AN APPLICATION OF INDUCTIVE INFERENCE TO
DETERMINING COMPUTER ARCHITECTURE AND
COMPILER STRUCTURE

R. S. Michalski

Internal Report, Department of Computer Science, University of Illinois, Urbana,
February 1981

Internal Report, Department of
Computer Science, University of
Il1linois, Urbana, February 1981.

ABSTRACT

An Application of Inductive Inference to
Determining Computer Architecture and Compiler Structure
R. 5. Michalski - February 1981

Problem description

Professor Kuck with his collaborators have developed a softwareA
system PARAPHRASE, which can analyze the performance of diggérent
computer architectures and compiler structures in executing Fortran programs.
‘The existing data base of these Fortran programs include approximately 1000
programs which can be classified into 20-50 packs of related programs.

Each program can be run with different settings of parameters.
There are typically several parameters, each of which can assume a few
different values (between 2 and 10). Let Pl,-Pz, e e v e PL denote the

parameters of a given program. In addition, each program can be characterized

by a few tens of major characteristics. These characteristics, denoted Cl’

Cys . e Cl’ are discrete variables ranging over several values (X 10).
The program analysis system can be applied to a given FORTRAN
program using one of several computer architectures, Al’ e e e ey Aa (a = 8,10)

and one of several compiler structures Cl’ Cos + « = CC (c = 5.7).

A run of the analysis system on a given program produces a set of
25 - 200 preformancé measures, m;, My, . . . m, (u = 25...200) which characterize
the performance of the assumed computer architecture, A, and the compiler structure
Ci from the viewpoint of executing the given program.

A performance vector My, + = - ., m can be classified into
several bategories of quality, Ql’ Q2, « o ey Qt' In the simpliest case

we can have just two categories'Qg - a good performance, and Q6 - a bad

performance.

The experiments with the program analysis have produced a very
large data base of the results which describe the running the system on
available programs (= 10000 progr§ms) under different settings of parameters,
and with different computer architectures and compiler structures. However,
the complexity of the data is so lérge that it is very difficult to determine
general relationships which relate the parameter settings and different
program characteristics to architectures and compiler structures producing
the best performance.

A mathematical analysis of this problem is possible only for some
small subproblems and special cases.

A general solution of this problem has a great practical importance.
An attractive possibility altering such a solution is to apply techniques
of inductive inference developed in artificiai intelligence. To show how
it could be done, we will formulate the problem in the following way.

Let R denote an event, which is a vector of program parameters
and program characteristics: (Pl, P2, Cl’ C2, e e e, Cz)
Suppose this program was run using a computer architecture Ai and computer
structure Cj, and obtained performance vector was My, My o o ., My, classified
as Qg (a 'good' performance). We will denote this as

R ::> (Ai’ C.)

18
If the obtained performance for event R were 'bad', then we would

denote this as: e ::> (Ai’ C)b
Let Eij and E:j are sets of events, respectively such that
y .. -
Vee Eij’ e ..j (Ai’ Cj)9

. b
Vee Eij’ e ::> (Ai’ Cj)b

The number of (Ai’ Cj), using terminology of inductive learning, E9

ij

and Ezj can be viewed as sets of 'positive' and 'negative' learning examples
(i.e., examples of 'good' and 'bad' use of computer architecture Ai and
compiler structure Cj for programigg which we characterized by events in
Eij and Egj, respectively).

The inductive learning methology can be thus applied here to
determine the general patterns‘characterizing 'good' 'bad' architectures
and compilers for different programming tasks.

Such a methodology has been developed over last several years
by research groups of D. Michalski [_], and successfully applied
to various inductive tasks. The most notable application is the inductive
learning of Deision rules diagnosis for soybean diseases diagnosis from
examplgs.of expert's dianostic decisions. These rules have out performed
thé rules representing the experts diagnostic knowledge []

As was indicated before, the typical number of different architectures
(a) and computer structures (c) applicable for a given set of programs is
relatively small (a = 8..10, C = 5.7). Therfore, one can formulate somewhat
more machine learning problem:

Given: ‘'sets of 'positive' assertions:

(e ::> (A 11

), where e ¢ E

1? Ql)g) where e ¢ E
(e ::> (Al’ CZ)g

(e ::> (Ak, Cl)g)’ e c E12

12

~
©
v

(A» €y, e £ B, L

(thus

* the set of 'negative' assertions
igj (e ::> tAi, Cj)b), where ¢ E

i=1,, a

i=1,c

Determine:
A set of rules

R,, ::> (A,, C.)

11 1 “1’g -
RlZ e (Al.,’.. CZ)g
Rac 1> (Aa, Cc)g

when Rij is a logical expression specifying the relevant program characteristics
and approximate parametef setting for which the computer architecture Ai and
compiler Ci which give a good performance.

The above is one of possible ways of formulating the problem of

selecting the computer architecture and compiler structure as an inductive

task.

