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The conventional methods of cluster analysis partition given entities into clusters
of “‘similar’ entities, using a similarity function which takes into consideration
only the information about the entities themselves. Therefore, clusters obtained
this way do not usually have any simple conceptual interpretation. The paper
presents an approach to clustering (called conceptual clustering), in which entities
are assembled into a single cluster not because of their pairwise similarity, but
because together they represent a concept from a predefined set of concepts.
In the presented theory and algorithm PAF, the concepts characterizing
clusters are single conjunctive statements involving relations on variables which
describe the entities. Thus, the algorithm not only clusters entities, but also
provides descriptions of the obtained clusters. The algorithm is iterative and its
general structure is based on the dynamic clustering method. In one of the testing
examples, the implemented algorithm was able to re-discover the correct
classification of an unordered collection of cases of four different soybean
diseases.
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1. INTRODUCTION

Clustering is the intelligent partitioning of a collection of entities.
Specifically, it is the process of dividing entities (objects, observations,
measurements, data, etc.) into categories that are meaningful or useful for
some purpose. It is one of the fundamental operations people use to simplify
descriptions of their environment, and by that, to improve the efficiency of
their decision making. Appropriate clustering reveals the underlying struc-
ture of the given set of objects, and hence clustering can be viewed as a form
of knowledge acquisition.

Clustering problems pervade many fields, particularly experimental
sciences such as biology, chemistry, geology, and medicine. Intelligent
partitioning of objects can also be an important capability of autonomous or
semiautonomous robots designed for exploration of special environments
(e.g., the bottom of an ocean or the surface of a planet). Consequently,
understanding the nature of clustering is not only of scientific interest but
also of significant practical importance.

A conventional view of clustering is that it is a process of partitioning
objects into groups such that the degree of similarity (or ‘‘natural asso-
ciation”™) is high among objects of the same group, and low among the
objects of different groups. The notion of the degree of similarity between
objects is therefore fundamental to this viewpoint. A great variety of
different similarity measures have been developed and used in various
clustering techniques. Frequently a reciprocal of a distance measure is used
as a similarity function. The distance measure for such purposes, however,
does not have to satisfy all the postulates of a distance function (specifically,
the triangle inequality). A comprehensive review of various distance and
similarity measures is provided by Diday and Simon'” and Anderberg.”’
Becker™ describes a fuzzy similarity measure based on the theory of fuzzy
sets.

To determine the similarity of objects, a measure of similarity is applied
to symbolic descriptions of objects (data points). Such descriptions are
typically vectors, whose components represent scores on selected qualitative
or quantitative variables used to describe objects. The underlying assump-
tion is that if the similarity function has high value for the given descriptions,
then the objects represented by the descriptions are similar. The similarity
relationship between any two objects in the population to be clustered is
thus reduced to asingle number—the value of the similarity function applied
to symbolic descriptions of objects.

Conventional measures of distance are *‘context-free,” i.e., the distance
between any two data points A and B is a function of these points only, and
does not depend on the relationship of these points to other data points:

Similarity(A, B)=f(A, B) (1)
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For example, for any conventional distance measure, the distance
between points A and B in Fig. 1is the same as between B and C although A
and C have a different relationship to the remaining data points.

Recently some authors have been introducing ‘“‘context-sensitive™
measures of similarity:

Similarity(A, B) = f(A, B, E) (2)

where the similarity between A and B depends not only on A and B, but also
on the relationship of A and B to other data points, represented in (2) by E.

For example, Gowda and Krishna'¥’ defined the so-called “mutual
neighborhood” distance measure. If point A is the nth closest point to B and
B is the mth closest point to A, then the mutual neighborhood distance
between A and B is n + m. These authors have demonstrated that a method
using such a distance measure can solve some clustering problems which
methods based on the ‘“‘context-free” distance cannot.

Both previous clustering approaches cluster data points only on the
basis of knowledge of the individual data points. Therefore such methods
are fundamentally unable to capture the “Gestalt property” of objects, i.e.,
a property which is characteristic to certain configurations of points consi-
dered as a whole, and not as a collection of independent points. In order to
detect such properties, the system must know not only the data points, but
also certain *‘concepts.” To illustrate this point, let us consider a problem of
clustering data points in Fig. 2.

A person considering the problem in Fig. 2 would typically describe it as
““a circle on top of a rectangle.” Thus, the points A and B, although being
very close, are placed in separate clusters. Here, human solution involves
partitioning the data points into groups not on the basis of pairwise distance
between points, but on the basis of “‘concept membership.’” That means that
the points are placed in the same cluster if together they represent the same
concept. In our example, the concepts are a circle and a rectangle.

The approach to clustering which clusters objects into groups
representing a priori defined conceptual entities is called “‘conceptual clus-
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= . Fig.2. Clustering into concepts: a circle on top
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tering.”” A link between conceptual clustering and distance-based clustering
methods can be established by stating that in conceptual clustering the
similarity between the data points is a function of these points, context E,
and a set of predefined concepts C:

Similarity(A, B) =f(A, B, E, C) (3)

The approach has been introduced by Michalski.””’ It evolved from
earlier work by the author and his collaborators on the problem of generat-
ing *‘uniclass covers.” Such covers are disjunctive descriptions of a class of
objects learned from only positive examples of the class. Stepp'®’ describes a
computer program and various experimental results on determining uniclass
covers. His work is concerned with what can be called “free”” conceptual
clustering.

The idea that the similarity measures of the type (1) or (2) (the
“concept-free” measures) may be inadequate for some clustering problems
is not new. In the past, several authors noticed this problem it and proposed
various solutions. For example, Watanabe'® proposed the concept of
“cohesion” to measure the “‘degree of clusterness’ of points, which utilizes
the entropy measure. Using this concept he was able to resolve the “three
girls in the dormitory” paradox, which cannot be solved by “‘concept-free”
methods. Other measures of ‘‘cohesiveness’ of objects were proposed on
the basis of graph-theoretic considerations, e.g., by Matula,” Auguston and
Minker,""” Zahn,"" and Cheng."”

This paper presents a theoretical basis and an algorithm for conceptual
clustering, where conceptual entities are conjuctive statements in variable-
valued logic calculus VL; ¥ (which is a typed many valued logic extension
of propositional calculus). These statements, called VL, complexes, are
logical products of relational statements involving discrete variables of an
arbitrary number of values (Definitions 2 and 3 in Sec. 2). Complexes have a
simple linguistic interpretation and are able to express consisely a large class
of relationships among discrete variables. The algorithm combines the
methodology of optimization of variable-valued logic expressions**’ with
the dynamic clustering method.'"’ Its theoretical foundation is a special
property of complexes formulated as the Sufficiency Principle (Sec. 3).

2. COMPLEXES AS CONCEPTUAL ENTITIES FOR
CLUSTERING: BASIC DEFINITIONS

Let xi, X2,...,X%, denote discrete variables which are selected to
describe objects in the population to be clustered. For each variable a value

3[n “free” clustering the number of clusters is not predefined, as opposed to “‘constraint”
clustering where the number of clusters is assumed a priori.
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set or domain is defined, which contains all possible values this variable can
take for any object in the population. We shall assume that the value sets of
variables x;, i =1,2,. .., n, are finite, and therefore can be represented as

D;={0,1,...,d} po Lo (4)

In general, the value sets may differ not only with respect to their size, but
also with respect to the structure relating their elements {reflecting the scale
of measurement). In this paper we will restrict ourselves only to the case of
nominal or linear variables, i.e., variables with unordered or linearly
ordered domains, respectively. A sequence of values of variables xi,
X2, ..., X, is called an event:

€=(r19r2:-"-rn) (5}

where reD,i=1,2,...,n
The set of all possible events, E, is called the event space:

E={e}i-s (6)
whered=d,-dz--+ " d,, (the size of the event set) and d; =4 + 1.

Definition 1. Given two events e;, e; in E, the synractic distance
5(e,, e2) between e, and e, is defined as the number of variables which have
different values in &, and e;.

Definition 2. A relational expression
[x: # R;] (7)

where R;, called the reference set, is one or more elements from the domain
D, and # stands for one of the relational operators =, #, =,or =, iscalled
a VL, selector® or, briefly, a selector.

Here are a few examples of a selector, in which variables and their
values are represented by linguistic terms:

[height = tall]

[color =blue, red] (read: color is blue or red)

[length =2]

[size # medium]

[weight=2..5]

The operator . . in the last selector denotes the range of values from 2to
5, inclusively. It is used when the domain of the variable is a linearly ordered

amn

"VL, stands for variable-valued logic system one,''” which uses such selectors.
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set. A selector [x; # R, ]is said to be satisfied by anevente = (ri,r2, ..., Iu) if
r, i.e., the value of x; in e is in relation # with any element of R..

Definition 3. A logical product of selectors is called a VL, term:

A [x: # Ri] (8)
iel
where [ ={1,2,...,n}and R, = D.. Asetof events which satisfy a VL, term
is called a VL, complex or, briefly, a complex.

Thus a VL, term is a formal representation of a complex. Since these
two notions have a one-to-one correspondence, we will use them inter-
changeably, unless it leads to a confusion. Therefore, if a set-theoretic
notation is applied to a term, it means that the operation is applied to the
corresponding complex (i.e., a set of events satisfying the term). A complex
(VL. term) a is said to cover an event e, if the values of variables in e satisfy
the relational statements (selectors) in the complex (term).

For example, event e¢=(2,7,0,1,5,4,6) satisfies the complex
[Il = 2, 3]{,\:35 3][..1’.'5 =3, 8].

Let E be a set of events in E, which are data points to be clustered. The
events in E are called data events (or observed events) and events in E\E (i.e.,
events in E which are not data events) are called empty events (or unobserved
events).

Let a be a complex which covers some data events and some empty
events.

Definition 4. The number of empty events covered by a is called the
sparseness of a and is denoted by s(a).

Let p(a) denote the number of data events covered by «, and let tlex)
denote the total number of events covered by a. We have then t{a)=
p(a)+s(a). The total number of events satisfying the complex a =
Nierlxi # Ri]is

ta)=[] c(R) " [1 di (9)

iel el
where I ={1,2,..., n}, c(R;)is the cardinality of R;, and d, is the cardinality
of the value set of variable x;.

Definition 5. The degree of generality g(«) of complex « is defined as
follows:

(a) S{a))

o :
= —_—= 1 10
gla) Iogp(a} lug( +p(a} (10)
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The value t(a)/p(a) specifies how many events are in the complex per one
data event. Thus, the degree of generality g(a) expresses the uncertainty of
the location of the data points in the complex. The greater the degree of
generality of a complex, the greater is the uncertainty. If g = 0, then all the
events in the complex are data events. If y = 1, there are as many unobserved
events in the complex as there are data events. We can see from (10) that for
a fixed p(a), the degree of generality is a monotonic function of sparseness.

Let L be a set of complexes (or events), and R; be the set of all the
distinct values which variable x; takes in these complexes (or events).

Definition 6. The operation which transforms L into the complex
APy [x: = R;]is called reference union or refunion. The resulting complex is
called the minimal covering complex or mc-complex for L and denoted
RU (L) (refunion).

If any R; = D, then the corresponding selector is removed from the
complex. The refunion is thus a transformation which transforms a set of
complexes into the minimal covering complex.

Theorem 1. The mc-complex of an event set has the minimum
sparseness among all complexes covering this set.

Proof. Let a be the mc-complex for an event set E:
a=RU(E)= A [x;=Ri] (11)
i=1

where R, D; (the domain of x;). Suppose that y=A/.[x;,=F] is a
complex which covers E and has a smaller sparseness than a. If this is true,
then there must exist P; such that P, < R,. But R, according to Definition 6,
contains all values that x; takes in events in E. Therefore, if P, < R;, then
complex a could not possibly cover all events in E, which is a contradic-
tion. 1

Let E be data events which are covered by a complex a.

Definition 7. The set E is called the core of a, and the complex
a*= RUI(E) is called the trimmed a.

From Theorem 1 we have a*c a.

Theorem 2. If E; and E; are two disjoint event sets then
s(RU(E)+s(RU(E,))=s(RU(E\_LE3)) (12)

Proof. According to Theorem 1, RU(E,) and RU(E;) have the

smallest possible sparseness among all complexes covering E; and Ej,
respectively. Since E, and E, are disjoint, then (12) must hold. 1
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The property expressed by Theorem 2 has an analogy in statistical
clustering, where with the increasing number of clusters the “fit” between
each cluster and the probability distribution “fitted” to the cluster also
increases.

Theorem 3. Let a; and a, be two intersecting complexes, whose
union covers an event set E. Let E; (E) denote the set of events in a, (a2)
which are covered only by this complex (the relative core of the complex).
Let a} and a5 be any two disjoint complexes covering the same event setE.
If RU(E,) and RU(E,) are disjoint complexes, then:

s(RU(E}))+s(RU(Ey))=s(ai)+s(az) (13)

Proof. The theorem is an immediate consequence of Theorem 2 and
the premise that a; and a5 are disjoint complexes. 1§

We will next introduce two basic concepts for the conceptual clustering
algorithm presented in Sec. 6. They are the star of an event against an event
set and a cover of an event set against another event set.

Let F be a proper subset of the event space E, and e an event outside of
F,ie. e£F.

Definition 8. The star G(e|F) of e against F is the set of all maximal
under inclusion complexes covering the event e and not covering any event
in F. (A complex « is maximal under inclusion with respect to property P if
there does not exist a complex a* with property P such that « < a™.)

Let E, and E; be two disjoint event sets, E; N E; =@ .

Definition 9. A cover COV(E,|E,) of E, against E, is any set of
complexes, {a;};<s, such that for each event e € E; thereisa complex ay, j € J,
covering it, and none of the complexes a; cover any event in E. Thus we
have

ElEUCI,‘EE\\Ez (14)

iel

A cover in which all complexes are pairwise disjoint sets is called a
disjoint cover. If set E; is empty, then the cover COV(E 1|E3) = COV(E;|D)
is simply denoted as COV'(E,).

Definition 10. The sparseness (the degree of generality) of a cover is
defined as the sum of the sparsenesses (the degrees of generality) of
complexes in the cover.
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3. SUFFICIENCY OF COMPLEXES AS CLUSTER
REPRESENTATIONS

First, we will observe the following property of complexes:

Theorem 4. For any given event space Eand integerk =d, - d> - - - d.
(where d.: is the cardinality of the value set of variable x;), there exist k
pairwise disjoint complexes ai, az, ..., & which completely fill up the
space E, L.e,,

U a;=E (15)

Proof. The theorem is equivalent to saying that any event space can
be partitioned into an arbitrary number of complexes (but, of course, not
larger than the cardinality of E). To see this, take any subset of variables such
that the arithmetic product of corresponding d;'s is greater than or equal to
k:

k=k'=[]d, (16)
iel

Let R, j=1, 2,... denote all possible sequences of values of variables x,,

i € I. Construct complexes:
a;= A [xi=ry] (17)

iel

wherer;, iel,j=1,2,...,denotes a value of variable x; in the sequence R;.
Obviously, the complexes a; are pairwise disjoint and fill up the space E. If

k'> k, then k' — k complexes are joined with the remaining ones into single
complexes, according to the following formula:

Blxi=alvBlx,=bl=8[xi=a,b] (18)

where 8 denotes a conjunction of selectors involving variables other than x;.
This is always possible, because for any x;, i € I, there are d; complexes a;,
which differ only in the value of x;. §

From the viewpoint of clustering, a more interesting question is
whether for any given event set E in the space E, there always exists an
arbitrary number k = ¢(E) of pairwise disjoint complexes, such that they not
only fill up the space E, but also partition the set E into k nonempty subsets.
A positive answer to this question would imply that any given event set can
be partitioned into an a priori assumed number of subsets, each covered by a
simple complex, disjoint from other complexes. The answer is indeed
positive. In fact, even a stronger property holds, as stated by the following
theorem.
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Theorem 5 (The Sufficiency Principle). For an event space E and any
data event set E ={ey, €2, ..., ec}, E CE, there exists at least one set of k
pairwise disjoint complexes a1, a2, . . . , @k, such that each complex contains
one data event:

eea, Jj=1,2,...,k (19)

and the union of complexes fills up the space E:

lj a;=E (20)
i=1

Proof. The basic idea of the proof is to show that for any E =
{e1, €2, ..., e}, ESE, it is always possible to construct a tree, in which
nodes are assigned the variables x,, i€ 1,2, ..., n, branches of node x; are
assigned elements of a partition of D; (the value set of x;), and the leaves
represent complexes a;, such that each complex covers a single event ¢;, and
the union of complexes fills up the space E.

Suppose ¢, = (X1, X25, - - s Xnj)y J= 1, 2,. .., k, and x;; € D,

Take any variable, say x,, which has different values for events in E.
Suppose these values are a4, da, . . . , .. Partition the value set, D, of x,, into
subsets {ai}, {az},...,{a..1}, A. where a.,€A, and A, is a set
D,\{a:, @z, @s,...,a,—1}. It is obvious that complexes [x,=a.],
[x, = azl, ..., [x, = A.]partition both the event set E and the event space E
into z nonempty subsets. Suppose these complexes partition E into E,,,
Euy....Ea,and Einto Ey, E,,, ..., Ea,, where E, € E,,

Variable x, is as§igned to the root of a tree. Branches from the root are
assigned values a,, 4., . . ., A;. Leaves of this tree correspond to complexes
[x, = a1, [x,=az),...,[x, = A.]), covering event sets E.y, Eaz,..., Ea,
respectively (Fig. 3).

For every one of the above event sets which has more than one element
repeat the above process with the following modification. Suppose E,; has
more than one element and x, takes values by, b,, . .., B, for events in E,,.
Assign x, to the root of a new tree, and attach the tree to the leaf

y bg/ by 4 Fig.3. An illustration for the proof of

[ Xp=a, ILXr *By] Theorem 5.
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corresponding to E,, (i.e., to the leaf marked by [x, = a,] in Fig. 3). Assign

the branches emanating from this root values by, b3, ..., B,, where B, =
D, \{b., bs, ..., b,_1}. It is obvious that complexes
[xp = ai)[x. = bil, [x, = ai]lx, = ba], oo s [%p = a1]lx, = By]

partition both the set E,; and the set X, into y disjoint subsets.

This process is continued until leaves of the obtained tree correspond to
complexes, each covering only one event from E. Because every step of this
process partitions simultaneously events in E and in E, the union of the
obtained complexes covers E and fills up the whole space E. Thus, these
complexes constitute the desired set lay, a2, ...,0x} 1

The above theorem asserts that the space of all complexes is sufficient to
be a space of cluster representations, as it states that any event set can be
clustered into an arbitrary number of complexes. The theorem is used as the
theoretical basis for the clustering algorithm described in Sec. 6.

As the above proof indicates, there usually will be many covers which
constitute a k-partition of any given set. Therefore, a question arises as to
which cover to select as the most desirable. In order to answer this question,
a criterion of the quality of a cover is needed.

4. A CRITERION FOR EVALUATING QUALITY OF
CLUSTERING

Let E be the set of data points, and COV (E) a disjoint cover of E. Such
a cover implies a partition of E into clusters, each cluster being the event set
contained in one complex. The sparseness (or the degree of generality) of the
cover could be used for defining a criterion of quality of a partition.
However, if E is partitioned into individual events, then, obviously, the
sparseness (as well as the degree of generality) will be zero. Consequently,
this kind of criterion can be used only if the number of clusters is assumed a
priori, i.e., for a constrained clustering problem. In this case the problem is to
find a disjoint cover of E with k complexes, whose sparseness (or the degree
of generality) is minimum. In the case of a free clustering problem (i.e., when
the number of clusters is not assumed a priori), a criterion of quality of
partitioning has to involve, in addition to sparseness (or the degree of
generality), some “‘cost” function dependent on the number of clusters, e.g.,
a measure of complexity of a cover. In this paper we are concerned only with
the constraint clustering problem. Although it may seem otherwise, this is
not a serious limitation because interesting practical solutions of clustering
problems should not produce more than just a few clusters (this is 50,
because when the number of clusters is large, humans prefer to organize
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them into a hierarchy). Consequently, to obtain a general solution, a
constraint clustering algorithm should be repeated for several different k,
and the best obtained partition selected as the general solution.

The sparseness (or the degree of generality) may not be sufficient as the
sole criterion for selecting a cover. One may seek a cover which exhibits
other properties than minimum sparseness. In order to use several criteria
for selecting a cover simultaneously, we adopt the lexicographic cost
functional defined in Ref. 14.

A lexicographic evaluation functional (LEF) is defined as a pair of two
lists:

A ={a-list, r-list)

where a-list=(aq, as, ..., a;) is a list of attributes to be used to evaluate a
cover; and r-list=(ry, 72,..., 7)) is a list of “‘tolerances’ assigned to the
attributes a;, respectively, 0=7,=1.

Let V,j=1, 2, ...denote all possible disjoint covers of the event set E.
Let V denote one of the covers, and let a;( V;) denote the value of attribute a;
for cover V;. Cover V is said to be optimal (minimal) under functional A if
for every

A(V) <A(V) (21)
where
_ A(V)=(aV),axV),...,a(V))
A(V))=(a,(V}), az(V;), ..., ai(V})), i=12,...

and < is a relation, called the lexicographic order with tolerances,
which holds if

a(Vi)—a(V)=>Y,
or |a(V)—ar(V)|=Y: and as(V))—ax(V)>Y,
5
(22)
OF ..« and a)(V;)—ai(V)=0
where
YiZTI'(ﬂIMIx“ajmin}a f=1121*--1f_1
Timax = maxj'{ai(p'j}}

Aimin = min,—{a,-( ]Vi)}
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Note that if r=(0,0,...,0) then < denotes the lexicographic order in
the usual sense. In this case, A can be specified just as A = (a-list).

To specify a functional A one selects a set of attributes, puts them in
the desirable order in the a-list, and sets the values for tolerances in the
7-list.

Relation < partitions all covers into equivalence classes and orders the
classes linearly, with the first class containing one or more optimal covers,
and the next classes containing consecutively less optimal covers.

Below are a few criteria which may be used to assemble an a-list:

o Sparseness (or generality g) of a cover. Minimizing sparseness will
produce complexes which “fit"” as closely as possible to clusters of data
events. This criterion is an analogue to the criterion of minimizing intradis-
tances in the conventional distance-based clustering.

o Intersection, defined as the average degree of intersection (DI)
between any two complexes in the cover. The DI between two complexes is
the total number of selectors which remain in both complexes after removal
of every pair of disjoint selectors (selectors whose reference sets do not
intersect). For example, the degree of intersection between complexes

[x2=2,3)x4=3,5,Txs=2..5]
and
[Il = 3][12 = 1]{14 =5..12]xs= 1]

is 3. (£ links disjoint selectors.)

The introduction of DI as a criterion for clustering comes from the
observation that people tend to prefer partitions of objects in which clusters
differ not in just one, but in many characteristics. This criterion is an
analogue to the criterion of maximizing cluster interdistances in distance-
based clustering.

o Imbalance, defined as
k

1/k ¥ |1/k - ¢(E)~c(E na) (23)
i=1

where c(E) is the size of the event set, and ¢ (E na;) is the number of data
events covered by complex a; (the cardinality of the core of a;). The
imbalance measures the variability of cluster sizes.

« Dimensionality, defined as the total number of different variables
involved in the complexes of the cover. The dimensionality tells us how
many variables are used to describe clusters, and, thus, how many variables
have to be measured to classify objects into these clusters.
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5. PROCEDURES STAR AND NID

Before describing an algorithm for conceptual clustering (Sec. 6) we
shall describe two important procedures used in this algorithm: STAR and
NID. Procedure STAR generates the star (Definition 8) of a data event
against a set of other data events, and procedure NID transforms a
nondisjoint cover, whenever possible, into a disjoint cover with the same
number of complexes.

5.1. Procedure STAR

This procedure is based on the algorithm described in Ref. 14.
Let e, be an event and @ a complex. The operation ey a (read: eo
extended in «) is defined as follows:

o, if ege
= = 24
el { &, otherwise G
Let event ey =(ry, r2, . . ., ») and e, # eo. The operation e; — e, (read:
eo extended against ;) is defined as follows:
eo— e =[(eot [x;#r:)) (25)

iel

Lei G“(e|E) denote the union of complexes from the star G(e |E). It
can be shown that

G“(e|E)=[1 (e ¢e) (26)
gieE
To obtain the star G(e|E) from G"(e| E), the right-hand side of (26) must
be converted to the union of maximal (under inclusion) complexes. Such a
union is obtained when the set-theoretical multiplication is done with the
application of absorption laws.

5.2. Procedure NID

This is transformation of a non-disjoint cover into a disjoint cover.)
Let{a1, a2, ..., &} be aset of not necessarily disjoint complexes, which
is a cover of a data event set F.

1. Let ¢(ay), i=1,2,...,1, denote the cardinality of a; (the total
number of events covered). Determine the (arithmetic) sum of
cardinalities:

{
sc =Y cla;) (27)

i=1
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and the cardinality of the (set-theoretic) sum of complexes:

cs= C( LEJ ct,) (28)

i=1

1 sc = cs then STOP: L is already a disjoint cover.

. Fori=1,2,...,1l determine the relative core, CORE,, of complex
a,, i.e., the set containing data events covered by complex a; and
only by this complex. Let RESIDUE denote the set of remaining
events, i.e., RESIDUE = F \|_Ji-, CORE.

4. For each CORE; determine its mc-complex (Definition 6):

i b2

a’ = RU(CORE,), - P (A

5. If any two complexes a! intersect, then STOP. The disjoint cover
cannot be obtained. (This is a direct consequence of Theorem 1.)
6. Select an event from RESIDUE and call it e. Delete e from
RESIDUE.
7. For each pair (e, rx?), i=1,2,...,1, determine the covering
complex:
al = RU({e}ua?)
1

8. Delete every a; which intersects with any a?, j#i If all ; are
deleted then STOP: a disjoint cover cannot be obtained.

9. Select the best complex, Best-a, among remaining & ;, according to
the LEF:

{(Aspars, —res, —Asel)(7y, T2, T3))
where
Aspars = the difference between the sparseness of a; and al,
res = the number of events in RESIDUE covered by a iy

Asel = the difference between the number of selectors in a
and &/,

Ty, T2, T3 = tolerances set (0 0 by default.
The sign ““— " in front of res and Asel indicates that the algorithm will
maximize these criteria (by minimizing the negative value).
10. Suppose Best-a was created by joining e with a?. Assume that a}
denotes now Best-a.

11. If RESIDUE = &, then END, otherwise go to 6.
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The output from this procedure is either a disjoint cover
{af, al. ..., a;}ofset F,or anindication that such cover cannot be obtained
from the initial cover {a,, aa, . .., a}-

6. AN ALGORITHM FOR CONJUNCTIVE CONCEPTUAL
CLUSTERING

6.1. An Overview

Based on the ideas described in previous sections, we have developed
an algorithm for conjunctive conceptual clustering, called PAF.® Given a
set, E, of events from an arbitrary event space, and an integer k, PAF
partitions E into k clusters, each of which has a conj unctive description in
the form of a VL, complex. The obtained partition is optimal or suboptimal
with regard to a lexicographic evaluation function, assembled by a user from
the criteria listed in Sec. 5.

The general structure of the algorithm is based on the multicriteria
dynamic clustering method developed by Diday and his collaborators (see
the work of Diday and Simon'"’ and Hanani''*’). Underlying notions of the
dynamic clustering method are two functions:

« g—the representation function, which, given k clusters of a partition
of E (a k-partition) produces a set of k cluster representations,
called kernels. There may be different kinds of kernels, e.g., the
center of gravity of a cluster, a few selected points from a cluster,
a probability distribution best fitting the cluster, a linear manifold
of minimal inertia, or a VL, complex.

o f—the allocation function, which, given a set of kernels, partitions E
into k clusters, “best fitting”’ these kernels.

The method works iteratively, starting with a set of k initial, randomly
chosen kernels (of a given kind). A single iteration consists of an application
of function f to given kernels, and then of function g to the obtained
partition. An iteration ends with a new set of kernels. The process continues
until the chosen criterion of quality of a partition, W, ceases to improve.
(Criterion W measures the “fit” between a partition and kernels.) It has
been proven'” that this method always converges to a local optimum.,

The measure W can be a single criterion or a sequence of criteria. In the
multicriteria case, for each criterion an appropriate type of kernels is used
(see Hanani''™).

The algorithm PAF applies a multicriteria dynamic clustering method,
in which the basic and final cluster representation is a VL, complex.

% Polish-American-French.
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Intermediate representation include the geometrical center of a cluster
(using the syntactic distance; Definition 1) and the “most outstanding’ event
(most distant from the center) in a cluster.

The use of the latter representation is an application of an ‘“‘adversity
principle.” This principle states that if the most outstanding event truly
belongs to the given cluster, then if it serves as the cluster representation,
then the ““fit"’ between it and other events in the same cluster should still be
better than the “fit"’ between it and events of any other cluster.

The algorithm PAF does not use any conventional distance function (or
other measure of ““fit"’) between a data event and a kernel (in this case a VL,
ccomplex). An event either belongs to a complex or does not belong. A
complex is a form, which can describe a very large number of configurations
of events. For n variables, each taking d distinct values, there are N =
(2¢—1)" different complexes. For example, if n =10 and d =7, then N =
10%°. Such a large size of the “concept space’” makes conjunctive clustering
computationally an extremely complex problem. To obtain a feasible prac-
tical solution, it is necessary to apply a combination of carefully designed
heuristic search methods. In PAF, one of the methods used is a well-known
“best first” search technique developed in artificial intelligence."®

6.2. Description of PAF
A flow diagram of algorithm PAF is shown in Figure 4.

1. Inthe first step (block 1), a set of k data events E;={ey, €2, .. ., el
called seeds, is selected from the event set E. Seeds can be selected
arbitrarily, or they can be chosen as events which are most distant
syntactically (Definition 1) from each other. In the latter case the
algorithm will generally converge faster. For selecting such events
program ESEL"” can be used.

7. For each seed e, i=1,2,...,k, a star is generated against the
remaining seeds (using procedure STAR described in Sec. 5):

G = G(EIHEUHEE}”: f=1,2:is5 k

3. From each star a complex is selected, such that the resulting set of k
complexes:

a. Is a disjoint cover of E.

b. Is an optimal or suboptimal cover among all possible such covers,
according to an assumed criterion LEF (constructed by a user
from criteria listed in Sec. 4: sparseness or generality, inter-
section, imbalance, and dimensionality). This is the most difficult
and computationally costly step of the algorithm. It can be
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Given:

E - a set of data events
k - the desired nr of clusters
A - the evaluacion functional(LEF)

1/

Chooee k "seed” events from E

-

\z/
Using procedure STAR determine the star
of each seed against the remaining seeds.
Select from each star one complex, S50
that the obtained collection, P, of k
complexes will be the "best" disjoint
cover of E (with help of NID procedure).

N
Iz the termination Yes @
criterion applied

to P satisfied?

Is iteration

odd or even
]

\s/ &/
Choose K new seed Choose k new seed
events which are events which are
central in the extreme in the
complexes in P complexes in P

l I
|

Fig.4. A flow diagram of algorithm PAF.

performed in a number of different ways. We will distinguish
between three different procedures: P (parallel), PS (parallel-
sequential), and S (sequential). These procedures are described

in Sec. 7.
4. A termination criterion of the algorithm is applied to the obtained
cover. The termination criterion is a pair of parameters (b, p), where
b (the base) is a standard number of iterations the algorithm always
performs, and p (the probe) is the number of iterations beyond b
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which the algorithm performs after each iteration which produces an
improved cover.

5. A new set of seeds is determined. If the iteration is odd, then the new
seeds are data events in the centers of complexes in the cover
(according to the syntactic distance). If the iteration is even, then the
new seeds are data events maximally distant from the centers
(according to the “‘adversity principle™).

7. PROCEDURES P, SP, AND §

All three procedures use bounded stars, that is, stars whose size is
limited by special parameter MAXSTAR. The reason is that the size of stars
may be very large when the number of variables n is high. As can be seen
from procedure STAR, the upper bound on the number of complexes in a
star grows exponentially with k (the number of clusters); namely n ¥ The size
of any star is controlled by not allowing it to have more than MAXSTAR
complexes. Whenever a star exceeds this number, complexes are ordered in
the order of ascending sparseness, and only first MAXSTAR complexes are
retained. It is also assumed that all complexes in stars are trimmed (i.e., the
refunion operation is applied to the core of each complex, and then the
resulting mc-complex is used to replace the original complex in the star; see
Definition 7).

To simplify the description of procedures we will assume that the
criterion of clustering optimality is minimizing the sparseness of the disjoint
cover (representing a partition). The procedures can be extended for a
multicriteria case by using a criterion LEF (which imposes a linear order
between equivalence classes of sets of complexes). In such a multicriteria
case, however, sparseness should be used as the primary criterion in order to
retain the properties of the described procedures.

7.1. Procedure P

The procedure is applicable for relatively small MAXSTAR and k. Itis
particularly useful for executuion on a parallel processor. Lei star G; =
Glel(Eo\{e:})) be a set {ao, ai,... yagl, i=1,2,...,k Assume that
complexes cr:-, j=0,1,...,g,are ordered in ascending order on sparseness.
The position of a complex in the star so ordered (indicated by a subscript,
which counts from 0) is called the rank of the complex (thus, e.g., complex
a5 has rank 2).
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Taking one symbol | from each star G;, i=1,2,...,k, at a time,
generate all possible sequences:

1 2 k
Pg=(ﬂ'0,ﬂ'01.q.,ﬂfu]

1 2 k-1 k
P1=(ﬂ:ﬂ1aﬂ!-r-saﬂ ;al]

(29)

1 2 K
P, =lao, ap,...,ag)

3 ok K
Pr={og, 0gsoees g}

where = (g, +1)(g2+1) - - - (g +1).

The sum of the ranks of complexes in any such sequence is called the
pathrank. It is assumed that sequences P;, j=1,2,...,T, are generated in
the ascending order on their pathrank. Thus, P, has the pathrank 0 (because
all complexes in P, have rank 0); P;, P, . .., Py have pathrank 1; and Py
has pathrank g, +gz+ -+ +gs The order of sequences with the same
pathrank is irrelevant.

Considering sequences P; in the ascending order on their pathrank, the
following operations are performed on each sequence:

1. A P, is tested whether it is a cover of E. This can be done by
consecutively removing from E data events covered by each
complex in P;. If at the end E becomes the empty set, P, is a cover. If
a P; is not a cover, it is removed from further consideration.

2. A P, is tested whether it is a disjoint cover. If it is, its sparseness is
calculated. If it is not, a lower bound (1.b.) on the sparseness of a
possible disjoint cover is calculated (without actually determining
the disjoint cover). The Lb. is computed by determining the relative
core of each complex (i.e., data events covered only by the given
complex and not by any other complexes), and then computing the
sparseness of the mc-complex of the core. The Lb. is the sum of so
obtained sparsenesses (this computation is based on Theorem 3).
{The purpose of using the Lb. is to avoid, whenever possible, the
computationally costly procedure NID.}

3. If the computed sparseness (or 1.b.) is not a new minimum (i.e., is not
smaller than the sparseness of the best cover obtained so far), then
the cover is removed from further consideration. Otherwise, if itis a
disjoint cover, it is retained as the best cover; and if it is a nondisjoint
cover, it is transformed by NID, if possible, into a disjoint cover
(note that some operations of the NID procedure were already done
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in step 2). If the sparseness of the obtained disjoint cover still
represents a new minimum, the cover is retained as the best so far. If
the sparseness is not a new minimum, or NID fails to produce a
disjoint cover, the cover is removed from further consideration.

The disjoint cover retained at the end of the above search process
through sequences P; is the output of the procedure. It is a minimum
sparseness cover which can be assembled from complexes in the given stars.
The existence of at least one disjoint cover is assured by the sufficiency
principle.® An advantage of the above-described ordering of sequences P
is that the best cover will most likely be close to the beginning of the list.
Therefore, if the number of sequences is very large, the search can stop
before reaching the end, with a low risk of losing the optimal solution.

7.2. Procedure PS

In procedure P, all sequences P; were generated first, and then linearly
searched in order to determine the best cover. In this procedure, the search
for the best cover is done during the process of generating the sequences,
using the “best first” search strategy (see Winston"®). Specifically, the
search is based on the algorithm A* (see Nilsso n''®"). Ateach step a complex
is added to the partial cover (a partial sequence after application of NID)
which most likely leads the optimal cover (according to an evaluation
function). This process avoids testing (usually many) sequences P, for which
it is possible to predict that they will not produce an optimal cover. The
procedure PS is especially applicable when stars G; are large.

Figure 5 illustrates the search process. Branches of the tree at level i
represent complexes in star G;. A path from the root to a node at level i
represents a partial disjoint cover with / complexes. When i =k, the path
represents a complete disjoint cover (corresponding to some sequence P; to
which NID was applied).

In the first step, sequence Po= (a1, a3, ..., ay) is generated. (It is the
sequence of complexes of the smallest sparseness.) The relative core of each
complex is determined and then the mc-complex is constructed for each
core. Let sy,53,...,5 denote the sparsenesses of the obtained mc-
complexes. On the basis of Theorem 3, the sum s, + s+ - - + 5, specifies a
lower bound on the sparseness of the best disjoint cover which can be built -
from complexes of given stars.

In the next step, node (D (Fig. 5) is expanded, i.e., al is paired with
every complex in G, procedure NID is applied to each pair, and then the
sparseness is calculated for the obtained disjoint pair. If NID fails, the path is
abandoned. The obtained pair is a partial cover with i = 2 complexes. Nodes

®Assuming sufficiently large MAXSTAR.
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Fig. 5. A search tree illustrating procedure PS.

corresponding to generated partial covers (including the remaining
complexes in (G;) are assigned a value of the evaluation function:

f=h+g (30)

where h is the sparseness of the obtained partial disjoint cover, and g is the
SUM §;41 + S;a2+ * * + + 8, where [ is the number of complexes in the partial
cover. {g represents a L.b. on the sparseness of the remaining complexes to be
determined, i.e., complexes that are needed to complete the cover under
construction.}

According to the best first strategy, the node to be expanded at each
step is the one which is associated with the lowest value of the evaluation
function. It has been proved that such strategy will produce the optimal
cover.""® The order of expanding nodes in the tree in Fig. 5 is shown by
numbers in circles. The value of the evaluation function associated with each
node is given in parentheses.
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7.3. Procedure S

This procedure is like procedure PS, with the exception that stars are
not generated beforehand. When expanding a node in the search tree, rather
than taking complexes from already determined stars, an appropriate star is
generated each time. This requires a multiple repetition of the star genera-
tion process, but saves on the memory for storing all stars (which may be
large sets).

8. A NOTE ON IMPLEMENTATION AND AN EXAMPLE

The algorithm has been implemented by R. Stepp in pAascaL for Cyber
1975. The details on the implementation are in Ref. 19. For illustration, we
will present here a simple example, representing one of the testing experi-
ments with the program.

Figure 6(a) represents a diagrammatic representation” of an event
space, spanned over variables x;, x2, x3, x4, with domain sizes 2,5 4,2
respectively. Each cell represents one event. Cells marked by 1 represent
data events; remaining cells represent empty events. Figure 6(a) also shows a
cover obtained from the first iteration of the algorithm. The remaining
figures show results from the consecutive iterations. Cells representing seed
events in each iteration are marked by +. The partition evaluation criterion
was a LEF:

((sparseness, imbalance, dimensionality) (0, 0, 0))

According to this criterion, the best partition is the one shown in Fig. 6(c).
The partition is specified by complexes:

al =[x1=0][x2=1][xs=0]
Cfg =[x, =0][x2=2][x3=1..3]
ad =[x;=1][x2=1..3]

Another experiment with the program involved clustering 47 cases of
soybean diseases. These cases represented four different diseases, as
determined by plant pathologists (the program was not, of course, given this
information). A single case was specified by an event of 35 many valued
variables. With k = 4, the program partitioned all cases into four categories.
These four categories turned out to be precisely the categories correspond-
ing to individual diseases. The complexes defining the categories involved
known characteristic symptoms of the corresponding diseases.

Thus, the program not only correctly partitioned the events, but also
found a description of each cluster, compatible with the corresponding
human description.
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9. CONCLUSION

Michalski

This paper described a theoretical foundation and an algorithm for

conceptual clustering, in which entities are assembled into classes described
by conjunctive concepts (VL, complexes). Thus, the presented approach
produces not only clusters but also their descriptions (unlike any con-
ventional clustering method). The descriptions are conjunctions of relations
on variables characterizing the entities, and thus have a simple conceptual

interpretation.
The presented algorithm nas been implemented and tested on various

examples. The results indicate that the method provides a radically new
alternative to the conventional clustering methods, and has a potential for
novel solutions of a variety of clustering problems.
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