the rule, Segcomplex is nil
if no sementation condition was used. This complex is interpreted using
the 14symboltable according to the special rules for segmentation
complexes mentioned in 3.2. Each normal variable in the segcomplex
is interpreted as involving the corresponding delta variable.

lookback: This gives the value of the look back parameter for this rule.
It tells how far back previous events must be consulted in order to use
this rule. A rule with 8 lookback of 1 examines the previous card
in order to predict the next card. For periodic rules, the 1oockback
indicates how much look back takes place within a given phase.

model: Tells which rule model is used by this rule. -

nphases: Tells, for periodic rules, how many phases make up the period.

nextrule: A link tothe next rule in a linked list of rules (used for manag-
ing rules on the free list fvlir

As mentioned above, rules developed in levels 1 and 2 are placed in the vlirule-
base. Level 4examine inspects this rule base in order to obtain the results of the

lower layer processing. The vlirulebase is an array of records each containing
the fields:

rule: a pointer to the rule at this entry.

11



eoi: The estimated value of the expected size of the set of legal cards
according to this rule (unimplemented)

minoi: The minimum size of the set of legal cards (0 implies that this rule
has a dead end) (unimplemented).

maxoi: The maximum size of the set of legal cards (unimplemented).

stringsok: A boolean flag. If true, then this rule is consistent with nega-
tive string plays. (i.e. at least one card in each negative string play is
incorrect according to the rule),

Most of these fields are computed by level4examine while it is attempting to
decide if a given rule is plausible.

3.4 VL4 Modifications.

The representation of VL entities (rules and complexes) is very similar to that
of the VL, entities which have been described so far. This section details the
diferences between the VLq representations and the VL, representations.

3.4.1 VL, Complexes.

There is no such thing as a VL, layout. All events in layouts are VL, complexes.
VL, complexes are used, however, in ¥Lg rules. Conceptually, a VL; complex is
a conjunction of VL, selectors. The vl2complex data structure is basically an
array of selectors (the conjunction is implicit). The vl2complex also contains
an nselectors field which tells how many selectors are in the complex. (This
information is implicit in vl1icomplexes. Each VLg selector is quite complicated
since it permits functions and operators in the reference. These reference func-
tions permit the representation of sum and difference variables in a natural and
convenient way. The fields of the vl2selector are:
lhefunction: Thevl2symboltableentry forthe function in thereferee
of the selector.
lhsdummies: An array of vl2symboltable indicesfor the dummy vari-
ables of the 1hsfunction. Presently the program can only understand
unary functions (although it can parse more complex functions).
rhsfunction: Thevl2symboltable entry forthefunctioninthereference
of the selector. (zero if no function appears in the reference).

rhaedummies: dummy variables for rhefunction.

rhsneg: a boolean flag which indicates that the rhsfunction is to be
considered to be negative. If true, then the selector is representing a
“gum" variable. This results in the somewhat awkward description of
[valueo + value; = 28] as [value(cardy) = —value(card;) + 26].

12



relation: asin the viiselactor this indicates the relationship which
holds between the reference and the referee.

operation: Thisistheoperatorthatappearsin the reference. f rhafunc-
tion = Othen operation should benoop. Theoperator both stands
for 4+ and is used for delta variables of the form [dvaluegy = —3..3]
(so that we get [value(cardy) = valuc(card;) + —0..3]).

reference: This is again a PASCAL set representing the elements in the
reference. For sum descriptors, reference values may be much larger
than domain.max in the vl2symboltable. (e.g. [value(cardy) =
—value(card;) +26] the 28 is in the ref erence as an absolute value.).
For sum and difference selectors, the values in the references are the
actual values to be printed. Otherwise, domain.bias must be added
to each reference value.

useprintref: istrueif printref should be used to print the reference.

printref: Aswithvliselectors,intervals (both 2-sided and one-sided)
are stored in printref and interpreted in combination with the rela-
tion. -

3.4.2 VL3 Symbol Table.

The vi2symboltable is only slightly different from the vlisymboltables. In
addition to the name, domain, and advice fields, each vl2variable also has:
dummyvar: a field which indicates if this variable is a dummy variable
(e.g. card0, cardi, string3, etc.).
subscript: gives the subscript of the dummy variable (e.g. cardi has
subscript 1).
cardorstring: tells whether this dummy variable is a card dummy or
a string dummy. This information is redundant since we could have

used the cors field.

The dummy variables are initialized in initsymbols. Two auxiliary arrays are
used to locate a dummy variable given its subscript. Carddummies[i] gives
the vl2symboltable index of cardi. Stringdummies[i] gives the same for
stringi.

3.4.3 VL3 Rules.

V12rules are identical in structure to vlirules except that vi2rules refer to
vl2complexes. The segcomplex is a proper vl2complex rather than a special
vilicomplex.
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4. Data Transformations and Flow of Control.

Figure 4-1 provides a flow diagram of the various data transformations that occur
in the program. By the end of this section you should understand this figure and
the purpose behind each transformation. In this section, we examine each of the
three major tasks (LE, PE, and CR) and trace their flow through the five layers
of the system.

4.1 The Learning Element (LE).

The Learning Element (LE) has responsibility for examining the cards in the layout
and proposing plausible rules to describe the layout. The LE is invoked by giving
the top level command INDUCE. The rules which are proposed by the LE are
‘placed in an array called the vl2rulebase where they may be manipulated by
other commands (e.g. LIST RULES, KILL, PLAY).

4.1.1 User to Level 5.

The layout is entered into the program using the CARD command. Each CARD
command corresponds to one player's turn in Eleusis and appends a string of up to
four cards to the layout (along with the dealer’s judgment concerning the cards).
Cards are typed by the user as two-character combinations, e.g. 2C means “two
of clubs” and @8 means “queen of spades.” The lexical analyzer has a card token
class, sycard. It converts 2C into 2 sycard token with attributes of suit=0
and value=2. The parser then converts this token into a simple VL, complex
svlic at semantic actions 14 and 15. The parser adds the svlic to the layout
at semantic action . Z

4.1.2 Level 5 to Level 4.

When the INDUCE command is given, the parser invokes the leveldle to begin
the rule discovery process. Lavel4le invokes derivedescriptors to convert
both the vl2symboltable and the layout to the analogous level 4 structures:
l4symboltable and 14layout. The procedure copysymboltableinfo copies
relevant symbol table information from level 5 by copying all but the dummy
variables. The level 4 and level 5 symbol tables are carefully initialized so that all
builtin variables(see advice.gen above) arein fixed positions in both tables. All
builtin descriptors must preceed all dummy variables in the vi2symboltable.
Any descriptor defined in vl2symboltable (via the DEFINE command) will be
copied to lower levels and used in the rule discovery process. Once a descriptor
has been defined, it cannot be erased.

The level 4 procedure derivecpx is called to convert each svlic in the layout
to a full vlicomplex in the 14layout. The conversion involves deriving all of
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the derived descriptors (e.g. color, valuemod®). While each simple vlicomplex
had selectors for suit and value only, level 4 vliicomplexes have several selec-
tors. The conversion is accomplished by converting each svlic into a cardset
containing one bit corresponding to that card. Then the refsyms entries are used
to detect which values of which level 4 variables apply to that particular card.
This derivation is performed for all variables which have bitset present in their
advice.gen and domain.cors = forcard.

As noted in the thesis, strings of cards judged incorrect by the dealer (so-called
negative string plays) are not used in the lower layers 1, 2, or 3. They are removed
from 14layout by extractnegstrings and saved in a special negative string
layout whose head is negstringplays and whose tail is negstringtail. This
layout is special in that it involves only negative examples. The segstart pointer
in each tsevent points to the corresponding element in the 141ayout from which
the negative string play was extracted.

For example, suppose we have the layout:

AC 2H 3D
(4H 8S
6H)

Where the 4H-8H were played was a string (and pronounced incorrect by the
dealer). The 141ayout and negstringplays layouts will have the structure:

Where the sagstart pointer points at the 2H event in 141ayout.

One other task of 1evel4le is to convert the list of segmentation criteria from
VLgto VL. Each criterion must be converted to a vlicomplex in which normal
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variables are interpreted as delta (difference) variables (see above). The converted
complexes form a linked list whose head is 13segadvice.

Leveldle then calls level3le to perform the remainder of the LE task. The
portion of level 4 which evaluates the generated rules and converts them back
to VL, is procedure 1evel4examine. If all symbol information were stored with
the vlicomplexes, a separate level4examine procedure would be unneces-
sary. However, since vlisymboltables are used to store symbol information,
and since all vlirules are described by the 12symboltable, and since the
12symboltable is rebuilt for each separate segmentation criterion, therefore
it is necessary to copy the vlirules and convert them to VLj after each call
to level2le. This is a procedural kludge, but it works well. Conceptually,
level4convert is still a part of level 4.

4.1.3 Level 4 to Level 3.

Level3le searches the space of possible segmentation conditions (as specified
on 13segadvice) looking for plausible segmentations. For each segmentation,
it builds a new 13symboltable, a new l3layout, and calls level2le and
level4examine. Level3le also performs these steps without segmenting the
layout (i.e. using the nil segmentation criterion). When a non-nil segmenta-
tion condition is being used, all string-related variables (e.g. length) are placed
in the 13symboltable (see procedure build32symbols). Also all variables
whose values remain constant under the segmentation are also installed in the
13symboltable. The refsyms array is used (inappropriately at this level) to
deduce which variables do remain invariant under the given segmentation. For
example, il the segmentation criterion is [suit(cardg) = suit(card;)], then color
is also constant under this criterion. Thus, we can speak of the suit(string) or
the color(string) as well as of the length(string). Although sust and color are
added to the 13symboltable and are then applied to strings of cards, the value
of domain.cors remains forcard. This is important for converting back to
VL, later.

If the program were strictly following the knowledge layer methodology, a domain
independent symbolic reasoning strategy would be needed to deduce which vari-
ables remain invariant under the segmentation condition. This could be ac-
complished by applying theorem-proving techniques to the actual DEFINE com-
mands and resolving against the segmentation condition.

A procedure segmentlayout derives the 13layout from the 14layocut by
finding maximal strings of contiguous cards which satisly the segmentation criterion.
This involves some subtlety when deriving negative events. For instance, a nega-
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tive event could have violated the dealer's rule either because it violated the
segmentation condition or because it violated some constraint on the relationship
between segments. For example, in the layout:

AH 2C 2H 3D 3D 3H 4H

35 48 3C
When the rule is:
string = [value(cardy) = value(card))]: (A)
[length(string) = length(string) + 1] (B)

[value(string) = value(siring) + 1]

The 3S violates the (B) part of the rule, the 45 violates the (A) part of the rule,
and the 3C violates the (B) part of the rule. Now, below level 3 the program is only
performing induction on the (B) part of the rule. Thus, violations of the (A) part of
the rule do not provide useful negative examples (e.g. The sequence AH 2C 2H is
a legal sequence, not a negative example of a string that was too short). Violations
" of the (B) part of the rule do provide useful negative examples. However, we do not
know that 3S violates part (B) of the rule because at segmentation time we do not
know part (B). Thus, the only negative card which can generate a negative string
event is a card which is legal according the part (A), the segmentation condition,
but was declared illegal by the dealer. This card must, by implication, be illegal
according to part (B) and thus provides reliable negative evidence. In this case,
the 3C is such a card. The negative event [length = 4][value == 3]... is generated.

When a nil segmentation is applied, level 3 processing is trivial. The 13layout
pointers are just copied from level 4 and the 13symboltable is also directly
copied from the l4symboltable.

4.1.4 Level 3 to Level 2.

Level2le is called by level3le to continue the learning process. Level 2 is
responsible for removing order from the events in the layout. Each layout repre-
sents order by a linked list. Level 2 retains this information in the form of delta
(difference) and sum variables.

The 12symboltable is generated by a call to genl2symboltable which gen-
erates a symbol table entry for:
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_each variable in 13symboltable with each of the possible subscripts
0,124 mazlookback.

_each variablein 13symboltable whose advice.gen containsdifference.
Differences are created between cards 0 and 1, 0 and 2, 0 and 3, and so on.
Note that no differences are created between 1 and 2. There is no reason
why such variables could not also be added.

—each variable in 13symboltable whose advice.gen contains sum. Sum
variables are created summing cards 0 and 1, 0 and 2, 0 and 3, and soon, As
with differences, this is an arbitrary choice which could easily be modified.

The order in which the variables are generated in genl2symboltable and the
order in which variables are derived in derivel2 must be identical so that the
one-to-one correspondence between the symbol table and the VL, complexes is
maintained.

Deriveevents derives an eventset which is simply two linked lists of events.
The first linked list ([0]) comprises all negative examples. The gecond list of
events ([1]) comprises all positive examples. For DNF and DECONP rules, the
eventset is the zeroeth element of the global array F. (i.e. F[0,0] is a linked
list of negative events, and F[0,1] is a linked list of positive events.)

The deriveevents procedure has a local variable, F, which is just a single
eventset, not an array of eventaets like the global F. This confusing notation
was chosen in order to permit the use of the traditional notations F[o] for the
negative events and F[1] for the positive events within deriveevents.

The other entries of the global F are used for the different phases of a PERIODIC
rule. One eventset is developed for each phase. The event set for phases is placed
in global F[i].

Level 2 performs some manipulation of the 131ayout by shifting all of the negative
events (negcompl ex) right one tsevent. This makes the task of deriveevents
much easier and also makessplitlayout easier. Splitlayout breaks the layout -
into several separate layouts, one for each phase of a PERIODIC rule. Before level
2 exits, it must un-split and un-shift the 131ayout in order to restore things to
their original configuration.

In addition to the 12symboltable, level 2 makes use of some additional sym-
bol table information: the 12subscript array. L2subscript is an array ex-
actly parallel to 12symboltable. They are both indexed by vlivarindexes.
Conceptually, it adds two extra fields to the 12symboltable:

12subscript [varindex, 0] gives the first subscript of this variable.
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12subscript [varindex, 1] gives the second subscript of this variable
(zero if none).

Level2le uses one symbol table for all of its calls to levelile, but it derives
different event sets for each model. For the decomposition model, all variables
defined in the 1 2symboltable are derived and passed to level 1. For the DNF and
periodic models, only the variables involving cardg are derived (e.g. colorg, dsuity,
but not card,).

4.1.5 Level 1.

The levelile is basically a switch to one of three separate routines. DNF rules
are proposed by the aq procedure, DECOMP rules are proposed by the bestdeconp
procedure, and PERIODIC rules are proposed merely by uniting the positive events
in each phase by calling unitephases.

After the specific algorithms have been applied, a sort of general-purpose adjust-
ment procedure is used to post-process the rules and detect symmetry. The rules
are then added to the vlirulebase. These level 1 routines, especially the post-
processing routines, could be improved by performing further experimentation and
modification.

4,1.5.1 Aq

The procedure aq implements the A7 algorithm. A good explanation of the al-
gorithm is contained in the appendix to Larson's PhD thesis. Aq makes use of
the aqetar procedure which develops an approximation to the set of all prime
implicants which cover a given event, el. Aqatar operates by selectively comput-
ing the complement of the set of negative events, F[0]. The procedure extend
implements the “extension against” generalization rule. The procedure aqtrim
calls a general functional sort procedure, trim, to select the best N elements in
a linked list of complexes according to the cost functions defined in procedure
agqcost. -

Aq makes use of some special data structures. First, each viicomplex contains
two boolean flags, fp and fq. If a vlicomplex is in the event set F[1], then if
fp is true, the vlicomplex has not yet been covered by any star. If fq is true,
the v11complex has not yet been covered by any complex on the mq list. The set
of complexes with fp true is always a subset of the set of complexes with fq true.
(In other words, more events are covered by stars than by gelected complexes on
mq).

In order to develop complexes which are disjoint, aq adds each solution complex
to the F[0] list. In order to reverse this modification to F[0], a pointer, fOstart
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is maintained which points to the “true” head of the F[0] list. The other elements
that preceed fOstart are released at the end of aq.

4.1.5.2 Bestdecomp

The Bestdecomp algorithm is quite complex, and even the description in the
thesis is incomplete.

Bestdecomp uses several special data structures. The most important of these is
the coverrac. Recall that a decomposition description is a set of “if-then" rules.
The “if" parts of these rules are all disjoint complexes which exhaust the space of
possibilities. The entire description forms a decision tree for determining, given
the previous cards in the sequence, what cards are now playable. Each coverrec
is a node in such a decision tree. For example, the representation of the rule:

[color) = red][value; > 6] = [suity = dub]

[colon, = red][value; < T] = [suito = diamond]
[color; == black][value; > 8] = [suity == heart]
[cofory = black][value; << T] = [suity = spade]

is shown in Figure 42 where each box represents a coverrec and the leaves of
the decision tree are v11compl exes describing the right-hand sides (“then” parts)

coverhead

N/

|decompvar = colort

red black
Secompvel = rilue! SRCOMEVEr = valuel
7 38 <7 e
[auie0 = ] [suied = C] [sultD = S] [suitD = H]
Figure 4-2
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of the “if-then" rules. The global variable coverhead is the root of the cover
which is under construction by bestdecomp.

Each coverrec has the fields:

nextcover: a link to the next coverrec when coverrecs are on the
fcovar free list.

decompvar: the 12symboltable index of the variable which is to be
tested at this node. In the topmost coverrec of Figure 4-2 this points
to the 12symboltable entry for color;.

leaf: a variant tag which indicates whether or not this is a leafl of the
tree. If this is a leal in the decision tree, all descendants of this node
are vlicomplexes which describe the right-hand sides of the rules. If
this is not a leaf, then the descendants of this node are also coverracs
which test the values of some other left-hand side variable.

ccpx: an array indexed by reference values. Each reference value indexes
into ccpx to get a vlicomplex corresponding to that value.

clist: also an array indexed by reference values. Each reference value
indexes into clist to get a new coverrec corresponding to that
value.

How does the program handle cases like [valuey << 7]? This is done by setting
nbranches to a non-zero value and placing the vlicomplex [value; < 7] in the
branchconditions array:
nbranches: indicatesthe numberof branchesin the branchconditions
array at this node in the decision tree. If nbranches is zero, then no
branchconditions are used and the conditions correspond to the
simple reference values for the decompvar. -
branchconditions: provides a vlicomplex describing the condition
connected to this branch in the decision tree. The values used to index
into the branchconditions array are used to index into ccpx or
clist to obtain the corresponding branches in the tree. Notice that
maxbranch must be less than or equal to maxvalue for this scheme
to work. (But it always is since branch conditions are generalizations
of reference values).

. Figure 43 shows the same tree as Figure 4-2, but with the values of these fields
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coverhead
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[sutg = D] [suitD = C) [suitd = S] [suitd = H]
me ¢ [valuet > 6 Ltvaluvet <7) [valiat > 61—
[eolor1 = O] [colory = 0] [colort = 1] [colort = 1]
Figure 4-3.

added.

The decomposition algorithm builds the decision tree coverhead using the infor-
mation in the array decomptab. Decomptabisanarray parallelto12symboltable
so that each variable in 12symboltable has an entry in decomptab. However,
not all of these entries are used. Only those entries corresponding to “left-hand
side” variables (e.g. colory, valuey, but not suity or deolorg,) are used. From each of
these elements, trial decompositions are built and evaluated by the decomposition
algorithm.

In order to determine which variables are left-hand side variables, the array 1hsvar
(built by 1evel2le) is consulted. Lhsvar [i] is true if and only if variable 1 is
a left-hand side variable.

Each element of decomptab contains the fields:

cover: a pointer to a coverrec which is a trial decomposition based on
this variable. In other words, decomtab[i] .coverT.decompvar =
1. '
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cost: anarray giving the evaluated values of the cost functions as applied
to this variable (see function decompcost)

reallydone: true if this variable has already been selected for decom-
position in a prior iteration (and therefore already has a coverrec in
the coverhead decision tree.

done: trueif reallydone or not lhsvar[i].If a variable is marked
done, there is no need to develop a trial decomposition for it.

The algorithm operates as follows (see bestdecomp body). First, initcovers
is called to place a coverrec under each lhsvar in the decomptab. These
coverrecshave leaf = trueandnil ccpx entries. Coverhead isset tonil.

Next, we repeatedly develop trial decompositions and select the best decomposition
until a complete and consistent cover has been found. Each iteration involves:

1. Using cleantab to set the done flag properly.

2.Using traverse to build a trial decomposition under each decomptab
variable that is not done. Traverse recursively traverses the cover—
head decision tree in depth-first, left-right order (preorder). At each leaf
of the tree, it calls buildcovers to build a new trial decomposition un-
der each decomptab variable, Thus, if coverhead=nil, buildcovers
is called once. If coverhead has the configuration shown in Figure 4-
4, then buildcovers is called twice, once for each value of color;. The
resulting configuration of decomptab is shown in Figure 4-5. Note that
each ccpx entry in these trial decompositions contains a linked list of
vlicomplexes. One complex for each nil leal node in the coverhead tree.
Each vlicemplex is the union of all positive events which meet the par-
ticular left-hand side conditions at that point in the tree. The vlicomplex
marked with a * in Figure 4-5 is the union of all positive events for which
color, = 0 and value; = 0, If there are no positive cvents which satisly the
conditions at one of these nodes, then the vlicomplex will have all empty
references (see cleancpx).




3.Buildcovers (as called by traverse) invokes mergeunions to apply the
rules of generalization to these left-hand side variables. The procedure mer-
geunions is very messy and involved. It is discussed below. The result
after mergeunions is shown in Figure 48. Now all of the vlicomplexes

for [value, == 0..8] have been merged into a single complex (and so also for
[value, = T7..12]).

4. 1f decgen (the decomposition generalization parameter) is 1 or 2, then
genrlcovers is called to generalize the references of the complexes hanging
off dacomptab. If decgen=2, overlapping selectors are removed from these
trial decompositions.

yalual it1 colord Py
'done = false |done = laise |done = true A
decomptab
cover | cover | cover = nil A
decompvar = valusl COVEITSC  |decompvar = suit]
leal = true laal = true
[eCRX copX
of1[2]a] --- r2]1a o[1]z]a] - |
o 4L L oL
* * 2 -
vilcpx (for color = 1)
vilcpx {tor cclor = 0)
Figure 4-5.
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5.8electbest is invoked to select the best trial decomposition to add to
the coverhead decomposition tree. Selectbest invokes the generalizaed
functional sort procedure trim to determine the best variable subject to
the function decompceont. Note that decompcost code 1 determines if this
trial decomposition covers any negative events. If no negative events are
covered, the decomposition is “consistent”. If the selected decomposition is

consistent, then the coverfound boolean flag is set to true. This terminates
the algorithm.

yalyal suit1 color A
done = lalss |dora = false |done = tue A
dacomptab
cover | cover | cover = nil A
decompvar = valual COVEITBE |dacompvar = sultl
leaf = true leal = true
nbranches = 2
branchconditions
1 (e~ |
clist \ €CPX ;
ol1lala] N | of1f2]al ... |
L L

viTepx (lor color = 1)

Figure 4-8
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B.Unwind is called to traverse the coverhead decision tree while unwinding
the selected decomposition. One “row” of ccpx complexes is unwound for
each leaf in the decision tree so that we get the tree described in Figure 4-
2

7.Freeal lvars is called to release all of the unselected trial decompositions.
The ccpx lists are released and reinitialized tonil. Note that the coverracs
remain.

As indicated above, this iteration continues until the cover is consistent with the
negative events. It is possible that the cover will never be consistent, e.g. setting
decgen=2 can cause all of the trial decompositions to become incongistent, The
loop will also terminate after maxcomplex iterations. This is a slight misuse of
the maxcomplex parameter. In all other contexts, maxcomplex is the maximum
number of complexes in a rule. A possible improvement would be to change be—
stdecomp so that that interpretation applies here as well. '

Once the coverhead tree has been generated, it is returned as a simple linked
list of complexes. The procedure pullresult traverses the tree and builds this
linked list.

One subtlety of the decomposition algorithm involves how the left-hand side con-
dition is integrated with the vlicomplexes hanging off the tree. Traverse
maintains a condition vlicomplex which describes the present left-hand side
condition (“i" part) of the rule. This is passed to buildcovers where it is used
to initialize the new v11icomplex which will cover that particular branch of the
trial decomposition. Mergeunions also maintains this integration. Consequently,
pullresult does not need to concern itself with the left-hand gide variables at
all—they are already set correctly in the vlicomplexes in the coverhead tree. -

The process of applying the rules of generalization to the trial decompositions
in the decomptab is very involved. Reread the description of mergeunions on
pages 21 and 22 of the thesis. The algorithm operates by computing the distance
between adjacent values of the left-hand side variable under consideration. When
two adjacent values are relatively distant from one another, the program tries
to break the domain at that point and create two or three “if” conditions which
generalize the original “if” conditions.

For each left-hand side variable which has more than maxcomplex values in its
domain, mergeunions goes through the following steps:
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Step 1: Initialize Relevancy Coefficients. The array rc is an array of
relevancy coefficients in parallel with 12symboltable. These num-
bers, referred to in the thesis as “weights,” are used to compute the
weighted Hamming distances between complexes. In this step, the
values of rc are initialized by copying the advice.plausibility
field of each variable.

Step 2: Initialize the Generalized Cover. The local variable newcov con-
tains a coverrec which will replace the trial decomposition for the
variable we are analyzing. In this step, we initialize newcov by copying
the complexes hanging off the decomptab entry for this variable and
generalizing their references by calling generalizereferences.

Step3: Adjust Relevancy Coefficients according to the discriminating ability
of the variables. For instance, if a selector has the value * (irrelevant)
in any of the complexes in newcov, then the rc of the variable in
that selector is set to 0. If a selector intersects a selector in a negative
example, then the rc of that variable is divided by a factor of 4. If
all selectors for a given variable have the same value, then the rc is
set to zero. This last test is accomplished by computing the union of
all of the references of all of the complexes in newcev. This union is
created in the array grandref. If a reference in grandref has only
one element in it, then all of those selectors had the same value.

Step 4: Compute Distances between adjacent values of this variable. This
process is complicated by the fact that not all values of the variable of
interest will have actual events with that value. For example, in Table
2 of the thesis, the variable of interest is value;. Events only existed
for values A, 2, 3, 8, 10, and J. In the source code, missing values such
as 4 or K which have no events are called []1-cases. Distances are
only computed between non-[] cases. For each pair of adjacent non-
[1 cases, a distance is computed. Cases are adjacent il they can be
generalized using the “closing interval” generalization rule. The array
distance is used to keep track of the distances as they are computed.
Each element in distance is a record with fields left, right, and d.
Left and right are domain values which indicate the non—{] cases
between which the distance, d, is being computed. The function dist
actually performs the distance computation.
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Step 5: Locate Maxima. In this step, local maxima in the distance array
are identified and stored in the maxima array. Maxima is an array of
domain values. Each value is actually an index into distance which
gives the local maximum. Nmax is the number of maxima which are
found. An additional step 5.5 was inserted here to remove minor max-
ima (maxima which are smaller than one tenth the size of the absolute
maximum distance).

Step 8: Determine how the domain should be broken into subintervals. If
no maxima, or more than two maxima were found, we give up on
this variable and try another. For most linecar-type domains, if there
is one maximum, the domain is broken into two cases. If there are
two maxima, the domain is split into two or three cases depending
on the “end-around distance” (i.e. the distance between the largest
and smallest non—[] cases). Instructions which tell which values of
the domain should be merged together into a single case are placed in
the merge array. Subfields of merge are left (the smallest value in
the interval of values to be merged), right (the largest value in the
interval), and reference (a bit set indicating the actual set of domain
values to be merged. Once the merge values have been determined,
branchconditions for newcov are built.

Step 7: Merge old branches into new branches. Procedure unite is used
to unionize the complexes hanging off of newcov. Finally, newcov is
put into its proper place in the decomptab.

There is something very unsatisfying about procedure mergeunion s!
4.1.5.3 Periodic.

The discovery of PERIODIC rules is the simplest of the three models, The procedure
unitephases creates one vlicomplex for each phase using the positive events
in global F[1..nphases, 1]. The resulting complexes are linked together (with
phase 1 at the head of the linked list) and returned to levelile. The remainder
of the processing is accomplished in the common adjustment code. '

4.1.5.4 Common Adjustment Code.

Adjustcomplexes attempts to post-process the rules to give them more sym-
metry and remove redundant and irrelevant variables. This is a two-step process
as described in the thesis.

First, generalizereferences is called to generalize the references of the selec-
tors. Then overlapping selectors are removed. The complex united is the union of
all complexes in the rule. If a complex intersects united before that complex has

28



been combined with united, then there are selectors which overlap. The infor-
mation concerning overlapping selectors is contained in the array kill. Kill tells
for each variable if its corresponding selector should be deleted (made irrelevant).

If the first step of generalizing selectors leads to inconsistency, then the aqstar
procedure is invoked to try to extend the un-generalized complexes against the
corresponding negative events. This call to agetar is a side effect of the function
consistent which ascertains whether or not a rule is consistent with the negative
examples. This step has not worked well. In fact, it is possible to get a rule which
is consistent with the negative examples but does not cover all of the positive
examples. This is another problem that needs to be solved in this program.

If the second step leads to inconsistency, the results of the first step are returned
as the answer.

Notice that there is great similarity between ad justcomplexes and genrlcovers.
It is likely that DECONP rules do not need to be post-processed by ad justcomplexaes.
4.1.8 Level 1 to Level 2.

After levelile has discovered rules, level 2 has an opportunity to process these

rules and remove rules that are implausible, etc. The procedure cleanrules was
intended to perform this task, but it was never written.

An idea for cleanrulaes: often rules like

lcolory = red] — [facey = true|[valuey > 10]

are induced by level 1. The [valueg > 10] is redundant and could be removed.
This is a tricky problem because the combination

[facen = true|[value, > 11]

is different. Here, the [faceg = true] should be removed.
Some general rules to solve this problem should be formulated and implemented.

One particularly appropriate case is the combination of a delta variable and a
normal variable. For example in Example 1 in the thesis, rule 1 has the joint
occurrence of [value(cardy) >== Jack|[valuc(cardy) = value(card,)]. The second,
delta descriptor is redundant in this case (actually both of them are redundant, but
that's an example of the above equivalence problem). Since level 2 has knowledge

of delta and sum descriptors, it is an appropriate place to detect and solve this
problem. '
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4.1.7 Level 2 to Level 3.

Presently, the level3le performs no post processing on newly discovered rules.
As noted in the thesis, this is bad. It is presently possible to discover a segmented
rule where the rule is inconsistent with the tail end of the layout. For instance,
the program will discover the rule: -

string = [value(cardy) = value(card;)]:

[length(string) = length(string) + 1]
to describe the layout

AC 2H 2D 3H 35 3D 4H 4C 4D 45 4C 4D 4H

because levels 1 and 2 never know about the string of 4’s and level 3 does not
check to see that the discovered rule is consistent with the tail end of the layout.
Some code like that of 13checkseg should be developed to do this. Or perhaps
we could call level2cr instead.

4.1.8 Level 3 to Level 4.

Level 3 invokes level4examine to convert the rules in the vliirulebase to
VL;. Level4dexamine performs Eleusis-specific tests of the rule and if it passes
these tests, it is then added to the vl2rulebase.

The tests are:

1. Check that the expected value of the size of the set of legal cards (EOI) is
within the limits [mineos...mazeoi] and that the rule has no deadends.

2. Check that the rule is consistent with the negstringplays. -

Only the second step is actually performed because the procedure sizeup was
not implemented. I have notes on how to implement this routine if anyone wants
to try.

The negative strings are checked by modilying the layout to make it appear as
if the negative string had been played and judged correct by the dealer. Then
level3cr is called to check that the present rule is inconsistent with the layout.
If the rule is consistent with this modified layout, then it is a bad rule. A global
flag, dontconvert is set to tell level3cr that the rule is already in VL, form
and need not be converted from VL, as in the normal critic case.
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4.2 The Critic (CR).

The critic portion of the program is responsible for checking a VLzrule to see that
it is consistent with all of the evidence in the layout. The critic is invoked whenever
the user enters a VL, rule and whenever the user gives the EVALUATE command.
The EVALUATE command checks each rule in the VLq rulebase for consistency
using the CR and then invokes the Performance Element to decide which cards
can be played at this time according to this rule.

In order to evaluate a rule, both the rule and the layout must be converted to
VL, representations. The conversion of the layout into particular sets of VL events
is identical to the conversion process used in the LE. The rule conversion process
is described now.

4.2.1 User to Level 5

The user can enter a VL rule into the rule base using the RULE command. The
details of the parser which converts the user input into the vl12rule data structure
are discussed in section 5.

4.2.2 Level 5 to Level 4.

The first step in converting a8 VL rule to VL, is to convert the segmentation con-
dition in the rule to VL, format. As in the LE, the segmentation condition is rep-
resented asa v11complex in which normal variables at level 4 (14symboltable)
are interpreted as delta variables. This conversion process is accomplished in
convert2i (conseg21i). The leveldcr procedure cannot complete the rule
conversion because the VL; representation of a rule uses the 12symboltable
which does not exist yet. The remainder of the VL;rule (the list of v12compl exes)
is placed in the global variable 14complexes. The remainder of the conversion
process is accomplished when level2cr calls level4convert.

Leveldcr also builds vliicomplexes for each input event on the layout and
saves the negative string plays as in the level4le procedure.

4.2.3 Level 4 to Level 3.

The Level 3 critic merely builds the 13symboltable, segments the layout ac-
cording to the segmentation condition in the vlirule, and calls the level 2 critic
to continue the evaluation.

4.2.4 Level 3 to Level 2.

Level2cr creates the 12symboltable and then invokes level4convert to
complete the conversion of the vl2complexes in the rule into vlicomplexes.
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The 131ayout is converted into the appropriate event sets in the global array F,
and then the levelicr is invoked.

4.2.5 Level 2 to Level 1 to Level 2.

The level 1 critic first checks to see that the rule is consistent with respect to the
negative examples in F. Then it checks to see that the rule covers all of the positive
examples in F. The boolean result of this operation is passed back to level 2.

4.2.8 Level 2 to Level 3.
Level 2 merely passes the boolean result of 1evelicr to level 3.
4.2.7 Level 3 to Level 4.

Presently level 3 does not check to see that the rule is consistent with the tail end
of the 141ayout. If the rule involves segmentation, this can lead to an incorrect
evaluation of the rule as explained in 4.1.7.

4.2.8 Level 4 to Level 5.

The level 4 critic receives the result from level 3 and then checks to see that the
rule is consistent with the negative string plays by calling checknegstrings. If
it is consistent, then the value true is returned to level 5.

4.2.9 Level 5 to User.

The vi2rulebase can be printed using the LIST RULES command. The proce-
dure printvl2r is called for each VL; rule in the vl2rulebase.

4.3 The Performance Element (PE).

The Performance Element is responsible for determining the set of cards which
is currently playable according to each rule in the vl12rulebase. The operation
of the PE is a combination of the LE (converting the layout to vlicomplexes)
and the CR (converting vi2rules to vlirules) and some additional work all its
own (developing some description of the set of legal cards playable according to
the rule). The output of the PE is a cardset describing the set of legal cards
according to a given rule. This cardset is compared with each card in a player's
hand to determine which cards in the hand are playable according to the rule.
This information can be displayed using the LIST HAND command.

4.3.1 User to Level 5.

The user types the layout as described in 4.1.1. The user also enters cards into
his/her “hand” by the use of the HAND command. The hand is an array of
handelements. Each handelement has the fields:
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card: a cardset with one element in it.

goedrules: a set of indices into the vi2rulebase. A bit is set in
goodrules corresponding to each rule in the vl2rulebase according
to which this card is currently playable.

The proper setting of the goodrules field is really the end result of the PE.
4.3.2 Level 5 to Level 4.

Level4pe builds the 14symboltable, derives the 141ayout, and extracts the
negative string plays. It converts the segmentation condition of the vl2rule to
the peculiar VL, delta representation as described in 4.2.2.

4.3.3 Level 4 to Level 3.

Level3pe builds the 13symboltable and derives the 131ayout by segmenting
the 14layout. It then calls 1evel2pe.

4.3.4 Level 3 to Level 2.

Level2pe is the bottom level for the Performance Element. Thereis no levelipe
because the whole concept of extending a sequence is inappropriate at level
1. Level2pe builds the 12symboltable and completes the conversion of the
vl2rule to VL) by calling leveldconvert. Now comes the interesting part
of the PE. The level2pe returns a disjunction of VL) complexes (represented
as a linked list of vlicomplexes) which describes the set of legal events which
could continue the sequence. This is accomplished by taking each complex in the
vlirule and modifying it so that it properly describes the current set of legal
events. The modifications involve three steps:

1.If the complex tests variables in previous events (e.g. value, or suits), then
we check it against those events to see if it is currently applicable.

2.1f the complex is applicable, then we set all selectors which do not involve
the last event to have the value * (irrelevant). '

3. Adjust the references of selectors which describe only the last event (e.g.
cardy or string) so that they properly reflect the operation of delta and sum
variables, For example, if the last event had [value = 5| and the rule says
that [dvalueg, > 0] then we adjust the valuey selector so that [value > 3].

Level2pe calls 12cpxtocpx to perform these tasks. Level2pe must build a
layout for 12cpxtocpx to use. This is trivial for DECOMP and DNF rules. For
PERIODIC rules, only the layout corresponding to the proper phase is passed to
12cpxtocpx.
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L2cpxtocpx uses deriveevents to derive the last event in the layout (complete
with delta and sum variables). Then lhscovers is called to determine if the
given complex is applicable. Then a new vlicomplex is developed which has the
proper reference values.

4.3.5 Level 2 to Level 3.

The level3pe has a difficult task when the rule involves segmentation. Consider
a rule to be made up of two parts: the segmentation condition, S, and the rule
body, B. There are two ways to play according to the rule:

Strategy 1: continue the current segment by playing according to S

Strategy 2: discontinue the current segment by playing according to B and
not S.

We can use strategy 1 whenever B does not force us to change segments. We can
use strategy 2 whenever B gives us the option (or forces us) to change segments.
We are forced to change segments because of some limitation on length in part B
of the rule.

The decision of which strategy to use depends upon the tail end of the layout.
Recall that the tail end is an incomplete segment which was not passed to the
lower levels. The length of the last segment is stored by segmentlayout in the
global variable 1astlength. L3checkseg determines if the current segment has
a choice of continuing, must continue, must end, or is inconsistent with the rule.
If the current segment must end or has a choice, then we call 1evel2pe again,
this time with the tail end of the layout added on as an extra event.

The complexes returned from level2pae are converted into a cardset, rset,
representing the set of legal cards. The segmentation condition, S, is also converted
into 8 cardset. The cardset is complemented and intersected with rset to
give the final return value. This corresponds to strategy 2.

If we have the choice of continuing or if we must continue the current segment,

then the segmentation complex is converted into a cardset and unioned with
rset to obtain the final return value.

4.3.8 Level 3 to Level 4.

Level 4 simply passes the cardset up to level 5.
4.3.7 Level 4 to Level 5.

Level 5 processes the cardset against the cards in the hand and sets goodrules
properly.
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4.3.8 Level 5 to Usger.

The user can print out the goodrules sets by issuing the LIST HAND command.
A matrix of cards by rules is printed with a “Y" indicating when a card on that
row can be played according to the rule in that column.

The user can also ask the program to select a card to play by using the PLAY
command. The code assumes that the user has already done an EVALUATE. If the
present strategy isconservative, then the program selects the card in the hand
which is legal according to the most rules. If the strategy is discriminant,
the program selects the first card in the hand which is legal according to at least
one-fourth and no more than three-fourths of the rules.

5. The User Interface (Level 5).

Level 5 is implemented as an LALR(1) parser with a finite state machine for the
lexical analyzer.

5.1 The Lexical Analyzer: Gettoken.

Gettoken performs lexical analysis. Figure 5-1 shows the finite state transition
diagram for each of the terminal symbols. Quite a bit of work goes into disam-
biguating Q from QS and QUEER (a variable name?). Characters are read via
getchar. The global variable buffer contains the line most recently read from
the user. Getchar also prints the prompt each time the parser is in state 0 or 19
and it must read a new line. When end of file is encountered on CFILE, getchar
switches to the file TTY. The global variable chx remembers the position in buf fer
of the last character returned by getchar.

Gettoken executes its finite state code. Then, if it has an alphanumeric identifier,
it tries to find a reserved word which matches it. The global array id provides
a character string to token cross reference. Some takes have attributes such as a
numeric value, a character string, or even a suit and value (in the case of cards).
No state information (besides chx and buffer) is retained between successive
calls to gettoken.

5.2 The Parser.

The parser is a table-driven parser produced with the aid of the program yacc on
UNIX. The bock, Principles of Compiler Design, by A. V. Aho and J. D. Ullman
(Addison-Wesley: 1978) provides the theoretical background for LALR(1) parsing
and yacc. The tables used by the parser (acttab, actstart, gototab, and
ntokens) are built by taking the verbose output from yacc (the —v option) and
massaging it with the text editor into PASCAL assignment statements.
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Acttab is the action table, It tells, for a given state and a given input token,
what to do next. The fields are:
t: The token to match against the input token. The special token kind
sydefault matches any input token.

s: The semantic action to be executed when this action is performed (see

5.3 below).

act: The action, one of shift, reduce, error, or accept. A shift
action causes the parser to push the current state onto the pstate-
stack (a stack of parser states) and enter the new state indicated by
the nextstate field. A reduce action causes the parser to pop several
states off the pstatestack (a number of states equal to the number
of symbols on the right-hand side of the grammar rule) and then use
the exposed state on the pstatestack and the gototab to determine
which state to goto. An error action indicates that a syntax error has
been detected. This causes a message to be printed and the parser exits
to global label 9998 which has the effect of reinitializing the parser
and restarting it. Thus, any pending input is ignored and the program
prompts for a new command. An accept action never occurs in this
language because there is no way to generate the final symbol syeecf.
The Q command is used to exit the program. It performs a global jump
to label 9999.

The actstart table indicates where in acttab to start looking for the actions
for a specific state. All actions for a given state are contiguous in acttab and the
last action always has a sydefault t field.

The ntokens table indicates how many nonterminals are on the right-hand side
of each grammar rule.

The gototab has entries indicating, for a given exposed state on the pstate—
stack, what the next state to goto is.

The process for a reduce action is to use acttab [].rule to index into ntokens
to find out how many states to pop off the pstatestack. Then the acttab(] .-
gotostart field is used to index into gototab. The gototab is scanned until
gototab[] .exposedstate matches the top state on the pstatestack. Then
the parser enters gototab[] .nextstate state.

5.3 Semantics

All of the work at level 5 is performed in procedure semantics. This section

presents some pointers for how to understand what is going on in this large pro-
cedure.
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Procedure semantics is called whenever the action selected by the parser from

acttab contains a non-zero s field. Almost all of thm actions occur during
reduce actions.

The semantic routines work with six global stacks:

tokenstack(TS): This stack contains tokens which have been saved
(for various reasons). In the commentary in the source code, the
tokenstack is referred to as the TS. There is a special tie-in to the
tokenstack in the parser. Whenever the parser shifts a token of class
syid, synumber, syvalue, syeq, syne, syle, syge, sylt, sygt,
syplus, syminus, syboth, or syparameters it also pushes that
token onto TS. This is an efficiency move.

vliicstack(1C): This is a stack of pointers to vlicomplexes. As cards
are scanned by the parser, they are converted to vlicomplexes and
pushed onto this stack.

vl2cetack (2C) : This isa stack of pointers to vl2complexes. Asa RULE
or S8EG command is being parsed, vl2complexes are pushed onto 2C.

vi2vetack(2V): This is a stack of vl2variable indices. It is used for
parsing dummy variable lists.

vl2retack(2R) : This is a stack of pointers to vi2rules. The vi2rule
under construction during a RULE command is kept here.

countstack(C): This is a stack of integers. It is used for a variety of
purposes. The most common use is to count things on other stacks.
For instance, when vl2complexes are being parsed, C contains the
number of complexes on 2C.

For each stack, there are push and pop procedures for manipulating the stack
and there is a variable topzzz which indexes the top element of zzratack. (e.g.
tokenstack [toptoken] is the top element on the tokenstack.)

With each semantic action, there is a comment indicating which rule in the gram-
mar is being reduced at this time. When a semantic action is called as a sideeffect of
a shift action, a “." appears in the grammar rule indicating the present position
of the parse. Each semantic action also indicates what it expects on each of the
stacks and what it leaves on each of the stacks.

Some other auxilliary variables are kept.

pl: 1isa costfunctional. It is used to store a costfunctional under
construction. In this sense it is like a separate, single-element stack.

nextplay: aglobalvariable whichindicates what number should be placed
in the play field of the next string of cards (see semantic action 8).
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defining: a global boolean flag which indicates if we are in the process
of defining a new derived descriptor. Defining is used by actions B7
and 12 to signal perror to pull out the partial definition if an error
occurs.

The procedure perror is the parser error message procedure. It prints an ap-
propriate message, cleans the stacks and jumps to global label 9998 to restart the
parse.

5.3.1 Design Problems with the Grammar.

There are a few problems with the present grammar that need attention. First of
all, a more consistent syntax for the parameters is needed. As parameters were
added, the names became awkward and inconsistent. Also, the way of specifying
the parameters became quite unintuitive (e.g. A SEGPLAUS 2 50 where the 2 is
an absolute number and the 50 is a percentage).

Secondly, rules 72 and 73 in the grammar (see Appendix I of the thesis) should
be extended to include syvalue as a valid DEF value. The code in the program
will need to be changed slightly. The result will be to permit the same character
string as a domain value in two different descriptors (This would be very useful
with the string TRUE).

It would also be nice if the program could accept a selector of the form [value(cardg)+-
value(cardy) << 28] rather than writing it in the awkward form [value(cardy) <
—uvalue(card,) 4 26).

8. Miscellany.
8.1 Storage Allocation.

Since PASCAL does not guarantee that storage returned using the DISPOSE
function is ever reusable, the Eleusis program manages its own storage. The
routines newvlic, freevlic, and freelvlic are typical. Newvlic allocates
a vliicomplex either by taking one off the fvlic free list or by calling NEW.
Freevlic links a vlicomplex onto the fvlic list. Freelvlic is an efficient
and convenient way to release a linked list of zero or more vlicomplexes.

In general, these newzzz and freezzz routines work in this way. Freezzz will
cause a run time error if it is passed a ni1 pointer. Newzzz will always initialize the
nextzzz field of the zzz record to nil so that the free list is cleanly isolated from
any existing data structures. Freecover is a little more sophisticated. It frees
all descendant coverrecs and vlicomplexes by calling itself recursively. One
must make sure that all settings of leaf are correct before calling freecover.

8.2 Utility Routines (Section 3).
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Covers and intersects are boolean functions which determine if one com-
plex covers (or intersects) another complex. One complex covers another if every
reference in the first complex is a superset of the corresponding reference in the
second complex. Two complexes intersect if all of their references intersect.

Unite does a reference-wise union of two complexes. This is a generalization step
since the resulting complex can cover more points in the event space than either
complex did originally.

Firstelement and lastelement are functions which take a refset and find
the first (lowest) and last (highest) element in the set. They don't abort if the set
is empty, but they don't return any useful value either.

Trim implements the functional sort that has been used in many Michalski
programs. An ordered set of cost functions with associated tolerances (relative
and absolute) is provided. This function behaves identically to the cost function
described in Larson’s thesis. Trim is passed an itemarray which is an array
of variant records called i tems. Each item can contain all types necessary (i.e.
integers, vlicptrs). The items are first sorted by cost function 1. Then any
items which are within tolerance of the quota item are sorted by cost function
2, etc. The quota item is the item with the nth smallest cost where n is the
quota of items desired. (After sorting, it is located at item[n]). If a tolerance is
a whole number, then it is interpreted as an absolute tolerance, If it is a fraction,
it is interpreted as a relative tolerance. Tolerances are entered to the program as
percentages (i.e. 100 times their actual values).

There are print routines to print practically anything in the program. You cannot,
however, print viicomplexes unless they correspond to the 12symboltable.
This is because printvlic uses the 12symboltable. This could be changed
with a lot of editing.

8.3 Debugging.

As noted in the first few lines of the source program, various sets of debugg-Ing
code can be turned on by doing appropriate global substitute commands in the
editor and recompiling.

8.4 Modifying the Program for a Different Application.

The main constraint limiting the generality of the program is the refsyms ap-
proach to semantics. Any domain which can use that same approach (e.g. Letter
Series Completion), can probably be solved using this program.

To move to a new application, layers 4 and 5 need to be removed and new [ront-ends
need to be written. The procedures 1level4examine and level 4convert would
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need to be rewritten. In the simplest case, the front end could accept vliicomplexes
from the user, call level 3 to generalize them, and print out vlicomplexes. In
such a case, level4examine would simply call printvlic. Level4convert
would not be needed unless a CR and PE were desired.

The process of converting to a new domain is therefore not too difficult unless the

new domain requires a smart, fancy front end like Eleusis did. Mostly, it is a big
editing task.
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