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Current methods of machine acquisition of knowledge rely entirely on hand-
crafted encoding of the knowledge of human experts. Such a process is very time
and effort consuming, and therefore alternative methods are needed. This paper
contrasts the method of knowledge acquisition by encoding decision rules of
human experts with that of learning the rules (by means of an inductive program)
from examples of decisions made by these experts. Both types of rules—the
expert derived and the inductively derived—are expressed as special cases of
general variable-valued logic rules (GVL, rules), which are an extension of the
conventional condition—action rules. The problem is considered in the context of
developing a knowledge base for an expert system PLANT for the diagnosis of
crop diseases. The experiments (which involved testing both types of rules an
several hundred cases of soybean diseases) have demonstrated the usefulness and
practicality of the inductive method of knowledge acquisition for the limited
problem under consideration. They also indicated how the method could be
further improved.
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inductive inference; expert systems; decision rules; pattern-directed inference;
soybean disease diagnosis; agricultural consultation.

1. INTRODUCTION

It is a growing conviction that this decade will witness a rapid development
of knowledge-based expert systems in many different fields. Two
prerequisites—the strong social need for such systems and the technical
feasibility—both exist now. In the area of medicine alone, the amount of
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diagnostic, therapeutic, and general knowledge is already so vast, and
growing so rapidly, that no single physician can encompass it. Similar
situations exist in many other areas. Expert systems can help significantly:
they can provide an interactively accessible source of updated and well-
organized knowledge on specific subjects, and can conduct a certain amount
of inference to help a user with decision making.

In medical diagnosis, for example, an expert system can indicate the
most likely problem for investigation, bring attention, when appropriate, to
nontypical cases which are easy to overlook, alert a physician about the
possibility of drug interaction, provide analysis of possible outcomes, and
serve as an always ready source of expertise. Several experimental systems
have already been developed in medicine. Among the most well-known
are MYCIN for antimicrobial therapy advice (Shortliffe,”” Davis,®’
INTERNIST for diagnosis in internal medicine (Myers and Pople''®), and
CASNET for glaucomas (Weiss er al.,'”""). Several other expert systems for
medical and other applications are summarized by Feigenbaum.” Among
them, earlier and most developed, is DENDRAL for determining molecular
structures of complex organic chemicals from mass spectrograms and
related data (Buchanan and Feigenbaum'™'). In geology a system PROS-
PECTOR was develol:ed to provide consultation about potential mineral
deposits (Duda et al.,'""). Current aspects of research on expert systems are
discussed in (Michie"'”").

An expert consulting system consists of a knowledge base and an
inference mechanism, which matches the data provided by the users with
rules in the knowledge base in order to compute conclusions. A knowledge
base is a symbolic representation of factual and, as well, judgmental
knowledge in the subject domain. In each of the above-mentioned consul-
tation systems, the knowledge base was established by handcrafted encoding
of the knowledge of human experts. Such encoding can be a very time
consuming task, requiring close collaboration between experts of the subject
domain and computer scientists trained as “knowledge engineers.” This task
can be simplified somewhat by special computer programs that f acilitate the
development, modification, and maintenance of the knowledge base
(Davis,'*’ Baskin and Levy'").

An attractive improvement of the process of constructing a knowledge
base would be to use, whenever possible, an inductive program able to learn
or refine decision rules on the basis of examples of expert decisions. It is
generally much easier to collect and codify such examples than to formulate
reliable and complete expert rules. The research on computer inductive
inference is still at an early stage of development; however, it is already
possible to obtain practical results, if the problem is sufficiently well defined
and specialized. The papers by Buchanan and Feigcnbaum,m Mitchell"”
and Dietterich and Michalski‘®' describe some more recent work in this area.
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This paper presents results from the application of an inductive pro-
gram to the problem of learning the decision rules for the diagnosis of
soybean diseases from examples. The rules produced are then compared
with the decision rules obtained by directly representing the decision rules
communicated by experts in plant pathology. In order to be able to relate
both types of rules {inductively derived and expert derived) to each other
and to use the same inference mechanism when applying them for diagnosis,
a general format for representing decision rules was developed. This general
format, the general variable-valued logic rule (GVL, rule), comprises either
type of rule as a special case, and is an extension of the conventional format
of condition-action rules.

2. THE FORMALISM USED FOR KNOWLEDGE
REPRESENTATION

A formalism for knowledge representation should be not only equipped
with adequate operators and data structures for representing many different
aspects of human knowledge, but also well suited for implementing
inference processes on this knowledge.

One of the most common methods for representing knowledge is to use
condition-action rules or productions {(e.g., Davis, Buchanan, and
Shortliffe””’). The condition part of such rules is typically a logical product of
several conditions, and the action part describes a decision, an action, or an
assignment of values to variables that is to be performed when a situation
satisfies the condition part. A rule can have an associated “strength of
implication”—a parameter indicating the degree of confidence in the cor-
rectness of the action when the condition part of the rule is fully satisfied.

Another method for representing expert knowledge is to use semantic
nets (Brachman'') whose general form is a labeled graph with nodes
representing various conceptual entities and links representing relationships
among these entities. This way of representing knowledge is quite natural
for many problems. The network representation has, however, several
drawbacks. First, since everything is interconnected, it is difficult to modify,
incrementally update, or extend the knowledge base. Also, it is difficult to
represent nonbinary relationships. For example, it is difficult to represent a
statement indicating that a certain logical product of concepts (associated
with various nodes) implies some other concept, and that the “strength of
the implication™ is so and so. Such statements are, however, very common in
human decision processes, and, therefore, rule representation is often
preferable. In the study by Duda er al.”’ the initial representation of
knowledge is in terms of rules, but in the final stage these rules are
incorporated into a so-called partitioned semantic net.
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An important advantage of the condition-action rules is that they can
represent individual “‘chunks” or “modules” of human knowledge, which
makes it relatively easy to comprehend the rules, to modify them, and to
incrementally build up the knowledge base. Also, it is simpler to explaintoa
user the inference process conducted by the system by indicating the
involved decision rules, than by showing a part of a network. In addition, the
rule representation seems to be more convenient for inductive learning, and,
in fact, there are already some quite advanced inductive programs working
in this framework.

An accurate encapsulation of knowledge in the form of rules does,
however, encounter a number of problems. Typically, an expert’s knowl-
edge is expressed in terms of imprecise concepts and involves many different
operators with various shades of meaning. Also, much of this knowledge is
accompanied by statements indicating varying degrees of credibility and
varying levels of importance assigned to expressed conditions.

This paper uses the rule representation of knowledge. The knowledge
involves descriptions of plant conditions indicating various soybean dis-
eases. The format of the rules is based on the variable-valued logic calculus
VL, (Michalski'*"), This calculus was developed for formally representing
in a simple, compact, and self-explanatory way decision and inference
processes involving many-valued variables. Commonly, the variables in
such processes have problem dependent value sets, which can differ both in
the scope and in the structure relating their elements. For example, “sex™ is
a 2-valued variable with no structure relating its possible values, while
“height” or “temperature” of a human being varies within a certain range of
possible values, and the values constitute a linearly ordered set.

A simple way of characterizing, .g., a person is by a list of attribute-
value pairs, which in VL, is written in the form

[sex = male][height = medium][blood-type = O+]

The form in brackets [ ] is called a.selector, and represents a relational
statement relating a variable to one or more values from its domain. A
general form of a selector is

[x; # R] (1)

where # stands for one of the relational symbols =, #, =, >, <,or<,and R
(the reference) denotes a subset of the value set of variable x,. A concatena-
tion of selectors denotes a term (usually interpreted as the logical product).
VL, does not include functions or relations. In many applications, however,
descriptions using only variables are sufficient. (A richer language
developed in the same spirit, which includes functions, relations, and some
other forms, is VL, (Michalski”®).)
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An event e is defined as a list of values of an assumed set of variables.
For example, assuming the variables sex, height, and blood-type, an event
can be

e: (male, 5ft 11 in, A+)

An event e is said to satisfy a selector §:[x; # R] if the value of x; in e is
related by # to any element of R. For example, selector

[albumin = low, high] or, equivalently, [albumin # medium]

is satisfied by e if the value of albumin in e is low or high.

It is easy to see that if the reference of a selector has more than one
element, the selector is equivalent to a disjunction of selectors with one-
element references:

[x; # a,b,...)=[x # alv[x; # b]v---

A selector with a reference consisting of more than one element denotes the
so-called internal disjunction (disjunction of values of the same variable).

In discussions with experts who are trying to describe their decision
processes, we observed that they often state a condition for a specific
diagnosis as a sequence of observations or symptoms (which can be
represented by a conjunction of appropriate selectors). However, these
experts often also indicate that certain observations are more important
than others. In our experiment, observations have ranged from very
important to merely supportive or confirmatory.

Therefore, we extended here the concept of a selector as defined above
(Michalski”") by adding to it a weight.

The weight of a selector expresses the strength of evidence provided bya
satisfied selector to support a decision. Typically in our experiments the
weight of selectors was not a constant, but varied with the values of the
variable in the selector. Such a situation arises, for example, when one wants
to express a statement: “A precondition for Diaporthe stem canker is high
precipitation; and with the increase of precipitation the chances of the
disease also increase.”

To be able to express a range of conditions of this type, we defined the
weighted selector as follows:

[x; # R:@fn] (2)
where

1. fn is a weight assigning function defined on the values of x; that
satisfy the relation x; # R.
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2. @ stands for an optional symbol indicating a general behavior of
function fn. It can be 1 (|) when fn is monotonically increasing
(decreasing), or U (M), when it has a maximum (minimum) around
some mean and decreases (increases) with the distance from this
mean. When fn is defined over the whole domain of x;, then the part
“# R" is dropped, i.e., the selector has the form [x;: @ fn].

If the function fn is the constant 1, then a selector is written simply
[x; # R;], i.e., it reduces to the original form (1). Such a form is called an
unweighted selector.

For example, [number of years crop repeated: T YR,] is a weighted
selector in which the weight assigning function YR, is monotonically
growing with the number of years the crop was repeated in the same field.
The function YR, may be defined, e.g.,

1.0, if the crop is repeated 3 or more years
0.8, if the crop is repeated 2 years

0.7, if the crop is repeated 1 year

0.2, if the crop has not been repeated

YR11w=

which graphically is as shown in Fig. 1.

In medical, plant pathological, and other applications, many variables
are numerical measurements, on an interval or stronger scale, whose values
are known only approximately. In such cases the match between an event
and a selector may be better described by a degree than by a YES-NO
answer. Such a degree can be determined, e.g., from the error estimate of the
measuring instrument. We will therefore assume that, in general, matching
an event e with an unweighted selector § produces a value v(S, e)€[0, 1],
called a degree of confirmation.

The degree of confirmation, v(S", e), of a weighted selector §” by
event e, expresses the evidence provided by the selector to support a

Weight » _ | |

' Y 3
No.of years crop repeated

Fig. 1
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decision. It can be computed by using functions such as:

P v(S”, e)=uv(S e)+(1-v(S e)(1-w) (3)
or
N: v(8", e)=(2v(S e)—1)w (4)

Function P (*positive evidence’) assumes that the role of weight w is
mainly to affect the evidence when a selector is not satisfied (if v(S, e)=0
then v(S™, e)=1—w), that is, to weaken the negative effect of not satisfying
a selector when the weight is small. Function N (“positive or negative
evidence™) assumes that the weight symmetrically affects the evidence, i.e.,
increases it when the sélector is satisfied, and decreases it when the selector
is not satisfied. The choice of the function can be determined experimen-
tally.

Terms and GVL, Rules. A concatenation of weighted selectors is
called a term. If a term is interpreted as a conjunction, then it can be used as a
conjunctive condition in a decision rule. Conjunctive conditions, however,
although very common, are generally not sufficient. Experts often predicate
one condition upon another condition. This can be expressed as a one-
dimensional or bidirectional conditional statement, respectively:

Term, = Terma {5)
or

Term, < Term, (6)

where = and < denote logical implication and equivalence, respectively.

Since 1 = Term is equivalent to Term, a conjunctive term can be
viewed as a special case of a conditional statement.

In describing symptoms for a disease, plant pathologists often qualify
whole groups of symptoms as, e.g., ‘‘significant,” “confirmatory,” etc.,
independently of an individual symptom’s weight. In order to express such
statements, the concept of a linear expression was developed. It is a linear
function:

Q1'ET1+Q2‘ET2+"'+QR - ET, (7
where:
1. ET, i=1,2,...,k, are extended terms, defined as concatenations
of conditional statements.

2. 1. G2, ..., qe€[0,1), g1+g2+- - +qc=1, are coefficients indi-
cating the relative significance of extended terms.
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3. - is the operator defined as the arithmetic multiplication of
coefficient g; by the degree of confirmation of ET,.

A linear expression reduces to an extended term when it has only one
coefficient.

Thus, the expression (7) provides a means for combining both logical
and arithmetic operators in representing various aspects of expert knowl-
edge.

The following is the general form of decision rules accepted in this
study:

VLE, ::> CT (8)
!
where

1. '/ denotes the disjunction operator,

2. LE, j=1,2,...,are linear expressions.

3. CT is a term describing the decision to be assigned when the
condition part (on the left of ::>) is satisfied.

4, a denotes the strength of implication, @ €[0, 1] (is not listed when
a=1).

5. ::> denotes the decision assignment operator. (It is used instead of
the often used symbol = in order to avoid confusion with logical
implication.)

Decision rules in form (8) are called generalized VL, rules, or in short,
GVL, rules. GVL, rules in which each linear expression is a conjunctive
term are called disfunctive VL, rules, or in short DVL, rules. Figure 2 givesa
summary of introduced concepts.

Interpretation of GVL, Rules. A GLYV, rule provides a very general
structure for expressing different kinds of relationships of elementary
observations (selectors) in support of a decision. It can reduce to various
special cases, and by this can provide a best “fit" between the informal
experts’ knowledge and its formal representation. Weighted selectors, the
concatenation of selectors, and the disjunction operator have no fixed
interpretation. The interpretation is given by an evaluation scheme. For
example, a scheme called (N, MIN, MAX) assumes that weighted selectors
are evaluated according to function N (4), the concatenation is the con-
junction, and the disjunction is the maximum function.

According to this scheme, e.g., the rule

0.9 ([x;=3[x:=2])+0.1- ([x3=2...4] = [xs=0]) :: > [decision = A]
(9)
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D'IJL1 rules

{Unweighted) selector §: [xi # R]
Term T [ M 3L 1--
DVLl rule T1 v T2 Witeicg SESID e

(disjunctive variable-
valued system one rule}

Gle rules
(Weighted) Selector 5%, [x1 it R:@En]
(Conjunctive) Term cr: [ 10 1.4
Conditienal Statement cs: [ 10 1..=L 11 1.-
Extended Term ET: {cslggcsz)...
Linear exnression LE: ql-ETI + qz-'E‘I"2 F s qk'ETk'
where a4 + 9, o PR q, = 1
LE, ¥ LE_, ¥ ... 11> CT
G‘U‘L1 rule 1 2

{generalized VLl rule}

Fig. 2. Structure of DVL, and GVL, rules.

can be interpreted:

If x; is 3 and x; is greater than or equal to 2, then it constitutes
90% of the support of decision A. Additional 10% support is
given when x; is between 2 and 4 and xs is 0, or when x, is not
between 2 and 4 (in this case x5 can have any value).

Similarly, a rule
[x2#3[xs=1,3] v [xs<4]::> [decision = A] (10)
can be interpreted:

Decision A is taken if x; is not 3 and x;is 1 or 3, or if x, is smaller
than 4.
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Some other interpretation schemes are discussed in (Michalski'*). The
GVL, rules provide a general format of which expert derived rules and
inductively derived rules are special cases. The form of expert derived rules
is like that of rule (9) while the form of inductively derived rules is like that of
rule (10) (i.e., a DVL, form).

3. DESCRIPTION SPACE

In the case study the diagnosis of soybean diseases was selected as being
representative of the problems one faces in the diagnosis of plant diseases in
general. The task was to develop a knowledge base which contained
sufficient information to diagnose the following 15 soybean diseases:

D1: Diaporthe stem canker

D2: Charcoal rot

D3: Rhizoctonia root rot

D4: Phytophthora root rot

D5: Brown stem rot

D6: Powdery mildew

D7: Downy mildew

DE&: Brown spot

D9: Bacterial blight
D10: Bacterial pustule
D11: Purple seed stain
D12: Anthracnose
D13: Phyllostica leaf spot
D14: Alternaria leaf spot
D15: Frog eye leaf spot

A description space for diagnosing the selected soybean diseases was
developed in collaboration with an expert in soybean pathology. The
variables used were 35 plant and environmental descriptors and one
decision variable (specifying diagnosis). The intent in selecting the particular
descriptors and their associated values was to provide a description space
that was sufficient to describe the diseases of soybeans in terms of
macrosymptoms, i.e., those symptoms that could be clearly observed with no
sophisticated mechanical assistance. The reason was that an extension
service agent, a farmer, or even a layman should be able to make the
required observations.

A descriptor is a function that associates with the plant or its environ-
ment a specific value from the set called the value set (domain) of the
descriptor. For example, the descriptor “Time of Occurrence” (TOC)
specifies for the diseased plant the time of occurrence of the disease in the
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Table I. Plant Descriptors Used in the Experiment

Mumber
of
Name of descriptor values Variable
1. Environmental descriptors
1.1 Time of occurrence M (xy)
1.2 Plant stand (2) (x3)
1.3 Precipitation {3) {x3)
1.4 Temperature (3) (xa)
1.5 Occurrence of hail (2) {xs)
1.6 Number years crop repeated 110} (xg)
1.7 Damaged area (4 lxq)
2. Plant global descriptors
2.1 Severity (3) {xg)
2.2 Seed treatment (3) {xg)
2.3 Seed germination (3) {x10)
2.4 Plant height {2) {x11)
3. Plant local descriptors
3.1 Condition of leaves 2} (xy2)
3,1.1 Leafspots—halos (3} {x13)
3.1.2 Leafspots—margin (3) lxy4)
3.1.3 Leafspot size (3) {xys)
3.1.4 Leafshreddingorshotholing (2) (xys)
3,1.5 Leaf malformation (2} {xy7)
3.1.6 Leaf mildew growth 3 (x18)
3,2 Condition of stem (2) (xya)
3.2.1 Presence of lodging (2} {xz0}
3.2.2 Stem cankers (4) {x21)
3.2.3 Canker lesion color (4) (x322)
3.2.4 Fruiting pod on stem (2) (X3
3.2.5 External decay (3) {x72)
3.2.6 Mycelium on stem (2) {xas)
3.2.7 Internal discoloration (3) (X26)
3.2.8 Sclerotia—internalorexternal (2} (x27)
3.3 Conditions of fruits—pods 4) (x32a)
3.3.1 Fruit spots (5} {x20)
3.4 Condition of seed (2) (x30)
3.4.1 Mold growth (2) (%31
3.4.2 Seed discoloration (2) {xag)
3.4.3 Seed size (2) (x33)
3.4.4 Seed shriveling {2) (x34)
3.5 Condition of roots (3) {xas)

135
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field. The descriptor “Condition of Roots" (COR} assigns a value describing
the state of the roots of the plant. The domains of these descriptors in the
knowledge base were:

Domain(TOC) = {April, May, June, July, August, September, October}
Domain(COR) = {Normal, Rotted, Galls or Cysts Present}

Table I lists all 35 descriptors that were used. The number in paren-
theses following each descriptor indicates the number of possible values the
descriptor can take. In addition, there is a decision variable which specifies
the diagnosis of a disease from the assumed set of soybean diseases.

Individual diseased plants were described in terms of the above 35
descriptors. Thus, the theoretical size of the description space (i.e., the set of
all possible sequences of values of descriptors) was:

Tx2x3x+ x2x2x3=approx. 3x 10" events

Owing to relationships among some of the variables (see Fig. 3) the
actual size of the event space was somewhat smaller.

4. EXPERT DERIVED DECISION RULES (“LEARNING BY
BEING TOLD")

The knowledge base of a computer expert system can store (at least at
the present time) only symbolic descriptions of the diseases. These descrip-
tions are formal expressions involving names of observable symptoms,
manifestations, and characteristics indicative of each disease. Such a know-
ledge base is vastly different from the knowledge base of a human expert,
which typically contains a multiplicity of sensory recordings (primarily
mental images, as indicated by experts), memories of experiences, teachings
from scholarly and less scholarly texts, opinions of others, etc. It involves
complex models of structures, physioclogy, behavior, etc., of plants, and of
causal interrelationships between plants, pathogens, and the environment.
When an expert is asked to describe the symptoms of a disease, he skims
from this vast knowledge structure some “‘most important” simple charac-
teristics which he turns into a verbal form.

A “knowledge engineer” then transforms these verbal statements—
typically loosely structured, of varied precision and uncontrolled scope—
into precise, well-defined formal expressions, involving a restricted vocabu-
lary of concepts.

In this experiment it took several conferences with a plant pathologist
and approximately 45 hours of time to develop formal descriptions of the 15
soybean diseases listed in Sec. 3. These descriptions were expressed as
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GVL, rules. Each rule characterizes a single disease, and involves a two-
component linear expression:

qs* ET.+q.- ET. ::> [disease = d] (11)

where ET, and ET. are extended terms characterizing significant and
confirmatory conditions for each disease, respectively.

For example, the following is an example of the rule describing
Diapothre stem canker:

gs * ([time = August . . . September]
[precipitation: TP][fruiting bodies = present]
[stem cankers = above second node][fruit pods = absent])
+
q. - ([temperature = n][canker lesion color = brown]
[# years crop repeated: 1 YR,])
i1 > [Diagnosis = Diaporthe stem canker]

The weight assigning function YR, is defined as in Fig. 1, and the
function® P:

0.7, if precipitation=n (n=normal)

1.0, if precipitation>n
P:w =Jl
0.3, otherwise

The complete listing of the expert-derived decision rules and the weight
assigning functions is given in Appendix A. The interpretation of the rules is
delayed until Sec. 6, where expert derived and inductively derived rules are
compared.

5. INDUCTIVELY DERIVED RULES (“LEARNING FROM
EXAMPLES")

5.1. The Framework for the Experiment

It is obvious that if an expert could provide a complete, precise, and
definite characterization of a disease, then it would be the simplest way of
introducing knowledge into a consulting system. Practice shows, however,
that the above premise is rarely satisfied, and that the formalization of expert
knowledge is a tedious, time consuming and error prone effort. This process

*Function P can be defined as a DVL, expression:
1[precipitation > n] v 0.7 [precipitation =n] v 0.3

where the concatenation is interpreted as the minimum function and disjunction as the
maximum function (Michalski''"").
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Table 1. An Example of Learning Event {Completed
Questionnaire Describing a Diseased Plant)

Environmental descriptors
Time of occurrence = July
Plant stand = normal
Precipitation = above normal
Temperature = normal
Ocecurrence of hail = no
MNumber years crop repeated =4
Damaged area = whole fields

Plant global descriptors
Severity = potentially severe
Seed treatment = none
Seed germination = less than 80%
Plant height = normal

Plant local descriptors

Condition of leaves = abnormal
Leafspots—halos = without yellow halos
Leafspots—margin = without watersoaked margin
Leafspot size = greater than &'
Leaf shredding or shot holding = present
Leaf malformation = absent
Leaf mildew growth = absent

Condition of stem = abnormal
Presence of lodging =no
Stem cankers = above the second node
Canker lesion color = brown
Fruiting bodies on stem = present
External decay = absent
Mpycelium on stem = absent
Internal discoloration of stem = none
Sclerotia—internal or external = absent

Conditions of fruits—pods = normal
Fruit spots = absent

Condition of seed = normal
Mold growth = absent
Seed discoloration = absent
Seed size = normal
Seed shriveling = absent

Caondition of roots = normal

Diagnosis:

Diaporthe stem canker( ) Charcoal rot( ) Rhizoctonia
root rot( ) Phytophthora root rotl ) Brown stem root rot( )
Powdery mildew( ) Downy mildew( ) Brown spot(x)
Bacierial blight( ) Bacterial pustule( } Purpose seed stain( )
Anthracnose( ) Phyllosticta leaf spot( ) Alternaria leaf
spotl ) Frog eye leaf spot{ )
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could be simplified if the experts specified directly only the set of descriptors
to be used (the description space), the semantic relationships among the
descriptors, and examples (expressed in terms of these descriptions) of
correct decisions in various situations (which they can easily provide using
their standard professional skills). This method requires application of an
inductive learning program able to formulate general rules on the basis of
exemplary decisions. Such inductive learning is generally a problem of
immense complexity. Fortunately, the relative simplicity of the rules for
soybean diagnosis permits the current state of the art in computer induction
to offer solutions.

To generate diagnostic rules from examples in this experiment we used
the inductive program AQ11 (Michalski and Larson''”’). The examples of
expert decisions were represented as pairs (events, disease ), where the event
was a list of values of 35 descriptors (Table I) characterizing a single diseased
plant, and disease was the diagnosis provided by an expert. The events were
specified in the form of questionnaires completed by plant pathologists.
Table II is an example of a completed questionnaire that describes a case of
brown spot. All available events (630) were partitioned into a learning set
and testing set (Table III).

The learning events were used for the actual development of the rules;
testing events were used to test the inductively developed rules and also the
expert derived rules. In addition to learning events, the input to AQ11 also
included some underlying problem knowledge. This knowledge consisted of
the following:

1. Definitions of the domains of the descriptors used (the sizes of the
domains and their structure). Three types of descriptors were distinguished:
nominal (whose domain has no structure), linear (whose domain is a linearly
ordered set), and structured (whose domain has values representing concepts
of different degree of generality). Domains of structured descriptors can be
represented as labeled directed graphs (usually trees) in which the parent
node represents a concept that is more general than concepts represented by
descendent nodes (Michalski and Larson"*"). Two structured descriptors
were used: DAMAGED AREA and LEAFSPOTS—HALOS (Fig. 3).

2. A description of relationships among variables. They were relations
stating that if some part of a plant is healthy then all the descriptors that
specify the particular conditions of that part do not apply. For example,

[leaves = normal] = [leafspots halos = *][leafspots margin = *]
[leafspot size = =][leaf shredding = *]
[leaf malformation = =][leaf mildew growth = =]

where * denotes “does not apply.” Table IV gives the rules used.
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Table III. Events-Available for Learning and Testing

Learning Testing Available

Disease events events events
Diaporthe stem canker 10 10 20
Charcoal rot 10 10 20
Rhizoctonia root rat 10 10 20
Phytaphtora root rof 40 48 88
Brawn stem rot 20 24 44
Powdery mildew 10 10 20
Downy mildew 10 10 20
Brown spot 40 52 92
Bacterial pustule 10 10 20
Bacterial blight 10 10 20
Purple seed stain 10 10 20
Anthracnose 20 24 44
Phyllosticta leaf spot 10 10 20
Alternaria leaf spot 40 51 21
Frog eye leaf spot 40 51 91

Total 290 340 630

DAMAGED AREA

T

Not whole fields Whole fields

T

Scattered plants Groups of plants Groups of plants
in low areas in upland areas

LEAFSPOTS--HALOS

<\

Absent Present

With vellow hales Without yellow halos

Fig. 3. Generalization structures of structured descriptors DAMAGED
AREA and LEAFSPOTS—HALOS.
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Table IV. Rules Describing Relationships Among Variables

1. [leaves = normal]=[leafspots halos = »][leafspots margin = +]
[leafspot size = *{leaf shredding = +]
[leaf malformation = =J[leaf mildew growth = =]

(&)

. [leafspots halos = absent]=> [leafspots margin = =[{leafspot size = +]

[stem = normal]=>[presence of lodging = *[[stem cankers = +]
[canker lesion color = *J[fruiting bodies on stem = =]
[external decay of stem = *][mycelium on stem = =]
[internal discoloration = =]
[sclerotia internal or external = #]

o

F-Y

. [fruit pods = normal]=>[fruit spots = =]

. [seed = normal]=[seed mold growth = *][seed discoloration = *]
[seed size = =][seed shriveling = «]

W

5.2. A Brief Description of the Learning Algorithm

Given examples and the underlying problem knowledge, program
AQ11 determines the DVL, rules characterizing the decision process. The
rules are optimized according to user selected criteria, which require the
rules to have the minimum number of selectors, the minimum number of
descriptors, the minimum number of terms, etc., or a combination of these.
The program caa work in either unistep or multistep (incremental) modes of
learning. Each step of the incremental learning mode starts with an initial set
of rules (hypotheses), and a set of learning events. Some events may
contradict the rules, e.g., an event of decision class i (here disease i) may not
satisfy the rule for decision i, but satisfy the rule for decision j, or may not
satisfy any rule. Execution of the step produces a new set of rules that are
consistent with the events. If there are no initial rules, the step generates
rules describing the events. The basic block of the learning algorithm is a
covering algorithm, which generates a cover C(E,/E;) of one event set (E,)
against another event set (Ep). Such a cover can be interpreted as a DVL,
expression that is satisfied by every event in E; and not satisfied by any event
in Ey (orin Eg\E;, if Epand E, intersect). The covering algorithm is based on
the effective use of “negative events” (i.e., those in Ej), and is especially
efficient when the negative events are expressed as a cover. The major idea
behind the covering algorithm is to generate the cover in steps, each step
producing one conjunctive term of the cover. Each term is determined by
focusing attention on one specially selected event from E,, generating a set
of all terms (a star) which cover this event and do not cover any event in Ej,
and then selecting the “best term™ from the star according to the assumed
criteria. The covering algorithm (called A%) is described in detail in
(Michalski''*'?).
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Let us go back now to the learning algorithm. Suppose that a set of
initial hypotheses is V={V}, i=1,...,m, and a family of event sets
(““facts”) which these hypotheses are supposed to describe is F ={Fi}.
Suppose that for any i, V; describes correctly only a part of the events
from F.

The problem is to produce a new set of hypotheses, v!={V/}], where
each V! describes all events from set F, and does not describe events from
other event sets F, j# 1L

The solution consists of four major steps:

Step 1. The first step isolates those facts which are not consistent with
the given hypotheses. For each hypothesis, two sets are created: F~,asetof
events which should be covered by the hypothesis, but are not; and F~,aset
of events which are covered by the hypothesis, but should not be covered.
{An event is said to be covered by a hypothesis if the event satisfies the DVL,
formula representing the hypothesis.) Specifically, this step determines, for
eachi, i=1,2,...,m, the sets of “exceptions’:

F! =F\V;
F;=ViNF, j=1,2...,m; j#i

Thus, F; denotes events which should be covered by V, but are not, and F;
denotes events F;, j # i, which are covered by Vj, but should not be covered
(Fig. 4).

Step 2. This step determines, for each i, a generalized formula V,
describing all exception events (the union of sets F, j=1,2,...,m, j# i)
This is done by generating, for given i and each j, a cover of F; against the
events in the sets (V. UF,), k=1,2,...,m:

vi=c(Fi/ U o)
and then taking the logical union of V';:
Vi =V Vi.
f=1
i

The reason for this step is that it is computationally more efficient to use
formulas V; than the union of Fy, i=1,2,...,m, [#L

Step 3. New “correct’ hypotheses are obtained by “gsubtracting”
from each V; the formula V; and “‘adding" to it the set Fi. To do this

3% denotes the set of events covered for formula V;.
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7

Fig.4. An illustration of sets of “exceptions” F; and Fy;.

directly, however, is difficult. Again, an advantage is taken of the efficiency
of the covering algorithm. (The point is that directly simplifying a union of
terms is difficult; but generating a cover of an event set against a formula is
easier.) The new hypotheses, denoted Vi, i=1,2,..., m, are thus deter-
mined as covers:

vi =C‘(F}/£,I] [{ﬂu?;)uF:])
ki

Step 4. Rules representing the underlying problem knowledge (the
rules describing relationships among variables, rules for generalization by
climbing the generalization trees of structured variables, and some ‘‘cleaning
procedures”) are applied.

The obtained rules V!, i =1,2,..., m, become new hypotheses. If the
sets of facts F, are now enlarged with new facts contradicting these
hypotheses, a new learning step is repeated.
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5.3. The Inductively Derived Rules

Program AQ11 produces decision rules in the form of disjunctive VL,
rules, in which each selector has weight w = 1. The following is an example
of an inductively derived decision rule describing Phytophthora root rot:

NEW IND TOTAL

[plant stand < n][precipitation =n]
[temperature < n][stem = abn]
[plant height = abn][leaves = abn]

[leaf malformation = abs] (24, 6, 24)
W

[time = April . . . Aug][plant stand = abn]

[damaged area = low areas][plant height = abn]

[leaves = abn][stem = abn]

[external decay # firm & dry] (16, 16, 34)
:: > [Diagnosis = Phytophthora root rot]

The triplet of numbers next to each term in the rule indicates the per-
formance of that term in covering the learning events. The first element of
the triplet, labeled NEW, indicates the number of new events covered by this
term (those which were not covered by previously generated terms; for the
first term in the rule, NEW is equal to the total number of events covered
(TOTAL)); the second, labeled IND (“independent”), is the number of
events that only this term covers; the third, labeled TOTAL, is the number
of events that this term covers totally. This triplet provides information
about the relative importance of each term in a given decision rule. The
complete set of inductively derived decision rules is given in Appendix B.
(AQ11, written in PL/1, took approximately 4 minutes and 30 seconds on
an IBM 360/75 to generate all the rules.)

In the experiment, program ESEL (Michalski and Larson''*’) was used
to select the learning events from the available population of events. This
program selects the most representative events from each disease class using
a “‘distance” measuring technique. Namely, it selects events that are most
distant from each other in the class. This method of selecting the learning
events biased the testing set in some sense since the testing events were those
that were not selected by the ESEL. To eliminate this bias one could acquire
a distinct set of testing events or select learning events totally randomly. The
point of this study was, however, not to test the learning method using a
teacher that randomly selects examples, but a “good” teacher that selects
representative learning examples. The program ESEL was such a teacher.
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V:

Fig. 4. An illustration of sets of “‘exceptions” F7 and Fj.

directly, however, is difficult. Again, an advantage is taken of the efficiency
of the covering algorithm. (The point is that directly simplifying a union of
terms is difficult; but generating a cover of an event set against a formula is
easier.) The new hypotheses, denoted vy i=1,2,...,m, are thus deter-
mined as covers:

vi=c(r/ 0 7V FL))

ke

Step 4. Rules representing the underlying problem knowledge (the
rules describing relationships among variables, rules for generalization by
climbing the generalization trees of structured variables, and some “cleaning
procedures’) are applied.

The obtained rules V!, i=1,2,..., m, become new hypotheses. If the
sets of facts F, are now enlarged with new facts contradicting these
hypotheses, a new learning step is repeated.
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6. COMPARISON OF EXPERT DERIVED AND INDUCTIVELY
DERIVED RULES

6.1. Comparison of Forms of the Rules

Expert derived and inductively derived rules clearly differ in form. Each
expert derived rule consists of two extended terms representing conditions
with different strength to support the decision (significant and confirmatory
conditions). Some of the selectors have a weight assigning function. Some
rules use conditional terms. Noticeably, rules do not include disjunction:
experts characterized each disease by only one sequence of characteristics;
no subcategories within any disease were indicated.

In contrast to the above, the inductively derived rules have a simple
structure of a disjunction of conjunctive terms. The necessity of using
disjunction in each disease description (in order to completely characterize
all given cases of the disease) is an interesting property of the rules. Insome
cases it was due merely to the limitation of the program. A case in point is
rule D3 (see Appendix B) where one term has a selector [leaves = normal],
and another has a selector [leaf malformation = absent]. If the program
could recognize that the second selector is the special case of the first, then it
would merge the two terms into one. The current program does not also
have the ability to create conditional terms, so none are present, although
they might have been useful.

In addition it seems that if the program had appropriate constructive
generalization rules (Michalski''”), i.e., an ability to generate new, more
general descriptors (as functions of the given ones), some rules could have
been simpler. It is interesting to notice, however, that despite these limita-
tions, the inductively derived rules, when presented to an expert, were
judged quite favorably and in only a few cases did the expert indicate
irrelevancy or lack of some selector, or low significance of a term (where
several terms were present).

6.2. Comparison of the Performance of the Rules on Testing Data

The final stage of the experiment involved a comparison of the per-
formance of both types of rules in diagnosing diseased plants, for which the
correct diagnosis was known (the ‘‘correct diagnosis”” means the diagnosis
made by a plant pathologist).

In order to use the rules for diagnosis, an evaluation scheme must be
specified, which gives an interpretation to the selector and the terms,
specifies the coefficients g; in linear expressions, and interprets the dis-
junction operator. Several evaluation schemes were tried experimentally
(Michalski'"*). Here we will present results obtained by applying the best
performing scheme for each type of rules.
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Evaluation scheme for expert derived rules
(P, AVG, (0.9, 0.1), N/A)

® Evaluation of selectors (P):
Unweighted selectors [x; # R]

if the selector is satisfied
otherwise

1,

v(S) = [ :
Weighted selectors [x;: @f,]:
v(8™)= value of f, for given value of x;

® Evaluation of terms (the average function):
v(T)= EIU(CS:}HH
|I| = the number of conditional statements CS; in the extended term

{or selectors in the conjunctive term)

® Evaluation of linear expressions:
The condition part of each rule is in the form

s ET;"'Q:: +ET.

where ET, and ET. are extended terms corresponding to significant and
confirmatory conditions, respectively (in two rules ET. was empty). The
coefficients were g.=0.9 and g.=0.1.

® Evaluation of disjunction—not applicable.

Evaluation scheme for inductively derived rules
(N, AVG, N/A, PSum)

e Evaluation of selectors (N):

1, if satisfied
—1, otherwise

o) ={
e Evaluation of terms (the average of degrees of confirmation of selectors).
® Evaluation of linear expressions—not applicable.

e Evaluation of disjunction—as the probabilistic sum (PSum):
For F=TyvT:

v(F)=uv(T)+v(T2)—v(Ty)v(Ty)

When there are more terms, the rule is multiply applied.
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Using the above evaluation schemes, the expert derived and inductively
derived rules were applied to 340 testing cases of diseased plants with known
diagnosis (testing events).

Arule C ::> D is said to pass the acceptability criterion for an event e, if
the degree of confirmation v(C, e) is greater than the threshold, and is either
the maximum of those of other rules, or differs from the maximum by not
more than the margin of uncertainty. The threshold (determined experi-
mentally) was 0.65 for expert derived rules and 0.8 for inductively derived
rules. The margin of uncertainty was 0.2 in both cases. If there was more than
one rule that passed the acceptability criterion, the diagnoses indicated by
these rules were alternative diagnoses.

Tables V and VI present confusion matrices illustrating the per-
formance of both types of rules on testing events. The labels are defined as
follows:

Correct diagnosis: The diagnosis assigned by a plant pathologist.

Indecision ratio: The average number of alternative diagnoses per case
of the given disease.

Ties: The number of testing cases of the disease which were not
uniquely diagnosed.

Maximum # of altern: The maximum number of alternative diagnoses
in diagnosing testing cases of the disease.

Test cases: The total number of testing cases of the given disease.

Assigned decision: Each column under this label is headed by a
symbolic name of disease (Di), and contains percentages of diagnoses
indicating this disease for all testing cases of the disease associated with the
given row. Thus, the percent of correctly assigned diagnoses are on the
diagonal of confusion matrix. Table VII gives a comparison of the overall
performance of the two sets of rules.

The label “% 1st choice correct” specifies the percentage of cases in
which the rule with the highest degree of confirmation indicated the correct
disease. The label *“% correct” specifies the percentage of cases in which a
single correct diagnosis was assigned, or a set of alternative diagnoses was
assigned that included the correct one. Both inductively derived and expert
derived rules scored high and approximately even from the viewpoint of
avoiding errors (% correct), but the inductively derived rules clearly per-
formed better than expert derived rules in terms of frequency with which the
“1st choice diagnosis" was correct. In addition, inductively derived rules had
a smaller indecision ratio and larger threshold. This would seem to indicate
that these rules were ‘‘cleaner’ than expert derived rules, i.e., they involved
less nonessential information.
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Table VII. The Summary of Performance of the Rules

% %
15t choice % not Indecision
Type correct correct diagnosed ratio Threshold
Inductively derived 97.6 100.0 — 2.64 0.80
Expert derived 71.8 96.9 2.1 2.90 0.65

7. CONCLUSION

The paper discussed the relative merits of knowledge acquisition
through interviewing experts and formally representing their decision rules,
and through inductively inferring the rules from examples of these experts’
decisions. The acquisition of knowledge through representation is a com-
monly used and powerful method, but is also time consuming, prone to
omissions, and requires high technical skills from the knowledge engineer
encoding the rules (who has to be able to consolidate sometimes conflicting
opinions of experts). The inductive method presented in the paper required
less effort and produced decision rules whose overall performance was
somewhat better than expert derived rules. The latter result was contrary to
the expectations of the authors, and therefore the experiment was repeated
several times, introducing modifications to expert derived rules and trying
different rule evaluation schemes. The results have consistently followed the
same pattern. A reason for the somewhat poorer performance of expert
derived rules may be the insufficiently precise encoding of the decision rules
of experts. It is likely that further interaction with experts and a refinement
of the knowledge representation method will lead to better rules. Another
possible reason is that experts are trained in making diagnoses, and not in
explaining the process of diagnosis. These two functions are different. This
would mean that examples of expert decisions represent more reliable
information than experts’ descriptions of the diagnostic procedures. This
would provide an additional argument for the inductive method of knowl-
edge acquisition.

Despite the high performance of the inductively derived rules, they are
by no means completely satisfactory. Some of the limitations were indicated
in Sec. 6.1. The current program does not have sufficient ability to use the
knowledge of the relationships among descriptors, and therefore it
generated in some cases too many conjunctive terms. Also it possesses a very
limited repertoire of syntactic forms in which it can express rules. The
program does not have the ability to generate a layered system of rules, with
intermediate variables. In the problem under consideration, there was no
need for such facility, but more advanced inductive problems will require it.
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Surprisingly, the inductively derived rules were viewed generally quite
favorably by experts—with a few exceptions. This observation and previous
remarks suggest that a procedure in which an expert would edit inductively
derived rules, in combination with an improved inductive program, could
lead to an attractive new method of knowledge acquisition.

The major conclusion of the paper is that the inductive method for
introducing knowledge to expert systems can be both useful and practical, if
the problem domain is sufficiently simple. The currently growing interest in
computer induction will likely widen the scope of problems to which the
inductive method is applicable.

APPENDIX A: EXPERT DERIVED RULES FOR
15 SOYBEAN DISEASES

g.: the coefficient associated with significant conditions; g.: the
coefficient associated with confirmatory conditions. Abbreviations used: n,
normal; abn, abnormal; p, present; abs, absent.

D1: g, ([time=Aug... Sep][precipitation: T P])
[stem cankers = above second node][fruiting bodies = p]
[fruit pods =n])
+
gq. - ([temperature = n][canker lesion color = brown]
[ # years crop repeated: TYR 1]
:: > [Diagnosis = Diaporthe stem canker]

D2: g, ([time=TJul... Aug][precipitation = n][temperature =n]
[plant growth = abn][leaves = abn][stem = abn][sclerotia =p]
[roots = rotted][internal discoloration = black])
+_
g. - ([damaged area = upland areas][severity = severe][seed size < n]
[ # years crop repeated: 1 YR:]
11> [Diagnosis = Charcoal ror]

D3: g.- ([time=May...Jun][plant stand < n][temperature <n]
[precipitation < n][leaves = abn][stem =abn]
[canker lesion color = brown][roots = rotted]
([oceurrence of hail = no]=>[stem cankers = below soil line,
at or slightly above soil line])
([occurrence of hail = yes]=>[stem cankers = above second node]))
+
g - ([fruiting bodies = abs][external decay = firm & dry]
[mycelium = abs]) :
:: > [Diagnosis = Rhizoctonia root rot]
+
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D4: gq,- ([time: N TO][plant stand <n]

({time = Apr . . . Jun]=[precipitation = n])

([time = Jul . . . Aug]=>[precipitation = above n])

([time = Apr]=>[temperature = above n])

([time = May . .. Aug]=>[temperature =n])

[damaged areas = low areas]

[plant growth = abn][leaves = abn][stem = abn]

[stem cankers = at or slightly above soil line]

([time =May ... Aug]=>[canker lesion color = dark brown or black])
[roots =rotted])

qe - ([# years crop repeated = 2])
1 > [Diagnosis = Phytophthora root rot]
D5: gq,- ([time = Jul...Sep][precipitation > n][temperature <n]
[leaves = abn][stem = abn]
[internal discoloration = brown][lodging = p])
-+
q. - ([seed size <n][# years crop repeated: T YR;]
:: > [Diagnosis = Brown stem rot]
D6: g, - ([leaves = abn][leaf mildew growth = upper leaf surface])
+
q. - [time = Aug. .. Sep]
i1 > [Diagnosis = Powdery mildew]
D7: gq.-([time=Jun...Aug][precipitation=n]
[damaged areas = whole fields]
[leaves = abn][leafspots halos = no yellow halos]
[leaf mildew growth = lower leaf surface]
([time = Sep . . . Oct]=»[see = abn])[mold growth on seed =p])
1> [Diagnosis = Downy mildew]

D8 g.: ([leaves=abn][leafspots halos = p]
[leafspots watersoaked margin = abs][leafspot size >3"])
+
D9: g.-([time=Apr...Jun, Aug... Sep]
([time = Apr ... Jun]=>[precipitation =n])
([time = Aug . . . Sep]=>[precipitation >n])
([time # Aug]=>[temperature = n])
([time = Aug]=>[temperature <n][leaves = abn]
[leafspots halos = with yellow halos]
[leafspots watersoaked margin = p]
[leafspot size < }")[leaf shredding = p])
::> [Diagnosis = Bacterial blight]
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D10; g.- ([time=Jun... Aug][precipitation = n][leaves = abn]
[leafspots halos = no yellow halos]
[leafspots watersoaked margin = abs]
[leafspot size < §"J[leaf shredding = pl)
4
ge - [ # years crop repeated = 1]
:: > [Diagnosis = Bacterial pustule ]

D11: g, - ([time=Sep. .. Oct][seed = abn][seed discoloration = p]
[seed size = smaller than n])
+
g. - ([time = Aug . . . Sep][precipitation = n][leaves = abn]
:: > [Diagnosis = Purple seed strain]

D12: g, ([time = Aug ... Oct][precipitation = n][stem = abn]
[canker lesion colour = brown][fruiting bodies = Pl
([time = Sep . . . Oct]=>[seed =abn])
[fruit spots = abs, brown spots with black specks])
+
ge+ [damaged area = whole fields]
:: > [Diagnosis = Anthracnose }

D13: g, ([time = Apr. .. Jul][precipitation = n][leaves = abn]

[leafspots halos = no yellow halos]

[leafspots watersoaked margin = abs]

[leafspot size > §"][leaf shredding = p])

o+
q. - ([damaged area = whole fields][time # Jun] > [temperature = n))
([time = Jun]=>[temperature < n])
:: > [Diagnosis = Phyllosticta leaf spot]

D14: g, - ([time =Jul...Oct][leaves = abn]
[leafspots halos = no yellow halos]
[leafspots watersoaked margin = abs][leafspot size >§"]
[leaf shredding = abs])
+
q.* ({[time = Sep . .. Oct]=>[fruit pods = diseased])
([fruit pods = diseased]=> [fruit spots = colored spots])
([seed = abn]=>[seed discoloration = p]))
:: > [Diagnosis = Alternaria leaf spot]

D15: g.- ([time =Jul ... Sep][precipitation = n][leaves = abn]
[leafspots halos = no yellow halos]
[leafspots watersoaked margin = abs]
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[leafspot size >3"])

+

g.+ (([time = Sep]=>[fruit spots = colored spots])
[stem canker = above second node][canker lesion color = tan]
[fruiting bodies = abs])
::> [Diagnosis = Frog eye leaf spot]

Definition of weight assigning functions:

1.0,
P:4 0.7,
0.3,

1.0,
0.8,
0.7,
0.2,

1.0,
YR:I U‘.fl,
0.2,
1.0,
YRj: [}15&
0.1,
1.0,
TO:< 0.9,

0.3,

Y.R]'.

if precipitation = above normal
if precipitation = normal
otherwise

if # years crop repeated =3
if # years crop repeated =2
if # years crop repeated =1
if crop not repeated

if # years crop repeated =2
if # years crop repeated =1
if crop not repeated

if # years crop repeated =2
if # years crop repeated =1
if crop not repeated

if time of occurrence = May ... Jul
if time of occurrence = Apr, Aug
otherwise

APPENDIX B: INDUCTIVELY DERIVED RULES FOR
15 SOYBEAN DISEASES

Abbreviations used: n, normal; abn, abnormal; p, present; abs, absent.

NEW IND TOTAL

D1: [time=Jul...Oct][precipitation>n]
[leaf malformation = abs]
[stem = abn][stem cankers = above second node]

[external decay = firm & dry][fruit pods = n] (10, 10, 10)
:: > [Diagnosis = Diaporthe stem canker]

D2: [leaf malformation = abs][stem = abn]
[internal discoloration = black] (10, 10, 10)
:: > [Diagnosis = Charcoal rot]
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D3:

D4:

DS5:

Dé:

D7:

D8&:

[leaves = n][stem = abn][stem cankers = below soil line]
[canker lesion color = brown] (9,9,9
W
[leaf malformation = abs][stem = abn]
[stem cankers = below soil line]
[canker lesion color = brown] (1,1, 1)
1> [Diagnosis = Rhizoctonia root rot]

[plant stand > n][precipitation = n][temperature = n]

[plant height = abn][leaves = abn]

[leaf malformation = abs]

[stem = abn] (24,6, 24)

v

[time = Apr . . . Aug][plant stand = abn]

[damaged area = low areas]

[plant height = abn][leaves = abn][stem = abn]

[external decay = abs, soft and watery] (16, 16, 16)
:: > [Diagnosis = Phytophthora root rot]

[leaf malformation = abs][stem = abn]
[internal discoloration = brown] {13,13,13)
W
[leaves = n][stem = abn][internal discoloration = brown]
7.7
:: > [Diagnosis = Brown stem rot]

[leaves = abn][leaf malformation = abs]
[leaf mildew growth = on upper leaf surface][roots=n] (10, 10, 10)
:: > [Diagnosis = Powdery mildew]

[leafspots halos = p]

[leaf mildew growth = on lower leaf surface]

[stem = n][seed mold growth = p] (10,10, 10}
i: > [Diagnosis = Downy mildew ]

[precipitation =n][ # years crop repeated > 1]

[damaged area # whole fields][leaves = abn]

[leafspots halos = no yellow halos]

[leafspots watersoaked margin = abs][leafspot size > 4|

[leaf malformation = abs][roots = n] (19,2, 19)
W

[precipitation > n][leaves = abn]

[leafspots halos = no yellow halos]

[leafspots watersoaked margin = abs][leafspot size > 5 1
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D9:

D10:

D11:

D12:

Michalski and Chilausky

[root =n] (15,11, 30)
W
[time = Apr ... Jun][damaged area # whole fields]
[leaves = abn]
[leafspots halos = no yellow halos]
[leafspots watersoaked margin = abs][leafspot size > 1
[leaf shredding = abs][leaf malformation = abs]
[roots=n] (6,6,12)
:: > [Diagnosis = Brown spot ]

[time = Jun . . . Sep][temperature = n][leaves = abn]

[leafspots halos = p][leafspots watersoaked margin = p]

[leafspot size < §"][fruit pods = n][roots =n] {10, 10, 10)
:: > [Diagnosis = Bacterial blight]

[leaves = abn][leafspots halos = with yellow halos]

[leafspots watersoaked margin = abs][leafspot size < |

[stem = n][fruit pods =n] (7,6, 7)
v

[leafspots halos = p][leafspot size <&")[stem = n]

[roots = rotted] (2,2,2)

W
[time = May][precipitation = n][leaves = abn]
[leafspots halos = with yellow halos] (1,1,2)
:: > [Diagnosis = Bacterial pustule]

[plant stand = n][precipitation > n][severity = minor]
[plant height = n][leafspots halos = no yellow halos]
[seed = abn]

[seed discoloration = p][seed size =n] (5,5,5)
v
[leaves = n][seed = abn][seed size =n] (5.5,5)

:: > [Diagnosis = Purple seed stain]

[precipitation > n][leaf malformation = abs][stem = abn]
[stem cankers = at or slightly above soil line, above
second node]
[seed = abn][roots =n] (10, 8, 10)
v
[time = Aug . . . Oct][precipitation >n][leaves =n]
[stem cankers = above second node]
[fruit pods = diseased]
[fruit spots = brown spots with black specks] (5,5,5)
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D13:

D14:

L)

[temperature > n][leafspots halos = abs]

[leaf malformation = abs]

[stem = abn][external decay = firm and dry] (5,5, 7
:: > [Diagnosis = Anthraciose ]

[time = Jun . . . Jul][precipitation = n][severity = minor]

[leafspots halos = no yellow halos]

[leafspots watersoaked margin = abs][stem =n]

[roots =n] {(6,5,6)
W

[precipitation < n][leaves = abn]

[leafspots halos = no yellow halos]

[leafspots watersoaked margin = abs][roots = n] (3,3, 4)
v

[plant stand < n][precipitation = n][occurrence of hail = no]

[leafspots halos = no yellow halos]

[leafspots watersoaked margin = abs][stem = n]

[roots =n] (1,1, 1)

:: > [Diagnosis = Phyllosticta leaf spot]

[time = Aug][precipitation > n][seed treatment = none]

[leaves = abn [leafspots halos = no yellow halos]

[leafspots watersoaked margin = p][leafspot size > ']

[leaf mildew growth = abs][stem = n][fruit pods = n] (8,5, 8)

W

[time = Sep . . . Oct][precipitation >n]

[damaged area = scattered plants, low areas, whole fields]

[seed germination = 80% ]J[leaves = abn]

[leafspots halos = no yellow halos]

[leafspots watersoaked margin = p][leafspot size > ']

[Slem=1'l] U-Sr 4| 13}
W

[time = Aug. .. Oct]

[damaged area = scattered plants, low areas]

[seed germination < 80% ][plant height = n][leaves = abn]

[leafspots halos = no yellow halos]

[leafspots watersoaked margin = p][leafspot size >3"]

[leaf mildew growth = abs][stem = n] (7,3,10)
v

[time = Oct][seed germination < 90% J[leaves = abn]

[leafspots halos = no yellow halos]
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[leafspots watersoaked margin = p][leafspot size > §"]

[leaf mildew growth = abs][stem =n] 4,2,7)
W

[time = Aug . .. Oct]

[damaged area = upland areas, whole fields]

[seed treatment = none, other][seed germination = 80%]

[leaves = abn][leafspots halos = no yellow halos]

[leafspots watersoaked margin = p][leafspot size > i1

[leaf mildew growth = abs][stem = n][fruit pods =n] (3,3,3)
W

[occurrence of hail = no][damaged area = scattered plants]

[severity = potentially severe][seed germination =80%]

[leaves = abn][leafspots halos = no yellow halos]

[leafspots watersoaked margin = p][leafspot size > §']

[leaf mildew growth = abs][stem = n] 7 i S B &
W

[time = Aug . .. Oct][temperature =n]

[seed treatment = fungicide]

[seed germination = 80-89% J[leaves = abn]

[leafspots halos = no yellow halos]

[leafspots watersoaked margin = p][leafspot size > §"]

[leaf mildew growth = abs][stem = n][fruit pods =n] (1,1, 6)
v

[time =Sep... Oct][leaves = abn]

[leafspots halos = no yellow halos]

[leafspots watersoaked margin = p][leafspot size >3"]

[leaf shredding = p] (1,1, 1)

i > [Diagnosis = Alternaria leaf spot]

D185: [precipitation=n]

[damaged area = low areas, upland areas, whole fields]
[leaves = abn][leafspots halos = no yellow halos]
[leafspots watersoaked margin = p][leafspot size >3"]
[leaf shredding = abs][leaf mildew growth = abs]
[stem = abn][roots = n]

W
[time = Jul . . Sep][precipitation = n][temperature = n}]
[occurrence of hail = no]
[damaged area = low areas, whole fields]
[seed treatment = fungicide][leaves = abn]
[leafspots halos = no yellow halos]
[leafspots watersoaked margin = p][leafspot size > ]
[leaf shredding = abs][leaf malformation = abs][roots] (7,5, 8)
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W
[time = Aug ... Sep][precipitation =n]
[damaged area = low areas, upland areas][severity = minor]
[leaves = abn][leafspots halos = no yellow halos]
[leafspots watersoaked margin = p][leafspot size >3§"]
[leaf shredding = abs][leaf mildew growth = abs]
[seed = n][roots =n] (8, 4,20)

W

[time = Jul . . . Aug][precipitation >n]

[# years crop repeated = 1]

[damaged area = scattered plants]

[seed treatment = none, other]

[leaves = abn][leafspots halos = no yellow halos]

[leafspots watersoaked margin = p][leafspot size >#"]

[leaf shredding = abs][leaf mildew growth = abs]

[roots =n] (4,3,8)
W

[precipitation > n][ # years crop repeated < 2]

[damaged area = scattered plants, upland areas]

[severity = potentially severe][seed germination <80%]

[leaves = abn][leafspots halos = no yellow halos]

[leafspots watersoaked margin = p][leafspot size >3"]

[leaf mildew growth = abs][roots =n] (4,3,9)
v

[time = Jul][occurrence of hail = yes][leaves = abn]

[leafspots halos = no yellow halos]

[leafspots watersoaked margin = p][leafspot size > §"]

[leaf mildew growth = abs][stem = n] (2,2,4)
v

[plant stand = n][precipitation =n]

[# years crop repeated = 2]

[leaves = abn][leafspots halos = no yellow halos]

[leafspots watersoaked margin = p][leafspot size > §"]

[leaf shredding = abs][leaf mildew growth = abs]

[seed = n][roots =n] 2,2,5

::> [Diagnosis = Frog eye leaf spot]
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