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ABSTRACT

A theoretical framework is presented which treats inductive learning
as a process of generalizing and simplifying symbolic descriptions, under
a guidance of generglization rules (representing inference »rocesses which
generalize descriptions) and probiem environment rules (representing
problem dependent knowledge). This approach wifies various types of
inductive learning, such as learming from examples ( determination of
characteriscic or descriminant descriptions, and sequence prediction), and
learning from observation (revealing a conceptual structure underlving
an arbitrary collection of entities).

A brief description is given of two inductive learning programs
INDUCE 2 ——— for learning characteristic or discriminant structural descrip~
tions, and CLUSTER/PAF --- for learning from observation ('coaceptual
clustering’), The latter program determines a taxonomic description, .
which partitions a given collection of entities into clusters, such that
each cluster is described by a single conjunction of relational statements
and the obtained assembly of clusters satisfies an assumed criterion of
preference.

The presented methodology can be useful for automated ‘conceptual’
analysis of experimental data, for searching for patterns and abstracting
the contents of databases, and also for aiding the knowledge acquisition
pProcesses in the development of expert systems.
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INTRODUCT ION

OQur understanding of inductive learning processes remains

very limited despite considerable progress in recent years. Making

progress in this area is particularly difficult, not only because of the
intrinsic complexity of these problems, but also because of their cpen-
endadness. This open-endedness implies that when we make inductive asser-
tions about some piece of reality, there is mo natural limit to the ievel
of detail of descriptions of this reality, to the scope of concepts and
operators used in the expression of these assertions, or to the richness
of their forms. Consequently, in order to achieve non-trivial general
solutions, one has to circumscribe carefully the nature and goals of the
research. This includes defining the language in which descriptions may
be writter 2nd the modes of inference which will be used. Careful defini-
tions will avoid the main difficulty of must current research: attacking

problems which are too general with techniques which are too limited.

Recently there has been a growing need for practical solutions
In the area of inductive learning. For example, the development of
knowledge-based expert .systems requires efficient methods for acquiring and
refining knowledge. Currently, the only method of knowledge acquisition is
the handcrafting of an expert's knowledge ir some knowledge representation system,
é.g8., production rules (Shortliffe [1l], Davis [2]) or a semantic net

(Brachman [3]). Progress in the theory of induction and the development of



efficient inductive programs can provide valuable assistance and an alter-

native method in this area. TFor example, inductive programs could be useful

for filling in gaps and testing the consistency and completeness of expert-—
derived decision rules, for removing redundancies, or for incremental improve-
ment of the rules through the analysis of their performance. They could pro-
vide a means for detecting regularities in data bases and knowledge
bases. Also, for appropriately selected problems, the programs could deter-
mine the decision rules directly from examples of expert decisions, which
would greatly facilitate the transfer of knowledge from experts into machines.
Experiments on the acquisition of rules for the diagnosis of soybean disea-
ses {(Michalski and Chilausky [&]) have indicated that rule-lezrning from
examples is not only feasible, but in certain aspects it may be even preferable.

Another potential for applying inductive programs 1s in various
areas of science, e.g., biology, microbiology, and genetics. Here they could
assist a scientist in revealing structure or detecting interesting conceptual
patterns in collections of observations or results of experiments. The
traditional mathematical techniques of regression analysis, numerical taxonomy,
factor analysis, and distance-based clustering techniques are not sufficieﬂtly
adequate for this task. Methods of conceptual data analysis aré needed, whose
results are not mathematical formulas but conceptual descriptions of data,
involving both qualitative and quantitative relationships.

Similar in general framework, but different in objectives is research in a
sub~area of computer inductive learning such as automatic programming
{(e.g., Shaw, Swartout and Green {5], Jouannaud and Kodratoff [6], Burstall and
Darlington [7], Biermann [8], Smith [9], Pettorossi [10]). Here, the objective
is to synthesize a program from %/b pairs or computational traces, or to

improve its computational efficiency by application of correctness-preserving



transformation rules. The final result of learning is thus a program, in a
given programming language, with its inherent sequential structure, destined
for machine rather than human "'consumption' (or, in other words, a description
in "computer terms" rather than in "human terms"). Here, the postulate of
human comprehensibility (mentioned below) is not too relevant. Quite similar
to research on automatic programming is research on grammatical inference
(e.g., Bierman and Feldman [11], Yau and Fu [12]) where the objective of
learning is a formal grammar.

This paper is concerned with computer inductive inference, which
could be called a "conceptual"” induction. The final result of learning is
a symbolic description of a class (or classes) of entities (which typically
are not computational processes) which is in a form of a logical-type
expression. Such an expression is expected to be relatively "close" to a
natural language description of the same class(es) of entities, specifically

it should satisfy what we call the comprehensibility poétulate:

The results of computer induction should be conceptual deseriptions of
data, similar to the descriptions a human expert might produce observing the
same data. They should be comprehensible by humans as single 'ehunks' of
information, directly interpretable in natural language, and can involve
both quantitative and qualitative information.

This postulate implies that descriptions should avoid mere
than one level of bracketing, more than one implication or exception symbol,
avoid recursion, avoid including more than 3-4 conditions in a conjunction
and more than 2-3 conjunctions in a disjunction, not include more than two
quantifiers, etc. (the exact numbers can be disputed, but the principle
is clear). This postulate can be used to decide when to assign a
name to a specific formula and use that name inside another formula.

This postulate stems from the motivation of this research to provide new

methods for knowledge acquisition and techniques for conceptual data analysis.



It is also well confirmed by the new role for research in artificial intel-
ligence, as envisaged by (Michie [13]), which is to develop techniques for
econceptual interface and knowledge refinement.

In this paper we will consider two basic types of inductive
inference: learning from examples and learning from observation (specifically,

the so called "conceptual clustering”).

Z,. COMPUTER INDUCTION AS GENERALIZATION AND SIMPLIFICATION OF SYMBOLIC
DESCRIPTIONS

2.1 Inductive Paradigm

The process of induction can be characterized as the search for an
economical and correct expression of a function which is only parcially known.
In other words, its goal is the determination and validation of plausible
general descriptions (inductive assertions or hypotheses) which explain a
given body of data, and are able to predict new data. Between the twe aspects
of induction -~ the generation of plausible inductive assertions and their
validation -- only the first is the subject of our study. We feel that the
subject of hypotheses generation, in particular the problems of generalization
and simplification of symbolic descriptions by a computer, is a quite unexplored
and very important direction of research. The problems of hypothesis confirma-
tion, in the Carnapian (Carnapl4 ) or similar sense, are considered to be
beyond the scope of this work. 1In our approach, inductive assertions are
judged by a human expert interacting with the computer, and/or tesied by
standard statistical techniques. The research 1s concentrated on the following
inductive paradigm:

Given is:

-

(a) a set of data rules (input rules), which consist of data descrip-

tions, {ng}, specifying initial knowledge about some entities

{ objects, situations, processes, etc.), and the gemeralization
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Descriptions Cﬁj can be symbolic specifications of conditions
which given situations satisfy, production rules, sequences of
attribute-value pairs representing observations or results

of experiments, etc. The descriptions are assumed to bhe
expressions in a certain logical calculus, e.g., propositional
calculus, & decision tree structure, predicate calculus, or
calculi specially developed for inductive inference, such as

variable valued logic systems VL1 (Michalski [15]) or VL2

{(Michalski [16]).

(b) a set of rules which define a problem environment, i.e.,
represent knowledge about the induction problem under consider-
ation. This includes-definitions of value sets of all descrip-
tors* used in the data rules, the prnperties of descriptors
and their interrelationships and any "world knowledge"
characteristic to the problem at hand.

(c) a preference or (optimality) criterion, which for any two
symbolic descriptions of an assumed form, and of the same

generalization class, specifies which one is more preferable,

or states that they are equally preferable.

*Degeriptors are variables, relations and functions which are used in symbolic
descriptions of objects or situations.



The problem is to determine a set of Znductive assertions (output descriptions).
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which are most preferable among all sets of rules in an assumed format, that

do not contradict the vroblem envivorment rules, and which are, with regard to

the data rules, consistent and complete.

A  set of inductive assertions is consistent with regard to data
rules, if any situation which satisfies a data rule of some generalization
class either satisfies an assertion of the same class, or does not satisfy
any assertion.

A get of assertions is complete with regard to Input rules, if

any situation which satisfies some data rules also satisfies some assertion
in the set.

It is easy to see that if a set of assertions is consistent and
complete with regard.to the data rules, then it is semantically equivalent
to or more general than the data rules (i.e., there may exist situations
which satisfy an assertion but do not satisfy any data rules).

| From a given set of data rules it is usually possible to derive
many different sets of hypotheses which are consistent and complete, and
which satisfv the problem environment rules. The role of the preference
criterion is to select one (or a few alternatives) which is (are) most
desirable in the given application. The preference eriterion may refer to

the simplicity of hypotheses (defined in some way), their generality, the



cost of measuring the information needed for their evaluation, their degree
of approximation to the given facts, etc. (Michalski [16]).

We will distinguish following special types of induction (this is
not an exhausrive classification):

I. Learning from examples

Within this type three subclasses of problems were studied most:

a, concept acquisition, or learning a characteristic descripiion
of a class of entities (representing a concept).

b. classification learning, or learning discrimimant descriptions
of related classes of objects.

¢c. sequence prediction, or discovery of a rule which generates a
given sequence of entities.

IT. Learning from observation

11 T

It is a process of "conceptual clustering, which reveals a
conceptual structure underlying an arbitrary collection of entities.
It produces a taxonomic description of
Most of the research on computer induction has dealt.with a special
subproblem of type Ia, namely learning a conjunctive concept {(description)
characterizing a given class of entities. Here the data rules involve only
one generalization class (which represents a certain concept), or
two generalization classes; the second class being the set of "negative
examples" (e.g., Winston [17], Vere [18], Hayes-Roth [19]). Where there is
only one generalization class (the so-called uniclass generalization) there
is no.natural limit for generalizing the given set of descriptions. 1In such
case the limit can be imposed, e.g., by the form of expression of the inductive
assertion (e. ., that it should be a most specific conjunctive generalization

wi:hin the given notational framewecrk, as in (Hayes—-Roth [19]) and (Vere [18]),

or .y the assumed degree of generality (Stepp [20]). When there are negative



examples the concept of near miss (Winstom [17]) can be used to effectively

determine the limit of generalization .

A general problem of type la is to learn a characteristic description
(it can be, e.g., a disjunctive description, grammar, or an algorithm) which
characterizes all entities of a given class, and does not characterize any
entity which is not in this class.

Problems of type Ib are typical pattern classification problems,

Data rules involve many generalization c¢lasses; each generalization class
represents a single pattern recognition class. In this case, the individual
descriptions Cij are generalized so long as it leads toltheir simpliciation and
preserves the condition of consistency (efg.,IMichalski {21]). Obtained
inductive assertions are discriminant descriptions, which permit one to
distinguish one recognition class from all other classes. A descriminant
description of a class is a special case of characteristic description, where
any object which is not in the class is in one of the finite (usually quite
limited) number of other classes. Of special interest are discriminant
descriptions which have minimal cost {e.g., the minimal computational
complexity, or minimal number of descriptors involwved).

Problems of type Ic are concerned with the discovery of a rule governing the
generation of an ordered sequence of entities. The rule may be deterministic
(as in letter sequence prediction (e.g., Sipon & Lea {221), or nondeterministic,
as in the card game EULESIS (Dietterich [23]). Data rules involve here only
one generalization class, or two generalization classes, where the second
class represents "negative examples."

Problems of type II (learning from observation) are concerned with
determining a structure underlying a collection of entities. 1In particular,

such a structure can be a partition of the collection into clusters of entities



representing certain single concepts ('conceptual clustering,” Michalski [24]).
Data descriptions in (I) represént in this case individual entities, and they
all belong to the same generalizatibn class (i.e., data descriptions consist of
a single row of data rules in e.g. (1)).

Methods of induction can be characterized by the type of language
used for expressing initial descriptioms Cij and final inductive assertions
CEJ. Many authors use a restricted form of predicate calculus {(usually
quantifier~free) of, or some equivalent notation (e.g., Morgan [25],

Fikes, Hunt and Nilsson [26], Banerji [27], Cohen [38], Hayes-Roth and
McDermott [29], Vere [18]).
In our earlier work we used a special propositional calculus with

multiple-valued variables, called variable~valued logic system VL Later on

1
we developed an extension of the first order predicate calculus, called
vL21 (Michalski [16]). It is a much richer language than VLl, which includes
several novel operators not present in predicate calculus, e.g., the internal
conjunction, internal disjunction, the exception, the selector. We found these
cperators very useful for describing and implementing generalization processes;
they also directly correspond to linguistic constructions used in human
descriptions. VLZI also provides a unifying formal framework for adequately

handling descriptors measured on different scales. (The orientation toward

descriptions with descriptors of different types is one of the unique aspects

of our approach to induction.)

2.2 Relevancy of Descriptors in Data Descriptions

A fundamental question underlying any machine induction problem is
that of what information the machine is given as input data, and what informa-—
tion the machine is supposed-to produce. An important specific question here

COncerns data relevancy, i.e., how relevant to the problem under
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consideration must be the variables (in general, descriptors) in the input data,
and what is the relationship between variables in the output descriptions and
the initial vaviables?
It is useful to distinguish three cases:

1. The input data consists of descriptions of objects in terms
of variables which are relevant to the problem, and the
machine is supposed to determine a logical or mathematical
formula of an assumed form involving the given variables
(e.g., a disjunctive normal expression, a regression polynomial,
etc. ).

2. The input data consists of descriptions of objects as in case 1,
but the descriptions may involve, in addition to relevant
variables, a relatively large number of irrelevant variables.
The machine is to determine a solution description involving
only relevant variables.

3. This case is like case 2, except that the initial descriptions
may not include the relevant wvariables at all. They must
include, however, among irrelevant variables, also variables
whose certain functions (e.g., represented by mathematical
expressions or intermediate logical formulas) are relevant

variables. The final formula is then formulated in terms of
the derived variables.

The above cases represent problem statements which put progressively
less demand on the content of the imput data (i.e., on the human defining the

problem) and more demand on the machine.

The early work on concept formation and the traditional methods of

data analysis represent case 1, - Most of the recent research deals with
case 2. In this case, the method of inducrion has to include efficient
mechanisms of determining irrelelvant variables. The logic provides such
mechanisms, and this is one of the advantages of logical type solﬁtions.
Case 3 represents the subiect of what we call constructive induction.

Our research on induction using system VLl and initial work
using VLZl has dealt basically with case 2. Later on we realized how to
approach constructive induction, and formulated

the first constructive

Beneralization rules. We have incorporated them in our inductive
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program INDUCE 1 (Larson and Michalski [30], Larson [31]) and in the newer
improved version.INDUCE—l.l (Dietterich [32]).

The need for introducing the concept of constructive induction may
not be obvicus. The concept has basically a pragmatic value. To explain
this, assume first that the output assertions involve derived descriptors,
which stand for certain expressions in the same formal language. Suppose that
these expressions involve, in turn, descriptors which stand for some other
expressions, and so on, until the final expressions involve only initial
descriptors. In this case the constructive induction simply means that the
output descriptions are multi-level or recursive.

But this is not the only interesting case. Derived descriptors in
the output assertions may be any arbitrary, fixed (i.e., not learned) trénsfcr—
mations of the input descriptors, specified by a mathematical formula, a
computer program, or, even implemented in hardware (e.g., the hardware
implementation of fast Fourier transform). Their specification may require
language quite different from the accepted formal aescriptive language. To
determine these descriptors by learning, in the same fashion as the ocutput
descriptions, may be a formidable task. They can be determined, e.g., through
suggestions of possibly useful transformations provided by an expert, or as
a result of some generate-and-test search procedure. 1In our approach, the

derived descriptors are determined by constructive induction rules, which

represent segments of problem-oriented knowledge of experts.

2.3 Problem Specification and the Form of Inductive Assertions

The induction process starts with the problem specification and

ends with a set of alternative inductive asseriions. The protlem specirica-

tion consists of a) data rules, b) specification of the problem enviromment
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and ¢) the preference eriterion. We will briefly discuss each of these topics.

2.3.1 TForm of data rules and inductive assertions |
In program INDUCE 2, the data descriptions, Cij’ and inductive

assertions, Céj’ are c-formulas (or VLZl terms), defined as products of VL21

selectors, with zero or more quantifiers in front. For example, a C%j can

be:

Eﬂ(Z}Pl,P2 fcolor(P1l) = red,blue][weight(Fl) > weight (P2}]
[length{P2) = 3..8]{ontop(PL,P2)iA
[shape(P1l) + shape(P2) = box]

Paraphrasing the rule in English:

There are two (and only two) parts P1l, P2 such that color of Pl is red
or blue, weight of Pl is greater than of P2, length of P2 is between 3 and 8
inclusively, Pl is on top of P2, shape of P1l, and of P2 is 'box'.

For the description of the language see Michalski [21]. The concept

of numerical quantifierﬂa(k)Pl, P «sey 18 explained in sec. 3 (rule (vii)).

e
Since selectors can include internal disjunction and involve concepts of
different levels of generality (as defined by the generalization tree; ses
next section), the c-formulas are more general concepts than conjunctive
statements of predicates.

Other desirable forms of Cﬂj are:

® Assertions with the exception operator
(v, v ..)\Vr (3)

vhere 7, 7., T9s «++ are c~-formulas, and\v is the exception operator (see
Appendix 1).

The motivation for this form comes from the observation that a
description can be simpler in some cases, if it states an overgemneralized
rule and specifies the exceptions. We have introduced this concept in the
past (Michalski 74), but have not made much progress with it. Recently
Vere (1978) pronosed an algorithm for handling such assertions in the frame-
work of conventional conjunctive statements. He allows several levels of
exception, which we consider undesirable because of the postulate of com-
prehensibility.
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® Implicative assertions

(7, =+ Tz) (4)

1

Production rules used in knowledge-~based inference systems are
a special case of (4), when T is omitted and there is no internal disjunc-
tion. Among interesting inductive problems regarding this case are:

1. developing algorithms for exposing contradictions in a set of implicative
assertions

2. deriving simpler assertions from a set of assertions
3. generalizing assertions so that they may answer a wider class of questions
while being consistent.

Varjious aspects of the last problem within a less general frame-
work were studied, e.g., by Hedrick [34],

® (Case assertions
([f = Rl] 4-Tl) v {{f = RE] +1P2) Ve 533 (5}

where R.,R...are pairwise disjoint sets,

2

This form occurs when a description is split into individual casas character-
ized by different values of a certain descriptor.

3.2,2 Specification of the problem environment
The problem environment is defined by the specification of the
types of the descriptors, their values sets and their interrelationships.
® Types of descriptors
The process of generalizing a description depends on the type of
descriptors used in the description. The type of a descriptor depends on the
structure of the value set of the descriptor. We distinguish among three
different structures of a value set:
1. Unordered
Elements ¢f the domain are considered to be independent
entities, no structure is assumed to relate them. A
variable or function symbol with this domain is called

.naminal (e.g., variable 'blood type', or relation
contains (A, Bl, B2) (meanitig: A contains Bl and B2).

2. Linearly Ordered

The domain is a linearly ordered sat. A wvariable or
function symbol with this domain is calied Ilirear
(e.g., military rank, temperature, weight). Variables
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measured on ordinal, interval,ratic and absolute scales
are special cases of a linear desgriptor.

Tree QOrvdered

Elements of the domain are ordered into a tree structure,
called a gemeralization tree. A predecessor ncde in the
tree represents a concept which is more general than the

concepts represented by the dependent nodes (e.g., the
predecessor of nodes 'triangle, rectangle, pentagon,
etc.;' may be a 'polyzon'). A varisble or function
symbol with such a domain is ecalled structured.

Each descriptor (a variable or function symbol) is assigned its

type in the specification of the problem. 1In the case of structured descriptors,

the structure of the value set is defined by inference rules ( see descriptor

shape(Bi) in example in sec. 3).

® Relationships among descriptors

In addition to assigning a domain to each variable and function

symbol, one defines properties of variables and atomic functions characteristic

for the given problem. They are reprecented in the form of inference rules.

Here are a few examples of such properties.

1z

Restrictions on Variables

Suppose that we want to represent a restriction on the event
space saying that if a value of variable x. is 0 ('a person
does not smoke'), then the variable x_ is ~'not applicable’

{x3 ~ kind of cigarettes the person smokes). This is repre-
senited by a rule;

[x

1° 0] = [x3 = NA]

NA = not applicable
Relationships Between Atomic Functions

For example, suppose that for any situation in a given pro-
biem, the atemic function f(x., xz) is always greater than
the atomic function g(x], xz). We represent this:

T =V, %, (£, x,) > gz, x,)]
Properties of Predicate Functions

For example, suppose that a predicate function is transitive.
We represent this:
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T ::\/xl,xz,xs([left(xl,xz)][left(xz,x3)] > fleft(xl,xa)])

Other types of relationships characteristic for the problem
environment can be represented similarly.

The rationale behind the inclusion of the problem environment
description reflects our position that the guidance of the process of in-

duction by the knowledge pertinent to the problem is necessary for nontrivial

R e .-Lv

inductive.problems.'
2.3.3 The preference criterion
The preference criterion specifies the desired properties of the solu-
tion to the problem, i.e., the properties of hypotheses being sought. There are
many dimensions, independent and interdependent, on which the hypotheses can be

evaluated. The weight given to each dimension depends on the ultimate use of the

hypothesis (e.g., the number of operators in it, the quantity of informa-
tion required to encode-the hypothesis using operators from an a priori
defined set (Coulon and Kayser [33]), the scope of the hypothesis relating
the events predicted by the hypothesis to the events actually observed
(Some form of measure of degree of geﬁeralization), the cost of measuring
the descriptors in the hypothesis, etc. Therefore, instead of defining a
specific criterion, we specify only a general form of the criterion. The
form, called a 'lexicographic functional' consists of an ordered list of
criteria measuring hypothesis quality and a list of 'tolerances' for these
criteria {(Michalski [15]).

An Important and somewhat surprising property of such an approach
is that by properlf defining the preference criterion, the same computer
program can prcduce eitlier the characieristic or diseriming:t descriptions

of object classes.
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3. GENERALIZATION RULES

The transformation from data descriptions (eg. (1)) to inductive asser-
tions {eq. (2)) can be viewed (at least conceptually) as an application of certain
generalization rules to the data descriptions or intermediate descriptions.

A generalization rule is defined as a rule which transforms one
or more symbolic descriptions (data rules) in the same generalization class
into a new description (inductive assertion) of the same class which is
equivalent or more general than the set of initial descriptions.

A descripticn

Vi:>Kk (6)
is equivalent to a set of
{Vi :: > K}, i=1, 2, ... (7)

1f any event ( a description of an object or situation) which
satisfies at least one of the Vi, i=1, 2, ..., satisfies also

V, and conversely. If the converse is not required, the rule (&) is
sald to be more general thar (7).

The generalization rules are applied to data rules under the
condition of preserving consistency and completeness, and achieving opti-
mality according to the ﬁreference criterion. A basic property of a
generalization transformation is that the resulting rule has UNKNCWN
truth-status; being a hypothesis, its truth-status must be tested on new
data. Generalirzation rules do not guarantee that the inductive assertions
are useful or plausible.

We have formalized several generalization rules, both for non-—-

constructive and constructive induction. (The notation Dl ft D2 specifies
that D2 is more general than Dl).

Non-constructive rules:

(1) the extending reference rule
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VL =R,) :: >K k VI[L=2R8) ::>K

l] 2]
where L - is an atomic function
s : t,
RZQ;Rl, and Rl,R2 are subsets of the value se

D{L), of descriptor L.
¥ - an arbitrary description { a context formula )

This is a generally applicable rulaj the type of descriptor

L does not matter.
(1i) The dropping selector (or dropping condiiion) rule
V[L = R] ::}Kl( Vi > K
This rule is also.generally applicable. It is ome of the
most commonly used rules for generalizing informatiom.
It can be derived from rule (i), by assuming that R2 in
(1) is equal the value set D{L)}. In this case the selector
[L = R2] always has truth-status TRUE, and as such can be

removed.

(111) The elosing interwval rule

VIL = a) :: > K
VIL = a..b] :: > X
ViL. =b] :: > K

This rule is applicable only when L is a linear descriptor.

To illustrate rule (iii), conesider as objects two states of

a machine, and as a generalization class, a characterization
of the states as normail. The rule says that if the states
differ only in that the machine has two different temperatures,
say, ¢ and b, then the hypothesis is made that all states

in which the temperature is in the interval [g,P] are also
ROYINCLL «

(iv) The zlimbing generalizaticn tree rule

rV{L =al 11 > K
one or
more VIL

Tules < .

]
=
bangasd
v
Ce-

{ ylL =s] :: > K

LV[L#»;*.] 1 > K

wvhere L 1s a structured descriptor
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(vi)
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s - represents the lowest parent node whose
descendents include nodes a, b, ... and i,
in the generalization tree for L.
The rule is applicable only to selectors involving structured
descriptors. This rule has been used, e.g., in (Winston [17],
Hedrick [34], Lenat [35]).
Example:

Vishape(p) = triangle] :: > X

l( Vishape(p) = polygon]
Vishape(p) = rectangla] :: > K

The extension ugainst rule

Vi[L = Rl] 11 > X
[L #Ry] 2 >K
Vi[L = RZ] t: >X |
where leﬁ R2 = ¢
Vl and Vi —~ arbitrary descriptions.

This rule is generally applicable. It is used to take

into consideration 'megative examples', or, in general,

to maintain consistency. It is a basic rule for determining
discriminant class descriptions.

The 'turning constants into variables' rule

r

Vip(a,Y)] :: > K
one or

more Vip(b,¥)] :: > K
rules < .

(3:;, Vip(x,Y)] :: > K

54

| Vip(i,1)] :: > X
where Y stands for one cr more arguments of atomic

function p.
x is a variabie whose value set includes a, b, ..., i.

It can be proven that this rule is a special case of the
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extending reference rule (i). This is a rule of general
applicability. It is the basic rule used in works on in-

duction employing predicate calcuius.

(vii) ZExtending the quontification domain rule

In the simplest case, the rule changes the universal

quantifier into the existential quantifier:
Ve, viey k de, v

where V(P)} stands for a formula containing the quantified
variable P.

Using the concept of a numerical quantifier, the rule can
be defined in a more general way.

Let the expression
F(s)P, V(P)

stand for a statement, which is true, if the formula V(P) is
true for at least one number of occurrences of P, specified
in the set of integers 8. (S is called the quantification

domain). TFor example,

(2..8)P, V(P)

L

states that there are 2 to 8 P-s for which V(P) is true.
Thus, HP, V(P) is equivalent to 3(_-‘1 1)}p, V(P)
and
\/Eﬁ V(P) is equivalent to o (k)P, V(P), where k is the
cardinality of the value set of P,

The general form of the rule is:

23(51)?, vip) k EH(SZ)P. V(P)

C s..
where Sl _'S2
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If in a quantifier expression (k)P, ..., where k is an
integer, one wants to distinguish between different P-s,

then one writes (k) Pl’ P P

2’ LA R ) k, L I B ] ]

Constructive Rules:

Constructive generalization rules generalize descriptions by
involving new (derived) descriptors, which are functions of initial or other
derived descriptors. Thus, these rules evoke constructive induction
procedures, which generate new descriptors.

These rules may represent knowledge or heuristics which are of
general applicability (e.g., capturing semantical dependencies of natural
language), or applicable only in the specific problem domain. There is no
limit for such rules.

Here are a few examples of more general rules:

(c-1i) Counting rules:

® CQ rule (count quantified arguments)

P

1:P23*": k:

the rule generates descriptors '#P-COND', which measure "the number of

Given an expression with a quantifier form J(k) P

Pi*s satisfying certain condition COND (since there may be many
conditions formulated, the rule can potentially generate a large
number of such descriptors). If COND is not specified, the
descriptor simply counts quantified arguments.

For example, if the COND is 'the arguments Pi such that
[attributel(Pi) = R]', then the generated descriptor will be

'#Pi-attribute -R'. If the attribute, is, e.g., length, and R

1 1
is [2..4], then the derived descriptor is '#Pi—length-Z..ﬁ' (the

number of Pi—s, whose length 1is between 2 and 4, inclusively).
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® CA-rule {(count arguments)
If an initial descriptor is a relation with variable or fixed

number of arguments, REL(Pl,P ), the rule generates descriptors

gsves

'#P-COND' , which measure the number of arguments in REL which
satisfy condition COND.

Similarly to the above, there may be many such descriptors
generated (each with different COND).

For example, if relation is contains(A,B ee)y i.e., A

12590

contains objects B_,B , and COND is 'Bi—s which are large and

g3 er

red', then the derived descriptor '#B-large-red-A-contains' measures the

1

number of Bi-s which are large and red, and contained in A.
The generating chain properities rule
If the arguments of different occurrences of the same transitive
relation (e.g., relation 'above', 'left-of', 'next~to', 'in-front-of',
etc.) form a chain, i.e., form a consecutive sequence of objects
ordered by the relation, the rule generates descriptors relating to
some specific objects in the chain, such as:

LST-object - the 'least object', i.e., the object at the

beginning of the chain (e.g., the bottom

object in the case of relation 'above')

MST-object - the object at the end of the chain (e.g.,
the top object)

MiD-object -~ the objects in the middle of the chain

Nth-object — the object at the Nth position (from LST-object)
in the chain.

After identifying these objects, the rule investigates all known
properties of them (as specified in the data rules; for

determining potentially relevant new descriptors.



(c-iv)

22

The rule also generates a descriptor characterizing the chain

itself:

® REL-chain~length -~ the length of the chain defined by relation
REL. TFor example, if the relation is

ON-TOP, then the REL-chain-length would
specify the height of a stack of objects,

The deseriptor association detection rule:
Suppose that in an event, existentially quantified wvariables

Pl’PZ""Pm satisfy a condition CONIP..P ,...,Pm), and the values

1*" 92
of two descriptors x(Pi), and y(Pi) can be ordered into strictly

ascending sequeﬁces:
<x(Pi)> and <y(Pi)>

where i ¢ {1,2,...,m}.
If the order of Pi-s in both sequences is identical, then a

two-argument predicate descriptor is generated

+(X9Y)

which states that descriptors x and y are related by a monoctonically
growing function (if x grows then y grows), for P,-s satisfying
COND(PI,PE,...,Pm}.

If the order of Pi-s in the second sequence is opposite to the

order of Pi-s in the first sequence, then another descriptor is

generated:

v (x,y)

stating that 'if x grows then y decreases', for P ,-s satisfying

i
the COND(PI,PZ,...,RNJ.
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The above 'monotonic' definition of derived descriptor
+(x,y) (or +(x,y))can be generalized by not requiring that the
order of Pi-s in the corresponding sequences is identical
(or opposite), but 'sufficiently similar' (or ‘'sufficiently
dissimilar'), where similarity is measured by, e.g., the coefficient
of statistical correlation.
Concluding this subject, we will note that the concept of generalization
rules is very useful for understanding and classifying different methods of

inductive learning (Dietterich and Michalski [36]).

3. LEARNING FROM EXAMPLES
We will discuss here briefly the subject of learning from examples,
considering it from the viewpoint of developing methods for 'conceptual' data
analysis . Such methods are intended to discover conceptual (i.e., logical
functional, or causal) relationships in data, rather than statistical, which
are the subject of conventional methods of data analysis.
Fcr concreteness, let us consider a simple data analysis problem,
involving imaginary 'cells' (fig. 1). Suppose that cells DNB represent a
sample of cancerous cells, and cells DNE -- a sample of normal cells.
Suppose that a researcher wants to determine:
® 311 important common properties of cancerous cells, and of
normal cells (i.e., to determine characteristic descriptions
of each class)
® properties differentiating between the two classes of cells
(i.e., discriminant descriptions of each class).
An assumption is made that the properties to be discovered nay
involve both the quantitative information about the cells and their components,

as well as the qualitative information, which includes nominal variables and
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relationships existing among the components. Using this example we will
briefly describe the methodology underlying program INDUCE 2 (a successor
of the earlier program INDUCE 1.1 (Larson and Michalski [30], Larson [31],
Dietterich [32]).

The solution to the posed problem (or similar problems) can be
obtained by a successive repetition of a 'focus attention-hypothesize-test’
cycle.

The 'focus attention’ phése is concerned with defining the scope of
the problem under consideration. This includes selecting descriptors
appearing to be relevant, specifying underlying assumptions and formulating
the relevant problem knowledge. This phase is performed by a researcher; it
involves his/her technical knowledge and informal intuitions. The 'test'
rhase examines the hypotheses and tests them on new data. This phase may
require collecting new samples, performing laboratory experiments, and/cr
critically analyzing the hypotheses, involving knowledge inaccessible to any
currently feasible computer program.

It is the 'hypothesize' phase in which the program INDUCE 2 may
play a useful role, that of an assistant in conducting search for the most
plausible and/or most interesting hypotheses,

This search may be a formidable combinatorial task for a researcher,
if the size of the sample data is large, and each item of the data (in this
case, a cell) is described by many variables and/or relations.

The methodology underlying INDUCE 2 requires a collaboration between
a user and the program, in which each party does what it can do best, The
major steps are as follows:

1. The user formulates the initial space of descriptors, and

specifies the type, domain and any special properties of

each descriptor (e.g., the transitivity of a relation).
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In the case of the structured descriptors, the user also specifies

the structure of the domain.

are selected:

Suppose that for our simple example problem, the following descriptors

I Global (descriptors characterizing a whole cell)

® circe

® col

the number of segments in the circumference of the cell
Type: linear

Domain: {1..10}

the type of the physiological solution in the cell (marked
in fig. 1 by capital letters)

Type: nominal

Domain: {A,B,C,D}

II Local (descriptors characterizing cell bodies and their relationship

® shape (Bi) -

[shape

[ shape

the shape of body Bi

Type: structured

Leaves of the domain: {circle, ellipse, heptagon, triangle,
square, boat, spring}

Higher nodes are defined by rules:

[shape = circle, ellipse] = [shape = ovall

triangle, square, heptagon] = [shape = polygon]

oval, polygon] =* [shape = regular]

[shape = spring, boat] = [shape = irregular]

® texture (Bi) — the texture of Bi

Type: nominal

Domain: {blank, grid, solid-black, solid-grey, stripes,

cross, wavyl
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® yeight (Bi) -  the weight of body B,
Type: linear
Pomain: [1..5]
® orient (Bi) — the orientation of Bi
Type: linear - cyclic (the last element is followed by
the first)
Domain: {N, NE, E, SE, S5, SW, W, NW}

® contains (C,B.,B.,...) — C contains bodies B_,B

2, l 2,...

Type: nominal

1

Domain: {true,false}
Properties: transitive relation

® hastails (B,L.,L .) — B has tails Ll,L

2,-..
Descriptor applicable only if [shape(Ci) = boat]

l 2"'

Type: nominal
Domain: {true,false}

Note that descriptors 'contains' and 'hastails' are predicates with
variable number of arguments. Descriptor 'contains' is characterized as the
transitive relation. Descriptors 'hastails' and 'orient' are applicable only
under a certain condition.

2. The user formulates data rules, which describe cells in terms

of selected descriptors and specify the generalization class
associated with each cell. For example, following is a data

rule for the DNB cell 1:

~1)CELL, 3(6)31,5 .sB, [contains(CELL,,B, ,B

par .+ Bg)]

1281855
[circ(CELLl)=8][501(CELL1}=A][shape(B1}=ellipse]
{texture(Bl)=stripes][weight(Bl)=4][orient(Bl)=NW][contains(Bz,Bs)]

[shape{Bz)=circle][texture(32)=solid~grey]...
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[shape(36)=circle][texture(B6)=grid][weight(36)=5]
£ tclass=DNB]

3. The user indicates which general rules of constructive
induction are applicable, and also formulates any problem-
specific rules.

For example, the counting rule CQ (sec. 3) will generate,
among others, a descriptor:
® '#B-black-boat' - the number of bodies whose shape is 'boat'
and texture is 'solid-black' (i.e., using COND
[shape(B)=boat] [texture(B)=solid~black])
(For simplicity of notation, the name of this descriptor, as
well as other descriptors below, has been abbreviated, so it
does not follGW'strictly the naming convention described in
sec. 3.) The counting rule CA will generate such descriptors as:
® total-B -~ the total number of bodies in a cell (if condition COND is NULL)
® indep-B -~ the number of independent bodies in a cell (assuming COND
'bodies not contained in another body')
® f#contains-E - the number of bodies contained in another body B

¢ f#tails-boat-B - the number of tails in a body B, whose shape is 'boat'.

Program INDUCE 2 also allows a user to formulate arbitrary arithmetic

expressions, as suggestions of possibly relevant descriptors. For example,

the user may suggest a descriptor:®
weight (CELL) = £ weight(Bi),
| i

where B,, i = 1,2,

5 ... are quantified variables.

The program also has knowledge of certain conéepts, such as

even-odd number, area and perimter a triangle or rectangle.
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4. Tinally, the user specifies the type of description sought and
the criterion of preference. Fer this example, we will assume
that both characteristic and descriminant descriptions are
sought, and that the criterion of preference for characteristic
descriptions is 'to maximize the length of the output c—formula’,
and for discriminant descriptions--'to minimize the length of the

output c—-formula'.

For illustration, we will give here samples of characteristic and

discriminant descriptions obtained for the DNB ‘'cells' in fig. 1:

Characteristic descriptions of DNB cells:
o (1) B [weight(B)=5]
('in every cell there is one (and only one) body with weight 5')
e 3(2) Bl’BZ [contains (Bl,Bz)][shape(Bl)-shape(Bz)=circle];\
[texture(B1)=solid—grey][weight(Bl)=even]ﬁ;
'[texture(32)=solid-black][Weight(52)=odd]ﬁ.

[#contains-B, = 1] ( denotes the internal congunction)

=22 SSSETh
("in every cell there are two bodies of circle shape, one contained
in another, the outside circle is solid-grey, has 'even' weight,
the inside circle is solid-black and has ‘'odd' weight. The
outside circle contains only one body.')

® 33(1) B, [shape(B)=circle][texture(B)=grid]

[weight(B) > 3]

('every cell contains a circle with 'grid' texture, whose weight
is at least 3') (also discriminant)

® [circ=even]

('the number of segments in the circumference of every cell is even')

(also discriminant)
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® J(> 1) B [shape(B)=boat] [orient (B)=N,NE]
[#atlemboat (B)=1]
('every cell has at least one body of 'boat' shape, which has one
tail with N or NE orientation')
° 23(2) B [shape{B)=circle][texture(B}=éold-black]
alternatively
I clree-spdde-blackeal

{(each cell has exactly two bodies, which are circles and have solid

black texture) (also discriminant)

Diseriminant descriptions of DNB cells:
In addition to characteristic descriptions which are also discrimi-
nant as marked above), here are some discriminant descriptions:
® 33(1) B [texture(B)=grid][weight(B) > 3]
("every cell DNB, as opposed to DNC, has exactly cne body with
'grid' texture and weight greater or equal 3')
o :—](i 1) B [shape(B)=boat] [orient(B)=N,NE]
('....at least one 'boat' shape body with orientation N or NE')

{('...at least one body with number of tails 1')

® 3(1) B [shape(B)=circle] [#contains—B=1]

Y Sy S sy TF

g a circle containing a single object'

Note, that each description involves the minimum number of conditions
necessary to distinguish any DNB cell from any DNC cell. Underscored descriptors
are derived descriptors obtained through constructive induction.

The above example is too simple that really unexpected patterns can

be discovered. But it illustrates well the potential of a learning program
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as a tool for searching for patterns in complex data, especially when the
relevant properties may involve numerical and relational information at the
same time. The program therefore offers a new tool for data analysis.

How does the program work? Earlier implementations of the program
are described in (Larson [31], Michalskil[16], Dietterich [32]). The new version,
INDUCE 2, is under completion and will be described in a separate paper. An
outline of the main algorithm is given in Appendix 1. Here we will give a
summary of the main ideas, their limitations, and describe some problems for
future research.

The work of the program can be viewed essentially as the process
of applying generalization rules, inference rules {(describing
the problem enviromment) and constructive induction rules to

the data rules, in order to determine inductive assertions which are

consistent and complete. User selected preference criteria are used to select the

most preferable assertions as the fimal sclution.

The process of generating inductive assertiomns iz inherently
combinatorially evplosive, so the major question is how to guide this

process in order to detect quickly the most preferable assertions.

As described in Appendix 1, the first pari of the program

generates (by putting together step by step the 'most relevant'selectors)

a set of consistent o-formulas.

The relevancy test for the selectors is a function of the number
of data rules covered in the given generalization class, and, in the case of
discriminant descriptions, also rules covered in other generalization classes.
C-formulas are represented as labelled graphs, and testing them
for consistency (i.e., the null intersection with descriptions of objects

in generalization classes other than the class under consideration) or for
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the degree of coverage of the given class is done by testing for subgraph
isomorphism. By taking advantage of the labels on nodes and arcs, this
operation was greatly simplified. However, it is nevertheless quite time

and space consumming.,

In the second part, the program transforms the consistent c-
formuias into VL, events (i.e., sequences of values of certain many-valued
variables [Michalski 15], and further generalization is done using
AQVAL/1 generalization procedure (Michalski and Larson [37]).

During this process, the extension against, closing the interval and
celimbing generalization tree generalization rules are applied. The VLl
events are represented as binary strings, and most of the operations done
during this process are logical operations on binary strings. Consequantly,
this part of the algorithm is very fast and efficient. Thus, the

high efficiency of the program is due to the change of the data structures
representing the rules into more efficient form, once a relevant set of
selectors have been found (by determining consistent generalizations).

A disadvantage'of.this algorithm is that the extension of references
of selectors, achieved by the application of the extension against, the
closing interval and climbing generalization rules, is done after a (supposedly)
relevant set of selectors have been determined. It is possible, however,
that a selector from the initial data rules, or generated by constructive
generalization rules which did not pass the 'relevance test', could turn
out to be very relevant if its reference was appropriately generalized,

On the other hand, applying the above generalization rules to each selector
representaed as a graph structure (i.e., before the AQVAL procedure takes over)

could be computationally vary costly, This preblem will be aggravated when

the number of rule generating derived descriptors wiil be increasecd.
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We plan to seek solutions to this problem by designing & better descriptor
relevancy test, determining more adequate data structures for representing
selectors and testing intersections with descriptioms, and by applying problem
knowledge.

Another type of learming from examples 1is 'sequence prediction', i.e.
learning from the data which have a strict linear order. Such a problem occcurs
when given is a sequence of entities (e.g., letters, or, in more general case,
structured objects) and the problem is to discover a rule which might have
generated the sequence. The program here has to take into consideration the
order, and consequently new form of rules and.also derived descriptors can be

jnvolved. For more details we will refer the reader to Dietterich [23,40].

4. LEARNING FROM OBSERVATION

The major difference between problems of learning a characteristic
description from examples (type TA), and problems of learning from
observation (type II) is that in the later problem the input is usually an
arbitrary collection of entities, rather than a collection of examples
representing a single predetermined conceptual class; and that the goal is
to determine a partition of the collection into categories (in general, to
determine a structure within the collection), such that each category represents
2 certain concept.

Problems of this type have been intensively studied in the area of
cluster analysis and pattern recognition (as 'learning without teacher').
The methods which have been developed in these areas partition the entities
into clustersy,such that the entities within each cluster have a high

'degree of similarity', and entities of different clusters have a low

'degree of similarity’.
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The degree of similarity between two entities 1s typically a
function (usually a reciprocal of a distance function), which takes into
consideration only properties of these entities and not their relation to
other entities, or to some predefined concepts. Consequently, clusters
obtained this way rarely have any simple conceptual interpretation.

In this section we will briefly describe an approach to clustering
which we call conceptual clustering. In this approach, entities are assembled
into a single cluster, if together they represent some concept from a pre-
defined set of concepts.

For example, consider the set of points shown in Fig. 2.
* »

Fig. 2
A typical descriptinn of this set by a human is something like
'acircle on a straight line'. Thus, the points A and B, although closer
to each other than to any other points, will be put into different clusters,
because they are parts of different concepts.
Since the points in Fig. 2 do not fill up completely the circle
and the straight line, the obtained conceptual clusters represent generaliza-

tions of the initial data points. Consequently, conceptual clustering can

be viewed as a form of generalization of symbolic descriptions, similarly
to problems of learning from examples. The input rules are symbolic
descriptions of the entities in the collection (to interpret this problem

as a special case of the paradigm in sec. 2.1, consider the collection

@8 a single generalization class)}.
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If the concepts into which the collection is to be partitioned
are defined as C~formulas, then the generalization rules discussed before
would apply also here {within the restriction that the resulting formulas
cannot intersect). Similarly, constructive induction rules apply.

We will outline here an algorithm for such a clustering,

assuming that the concepts are simpler constructs than C-formulas, namely,
non-quantified C~formulas with wnary selectors, i.e., logical products of

such selectors. Unary selectors are relational statements:

[Ei # Ri}
where:
X is one of n predefined variables (i=1,2,...,n)
§ is one of the relational operators = # > > < <
'Ri is a subset of the value set of x,.

A selector-is satisfied by a value of % if this value is in
relation # with some value from R, - Such restricted C-formulas are called
VLl complexes or, briefly, complexes (Michalski [24 ]).

Individual entities are assumed to be described by events, which

are sequences of values of wvariables X

(al, Bys « v e an)

where a.e D(xi), and D(xi) is the value set of X; 5 i=1, 2, ..., n.
An event e is said to satisfy a complex, if values of X4 in e satisfy all
selectors.

Suppose E is a set of events, each of which satisfies a complex C.
If there exist events satisfying C which are not in E, then they are called
unobserved events. The number of unobserved events in a complex is called
the sparseness of the complex. We will consider the following problem.

Given is an event set E and an integer k. Determine k pairwise disjoint

complexes such that:
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1. they represent a partition of E into k subsets (a k-partition)

2. the total sﬁarseness of the complexes is minimum.
The theoretical basis and an algorithm for a solution of this problem
(in somewhat more general formulation, where the clustering criterion is
not limited to sparseness)is described in Michalski [ 24]. The algorithm
is interactive, and its general structure is based on the dynamic clustering
method (Diday and Simon [39 ]). Each step starts with k specially selected
data events, called seeds. The seeds are treated as representives of k
classes, and this way the problem is reduced to essentially a classification
problem (type 1b). The step ends with a determination of a set of k complexes
defining a partition of E. From such complex a new seed is selected,
and the obtained set of k seeds is the input to the next iteration. The
algorithm terminates with a k-partition of E, defined by k complexes, which
has the 'local' minimum of the total sparseness, or, in general, of the assumed
cost criterion. (The algorithm does not guarantee the global minimum.)

Figure 3 (on the next page) presents an example illustrating -

this process. The space of all events is defined by variables Xjs X535 Xq
and Xy with value sét sizes of - 2, 5, 4 and 2, respectively. The

space is represented as a diagram, where each cell represents a possible event.

Cells marked by 1 represent data events, the remaining cells represent unobserved

events. Figure 3a shows complexes oEtained in the first iteratiomn.
The remaining figures show results from the consecutive iterations. Cells
representing seed events in each iteration are marked by +.

The solution with the minimun sparseness is shown in Figure 3c.

The partition is specified by complexes:
o = [x1 = Ol[x2 = 1][::4 = {})

= [xl

a = 0] [xz = 2] [x3 = 1,.3]

= [x

WO N9 =0

1 - 1] [xz = 1"3]
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Fig. 3,
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This result was obtained by program CLUSTER/PAF implementing
the algorithm,

Another experiment with the program involved clustering 47 cases of
soybean diseases. These cases represented four different diseases, as
determined by plant pathologists (the prdgram was not, of course, given
this information). Each case was represented by an event of 35 many~-valued
variables. With k=4, the program partitioned all cases into four

categories. These four categories turned out to be precisely the

catepgories corresponding to individuazl diseases. The complexes defining

the categories involved known characteristic symptoms of the corresponding

diseases. This, and another experiment (involving conceptual clustering of 100

Spanish songs) is desceribed in more detail by Stepp [41].



5. SUMMARY

Inductive learning is described as a process of generalizing and
conceptually simplifying symbolic descriptions of given collections of
entities. It is shown that this process can be viewed as an application of
generalization rules and problem envivivnment rules to initial and intermediate
descriptions. Two types of inductive learning are distinguished: learning
from examples and leafning from observation. The most studied categories of
learning from examples include determination of characteristic and disecriminant
descriptions, and sequence predictionf Learning form observation ('conceptual
clustering') produces a taxonomic description of a collection of entities,
which reveals the conceptual structure underlying the cocllection.

The presented theoretical framework unifies the above types of
learning, and was used to develop two learning programs: INDUCE 2 ——-
for determining characteristic or discriminant structural descriptions, and
CLUSTER/PAF -—— for conceptual clustering of arbitrary collections of entities.
The described methodology is viewed as especlally promising for applications
such as automated 'conceptual' analysis of experimental data, searching for
patterns and abstracting the contents of databases, or aiding knowledge

acquisition processes in the development of knowledge-based systems.
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APPENDIX L

Outline of the Top Level Algorithm of INDUCE 2

1. At the first step, the data rules (whose condition parts are in the
disjunctive simple forms) are transformed to a new set of rules, in which
condition parts are in the form of c-expressions. A c~expression (a
eonjunctive expression) is a product of selectors accompanied by zero or
more quantifier forms, i.e., forms QFxlixz’..., where QF denotes a
quantifier. (Note, that due to the use of the internal disjunction and

quantifiers, a c-expression Tepresents a more general concept than a

conjunction of predicates.)

2. A decision class is selected, say Kﬁ, and all c-expressions associated

with this class are put into a set Fl, and all remaining c-expressions

are wut into a set FJ ( the set Fl represents events to be covered ,

and set F0 represents coenstraints, i.e., events not to be covered ).

3. By application of inference rules (describing the problem environment)
and. constructive generalization rules, new selectors are generated. The
'most promising' selectors (according to-a certain criterion) are added

to the c-expressions in F1 and FO.

4. A c-expression is selected from F1

» and a set of consistent generalizations

(a restricted star) of this expression is obtained. This is done by starting

with single selectors (called 'seeds'), selected from this c—expression

as the 'most promising' ones (according to the preference criterion). In each
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subsequent next step,a new selector is added to the c-expression obtained in
the previous step {initially the seeds), until a specified number (parameter
NCONSIST) of consistent generalizations is determined. Consistency is
achieved when a c-expression has NULL intersection with the set FO. This
'rule growing' process is illustrated in fig. Al..
5. The obtained c-expressions, and c-expressions in FO, are transformed
to two sets El1 and EO, respectively, of VLl events (i.e., sequences of
values of certain discrete variables).

A procedure for generalizing VLl descriptions is then applied
to obtain the 'best cover' (according to a user defined criterion) of set El
against EQ (the procedure is a version of AQVAL/l learning program [37].

During this process, the extension against, the closing
the interval and the climbing geweralization iree rules are applied.

The result is transformed to a new set of c-expressions

(2 restricted star) in which selectors have now appropriately peneralized

references,
6. The "best' c-expression is selected from the restricted star,
7. If the c-expression completely coversFl, then the process repeats for

another decision class. Otherwise, the set Pl is reduced to contain only the

uncovered c-expressions, and steps 4 to 7 are repeated.

The implementation of the inductive process in INDUCE-1.1 consists
of a large collection of specialized algorithms, each accomplishing certain

task . Amcnz the most important tasks are:

1. the implementation of the 'rule growing process’

2. testing whether one c-expression is a generalization of ('covers')
another c-e¢xpression. This is done by testing for subgraph isomorphism.

3. pgeneralization of a c-expression by extendinz the selector
references and forming irredundant c-expressions (includes application of AQll
AQVAL/1 procedure).

4. generation of new descriptors and new selectors
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© -~ adisgarded c-rule

® _ an active c-~rule

B .., terminal node denoting a consistent c-rule

Each arc represents an operation of adding a new selector to a c-rule

The branching factor is determined by parameter ALTER. The
number of active rules (which are maintained for the next step of the
rule growing process) is specified by parameter MAXSTAR. The number of
terminal nodes (consistent gencralizations) which program attempcs to
generate is specified by parameter NCONSIST.

Illustration of the rule growing process
(an application of the dropping szlector rule in the reverse order)

Fipure Al.



