PATTERN RECOGNITION AS RULE-GUIDED
INDUCTIVE INFERENCE

by

R. S. Michalski

IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-2, No. 4,
pp. 349-361, July 1980.

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-2, NO. 4, JULY 1980

349

Pattern Recognition as Rule-Guided
Inductive Inference

RYSZARD S. MICHALSKI

Abstract—The determination of pattern recognition rules is viewed as
a problem of inductive inference, guided by generalization nules, which
control the generalization process, and problem knowledge rules, which
represent the underlying semantics relevant to the recognition problem
under consideration. The paper formulates the theoretical framework
and a method for inferring general and optimal (according to certain
criteria) descriptions of object classes from examples of classification or
partial descriptions. The language for expressing the class descriptions
and the guidance rules is an extension of the first-order predicate calcu-
lus, called variable-valued logic calculus VL, . VL, involves typed
variables and contains several new operators especially suvited for con-
ducting inductive inference, such as selector, internal disjunction,
internal conjunction, exception, and generalization.

Important aspects of the theory include:

1) a formulation of several kinds of generalization rules;

2) zn ability to uniformly and adequately handle descriptors {i.e.,
variables, functions, and predicates) of different type (nominal, linear,
and structured) and of different arity (i.e., different number of
argements);

J) an ability to generate new descriptors, which aze derived from the
initial descriptors through a rule-based system (i.e., an ability to con-
duct the so called constructive induction);

4) an ability to use the semantics underlying the problem under
consideration.

An experimental computer implementation of the method is briefly |

described and illustrated by an example.

Index Terms—Computer consulting systems, generalization methods,
inductive inference, knowledge acquisition, learning from examples,
many-valued logic, pattern recognition techniques, plausible inference,
theory formation.

I. INTRODUCTION
AI PATTERN recognition rule can be viewed as a rule

(1)

which assigns ¢ situation (an object, a process, etc.) to the
RECOGNITION CLASS, when the situation satisfies the DE-
SCRIPTION. In the decision theoretic approach the DESCRIP-
TION is an analytical expression involving a set of numerical
variables selected @ priori. Variables spanning the decision
space are treated uniformly, are usually assumed to be mea-
sured on at least an interval scale, and are desired to be rele-
vant and independent characteristics of the objects. When the
variables are strongly interconnected andfor the relevant
object characteristics are not numerical variables but various
relations among other variabies, or among parts or subparts of

DESCRIPTION | RECOGNITION CLASS

Manuscript received December 4, 1978; revised October 2, 1979,
This work was supported in part by the National Science Foundation
under Grant NSF MCS 79-06614.

The author is with the Department of Computer Science, University
of Illinois, Urbana, IL 61801.

objects, then the decision theoretic approach becomes inade-
quate. In such situations the structural approach can be
useful.

In the structural (or syntactic) approach, the DESCRIPTION
is a formal grammar (usually a phase-structure grammar) in
which terminals are certain elementary parts of objects, called
primitives. The types of relationships which can be ex-
pressed naturally in terms of a formal grammar are, how-
ever, quite limited. If the relevant characteristics include, for
example, some numerical measurements in addition to rela-
tions and symbolic concepts, then grammars involving them
are very cumbersome or inadequate. This is a strong limita-
tion, because in many problems an adequate class description
requires both numerical characterizations of objects and a
specification of various relationships among properties of
objects and/or of object parts, i.e., involve descriptors of
mixed arity! and measured on different scales. To partially
overcome this limitation attributed grammars were pro-
posed [1].

Both the decision theoretic approach and the syntactic ap-
proach make a little use of the underlying semantics of the
problem under consideration, and therefore the scope of pat-
terns they are able to discover is limited. Also they tend to
produce “mathematical type™ descriptions which are not
easily comprehensible by humans, rather than “conceptual
type” descriptions which human experts would develop ob-
serving the same data, and would prefer to use. Although in
many applications human comprehensibility may not be im-
portant, in other applications (e.g., in expert computer consuit-
ing systems) it is crucial.

This paper presents results, still early and limited, of an
attempt to develop a uniform conceptual framework and an
implementation method which appropriately handles descrip-
tors of different type, is able to use the semantics of the prob-
lem and satisfies the requirement of human comprehensibility.
Another aspect of this method is that the final descriptions
which it produces may involve new descriptors (variables or
relations) which were not included in the initial characteriza-
tion of objects. This is achieved through the application of
“metarules” which represent the underlying knowledge of the
problem at hand and of the properties of descriptors used in
formulating the descriptions of exemplary data. The presented
theory uses as a language for expressing the class descriptions

1*Arity”—The number of arguments of a descriptor. Unary descrip-
tors are called atiributes, or, generally, variables. Two or more argu-
ment descriptors with the value set {TRUE, FALSE} are called
predicates.

0162-8828/80/0700-0349300.75 © 1980 IEEE

350

and rules an extension of the first-order predicate calculus,
called variable-valued logic system VL,, and is most closely
related to the body of work termed computer induction. The
ability to develop new descriptors (variables, predicates,
functions) in addition to those given a priori, places this work
in the category of what we call constructive induction? as
opposed to nonconstructive induction, in which the final
descriptions relate only descriptors initially provided.

II. RELATED RESEARCH

It would be a very difficult task, requiring more space than
provided, to characterize adequately various important con-
tributions to computer induction. Therefore, we will make
here only a very limited and certainly not adequate review of
some more recent works.

A dissatisfaction with the early work on general methods of
induction in the early sixties led some workers to concen-
trate on inductive tasks within a specific problem domain.
For example, programs collectively called METADENDRAL
{2] use a model-directed heuristic search to determine rules
that describe the molecular structure of an unknown chemical
compound from mass spectrometry data. Winston [3]
describes a method for determining a graph description of
simple block structures from examples. A program developed
by Lenat [4] generates concepts (represented as collections of
a priori defined properties) of elementary mathematics, under
the guidance of a large body of heuristic rules. Soloway and
Riseman [5] describe a method for creating multilevel descrip-
tions of a part of a baseball game, starting with *“‘snapshots”
of the game, and using rules representing general knowledge of
the game.

The programs such as those mentioned above usually in-
corporate a large body of task-specific knowledge and tend to
perform quite well on tasks they were designed for. They
demonstrate again that high performance requires specialized
solutions. On the other hand, it is usually not easy to deter-
mine the general ideas they contribute to the understanding
of inductive processes. Also, it is difficult to apply such
methods directly to other problem areas,

A significant part of research has been concerned with de-
termining patterns in sequences of symbols (e.g., Simon [6]
and Waterman [7]). Simon [6] found that descriptions of
such patterns consistently incorporate only a few basic rela-
tions: “some” and “next” between symbols, iterations be-
tween subpatterns, and hierarchic phrase structure. Gaines
[8] developed a method for generating finite-state automata,
which approximate a given symbol string, and represent dif-
ferent tradeoffs between the complexity and poorness-of-fit.
Shaw, Swartout, and Green [9] developed a program for
inferring Lisp code from a set of examples of LISP statements.
Also, Jouwannaud, Guiho, and Treuil [10] have developed an
interactive system which can infer a class of LISP linear recur-
sive functions from a set of examples.

The above works are related to the general subject of gram-
matical inference, i.e., inference of a grammar which may have

2The author thanks L. Travis of the University of Wisconsin for
suggesting this term.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-2, NQ. 4, JULY 1980

produced a given set of strings. Early work in this area was
concerned with the inference of a phrase structure grammar
(e.g., Feldman et al. [11]). More recent work moves into in-
ferring “multidimensional” grammars (e.g., work by Brayer
and Fu [12]).

In recent years there has been a new trend toward the de-
velopment of general methods of induction.

In previous papers the author and his collaborators (e.g.,
[13]~[15]) have described a methodology and computer pro-
grams for learning optimal discriminant descriptions of object
classes from examples (in the framework of an extended
propositional calculus with many-valued variables called VL,).
Examples are presented as sequences of attribute-value pairs.
Each attribute has an associated value set and type. Work in 2
similar spirit, although more limited in scope, was reported by
Stoffel [16] (the elementary statements used there are re-
stricted to the “variable-value™ forms, i.e., to elementary selec-
tors as described in Section IV).

An early work which recognizes the need for logic style
descriptions for pattern recognition was done by Banerji [17].
A more recent continuation of this work is in Banerji [18] and
Cohen [19], who developed a logic-based description language
CODE utilizing Lisp-like notation.

An important aspect of induction, that of empirical pre-
diction, was studied by Zagoruiko [25], who developed a
general method of “strengthening hypotheses™ by narrowing
the uncertainty ranges of values of output variables. Hendrick
[26] developed a method of learning of production systems
describing symbol series using a semantic net of predefined
concepts. :

Many authors use a restricted form (usually quantifier-free)
of the first-order predicate calculus (FOPC) or some equivalent
notation as the formal framework for expressing descriptions
and hypotheses. Morgan [20]} describes a formal method of
hypothesis generation, called f-resolution, which stems from
deductive resolution principles. Various theoretical issues of
induction in FOPC were considered by Plotkin [21]. Fikes,
Hart, and Nilsson [22] describe an algorithm for generalizing
robot plans. Hayes-Roth and McDermott {e.g., [23]), and
also Vere [24], describe methods and computer programs for
generating conjunctive descriptions of least generality (which
they call “maximal abstractions™), of a set of objects repre-
sented by products of n-ary predicates. The rules of general-
ization which they use can be characterized as *“dropping a
condition™ and “turning constants into variables’ (see Sec-
tion V-C).

This paper presents a theoretical framework for generalizing
and optimizing descriptions of object classes in the form of
decision rules. The decision rules can involve descriptors of
three different types: nominal, linear, and structured; employ
some new syntactic forms; and use problem knowledge for
guiding induction and generating new descriptors. The
formal notation is a modification and extension for FOPC,
called variable-valued logic system VL, . This formalism
is more adequate than the traditional FOPC as a con-
ceptual framework for describing the inductive processes
under consideration. The paper is an extension and modifica-
tion of the report [27], and stresses the conceptual principles

MICHALSKI: PATTERN RECOGNITION

of the induction method, rather than specific algorithms and
implementation details. Most of the latter are described in
[28]-[30].
[1I. PROBLEM STATEMENT
A VL rransformation rule is defined as a rule

(2)

where DESCRIPTION, and DESCRIPTION, are expressions in
VL,, system (Section IV) and — stands for various trans-
formation operators which define the meaning of the rule.

A DESCRIPTION may look like

3p1;p2([on-top(p,,p,)] [size(p,)=3. .5]
A [color(p,)=blue,yellow,red]

A [length(p, }-length(p,)=small])

DESCRIPTION, C—)> DESCRIPTION,

where

the range operator
, {aftef the equality sign) denotes the internal disjunction,
and |
- denotes the internal conjunction.

(For explanation of notation see Section IV)

We will consider here the following transformation operators.

i) 1> The operator defines a decision rule, DESCRIPTION,
specifies a decision (or a sequence of decisions) which is as-
signed to a situation which satisfies DESCRIPTION,. In the
application to pattern recognition, DESCRIPTION, defines the
recognition class. If a situation does not satisfy the DESCRIP-
TION, , the rule assigns to it a NULL decision.

ii} = The operator defines an inference rule. If a situation
satisfies DESCRIPTION,, the rule assigns the truth-status
“TRUE” 10 DESCRIPTION,, otherwise truth-status of DE-
SCRIPTION, is “7”. In an inference rule DESCRIPTION, is
called the condition and DESCRIPTION, is called the con-
sequence.

iii) [< The operator denotes a generalization rule, which
states that the DESCRIPTION, is more general than DESCRIP-
TIONy, ie., the set of situations which satisfy DESCRIPTION,
is a superset of the set of situations satisfying DESCRIPTION, .

iv) k= The operator denotes an equivalence preserving rule,
i.e., when the above mentioned sets are equal. The rule is a
special case of a generalization rule.

The problem considered in this paper is defined as follows.

® Given are the following.

a) A set of VL decision rules, called data rules, which
specify initial knowledge, {C;;}, about some situations (ob-
jects, processes, . ..} and the recognition class, X, associated
with them:

Ciy >Ky, Cp 53K, Gy,
C‘ZI ::>K=, sz ::>Kg "'Cgrt

> K,
Ll

Cmi "> Ky Ciny > Ky o Coye, "> K (3)

b) The problem knowledge rules which represent the back-
ground knowledge about the recognition problem under con-

as1

sideration. This knowledge includes the type of each descrip-
tor used in the data rules, its value set, the problem constraints,
the relationship among descriptors that reflect the semantics
of the problem and various constructive generalization rules
(see Section V-C).

¢) A preference criterion, which for any two “comparable”
sets of decision rules specifies which one is more preferable, or
states that they are equally preferable.

® The problem is to determine, through an application of
generalization rules and problem knowledge rules, a new set of
decision rules called output rules or hypotheses:

Ciy “>Ky, Ch “>K,, ...y, >k
Ca >K,, Ci i>Ky, - Gy, >K,

Crt > Kpyy Cppa 2> Ky ‘Cmrg, > K (4
which is most preferable, among all sets of rules that with
regard to the input rules are consistent and complete.

The ocutput rules are consistenr with regard to input rules, if
for any situation to which the input rules assign a non-NULL
class, the output rules assign to it the same class, or the NULL
class,

The output rules are complete with regard to input rules,
if for any situation to which the input rules assign a non-NuULL
class, the output rules also assign to it a non-NULL class.

It is easy to see that if the output rules are consistent and
complete with regard to the input rules then they are semanti-
cally equivalent (i.c., assign the same decision to the same
situation) or more general than the input rules (i.e., they may
assign a non-NULL class to situations to which the input rules
assign a NULL class).

From a given set of data rules it is usually possible to derive
many different sets of output rules which are consistent and
complete and which satisfy the problem constraints. The role
of the preference criterion is to select one (or a few alternative
sets of rules) which is most desirable in the given problem
domain. The preference criterion may refer to, e.g.,

® the computational simplicity (or complexity) of the rules,

® the cost of measuring the information needed for rule
evaluation,

® the degree-of-fit to the data.

In this paper we accept the restriction that the pDESCRIP-
TIONs, Cj; and Cy;, are disjunctive simple VL,, expressions
(Section 1V). Such expressions have a very simple linguistic
interpretation, and seem to be of interest to many applications.

1V. VL EXPRESSIONS AS DESCRIPTIONS
A.. DEﬁnitfon Of VL:I

Data rules, hypotheses, problem knowiedge rules, and gen-
eralization rules are all expressed using the same formalism,
that of variable-valued logic calculus VL,; ? VL, is an ex-
tension of predicate calculus designed to facilitate a compact
and uniform expression of descriptions of different degrees
and different types of generalization. The formalism also
provides a simple linguistic interpretation of descriptions with-
out losing the precision of the conventional predicate calculus.

3VL,, is 2 subset of a more complete system VL, under development,

352

To make the paper self-contained, we will provide here a brief

description of VL, .

There are three major differences between VL,; and the
first order predicate calculus (FOPC).

1) In place of predicates, it uses selectors (or relational
statements) as basic operands. A selector, in the most general
form, specifies a relationship between one or more atomic
functions and other atomic functions or constants. A common
form of a selector is a test to ascertain whether the value of an
atomic function is a specific constant or is a member of a set
of constants.

The selectors represent compactly certain types of logical
relationships which cannot be directly represented in FOPC
but which are common in human descriptions. They are
particularly useful for representing changes in the degree of
generality of descriptions and for syntactically uniform treat-
ment of descriptors of different types.

2) Each atomic function {a variable, a predicate, a function)
is assigned a value set {(domain), from which it draws values,
and its type, which defines the structure of the value set (see
Section V-B).

This feature facilitates a representation of the semantics of
the problem and the application of generalization rules ap-
propriate to the type of descriptors.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-2, NO. 4, JULY 1980

Definition 2: A selector is a form
[L #R] (5)

L, called referee, is an atomic function, or a sequence of
atomic functions separated by **”. (The operator “*” is called
the internal conjunction.)

is one of the following relational operators:

=¥ 2 < > <.

where

RhedY

R, called reference, is a constant or atomic function, or a
sequence of constants or atomic functions separated by opera-
tor “,” or *“..”. (The operators *,” and *..” are called the
internal disfunction and the range operator, respectively).

A selector in which the referee L is a simple atomic function
and the reference R is a single constant is called an elementary
selector. The selector has truth-status TRUE {or FALSE} with
regard to a situation if the situation satisfies {does not satisfy}
the selector, i.e., if the referee L is {is not} related by # to the
reference R. The selector has the truth-status “?” (and is
interpreted as being a question), if there is not sufficient in-
formation about the values of descriptors in L for the given
situation, Instead of giving a definition of what it means that
“L is related by # to R,” we will simply explain this by ex-
amples. (See Section V-A for more details.)

Linguistic description

i) [color{box1) = white]
ii} [length(box1) = 2]
iii) [weight(box1) = 2. .5]
iv} [blood-type (P1)=0,A,B]
v) [on-top{box1, box2) = T]
or simply
fon-top(box1, box2))
vi) [above(box1, box2)=3"]
vii) {weight(box1) > weight (box3)]
viii) [length(box]1) - length (box2) = 3]*
ix) [type(p,} - type (P,) = A,B]

3) An expression in VL,; can have a truth status: TRUE,
FALSE, or 7 (UNKNOWN).

The truth-status “?” provides an interpretation of a VL,,
description in the situation, when, e.g., outcomes of some
measurements are not known.

Definition 1: An atomic function is a variable, or a function
symbol followed by a pair of parentheses which enclose a se-
quence of atomic functions and/or constants. Atomic func-
tions which have a defined interpretation in the problem
under consideration are called descriptors.

A constant differs from a variable or a function symbol in
that its value set is empty. If confusion is possible, a constant
is typed in quotes.

Examples.

Constants: 2 * red

Atomic forms: x, color(box)

on-top(pl, p2) f(x,,g(x;))
Exemplary value sets:
D(x,)=1{0,1,---,10}
D(color) = {red, blue, - - -}
D{on-top) = {true, false}
D= {0,1,---,20},

color of box1 is white

length of box1 is greater than or equal to 2
weight of box1 is between 2 and 5,
blood-type of PlisQor Aor B

boxl1 is on top of box2

box 1 is 3" above box?2

the weight of box! is greater than the weight of box3
the length of box1 and box2 is 3

the type of P, and the type of P, is either A or B.

Note the direct correspondence of the selectors to linguistic
descriptions. Note also that some selectors can not be ex-
pressed in FOPC in a pragmatically equivalent form [e.g., iv),
ix), x)].

A VL, expression (or, here, simply VL expression) is de-
fined by the following rules.

i) A constant TRUE, FALSE, or

ii) A selector is a VL expression.

iit) IfV, V,,and V, are VL expressions then so are

L‘i‘??’

is a VL expression,

(V) formula in parentheses

v inverse

V., AV, or V,V, conjunction

vV, VYV, disjunction

ViV, exception {V, except when V)
Vic= V, metaimplication

where—) € {—, «, 11> = <, E}
(implication, equivalence, decision assign-
ment, inference, generalization, semantical
equivalence)

4This expression is equivalent to [length(box1)=3]| [length(b x2}=3].

MICHALSKI: PATTERN RECOGNITION

9 Alr e 1
? SEEE
FIT FIFI|FIF
Tﬁ TI?IF[T
V[t F T -7 F T
2l2]21T SEIEE
FlolFlT FlT]TiT
T(TlT[T Bk

DEFINITION OF COMNECTIVES
1.A,Y AND -
IN VL,

Fig. 1.

A Xg Xy, X (V) existentially quantified expression
V X;,X,, - = X, (V) universally quantified expression,

A VL formula can have truth-status TRUE (T), FALSE (F), or
UNKNOWN(?). The interpretation given to connectives 1, A,
—, is defined in Fig. 1. (This interpretation is consistent with
Kleen-Korner 3-valued logic). An expression with the opera-
tor =, |<, or = is assumed to always have the truth-status
TRUE and with operator >, TRUE, or 7. Operators \ and <
are interpreted:

V, V'V, is equivalent {TIV,— V,)}(V, — IV,)
V,+ V,; is equivalent (V; —=V, }(V,—V,).

The interpretation of the VL formulas is done in the contex of

each situation. This means, that each situation is treated asa

domain over which the formulas are evaluated: the value sets

of the quantified variables and the interpretation of the func-

tions and predicates is done individually for each situation.
Thus the truth-status of: '

" TRUE {FALSE} if there exists {does not exist }
a value of x in the given situa-
tion, for which the truth-status

of Vis TRUE

3 x(V)is <

2 if it is not known whether
% there exists . . .

if for every vaiue of X in the
situation the truth-status of V
is {is not} TRUE

7 TRUE {FALSE}

¥ x(V) is<

if it is not known whether for
_? every

A constant * (“‘irrelevant™) is intrzoduced to substitute for R,
in a selector {L=R], when R is the sequence of all possible
values the L can take.

A VL expression in the form

QF,QF;, =@y vPy v-- v Py) (7)

where QF; is a quantifier form 3 x,,x,, "~ or Vx,,x,, " -
and P; is a conjunction of selectors (a term), is called a disjunc-
tive simple VL expression (a DVL expression).

V. INFERENCE AND GENERALIZATION RULES
A. Interpretation of Inference Rules
An inference rule

(8)

DESCRIPTION == DESCRIPTICN,

353

is used by applying it to situations. A situation is, in general, a
source of information about values of variables and atomic
functions in DESCRIPTION, (the condition part of the rule). A
situation can, e.g., be a database storing values of variables and
procedures for evaluating atomic functions, or it can be an
object on which various tests are performed to obtain these
values,

A decision rule is viewed as a special case of an inference
rule, when DESCRIPTION, (the consequence or decision part of
the rule) is a constant, an elementary selector, or a product of
elementary selectors involving decision variables (i.e., the DE-
SCRIPTION, uniquely defines a decision or a sequence of
decisions). The truth status of the condition and decision part
of a rule, before applying it to a situation, is assumed to be
UNKNOWN .

Let Q denote the set of all possible situations under con-
sideration. To characterize situations in Q, one determines a
set 8, called the descriptor set, which consists of variables,
predicates and atomic functions (called, generally,descriprors),
whose specific values can adequately characterize (for the
problem at hand) any specific situation. We will assume here
that the arguments of atomic functions are single variables,
rather than other atomic functions. A situation is charac-
terized by an event which is a sequence of assignments (L:=v),
where L is a variable or an atomic function with specific values
of arguments, and v is a value of the variable or atomic func-
tion which characterizes the situation. It is assumed that each
descriptor has defined a value set (domain) which contains all
possible values the descriptors can take for any situation in Q.
Certain descriptors may not be applicable to some situations
and therefore it is assumed that a descriptor in such cases takes
value NA, which stands for not applicable. Thus, the domains
of all descriptors always include by default the value NA. The
set of all possible events for the given descriptor set S is called
the event space, and denoted &(S). The domain of quantified
variables are assumed to be determined by a given situation or
object. For example, if the quantified variable is a part, then
its values are assumed to be individual parts of the object. In
an event describing such an object, there will be a sequence of
pairs (L:=V,),i=1,2, -+, where L is a quantified variable,
and Vj stands for different values this variable takes in the
object,

An event ¢ € &(8} is said to satisfy a selector

[f(x, R W ,}(k) #R]

iff the value of function f for values of x;,i=1,2,---,k, as
specified in the event e, is related to R by #. For example, the
event

[(' 2 'xs :"_"al » Xﬁ Z=El-2, fm(al - a-z) s S, " ')
satisfies the selector
[f20(xs.x6) =1, 3, 5].

A satisfied selector is assigned truth-status TRUE. If an
event does not satisfy a selector then the selector is assigned
truth-status FALSE. If an event does not have enough informa-
tion in order to establish whether a selector is satisfied or not
then the selector has UNKNOWN truth-status with regard to
this event.

354

Let us assume first that the condition part of an inference
rule is a quantifier-free formula. Interpreting the connectives
1, A, V, as described in Fig. 1, one can determine from the
truth status of selectors the truth-status of the whole formula.
An event is said to satisfy a rule, iff an application of the con-
ditton part of the rule to the event gives the formula truth-
status TRUE. Otherwise, the event is said to not satisfy the
rule.

Suppose now that the condition formula is in the form

I x{V).

An application of this formula to an event assigns status TRUE
to the formula iff there exists in e a value assigned to x such
that V achieves status TRUE. For example, the formula

Jpart [color {part) = red]
is satisfied by the event

e = (... part:=P1, color (P1) :=blue, part :=P2,
color (P2) :=yellow, part :=P3, color (P3) :=red. . .).

If the condition part is 2 form
vx(V),

then it is assigned status TRUE if every value of x in the event
applied to it satisfies V. -

If the condition part assumes truth-status TRUE, then the
decision part is assigned status TRUE. When the decision part
reaches status TRUE then variables and functions which occur
in it are assumed to have values which make this formula
TRUE. These values may not, in general, be unique.

For example, suppose that V is a decision part with status
TRUE:

Vi [p(xy,x2) =2 [xy =2 .. 5] [x5=7].

V is interpreted as a description of a situation in which p has
value 2 (if a specification of p(x,,x,) is known, then from it
we can infer what values of x, and x, might be), x, has a
value between 2 and 5, inclusively, and x, has value 7. (Note
that the formula does not give precise information about the
value of x,.} After applying a formula to an event, the truth
status of the condition and decision part returns to UNKNOWN.
The role of an inference rule can then be described as follows:
the rule is applied to an event, and if the event satisfies the
condition part, then an assignment of values to variables and
functions is made as defined by the decision part. This assign-
ment defines a new event (or a set of events which satisfy the
decision part). Another inference rule can now be applied to
this event (or set of events), and if satisfied by it (or by all of
them), a new assignment of values to some variables and func-
tions can be made.
Examples of VL inference rules are

[p(x(.x2) = 3] [a(x;) = 2,5} [x, # 0] = [d(y,)=7]
A [p(y1.y2) = 2]
3 x3([p(x;,%3) = 2. .3] [a(x4,%3) 2 2]) V [1(x)} = 1]
= [d(y,)="7]
TRUE == [p(x,,x5)=2] [x, =2,3,5].

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-2, NO. 4, JULY 1980

B. Specification of the Problem Environment
in the Form of Inference Rules

Types of Descriptors: The process of generalizing a descrip-
tion depends on the type of descriptors used in the description.
The type of a descriptor depends on the structure of the value
set of the descriptor. We distinguish here among three differ-
ent structures of a value set.

1) Unordered: Elements of the domain are considered to be
independent entities, no structure is assumed to relate them.
A variable or function symbol with this domain is called
nominal (e.g., blood-type).

2} Linearly Ordered: The domain is a linearly ordered set.
A variable or funiction symbo] with this domain is called linear
(e.g., military rank, temperature, weight).

3} Tree Ordered: Elements of the domain are ordered into
a tree structure. A superior node in the tree represents a con-
cept which is more general than the concepts represented by
the subordinate nodes (e.g., the superior of nodes “triangle,”
rectangle, pentagon, etc. may be a “polygon™). A variable or
function symbol with such a domain is called structured.

Each descriptor (a variable or function symbol) is assigned
its type in the specification of the problem. In the case of
structured descriptors, the structure of the value set is defined
by inference rules [e.g., see (13), (14), (15)].

In addition to assigning to each variable and function symbol
a domain, one defines properties of variables and atomic func-
tions characteristic for the given problem. They are repre-
sented in the form of inference rules. Here are a few examples
of such properties,

1} Restrictions on Variables: Suppose that we want to
represent a restriction on the event space saying that if a value
of variable x, is 0 (“a person does not smoke™), then the
variable x; is *not applicable” (x,—kind of cigarettes the person
smokes). This is represented by a rule,

[xy =0] == x5 = NA]
NA = not applicable.

2) Relationships Between Atomic Functions: For example,
suppose that for any situation in a given problem, the atomic
function f(x,, x,) is always greater than the atomic function

2(X,,x,). We represent this by
T=>Vx;,x, [f(x,x;) >glx,, x3)].

3] Properties of Predicate Functions: For example, suppose
that a predicate function is transitive. We represent this by

T = Vx,,%g,Xs([left(xy,%,)] [left(X,.%5)]
— [left(x, ,13)])

Other types of relationships characteristic for the problem
environment can be represented similarly.

C. Generalization Rules

The transformation of data rules {3) into hypotheses (4) can
be viewed as a process of applying certain generalization rules
to data rules. A generalization rule transforms one or more
decision rules associated with the same generalization class
(which, in our case, is the same as recognition class), into a

MICHALSKI: PATTERN RECOGNITION

new decision rule, which is equivalent to or more general than
the initial rules.
A decision rule

Vi>K {(9)
is equivalent to a set of decision rules
Vi >K}Li=1,2,--- (10)

if any event which satisfies at least one of the ¥;,i=1,2,- - -,
W(color (wall) = blue] ::> KX
Wicolor (wall)=red | 11> K

satisfies also V, and conversely. If the converse is not required,
the rule (9) is said to be more general than (10).

The generalization rules are applied to data rules under the
condition of preserving consistency and completeness, and
achieving optimality according to the preference criterion. A
basic property of a generalization transformation is that the
resulting rule has UNKNOWN truth-status (is a hypothesis); its
truth-status has to be tested on new data.

Below is a list of a few basic generalization rules (K denotes
a generalization class).

Nonconstructive Rules:

t) Dropping Condition Rule: If a description is a logical
product of conditions which must be satisfied, then one way
to generalize it is to drop one or more of these conditions.
For example,

[size (box)=small] [color {box)=blue] ::>K
I< [size (box)=small] ::> K.

This reads: the description “small and blue box” can be
generalized to “small box.” ([<is the generalization operator.)
In general this rule can be expressed

WIL=R] :> K | < Wi> K

where W is an arbitrary description. This rule is generally ap-
plicable (the type of L does not matter).

ii} Turning Constants to Variables Rule: When we have
two or more descriptions, each referring to a single object in a
class, and the descriptions differ in having different constants
in the same predicate, then they can be generalized into one
description with an existentially quantified variable in the
place of the constants,

Wlp(a,Y)] ::> K
oneor | wipp,Y)] ;> kK
more : < 3 x WhxY)) :>K
rules :

Wip(i,Y)] 2> K

where p is a predicate and Y stands for one or more argu-
ments of the predicate p. For example,

[INSIDE (ball, box)] ::> K

[INSIDE (cup, box)] ::> K

The generalization (on the right of {<) states that if an object
is a BOX which has something inside, then it belongs to class K.

This rule together with the dropping condition rule zre two
basic generalization rules used in the literature on computer

< 3 x [INSIDE (x,box)] ::> K.

355

induction. Both these rules can, however, be viewed as special
cases of the following rule.

iii} Generalization by Internal Disjunction { The Extending
Reference Rule): A description can be generalized by extend-
ing the set of values that a description (a variable, predicate, or
a function) is allowed to take on in order than an object satis-
fies the description. This extension is expressed by the inter-
nal disjunction (Definition 2), i.e., logical oRr involving values
of the same variable. For example,

' ’<W[colnr(wall]= blue,red green...] 1> K

(The “,” denotes internal disjunction.) In general, we have
WL=R;] "> K<KW[L=R,] :>K

where L is an atomic function and R, , R, are references (i.e.,
subsets of values from the domain of L expressed as internal
disjunction) and R, CR,.

Although the internal disjunction seems at first glance to be
just a notational abbreviation, this operation is one of funda-
mental operations people use in generalizing descriptions. In
addition to the previous two rules, there are two more im-
portant special cases of this rule. First, when the descriptor
involved takes on values which are linearly ordered (a linear
descriptor) and the second when the descriptor takes on values
which are natural language concepts representing different
levels of generality {(a structured descriptor).

In the case of a linear descriptor we have the following.

v) Closing Interval Rule: For example, suppose two
objects of the same class have all the same characteristics
except that they have different sizes, a and b. Then, it is
plausible to hypothesize that all objects which share these
characteristics but which have sizes between a and b are also
in this class.

Wisize(x1)=a] ::>K

|< W[size(x})=a..b] ::> K.
W{size(x1)=b] :>K

In general,
W[L=a] ::>K
<W[L=a..b] :>K.
W[L=b] ::>K

This rule is applicable only when L is a linear descriptor. In
the case of structured descriptors we have the following.

v/ Climbing Generalization Tree Rule: Suppose the value
set of the shape descriptor is the tree {in general it could be a
partially ordered set}):

plane geometric figure

L

polygon oval figure
triangle rec'tangle\ pentagon ellipse circle.

With this tree structure, values such as triangle and rectangle
can be generalized (by “climbing the generalization tree”) into
a polygon,

356

{shape(x) = rectangle] ::>K
< [shape(x) = polygon] ::> K
[shape(x) = trangle] ::>K

A general rule is

(W[L=3a] :>K

WIL=b] :>K
< : <[L=s] >k
\W[L=i]:>K

where L is a structured descriptor and s represents the superior
node (a concept at the next level of generality) of nodes
a,b,...and i, in the tree domain of L.

The rule is applicable only to selectors involving structured
descriptors. This rule has been used, e.g., in [3], [4], [26].

vi} Extension Against Rule: This rule applies when a de-
scription is being generalized in the presence of another de-
scription, representing the “negative examples” of the given
recognition class. The latter description provides an obvious
limit for the generalization of the given description, since these
two descriptions should not intersect in order to avoid in-
consistency. For example,

3py,(lon-top(p, ,p,)] [color(p,)=red]) > K
3Py ,Pz([left'Of(Pl P2)] [CUIUI(PI)=green]) ::>71K

3p, [color(p,) #green] 1> K

The description produced by the rule: “there exists p, whose
color is not green” is the most general statement which satis-
fies both premises on the left of |<,

In general, the rule is

W,[L=R,]:>K
W,[L=R,] :>"1K
where Ry MR, =@ and W, and W, are arbitrary descriptions.
This rule is very useful in generating the discriminant descrip-
tions of object classes (see next section). It is one of the basic
rules used in the inductive program AQVAL/1 [14], whose

version is used as a basic procedure in program INDUCE 1.1
described in Section VI-B.

)< IL#R,] > K

Constructive Rules

Constructive rules penerate generalized descriptions of the
data rules in terms of certain new descriptors (metadescriptors
or derived descriptors). There can be very many such rules.
We will restrict ourselves here to two examples. Some con-
structive rules are encoded as specialized procedures.

vii} The Counting Rule

W [attribute, (P,) = A] ' - - [attribute,{P,) = A]
A [attribute, (P, .,) # A] - - - [attribute, (P,) # A]
D> KWK WIHP_ attribute, _A=Kk] 1> K

where

Py,Py,-- Py, - B, are constants denoting, ¢.g., parts

of an object
attribute, stands for a certain attribute of

P; - 5,e.g., color, size, texture, etc.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-2, NO. 4, JULY 1980

#P_attribute, _A denotes a2 new descriptor inter-
preted as the number of P, - s
(e.g., parts) with attribure, equal
Al

Example:

W{color (P1) = RED] [color (P2} = RED]
A [color (P3) = BLUE] ::>K

I< W[#P_color_red = 2] ..> K.

(The above is a generalization rule, because a set of objects with
any two red parts is a superset of a set of objects with two parts
which are red and one part which is blue).

viii) The Generating Chain Properties Rule: If the argu-
ments of different occurrences of the same relation in an event
are linearly ordered by the relation (e.g., are objects ordered
linearly by a relation ABOVE, LEFT-OF, NEXT-TO, CONTAINS,
etc.), that is form a chain, the rule generates descriptors which
characterize various objects in the chain; for example,

L5T-object: the “least object,” ie., the object at the
beginning of the chain (e.g., the bottom
object in the case of relation ABOVE)

MST-object: the “most object,” i.e., the object at the end

of the chain
the “middle” object
the ith object in the chain

MDL-object:
[th-object:

or characterize the chain itself, for example the chain-length.

D. The Preference Criterion

The preference criterion defines what is the desired solution
to the problem, i.e., what kind of hypotheses are being sought.
The question of what should be the preference criterion is a
broad subject beyond the scope of the paper. We will, there-
fore, discuss here only the underlying ideas behind the pre-
sented approach. First, we disagree with many authors who
seem to be searching for one universal criterion which shouid
guide induction. Qur position is that there are many dimen-
stons, independent and interdependent, on which a hypothesis
can be evaluated. The weight given to each dimension depends
on the ultimate use of the hypothesis. Among these dimensions
are various forms of simplicity of a hypothesis {e.g., the num-
ber of operators in it, the quantity of information required to
encode a hypothesis using operators from an a priori defined
set [31], etc.), the scope of the hypothesis, which relates the
events predicted by a hypothesis to the events actually observed
(e.g., the *“degree of generalization” [14], the “precision”
[31]}, the cost of measuring the descriptors in the hypothesis,
etc. Therefore, instead of defining a specific criterion, we
specify only a general form of the criterion. The form permits
a user to define various specific criteria to the inductive pro-
gram, which are appropriate to the application. The form,
called a “lexicographic functional” consists of an ordered list
of criteria (of dimensions of hypothesis quality) and a list of
“tolerances” for these criteria [13], [14]. |

An important and somewhat surprising property of such
an approach is that by properly defining the preference
criterion, the same computer program can produce either the

MICHALSKI: PATTERN RECQGNITION

characteristic or discriminant descriptions of object classes.
The characteristic description specifies the common properties
shared by the objects of the same class (most work on induction
considers only this type of descriptions, e.g., [3], [6], [22],
[23]). while the discriminant description specifies only the
properties necessary for distinguishing the given class from all
the other classes (Michalski {13], [32] and Larson [28]).

E. Arithmetic Descriptors

In addition to initial linear descriptors used in the data rules,
new linear descriptors can be formulated as arithmetic func-
tions of the original ones. These descriptors are formulated by
a human expert as suggestions to the program.

VI. OUTLINE OF ALGORITHM AND OF
COMPUTER IMPLEMENTATION

In this section we outline the top level algorithm for rule
induction and its implementation in the computer program
INDUCE-1.1 [28], [29], [30]. The algorithm is illustrated
by an exampie.

INDUCE-1.1 is considered to be only an aid to rule induc-
tion. Its successful application to practical problems requires
a cooperation between the program and an expert, whose role
is to determine the initial set of descriptors, to formulate data
rules and the problem knowledge rules, to define the prefer-
ence criterion and other parameters, evaluate the obtained
rules, repeat the process if desired, etc. -

A. Computer Representation of VL Decision Rules

Decision rules are represented as graphs with labeled nodes
and labeled directed arcs. A label on a node can be:

a) aselector with a descriptor without the argument list,

b) alogical operation,

¢) a quantifier form 2 x or V¥ x.

Arcs link arguments with selectors or descriptors, and are
labeled by 0, 1, 2, - - - to specify the position of an argument
in the descriptor indicated at the head of the arc (0 indicates
that the order of arguments is not important).

Several different types of relations may be represented by an
arc. The type of relation is determined by the label on the
node at each end of the arc, The types of relations are 1) func-
tional dependence, 2) logical dependence, 3) implicit variable
dependence, and 4) scope of variables.

Fig. 2 gives a graph representing a VL,, expression. The two
arcs connected to the logical operation (/\) represent the logical
dependence of the value of the formula on the values of the
two selectors. The other arcs in the figure represent the func-
tional dependence of f on x; and x,,and gon x,.

B. Outline of the Top Level Algorithm

The implementation of the inductive process in the program
INDUCE-1.1 was based on ideas and algorithms adopted from
the earlier research on the generalization of VL, expressions
(Michalski [13], [32], and some new ideas and algorithms
developed by Larson {28], [29].

The top level algerithm (in somewhat simplified form) can
be described as follows:

1} At the first step, the data rules (whose condition parts

357

Fig. 2. VL Graph structure: 3 x; X, ([f(x3,%5) = 1] [g(x3) = 2]).

are in the disjunctive simple forms} are transformed to a2 new
set of rules, in which condition parts are in the form of ¢
expressions. A c-expression (a conjunctive expression) is a
product of selectors accompanied by one or more quantifier
forms, ie., forms QFx,, x,, * - -,where QF denotes a quantifier.
(Note, that due to the use of the internal disjunction and
quantifiers, a c-expression represents a more general concept
than a conjunction of predicates (used, eg., in [23], [24]).

2) A decision class is selected, say K;, and all c-expressions
associated with this classare put into a set F1, and all remaining
c-expressions are put into aset FO (the set F1 represents events
to be covered, and set FQ represents constraints, i.e., events
not to be covered).

3} By application of inference rules {(describing the problem
environment), constructive generalization rules, and rules
generating arithmetic descriptors (Section V-E) new selectors
are generated. The “most promising™ selectors (according to a
chosen criterion) are added to the c-expressions in F1 and FO.

4) A c-expression is selected from F1, and a set of consistent
generalizations (a restricted star) of this expression is obtained.
This is done by starting with single selectors (called “seeds”),
selected from this c-expression as the “most promising” ones
(according to the preference criterion). In each subsequent
next step, a new selector is added to the c-expression obtained
in the previous step (initially the seeds), until a specified num-
ber (parameter NCONSIST) of consistent generalizations is
determined. Consistency is achieved when a c-expression has
NULL intersection with the set FQ. This “rule prowing’ process
is illustrated in Fig. 3.

5) The obtained c-expressions, and c-expressions in FO,
are transformed to two sets E1 and EO, respectively, of VL,
events (i.e., sequences of values of certain discrete variables).

A procedure for generalizing VL, descriptions is then applied
to obtain the “best cover” (according to a user defined crite-
rion) of set El against EQ (the procedure is a version of
AQVAL/1 program [13]).

During this process, the extension against, the closing the
interval, and the climbing generalization tree rules are applied.

The result is transformed to a new set of c-expressions (2
restricted star) in which selectors have now appropriately
generalized references.

6) The “best™ c-expression is selected from the restricted
star. |

7) If the c-expression completely covers F1, then the process
repeats for another decision class. Otherwise, the set F1 is re-
duced to contain only the uncovered c-expressions, and steps
4)-7) are repeated.

The implementation of the inductive process in INDUCE-1.1

¢ -~ a discarded e~rule

® _ an active c-rule

w . 4 terminal node denoting a consistent r-tule

Each arc represents an ocperation of adding a new selector to a c-rule

The branching factor is determined by parameter ALTER. The
number of active rules {which are maintalned for the next step of the
rule growing process) is specified by parameter MAXSTAR. The number of
terminal nodes (consistent generalizations} which program attempts to
generate Ls specified by parameter NCONSIST.

I1lustration of the rule growlng process
(én application of the Dropping Condition Rule in

Fig. 3.

reverse crdat)

consists of a large collection of specialized algorithms, each
accomplishing a certain task. Among the most important
tasks are the following,

1) The implementation of the *rule growing process.”

2) Testing whether one c-expression is a generalization of
(““covers™) another c-expression. This is done by testing for
subgraph isomorphism.

3) Generalization of a c-expression by extending the selector
references and forming irredundant c-expressions (includes
application of AQVAL/1 procedure).

4) Generation of new descriptors and new selectors.

Program INDUCE 1.1 has been implemented in pASCAL (for
Cyber 175 and DEC 10); its complete description is given in
[30].

C. Example

We will present now an example illustrating some of the
features of INDUCE-1.1. Suppose given are two sets of
trains, Eastbound and Westbound, as shown in Fig. 4. The
problem is to determine a concise (logically sufficient) descrip-
tion of each set of trains, which distinguishes one set from the
other (ie. a discriminant description which contains only
necessary conditions for distinguishing between the two sets),

As the first step, an initial set of descriptors is determined
(by a user) for describing the trains. Eleven descriptors are
selected in total. Among them are:

¢ infront(car;,car;) cary is in front of car;

(a nominal descriptor)
® length(car;) the length of car;

(a linear descriptor)
® car-shape(car;) the shape of car;

[a structured descriptor with 12
nodes in the generalization tree:
see (13) and (14)]

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-2, NO. 4, JULY 1980

1. TRAINS GOING EAST

Lo H, 2 A ooo} 3T

—

0
]
i3
=
i

2. TRAINS GOING WEST
—_——————eee ey

A OO0 A

2 FAY O D:ﬂ]

s (o =I5
MWAARAAARA

® cont-load(car;,load;) car; contains load,

(a nominal descriptor)

the shape of Joad;
(a structured descriptor)
The value set:

& circle
& hexagM.
® triangle >

® rectangie

the number of parts in the load
of car; (a linear descriptor)

® load-shape(load;)

polygon
® nrpts-load(car;)

number of wheels in car;’
(a linear descriptor).

® nrwheels(car;)

The data rules consist of descriptions of the individual trains
in terms of the selected descriptors, together with the specifica-
tion of the train set they belong to. For example, the data
rule describing the second eastbound train is

3 cary,car,,cars,cars,load, load,, . ..
[infront(car, ,car,)) [infront(car,,car;)] ...
[length(car,)=long] [car-shape(car,)=engine]
[car-shape(car,)=U-shaped] [cont-load{car,,load,)] A
{load-shape(load,)=triangle]. . .[nrwheels(car;)=2]. . .
(12)

Rules describing the problem environment in this case are

::> [class=Eastbound]

only rules defining structures of structured descriptors (argu-
ments of descriptors are omitted):

5At this moment, before proceeding further, the reader is advised to

look at the pictures and to try to solve this problem on his/her own.

MICHALSKI: PATTERN RECOGNITION

[car-shape =open rctngl ,open trapezoid,U-shaped,
(13)

= {car__shape = open top]

[car-shape=ellipse,closed rcingl,jagged top,sloping top]

= [car_shape=closed top] (14)
[load-shape=hexagon, iriangle,rectangle]
= [load-shape =polygon] . (15)

The criterion of preference was to minimize the number of
rules (c-expressions) in describing each class, and, with sec-
ondary priority, to minimize the number of selectors in each
rule.

Rules of constructive generalization included in the program
are able to construct, among other descriptors, such descriptors
as the length of a chain, properties of elements of a chain,
number of objects satisfying a certain relation, etc. For ex-
ample, from the data rule (12), the constructive generaliza-
tion rules can produce new selectors such as

the number of cars in the train is 4
(the length of chain defined by re-
Iation infront)

[nrcars=4]

[nrcars-length-long=1] the number of long cars is 1 (the
engine)
{nr-pts-load(last-car)=2} the number of parts in the load of

the last car is 2
[position(car;)=i] the position of car; is i.

Suppose that eastbound trains are considered first. The set
F1 contains then all c-expressions describing eastbound trains,
and FO, all c-expressions describing westbound trains. The de-
scription e is selected from F1 (suppose it is the above descrip-
tion of the second eastbound train), and supplemented by
“most promising” metadescriptors generated by problem en-
vironment rules and constructive generalization rules. In this
case, the metaselector [shape(last-car)=rectangle] is added to e.
Next, a set G (a restricted star) of certain number {NCONSIST)
of consistent generalizations of e is determined.

This is done by forming a sequence of partial stars (a2 partial
star may include inconsistent generalizations of €). If an ele-
ment of a partial star is consistent, it is placed into the set G.
The initial partial star (P;) contains the set of all selectors
of e;. This partial star and each subsequent partial star is re-
duced according to a user specified preference criterion to the
“best™ subset, before a new partial star is formed. The size of
the subset is controlled by a parameter called MAXSTAR. A
new partial star P;,, is formed from an existing partial star
P; in the following way: for each c-expression in P;, a set of
c-expressions is placed into Py, each new c-expression con-
taining the selectors of the original c-expression plus one new
selector from e, which is not in the original c-expression. Once
a sufficient number of consistent generalizations have been
formed, a version of the AQVAL/1 program (Michalski [14])
is applied to extend the references of all selectors in each con-
sistent generalization. As the result, some selectors may be
removed and some may have more general references.

In the example, the best subset of selectors of e (i.e., the
reduced partial star (P,)) was

359
3 car; [car-shape(car,)=U-shaped] (16)
3 car, [car-shape(car,)=open-trapezoid] ¥
3 car, [car-shape(car,)=rectangle] (18)
[carshape(last-car)=rectangle] . (19)

The last c-expression is consistent (has empty intersection
with c-expressions in FO) and, therefore, is placed in G. From
the remaining, a new partial star is determined. This new
partial star contains a consistent generalization:

3 car, [car-shape(car;)=rectangle] {length(car,)=short]
(20)

which is added to G. Suppose G is restricted to have only two
elements (NCONSIST=2). Now, the program AQVAL/1 is ap-
plied to generalize references of the selectors in ¢-expressions
of G, if it leads to an improvement (according to the prefer-
ence criterion).

In this case, a generalization of (20) produces a consistent
and complete generalization:

3 car, [car-shape{car,)=closed top] [length(car, })=short] .

(21)

(The generalization of (19), [car-shape(last-car)=polygon], is
not complete; it does not cover all F1.)

In this example, only two partial stars were formed, and two
consistent generalizations were created. In general, a set of
consistent generalizations is created through the formation of
several partial stars, The size of each partial star and the num-
ber of alternative generalizations are controlled by user supplied
parameters.

Assuming a larger value of NCONsiST, and applying the above
procedure to both decision classes, the program INDUCE-1.1
produced the following alternative descriptions of each set of
trains.

(The selectors or references underlined by a dotted line were
generated by application of constructive generalization rules or

problem environment rules.)
Eastbound Trains:

3 car, [length{car,)=short] {car-shape(car,)=closed top]
7> [class=Eastbound] (22)

[the same as (21)] . It can be interpreted as follows.
If a train contains a car which is short and has a closed top,
then it is an eastbound train. Alternatively,

d car, ,car,,load, load, [infront(car, car,)]
[cont-load(car, ,Joad,)]
A [cont_load(car, ,load,)]
A [load_shape(load, }=triangle]
A [load__shape(load,;)=polygon] ::> [class=Eastbound]
(23)

It cancbe interpreted as follows.
If a train contains a car whose load is a triangle, and the load
of the car behind is polygon, then the train is eastbound.

360

Westbound Trains:
[nrcars=3] V 3 car, [car_shape{car,)=jagged -top]
::> [class=Westbound]
3 car; [nrcars_length long=2] [position(car,)=3]

(24)

[shape(car,)=open_top,jagged_top]

.:> [class=Westbound] . (25)

It is interesting to note that the example was constructed
with rules (23) and (24) in mind. The rule (22) found by the
program as an alternative was rather surprising because it
seems to be conceptually simpler than rule (23).

This example shows that the combinatorial part of an induc-
tion process can be successfully handled by a2 computer pro-
gram. Therefore, programs like the above have a potential to
serve as an aid to induction processes in various applied sciences.

VIiI. SUMMARY

We have presented an outline of a theory and an implementa-
tion method which views pattern recognition as a rule-guided
inductive inference. The initial data rules (examples) are trans-
formed to general recognition rules by an application of
generalization rules and problem knowledge rules, under the
control of a preference criterion. The implemented method
(in the form of computer program INDUCE 1.1):

® applies different generalization rules according to the type
of descriptors in the data (nominal, linear, structured);

® takes into consideration the properties of the interreia-
tionships of descriptors characteristic to the recognition
problem;

® permits the specification by a user of a preference crite-
rion, which evaluates the usefulness of the rules from the view-
point of the given application;

® can generate certain new descriptors (“metadescriptors™)
and blend them with the initial ones to provide a basis from
which the final description chooses its most appropriate
descriptors;

® uses the same representation language (VL,,) to describe
the learning events as well as problem knowledge rules, which
simplifies for a user the task of the data preparation for the
program, .

® permits 2 user to suggest to the program various arithmetic
transformations of the original (linear) variables which seem
promising as relevant characterization of object classes.

The implemented method has many limitations. Among
major limitations is a restricted form in which program can
express the recognition rules (i.e., in the form of a disjunctive
simple VL,, expression with limited use of quantifiers), and
a restricted number of operators and mechanisms which the
program uses in constructing 2 generalized description. Also,
the method does not take into consideration any probabilistic
information.

Among the advantages is the significant generality of the ap-
proach and an ability to use the semantics underlying the re-
cognition problem. An important property of the method is
the simplicity of conceptual interpretation of the pattern
recognition rules. The strength of the method was illustrated
by a testing example where program was able to discover a

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-2, NO. 4, JULY 1980

pattern unknown to the authors. On the practical side, an
earlier program (AQ11) was able to determine from examples
the rules for diagnosis of soybean diseases which gave better
performance than the rules obtained by representing an ex-
pert’s knowledge [33].

ACKNOWLEDGMENT

The author acknowledges the coilaboration with J. Larson
of Rockwell International, Inc., in developing several ideas
presented here and, in particular, his outstanding implementa-
tion of the first version of the program, INDUCE-1. Among
many people who helped through discussions or through their
interest in the work, the author would specially like to mention
K.S. Fu, B. Gaines, D. Michie, R. Reddy, L. Travis,and L. Uhr.
Thanks go also to A. B. Baskin and T. Dietterich for proof-
reading of the paper.

REFERENCES

[1] K.C. Yauand K. §. Fu, “Syntactic shape recognition using attrib-
uted prammars,” in Proc. 8th Annu. EXA Symp. on Automat.
Imagery Pattern Recognition, 1978,

[2] B. G. Buchanan and T. Mitchell, “Model-directed learning of
production rules,” Dep. Comput. Sci., Stanford Univ., Rep.
STAN-CS8-77-597, Mar. 1977.

[3] P. H. Winston, “Learning structural descriptions from examples,”
M.LT. AJ Lab, Cambridge, Tech. Rep. Al TR-231, 1970.

{4} D.B. Lenat, “AM: An artificial intelligence approach to discovery
in mathematics as heuristic search,” Dep. Comput. Sci., Stan-
ford Univ., Rep. STAN-CS8-76-570, July 1976.

[5] E. M. Soloway and E. M. Riseman, “Levels of pattern description
in learning,” in Proc. 5th Int. Joint Conf. on Artificial Intell
M.LT., Aug. 22-25,1977.

[6] H. A. Simon, “Complexity and the representation of patterned
sequences of symbols,” Psychol Rev., vol. 79, pp. 369-3382,
1972,

[7] D. A. Waterman, “Adaptive production systems,™ Dep. Psychol.,
Carnegie-Melion Univ., Pittsburgh, PA, Working paper 285, 1974.

[B] B. R. Gaines, “Behavior/structure transformations under un-
certainty,” Int. J. Man-Mach. Studies, vol. 8, pp. 337-365, 1976.

[9] D. E. Shaw, W. R. Swartout, and C. C. Green, “Inferring lisp

programs from examples,” in Proc. 4th Int. Joint Conf. on Arti-

ficial Intell. , vol. I, Thilisi, U.S.8.R., Sept. 1975, pp. 351-356.

T. P. Jouannaud, G. Guiho, and T. P. Treuil, “SISP/1-An inter-

active system able to synthesize functions from examples,” in

Proc. Sth Int. J. Conf. on Artificial Intell,, vol. 1, Cambridge,

MA, 1977, pp. 412-418.

Y. A. Feldman, J. Gips, J. J. Homing, and S. Reder, “Grammatical

complexity and inference,” Dep. Comput. Sci., Stanford Univ.,

CS Rep. 125, 1969.

J. M. Brayer and K. S. Fu, “Web grammars and their application

to pattern recognition,” School Elec. Eng., Purdue Univ., TR-

EE 715-1, Dec. 1975.

R. S. Michalski, “A variable-valued logic system as applied to

picture description and recognition,” in Graphic Longuages,

F. Nake and A. Rosenfeld, Eds. Amsterdam: North-Holland,

1972,

R. 8. Michalski, “AQVAL/1-Computer implementation of a

variable-valued logic system and the application to pattern

recognition, in Proc. Ist Int. Joint Conf. on Pattern Recognition,

Washington, DC, Oct. 30-Nov. 1, 1973.

J. Larson, “A multistep formation of variable-valued logic

hypotheses,” in Proc. 6th Annu. Int. Symp. on Multiple-Valued

Logic, Utah State Univ., May 25-28, 1976.

J. C. Stoffel, "The theory of prime eventis: data analysis for

sample vectors with inherently discrete variables,” in Information

FProcessing 74. Amsterdam: North-Holland, 1974, pp. 702-706.

R. B. Banerji, “An information processing program for object

recognition,” General Syst. 5, 1960.

—, “Learning in structural description

Univ., Rep. to NSF Grant MCS 76-0-200, 1977.

B. L. Cohen, “A powerful and efficient structural pattern recogni-

tion system,” Artificial Intell. , vol. 9, Dec. 19717.

(10]

(1]

12}

[13]

[14]

{13]

[16])

[17]
[18]
[19]

es,” Temple

MICHALSKI: PATTERN RECOGNITION

{20]

[21]

[22]
(23]

[24]

[25]
[26]

[27]

[28]

[29]

(30]

C. G. Morgan, “Automated hypothesis generation using extended
inductive resolution,” in Advance Papers 4th Int. Joint Conf. on
Artificial Intell. , vol. 1, Thilisi, U.S.5.R., Sept. 1975, pp. 351-356.
G. D. Plotkin, “A further note on inductive generalization,” in
Machine Intelligence 6, B. Meltzer and D. Michie, Eds. New
York: Elsevier, 1971,

R. E. Fikes, R. E. Hart, and N. J. Nilsson, “Learning and executing
generalized robot plans,” Arsificial Intell., vol, 3, 1972,
Hayes-Roth and J, McDermott, “An interference matching tech-
nique for inducing abstractions,” Commun, Ass, Comput. Mach.,
vol, 21, pp. 401~411, May 1978.

S. Vere, “Induction of concepts in the predicate calculus,” in
Advance Papers 4th Int. Joint Conf. on Artificial Intellivence,
vol. I, Thilisi, U.8.5.R., Sept. 1975, pp. 3513565,

N. G. Zagoruiko, Empiricheskoie Predskazanie (in Russian).
Novosibirskij Gosudarstviennyi Unversitiet, 1979,

C. L. Hedrick, A computer program to learn production systems
using a semantic net,” Ph.D. dissertation, Dep. Comput. Sci.,
Carnegie-Mellon Univ., Pittsburgh, PA, July 1974,

J. Larson and R. 8. Michalski, “Inductive inference of VL decision
rules,” in Proc. Workshop on Pattern-Directed Inference Syst.,
Honolulu, HI, May 23-27, 1977; also in SIGART Newsletter,
no. 63, June 1977,

J. Larson, “Inductive inference in the variable-valued predicate
logic system VL,, : Methodology and computer implementation,”
Ph.D. dissertation, Dep. Comput. Sci., Univ. Illinois, Urbana,
Rep. UIUCDCS-R-77-869, May 1977,

——, “INDUCE-1: An interactive inductive inference program in
VL, logic system,” Dep. Comput. Sci., Univ. Iilinois, Urbana,
Rep. UIUCDCS-R-77-876, May 1977.

T. Dietterich, “INDUCE 1.1-The program description and a
user’s guide,” Dep. Comput. Sci., Univ. Ilinois, Urbana, Internal
Rep., July 1978.

361

[31] D. Coulon and D. Kayser, “Learning criterion and inductive
behaviour,” Pattern Recognition, vol. 10, no. 1, pp. 19-25,
1978.

{32] R. 8. Michalski, “A system of programs for computer-aided in-
duction: A summary,” presented at the 5th Fni. Joint Conf. on
Artificial Intell.,M.1.T., Boston, MA, Aug. 1977.

[33] R. 8. Michalski and R. Chilausky, “Knowledge acquisition by
encoding expert rules versus inductive learning from examples:
An experiment utilizing plant pathology,” Int. J Man-Machine
Studies, 1980.

Ryszard S. Michalski received the B.Sc., M.Sc.,
and Ph.D. degrees from Warsaw Technical Uni-
versity, Leningrad Polytechnic Institute, and
the Technical University of Silesia, respectively.

From 1962-1970 he worked first asa Research
Scientist, and then as the Leader of the Pattern
Recognition Group at the Institute of Automatic
Control of the Polish Academy of Sciences,
Warsaw. In 1970 he joined the Department
of Computer Science, University of Illinois,
Urbana, where he is an Associate Profes-
sor. He is the author of more than 40 research and technical papers
published in the U.S. and abroad. Currently he is the principal investi-
gator of an NSF founded project on computer induction and plausible
reasoning, and a co-principal investigator of a project on the application
of computer inference to agriculture, founded by the U.S. Department
of Agriculture.

