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I. INTRODUCTION

A. Problem Statement

Induction is the process of creating generalized descriptions
from specific descriptions (data). When the specific descriptions
are grouped into c¢lasses then the general decriptions must
characterize each c¢lass or distinguish each class from all}the
other classes.: - To create these generalized discriptiéns,
inductive programs must be able to extract the relevant
descriptors (variables) from the descriptors in the specific
descriptions. Inductive programs like AQ/ll [Michalski and Larson
78] and ID3 [Quinlan 80] extract only those variables that are
explicitly declared in the data. A variable representing, e.g.,
the arithmetic sum of two other variables could not be extracted

by either AQ/1ll or ID3.

If generalized descriptions can be expressed using the
vﬁriables (declared in the data), their domains (the list of all
possible values for a variable) and logical operators (such as
conjunction, disjuncﬁion and negation), then an inductive program
like AQ/11 can be used to create such descriptions. If
generalized descriptions cannot be expressed in this way then a

number of’ approaches can be taken to solve the problem.



If the data do not include sufficiently relevant variables,
then new variables may be introduced, the original variables may
be remeasured with greater precision and accuracy, or arithmetic
and/or logical combinations of the original variables can be
created, and used as new, potentially more relevant variables.

The Ffirst ¢two do not require any changes in the algorithm of

induction.

The third method is performed by means of construckive
]

induction, which can be of two kinds. 1In “‘external” construcgive
i

induction (used by CONVART), variables are combined using

arithmetic (and possibly logical) operators to create new derived
variables, which then become part of the specific descriptions
that are given to the inductive machinery. In “internal”
constructive  induction, deriving new variables is done
simultaneously with the process of generating descriptions. The
operators used to generate derived variables can be very simple
like arithemtic addition or very complicated like a series of
special matematical functions. The number of ways in which
éumbers (values of variables) can be combined in this way is
virtually infinite. Therein lies the problem, which combination
is best or even which combination is sufficient to allow the

inductive machinery to create satisfactory results? This problem

is combinatorially very difficult, therefore it must be broken up



into subproblems. One such subproblem is constructing derived

variables only from time dependent variables.

Time dependent variables are used to describe a history of
changes that occurred in some process, instead of just describing
a single snapshot of a process. With each such variable there is
associated a time variable that specifies the moment at which the
value of a given variable has been recorded. This pairing of
values (between the dynamic wvariables and the time varia?le}
allows CONVART to characterize the time course of an ev%nt.
Derived-variables can be created that measure these changes. This
is what CONVART was created to do. Such derived wvariables can
then be given to an inductive machine 1like &AQ/11l. So by
preprocessing the data, constructive induction on time dependent

data can be accomplished using established inductive techniques.

B. Related Work

Constructive induction is just one of a growing number of
topics of current interest in machine learning. General theory on
learning systems and on methods of 1learning are described in
[Buchanan, et. al. 771 and [Michalski 80], There is also a

growing list of implemented inductive programs. AQ/11 ([Michalski



and Larson 78] is based on the A9 algorithm [Michalski 75b] and
creates covers of events that are grouped into several classes.
If events from only one class are available, then AQTUNI [Stepp
79] can be used. As its name implies, it too |is based on the
A9 algorithm. 1ID3 [Quinlan 80] is also a general purpose program

and uses a simle yet efficient algorithm.-

Work on learning structural descriptions includes: INDUCE
[Larson 77, Michalski 75a, Dietterich 78], SPROUTER [Hayes-Roth
78], THOTH [Vere 78] and Meta-DENDRAL [Buchanan and Fiegenbaum%?ﬂ,
Buchanan and Mitchell 78]. These methods can be compared uéing
eriteria such as method (data-driven versus model-driven),
language (syntax and operators), generalization rules {like
dropping a condition or turning a constant into a variable),
efficiency (of algorithms not of the actual implementations) and
extensibility (with regards to applications, noise immunity,
domain knownledge and constructive induction) [Dietterich and

Michalski 80]. INDUCE is the only one among these that has even a

1imited facility for constructive induction.

Among special purpose Pprograms. Meta-DENDRAL ([Buchanan and
Fiegenbaum 78, Buchanan and Mitchell 78] is the most notable.
Although it does not have a facility for constuctive induction, it

does have a sophisticated facility to transform its raw data (mass



spectra) into bond-environment descriptions. Also, there |is
ELEUSIS [Dietterich 80), which plays the card game of the same
name. It uses multiple models for induction to accomplish
sequence extrapolation where both positive and negative training

examples are available.

The program closest to CONVART is probably BACON.4 [Langely
et. al. 80]. Although it does not analyze data with time

dependent variables, it does combine wvariables mathematic%lly

(versus logically) to find constancies in the data.

Another method, besides consktructive induction, which
increases the power of inductive machines is the use of
incremental learning. Systems with incremental learning must be
able to test the rules they produce (perhaps using an expert
system) and then they must analyze the results of these tests to
see where and how improvements can be made. LEX [Mitchell 80] is
a good example of this. The improvements to such systems may not
be 1limited to changing the production rules created by induction,
but may also include improvements in the control scheme, which

governs rule selection and execution [Hayes-Roth, et. al. 80].

The use of time-dependent data in artificial intelligence is

just in its infancy. For example, RX [Blum 80] is aimed at



finding methods to discover knowledge about the time course and
treatment of long term diseases. The methods sought must be able
to handle large amounts of data, which can be both highly variable
and include missing (unknown) values. Also a formal logic
specifically designed to describe time-dependent processed has

been recently developed [McDermott 81].

Time-dependent information is also starting to be used 1in
expert systems, such as in the ventilator management programé M
[Fagan 80] for helping iron lung patients and ONCOCIN [Scott iet.
al. HPP working paper] for cancer therapy. There will be an
increasing need in the future for powerful inductive programs to
create and modify the knowledge bases for these and other expert

systems [Michie 80].

For descriptions of active research in all areas of machine
learning, there is a special issue of SIGART [Mitchell, Carbonell
and Michalski 81], which also contains an extensive bibliography.
Also, "Heuristic Programming Project 1980" created by H. HNii
provides general information on the numerous projects they are

working on.



C. Black Cutworm Damage as an Example

One problem area where constructive induction on time
dependent data is needed is predicting black cutworm (BCW) damage
to corn fields. The variables describing the damage are of two
types: static and dynamic. Static variables describe permanent
nonchanging attributes of a field, nonchanging in the sense that
for a given corn field the wvariable will only have one wvalue
during one growing season. For example, "Last Years Crop",
"Permanent  Vegetation on Field Border", "Field Slope" jand
"Fertilizer™ are all static variables, if considered over ‘one
growing season. 1In contrast, dynamic variables can have more than
one value during a single =season. Also, associated with each
value 1is a time or date when the value was recorded. So "Weed
Species", "Weed Density"” and "Cumulative Degree Days" are all
dynamic variables. (Cumulative degree days and other terminology

used in this paper are explained in the glossary.)

It is with the dynamic variables that constructive induction
is most useful and necessary for this type of problem. The static
variables already contain sufficient information and programs like
AQ/11 are capable af‘handling them. The opposite is the case for

dynamic variables. The value of a dynamic variable at an

arbitrary time is in general of very little use for distinguishing



between decision classes. For example, the weediness of a corn
field on an aribtrary date can not provide very much information
for predicting BCW damage, but the weediness on planting date or
the average weediness when BCW moths are laying eggs can give
gquite a bit of information for predicting BCW damage [Busching and

Turpin 77, Sherrod 76].

The other problem with dynamic data is that programs like
AQ/1l can only handle variables that are single vaiued. So to juse
dynamic data directly, a separate variable would have to% be
created for each value of a dynamic variable. Also, the t£m35
when the values were measured varies greatly from event to event
in BCW data, so not only would each event have a large number of
unknown values, but the value of a dynamic variable at a specific

time might be known for only a small percent of the events, thus

making the values of little use.

It should be noted that CONVART distinguishes the time
variable from all the other dynamic variables. This is because
time is assumed to always be the independent variable and the
other dynamic variables as dependent. CONVART considers time on
two scales: absolute and relative. First there is absolute time,
which uses the actual values of time found in the raw data. For

example, MINTIME is an operator that can return an absolute time:



the time at which a dynamic variable reached its minimum.
Relative time uses the same scale as absolute, but with the origin
cshifted to a data dependent time. For example, MINTIME with
respect to Planting_date, would calculate the number of days
before or after Planting _date at which a dynamic variable reached
its minimum. CONVART could be extended "to consider normalized
time, where not only is the origin shifted, but a scaling factor
is used. This could be used, for example, to make meaningful
comparisons of time between years of fast .ana siow %o:n
development. The scaling factor could be determined from iata

such as cumulative degree days data (see glossary for further

information).

It should be noted that problems which do not have time
dependent data, but do have data dependent one independent linear
variable could be given to CONVART with that independent wvariable
mapped onto the time wvariable assumed to be present by CONVART.
One conceivable area is interpretting oil well log data (which the
LOGIN project [Nii and Feigenbaum 78] hopes to accomplish). In
this problem variables are measured with respect to depth into an
o0il well, so the depth variable would be given to CONVART as a

replacement for the tjme variable.
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One other nonstandard feature of the BCW data is the presence
of a shared data set. This is weather station data where each
event applies to a number of nearby corn fields. The simplest way
of dealing with this kind of data would be to just copy the
appropriate weather station data into every event (every corn
field) in the regular data set, but this is much too inefficient
when one is dealing with large amounts of data. Therefore,
CONVART was provided with a pointer mechanism so that each regular
event (a corn field) could be connected to a singlé copy of }the
appropriate shared data event (from a weather station). Fi%ure
la. shows the structure of a single event, note that any number

of regular events could point to a single shared data event and

figure 1lb gives an example of an event.

D. A Solution

Clearly some mechanism is needed to convert the dynamic data
into a few relevant static variables that can be directly useable
by programs like AQ/1l, which take the specific descriptions
provided by each event and converts them into general descriptions
for each class of events. (Where a class might be a soybean
disease or a specific amount of BCW damage.) CONVART aims to be

just that, a mechanism for CONstructing VARiables that depend on



Speclfie Data

Shared Data

el s2 sl .81 sl s2 s3 ...s]
tl: d1 d2 d3 ...dk tl: dl d2 d3 ...dl
tz: dl d2 d3 S R tz: dl d2 d3 -uodl
t3: dl1 d2 d3 ...dk t3: dl1 d2 d3 ...dl
- L #
tm: d1 d2 d3 .dk ta: d1 d2 d3 ...dl
g - the value of a static variable
t - the time at which a set of dynamic values were measured
d - the value of a dynamic variable

Figure la. The Structure of a 5ingle Event in CONVART

Specific Data

o am ——

damage crop tillage risk index date weeds weed count
low corn plow 11 Mar 15 grass few
Mar 23 jimson gome
June 3 7 few

Shared Data

statlionname date temperature
Urbana Feb 1 32
Mar 1 43
Apr 1 66
May 1 72
Jun 1 88

Figure lb. An example of an Event

11
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Time (hence the name CONVART), i.e. it creates time-dependent

derived variables that may be useful, tests their relevancy and

then produces output in a format directly useable by AQ/11l. Also,
for CONVART to be able to successfully attack the BCW problem, it
must be able to handle real world data. This implies it must be
efficient enough to handle large amounts of data and that it must
be reasonably immune to noisy data. The pair CONVART and AQ/11l
are part of a loop (figure 2.) for incremental learning. The

elements of this loop are similar to the elements of the general

————

learning system of Buchanan et. al. [77].

—>> rules

[RULE TESTER]

raw data

Figure 2. The Incremental Learning Loop for CONVART
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After AQ/1ll has produced rules using the data prepared by
CONVART, the Rule Tester is invoked to compile statistics on rule
performance. The Rule Tester can be thought of as an expert
system run in batch mode using many known examples. Next, the
critic is used to analyze the results of the rule tester to see if
the rules need improvement. If not the loop ends, otherwise
CONVART and AQ/ll can be rerun with new directives. This loop .is
described in more detail in section II. D. In this paper, operator
refers to specific ways of creating new variables.ilike averagé or

minimum) . While der ived variable refers to spec{fic

instanciations of these combinations (like "Average Rainfall" see

figure 3.).

e R ke L ——

time of max time %f min

; max
I
RAIN 1
FALL : -==-average
I
|
§ e min
I
|

& TIME

Figure 3. Rainfall vs. Tinme
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II. METHOD

The problem that CONVART is attacking 1is certainly a very
difficult one. The combinatorics of constructive induction are
such that in general, it is impossible to search for an optimal
set of derived variables for a given problem. Therefore, only a
satisficing set can be searched for. The method used 1is quite
different than that used in Bacon.4 [Langley, Bradshaw and Simmon
80] to combine variables because CONVART is designed to haqdle
data which are not tightly controlled, i.e. in whieh %the
independent variables are not controlled by the inductive sysfem.
For example, when Bacon.4 "discovered" Ohms law (V=IR) it used
data where one, then another of the wariables was held constant
while another was wvaried in a controlled way. CONVART on the
other hand is aimed at problems where the data is not or cannot be
controlled tightly. In the BCW example it is either too costly or
impossible to control all the variables that way and so such data

is not available.

Since CONVART is producing variables and not rules, it could
be adapted to any number of inductive systems using any particular
logic system. This ggnerality is one reason for making CONVART a
separate program from the inductive machinery of AQ/1l. Since

CONVART is designed to be directly 1linked to AQ/ll, the logic
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system being used for this research is a variable valued logic,

VL, [Michalski 74]. The facilities in CONVART for attacking

problems like BCW damage are:

A.

Real World Constraints (suggestions): These are used to
suggest to CONVART which operators should be used on
which variables. Thus 1limiting the seach space of
possible operator-variable pairs.

i
Operators and Operator Types: this is a caref%lly
selected general purpose set. They create the values of

derived wvariables and thus are the backbone of CONVART.

Relevancy Measures: These are used to decide whether or
not a newly created derived variable could potentially

help discriminate one decision class from the others.

Incremental Learning: CONVART was designed to be a part
of a closed loop. The loop allows gradual improvement

and correction of the inadequacies and inaccuracies in

the system.
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E. Clustering Raw Derived Values: AQ/ll needs variables
with domains of limited size, so the values of numeric

derived variables are grouped into intervals for AQ/1l.

(CONVART was implemented in Pascal on a Cyber 175.}) Let us

look at each of these features in detail:

A. Real wWorld Canstraints

——— - —

Since it is impossible to calculate all of the combinations of
all of the wvariables, a reasonable meﬁhod of selecting which
combinations to calculate is needed. A reasonable method must
allow the use of real world knowledge, ranging from specific to
general information and simultaneously it must control the

combinatorial explosion as much as possible.

CONVART“s solution is to have two sets of suggestions:
positive and negative. The positive suggestions allow the user to
specify which derived wvariables or which types of derived
variables to calculate. The negative suggestions specify which
not to calculate, BSuggestions (either positive or negative) can

be of several types, corresponding to levels of control.
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Level 1 is the most specific. It provides a very tight
control on computation and allows specific real world knowledge to
be used. Level 1 suggestions are of the form:

specific_operator< list specific variables >
Level 1 suggestions specify to derive or not derive a particular
derived wvariable for a completely enumerated list of variables.
For example,
AVG< weed_density >

specifies that the average value of "wee&+density“-should be E{or
should not) be derived. So if the user knows exactly wﬁich
derived variables he or she needs, then level 1 suggestions are

completely adequate.

Note that operators like AVG above are vector valued and so if
more than one variable is given to them then they may produce more
than one derived wvariable. Since some operators combine the
values of several variables into one derived variable, there is
not a one to one correspondence between number of variables given
to an operator and the number of derived variables produced. For
example, the operator DYNATSTAT (the value of a dynamic wvariable
at a time given by a static variable) must be given a dynamic, a
static and the time variables to calculate the value of one

derived variable.
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I1f users always knew exactly which derived wvariables were
needed there would not be a great need for the convenience of a
program like CONVART. Therefore, more general types of
suggestions are allowed. In level 2, the user still supplies a
specific operator to use, and a list of vagiables, but a control
number is also giver.. For example:

SLOPE< 2, rainfall, temperature, degree_days >
specifies that two relevant derived variables should be searched
for. The operator used to calculate these derived vafiablesi is
the slope operator, which calculates the slope of a dyngmic
variable with respect to time. Two relevant variables means that
CONVART will calculate the slope of enough variables in the list
until it finds two that pass the relevancy test (see section II.
€c.) or until it exhausts the list. So if the slope of both
rainfall and temperature appear to be wuseful (relevant} then
CONVART stops there, otherwise it calculates the slope of
"degree_days" as well. In either case only those derived
variables that pass the relevancy tests are passed on to the
output and AQ/11. (For Negative suggestions the control number,

if present, is ignored.)

Notice that CONVART is only looking for two derived wvariables

that are adequate, not the two that are the "best". There are two

reasons for this: first CONVART was designed to find satisficing
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not optimal solutions and second (and more importantly) the
current relevancy measures are still rather crude and so the extra
calculations needed to find the two derived variables that have
the most optimal relevancy measures are not nesesarrily the "best"
derived variables. (The best derived variables are those that are
needed to create the most optimal rules, optimal with regards to
comprehensiblity, correctness, simplicity, completness or even

some problem specific criteria.)

In the next level, level 3, the list of specific variablesg is
replaced by a variable type such as nominal, linear or structuéed.
For example:

SLOPE< 2, linear >
specifies that slope should be calculated for linear variables
until 2 good slopes are found. If rainfall temperature and

degree_days (from the last example) were all of the linear dynamic

variables then

SLOPE< 2, linear >
SLOPE< 2, rainfall, temperature, degree_days >
would be equivalent if those variables were defined in that order

(with possibly some nonlinear variable definitions between them).

Level 4 suggestions allow a user to specify that a type of
operator should be tried on a specific list of variables. For

. example:
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p< 3, weed_density >
where D is the set of one arguement operators that only wuse the
values of a single dynamic variable and nothing else like the time
variable or a static variable. Average, maximum and minimum are D
cperators. The other operator types are given in the next
section. The above suggestion specifies that 3 relevant derived
variables should be found that only need the values of weeddensity
for their calculation.
i
;
Level 5 is the logical combination of levels 3 and 4:; an
operator type, an optional control number and a variable tipe.
For example:
DT< real >
specifies that all derived variables using two variables: a single
dynamic wvariable and the time variable (like the operators, slope

and intercept) should be (or not be calculated) for all the real

valued dynamic variables.

If no suggestions are given then a default list is wused (See
section III. c. on program features for details). Level four and
five suggestions have not been implemented and will not really be
needed until data ?ets with a large number of dynamic variables
are analyzed. Also, if a conflict arises between the positive and

the negative suggestions (i.e. they both specify either directly
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or indirectly the same derived variable) the conflict is resolved
in favor of the negative suggestion, as their reliablity tends to
be much greater. This greater reliablity stems from the origin of
the suggestions. Positive suggestions are initially educated
guesses, which hecome refined, while negative suggestions are
generally given only when a user or CONVART is reasonably certain
that the derived variable is irrelevant. CONVART's ablity to
provide negative suggestions is explained in section II. C. on

relevancy tests.

(o w————

B. Operators and Operator Types

For CONVART to be a powerful tool it must have a carefully
selected set of operators that it can use. This set must be able
to create derived variables that are comprehensible and that can
express a wide range of concepts. A derived variable that is some
obscure mathematical formulation with no real world
interpretation, is of no practical use. This is because any
system that would use such a derived variable (like an expert
system} would appear'to be a black box to user. Experience shows
such systems do not get wused very much because they can not

explain their results in a meaningful way to a user.
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Another way of putting it is that the derived variables must
adhere to the comprehensiblity postulate [Michalski 80] which
applied to this problem states that the set of operators should
describe the dynamic data in a conceptual and understandable way
and not merely in a numeric way. For example, if the data was
resonably linear then its slope and y intercept would characterize
it numerically. However, if it was only the x intercept that was
relevant to the problem at hand, then rules using slope and y
intercept would be needlessly complex and not very understandable.
Also, the slope and either x or y intercept, which charact%rize
the data numerically, may not be capable of characteriZingt the

data conceptually for some problems.

So although statistical methods must not be overlooked, they
can not be relied on solely. There are two ways statistical
methods can be made more comprehensible and conceptually more
powerful. The easiest way is to give each subrange of values of a
sgatistical measure a mnemonic name. For example, the select

[relative constancy of weediness = 0.98]
tells you nothing unless you know and are familiar with the method
of calculating relative constancy. If the range of its values is
[0..1] then this is a high value, but if the range is- [0..100]
then this is a low value. On the other hand the selector

[relative constancy of weediness = very constant]
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instantly tells anyone how constant weediness was. WNow of course
0.98 is much more accurate than "very constant", but for many
problems such descriptions are sufficiently precise. When the
precise definition is needed it can easily be looked up 1in the
user”s guide for CONVART. Also, if greater precision is needed
then the range of values of a derived variable could be split up
into more, smaller intervals (with perhaps some loss of
comprehensiblity if good mnemonics can not be found).
E

The second and much harder way to add to the conceptual p?wer
and comrehensiblity of statistical measures is to change an&fo:
augment them so that they derive numbers of more conceptual
content., For example, instead of trying to fit a single line to a
set of data, one could look for two lines, each of which fits the
data for one interval. Then not only can the slope and intercept
of each segment be returned, but also the time at which the data
switched from one line to the other, the length of time the data
fit each line, the average value of each of those time intervals
and so on. This in turn could be generalized to the search for an

arbitrary piecewise linear function that fits the data.

One other constraint on operators is that they must be able to
handle real world data., This means that they must be efficient,

allow data with unknown values and be as immune to noise as
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possible. Noise immunity is not just a function of the definition
of an operator, but is also dependent on the algorithm used to
calculate it. For example, to calculate the change in slope for
ideal data only the first two and the last two points (of the list
of values for an event) are needed. . Instead a much more

sophisticated method (described below) is used in CONVART.

Since the list of operators is constantly growing, a means of
organizing or classifying them is needed. If CONVART is to reqain
a general purpose utility program, the classification schieme
cannot rely on problem specific groupings, but instead should be
based on the structure of the 1list of derived variables
themselves., One such structure is based on the number and type of
arguements that an operator needs for its calculation. "Average
Weediness" and "Minimum Weediness" only need the values of a
single dynamic variable to be calculated, while a derived variable
like "Weediness on Planting Date" needs a static variable, a
dynamic variable and the time variable for its calculaﬁion. Since
average and minimum are much more similar to each other than an
operator which uses the value of a dynamic variable at a time
specified by a static variable, they are group~' together.

A shorthand notation has been developed to name each of the

possible types of operators. The type name is a string of
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letters, one for each variable needed for the calculations. 8
stands for static variables, D for dynamic variables and T for the
time variable. So SDD would be a operator type that needs a
single static variable and two dynamic variables (but not the time

variable) for its calculation. The types, currently implemented

are:

. D - those using only a single dynamic variable for their

calculation f
1
]

. DT - those using only a single dynamic variable and the

time variable

. DD - those using two dynamic variables
. SDT - those using three variables: 1 dynamic, 1 static and
the time variables

The following is the current list of derived variables for

each group.

D QOperators

*



MAX

MIN

AVG

RELCONST

MOSTCOM

LEASTCOM

26

The maximum value of a variable in one event.
The minimum value of a variable in one event.

The average value of a variable in one event.

The relative constancy of a variable.
Calculated as (2 * SD) / RANGE, where 5D is
the standard deviation of the the values 05 a
variable for one event and range is the %ize
of the domain of the wvariable (i.e. -for
numeriec variables this is the difference
between the largest and the smallest values in
the domain of the wvariable). This derived
variable has the predefined mnemonic values:
"axtremely nonconstant", "not very constant",
"somewhat constant", "very constant", and

"extremely constant”.
The most common value of a nominal variable.

The least common value of a nominal variable.
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The length of the 1longest string of equal
consecutive values from one event for a

nominal variable.
The length of the 1longest string of values

(from one event) where no two consecutive

values are equal. (for nominal wvariables)

DT Operators

\

The time when a variable attained its
minimum (TIMMIN) or maximum (TIMMAX) walue.
In the case where there is not a unique time
then either the first or last time can be
returned. (Currently only absolute time is
supported, but relative time could be easily

added.)

The variables”s values are fitted to a line
using linear regression with time as the x
axis. The intercept can be either the y or

the % intercept.
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The correlation coefficient, a standard
measure of how well the data fits a line.
This derived variable also has a predefined
domain similar to relative constancy”s.

Change in slope, an attempt is made to fit two

lines to the data. (see figure 4.)

TIHE

Change in Slope

To calculate it, the first few and the last
few data values are used to calculate
approximate 1lines, then their intersection
point is found. Since this 1is only an
approximatation the points immediately éround
the intersection point are ignored and the

rest of the points are used to calculate the
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final two slopes and intercepts. (Although an
algorithm for this has been developed it has
not been implemented yet.) The wvalues
returned are : the slopes and intercepts of
each line, the difference (change) in slope or
intercept and the values of the wvariable and
time at the intersection point. Iif
insufficient data is present then all of those
statistics will have the vélue of unkn@wn.
{Eventually the 2 will be replaced witﬂ a
parameter k so that data which fits k line

segments could be analyzed.)

A change in level is defined as a set of
values that can be split into two intervals
during each of which the values are reasonably
constant and between the interwvals the
variable changes significantly relative to the
constancy within each interval. (This
operator has not been implemented at this
time.) The walues returned are the time and
magnitude of the change and the average value

before and after (see figure 5.).
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Figure 5.

. TIMMAX-MIN
« TIMMIN-MAX

. SLOPE
. YINTERCEPT
. XINTERCEPT

Change 1in Level

on ————

The length of time between the minimum and the
maximum. For the operator TIMMAX-MIN this
time 1is negative if the maximum is first
{instead of the minimum). If the reverse is
desired then the operator TIMMIN-MAX is used.
(Currently only absolute time is supported,

but relative time could be easily added.)

DD Operators

L

Same as the D operator except that a second
dynamic variable is used in place of the time

variable.
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SDT Operators

. DYNATSTAT A static variable with the same units as the
dynamic time variable is needed. It is used
to find (or interpolate if need be) the wvalue
of a dynamic variable. For example, weediness

on planting date is such a derived variable.

. TIMEDYN=STAT The time when a dynamic wvariable equal% a
static. This is similar to the above derived
variable except that a static wvariable with
the =same domain as a dynamic variable is
needed. (This operator is not implemented and
could not be used with the BCW data, but would

add to the generality of CONVART.)

Suggestions for derived variables using shared data are given
separately from the suggestion using only the regular data and
since all of the above operators can be wused with shared data,
there is no need for a separate section of operator types for

shared data operators.

»
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C. Relevancy Measures

After CONVART has selected a derived variable and done the
caleculations for it, it still is not done. It must help AQ/11
control its computation and memory requirements by eliminating
those derived wvariables that appear to be (irrelevant. Some
derived variables are obviously irrelevant. The extreme worst
case 1is when the value of a derived variable is the same for all
the events (assuming their is more than one decision class in the
data, a derived variable that is constant cannot possibly bé of
any use in distinguishing between those classes.) The oéher
extreme is the ideal derived variable that can distinguish between
the decision classes all by itself. The latter rarely happpens,
but the former can happen often with some types of data. For
example, "cumulative degree days" is a cumulative sum so its
minimum value is always 0 and the time of the first minimum is the
same day each year, namely January 1 (that is if one is 1looking
for the first instead of the last day with the'minimum "cumulative
degree days"). 5o any relevancy test must be able to handle that
extreme case (of course the user could avoid the needless
calculation of minimum "cumulative degree days" with a negative

suggestion) .
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The first relevancy test in CONVART was designed to eliminate
the worst derived variables. It is basically a test to see if the
values for a derived variable are predominantly one value. This
can be found by a simple calculation, namely go through the list
of values (of the derived variable) and incrementing a counter
everytime the next value is significantly different from the
current one. Then if this count is too 1low the wvariable is
declared irrelevant and discarded. Two values are significantly
different if after all of the values are grouped into intervals,
{see section II. E. on clustering) the two values are in diffeéent

)
intervals. '

Although this calculation is rather simple, it does make sure
that the derived variable has at least two different values and
that both occur with some minimum frequency and. 1In practice this
simple test is actually useful. This is because when an irrelvant
derived variable gets past CONVART, it goes to AQ/ll which will
probably not use it or only use it to cover a few events and then
if the rules from AQ/ll are not good enough CONVART can be rerun
with a new set of negative suggestions for the irrelvant variables
(more on this in the next section). The biggest problem with this
measure is that it cannot distinguish between a truely relevant

derived variable and one that has jurely random values.
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Since relevancy is so important for producing high quality
rules, one fixed relevancy test is not sufficient. Ideally a
whole list of tests should be available, but that is another
project in itself. To start this list CONVART has one other, more
sophisticated relevancy test. Instead .of being based on
eliminating the worst case, it is based on, retaining the ideal
case. Recall the ideal case is when each wvalue of a derived
variable is associated with only one decision class. 1If one
calculates the average number ﬁf decision classes .per value i[cf
the derived wariable) one gets a 1.0 in the ideal case aEd a
number equal to the number of decision classes in the worst cése.
So, if the average number of decision classes per value is too
high the derived variable is potentially irrelevant and can be

discarded.

The minimum number of decision classes per value may also be a
valuable measure, although this has not been investigated. If the
minimum is a one then at least one wvalue of the wvariable is
associated with only one decision class. This would mean that the
variable could distinguish one decision class from all of the
others.

Although conceptually the average number of decision classes

is a more sophisticated test, it 1is also more dangerous as
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genuinely relevant derived variables cah be discarded. This can
happen when a derived variable is not independent of the other
variables. For example, consider a case with two decision classes
A and B, which are described by the rules:
[%=1] [m=high] v [x=2] [m=low] ::>, [class=a]
[x=2] [m=high] v [x=1) [m=low] ::> [class=B]
Given a sufficient sampling of events for both of these classes,
the variable m would have the worst possible value for the average
number of decision classes per value: 2, but M is clearlj a
relevant variable. E
The effect of noisey data is exactly opposite for the two
methods. Since noise will tend to scatter values, the count of
different values will tend to be higher making a derived variable
appear more relevant. However the same scattering of wvalues would
tend to make the average number of decision classes also higher,
thus making a derived variable appear less relevant. Perhaps
combining these measures could result in a more noise immune

measure of relevancy, although this has not been investigated.
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D. Incremental Learning

In general, the only completely reliable way to accurately
test for relevant variables like m, whose relevancy depends on
their interrelations with other variables, is to try to produce
rules using them, but producing rules is the purpose of inductive
machines like AQ/11, not CONVART. To get around this problem
incremental learning is needed. This loop 1is similar to the
incremental learning loop in LEX [Mitchell 80]. The basic cop

for incremental learning with CONVART is shown in figure 6.

o e s ok

RULE. TESTER

raw data "

Figure 6. The Incremental Learning Loop for CONVART
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The user supplies raw data and suggestions to CONVART which
calculates some potentially useful derived variables and prepares
an input file for AQ/11l. AQ/11l then uses that data to produce the
first version of a set of rules. The rules are then tested by an
expert system capable of checking production rules against known
examles, 1like the batch version of PLANT/ds [Michalski, Chilausky
80], which would be wusing data transformed by CONVART. The
statistics for rule performance are then analyzed by the critic
(which is for now human), that decides whether the rules }are
satisfactory or not. If so then the loop ends, otherwise a%new
set of suggestions is created for CONVART and the loop is repeéted
with the possible addition of new data. Errors due to inaccurate

data and sampling errors could also be found by the critiec if it

was given enough real world knowledge.

Part of this new set of suggestions has already been created
by CONVART itself. When a derived variable or list of derived
variables does not pass the relevancy test, CONVART automatically
derives negative suggestions. The critic can alsoc derive negative
suggestions by checking to see which derived wvariables were t
used or which were used to cover only a few events. The critic
could also adjust some of the parameters to CONVART or AQ/11.
BAdjusting parameters is not a trivial problem. Simple hill

climbing algoritms do not always work. Personel experience with
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AQ/11 seems to indicate that a successful algoritm might have to

use trial and error as one of its methods.

E. Clustering for AQ/11l

For CONVART to connect directly to AQ/ll it must create
variables whose domains are relatively small. (The domain size
limit of ‘the pascal implementation of AQ/1l is 58, but quite often
significantly smaller domains are completely adequate and reqqire
less computation time.) Since many of the derived variables éhat
CONVART creates are arbitrary numbers, a means of splitting up the
number line into a few intervals, (which will be the domain

elements) is needed.

To accomplish this a nearest neighbor method is employed. To
descritize an arbitrary 1list of numbers into a finite number of
levels (domain elements) the following algorithm was used:

1. Compute each numbers nearest neighbor

2. Create an ordered list of nearest neighbors (with no
pair of neighbors repeated in the list)

3. REPEAT

3.1 Remove the smallest pair from the list (these
two points are now in the same level)

3.2 Check to see if one level was extended or two
levels were merged
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3.3 Add to the list a nearest neighbor pair for the
point which is the average of the pair removed from
the list (rememeber to keep the list ordered)

UNTIL number of levels < threshold(data size)

Basically this algoritm iteratively puts data points that are
near each other in the same interval (level) and repeats until the
number of intervals is below a threshold which is a function of

the data set size (number of events in the data). This is shown

graphically in figure 7.

i
E
INTIAL VALUES |—q—p- r— —p—>
'I.i tl‘ E E
N W '
lst INTERATION | & H— N
\\\ ,"’ :
~ = 1
2nd ITERATION } St -
«———Ilst interval > Znd interval—
Figure 7. The Clustering of 4 Values into 2 Intervals

There are also control parameters which can give a more direct
control of the domain size if desired. It should also be noted
that bad values (noise) will tend to be put in separate intervals,

thus making them more visible.
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F. Summary of Method

CONVART is a program that derives variables from data that is
dependent on time. It has a suggestion taking facility that
allows it to accept real world knowledge and use that knowledge to
control its ecalculations. The calculations it does do are aimed
at describing the data in a conceptual versus a purely numerical
way. These conceptual calculations are then tested to see if
anything potentially meaningful has been discovered and if so }the
results after clustering are passed on to the induction machiéery

of AQ/11. The main loop in CONVART that accomplishes this is

shown in figure 8.

while (more suggestions) and (nbr good suggestions < threshold) do
get next suggestion (one operator and a variable)

if derived-variable 1s numerie
then cluster its values

if derived-variable is relevant
then
increment nbr good suggestions count
increment specific suggestion counter

endwhile

Figure 8. Main Calculation Loop in Deriver
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If AQ/1l1’s results prove to be inadequate then the suggestion
facility provides a natural mechanism for incremental improvement
of the results. These tools allow CONVART and AQ/ll to tackle

problems together that would be intractable for AQ/ll alone.

I1I. RESULTS

A. A Simple Example

R —

As an example to the kind of problems that CONVART was
designed for, a hypothetical problem from molecular biology was
created. A Professor had been working on isolating a recently
discovered enzyme, but his technigue was still experimental and so
his preparations were not always biologically active. To avoid
wasting a great deal of time and money on experiments with
inactive enzyme preparations he needed a reliable and cheap method
for testing his preparations for biological activity. The only
cheap method he knew of for testing this activity was an
unreliable colorimetric reaction (a chemical reaction whose
progress is marked by a gradual change of color in the reacting
solution). The rate of such reactions is directly related to thé
rate of change in color of the solution and the degree to which

the reaction went to completion is directly related to the final
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color of the solution. Unfortunately, in this case neither of
these two measures were completely adeguate to accurately predict
biological activity, except when the preparation was either very
active or very inactive. So, CONVART was called in to see if it
and AQ/1l could find a pattern in the data from the colorimetric

reaction that could accurately predict biological activity.

Each event in the data consists of a list of absorbances (a
quantitative measure of color, see the glossary) and the t?mes
when the reading were recorded, also there was the name of Ethe
technician that made the enzyme preparation and whether or not the
preparation was active (see figure 9.). The output from CONVART

for this problem is listed in appendix A.

First CONVART was run with no suggestions; so only the default
operators were applied (average, slope, y intercept, max, min, and
the time when the maximum and minum occrred). AQ/ll was then run
using CONVARTS output as data. (Derived-variables whose values
are absorbances have been given the mnemonic wvalue set: low,
medium-low, medium-high, and high. The precise definition of
these values depends on the particular derived wvariable.) The
resulting rules were: (The values for y intercept of absorbance,

which are pure numbers with no units, where intentionally left as

numbers.)



Static Data Dynamic Data
preparation technician - minutes absorbance
active Stepp 0.5 0.2
1.0 1.1
1.5 2.3
2 3.5
2.5 4.4
3 5.6

(absorbance has no units.)

Figure 9.

One Event for the Enzyme Activity Example

I

[maximum absorbance > medium-high]
[time of maximum absorbance < 6 min.]
v
[average absorbance = high]
[slope of absorbance = low]

::> [preparation = active]

[average absorbance = high]

[y intercept of absorbance > 0,522]
v

[average absorbance < medium]

[y intercept of absorbance < -0.81]
v

[average absorbance = high]

[y intercept of absorbance < -0.35]

*::> [preparation = inactive]

To obtain these results CONVART used 0.37 seconds

of

43

central
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processor time (cp secs.) and 1Bk sixty bit words of central
memory (cm) and AQ/1l used 0.26 cp secs. and 32k cm. These and

all other results in this paper were run on a Cyber 175 computer.

Although these rules are not bad, the biologists were not
completely satisfied, because the negative absorbances calculated
for the "y intercept of absorbance” had no meaning to them.
Therefore CONVART was run again with a suggestion to calculate the
% intercept of the 1line for absorbance versus. time. The x
intercept corresponds to the time when there was zero absorbénce
which is also the time when the reaction actually started I'!’(EIS
opposed to time 0 which is when the measurement of time began in
the experiment). The time of the start of the reaction did not
correspond to the time when the clock was started because the
reacting solutions had to be incubated for a fixed period of time
before inserting them into the spectrometer (a device that
measures absorbances) and so the reaction might start before or
after the incubation period was over. (Biology, like artificial
intelligence, is not an exact science.) The results this time
were:

[maximum absorbance > medium high]
[time of maximum ahsﬁrbance < 6 min.]

[x intercept of absorbance > -0.58 min.]
[slope of absorbance < 1,14]

::> [preparation = active]
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[x intercept of absorbance < -0.58 min.]
[slope of absorbance < medium=highl]

v
[x intercept of absorbance 2 0.32 min.]
[slope of absorbance < medium~highl

13> [prepacation = inactivel

(the processor time and central memory used were similar to those

for the first set of rules.)

These rules were much more pleasing to the biologists as there
was a natural jinterpretation for all of the derived variables:
maximum absorbance relates to how close to completion the reaétion
went, the time of this maximum is the time it took EGE the
reaction to ocCur, the x intercept of absorbance is the time when
the reaction actually started (and not when the clock was started)
and the slope of absorbance is the rate (how fast) the reaction
occurred. However, there was still one problem: if a set of
measurements for a preparation yielded an X intercept over 0.32

min. and a low slope then the second complex of both rules would

be satisfied and so the preparations activity would not be known.

This problem Was easily solved by rerunning just AQ/11
(without rerunning CONVART) with the mode set for disjoint covers,
instead of intersecting covers. (When AQ/11”’s mode 1S set for
intersecting covers the complexes for more than one rule are

allowed to cover don”t care events (i.e. events not in the data
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set), while the opposite is true if the mode is set for disjoint

(non overlapping covers). With the change in mode the final set

of rules were created:

[slope of absorbance > medium-high]
v
[x intercept of absorbance = -0.58 to 0.32 min.]

:1> [preparation = active]

[x intercept of absorbance < -0.58 min.]
[slope of absorbance < medium-high]

v
[%# intercept of absorbance > 0.32 min.]
[slope of absorbance < medium~high]

o —

::> [preparation = inactive]

This time AQ/1ll only used 0.18 cp secs. (as opposed to 0.26
for the first set of rules). The central memory needed was about

the same.

These rules are clearly superior to the previous ones with
respect to simplicity: only two derived variables, slope and x
intercept, are needed to determine the biological activity of a
preparation. The technicians were also happy as none of them were

agsociated with the inactive preparations.

These rules have a simple interpretation: if the rate of the
reaction 1is fast enough (slope > medium-high) or if the reaction

started during a prescribed time period (x intercept = -0.58 to
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0.32 min.) then the preparation was active, otherwise the
preparation was not active. The creatation of these rules shows
how CONVART and AQ/ll can incrementally generate and refine a set
of production rules, although admittedly this was a simple problem

of this process.

B. Black Cutworm Damage Examples

Predicting black cutworm (BCW) damage 1is a very diffiéult
problem. Expert entomologists have yet to find a satisfacéory
solution. [Busching and Turpin 77]. The expert”s models are
still very sketchy. They are not sure that they know what all of
the relevant descriptors are and quantitative analysis of their

ideas has just begun.

In the available data there are both static and dynamic
variables for each corn field and a single dynamic variable from
weather data (shared data). The static variables describing corn

fields are:

Field History Variables

. Previous Crop - the crop grown in the field the year before.
Its values have been grouped into three categories:
corn, soybeans and other.
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Cutworm History - describes past damage to the field (Ideally
this would be a dynamic variable with values for the
past several years, but even as a static value its value
was seldom recorded.

Field Characteristic Variables

Permanent Vegetation - indicates the presence or absence of
permanent plant growth adjacent: to the field.

Border Water - indicates the presence or absence of a body of
water adjacent to the field.

Direction of Slope - The direction (north, south, ete.) of the

slant of the field. i
Surface - describes the fields surface contours. Eg. flati or
rolling. :

Field Treatment Variables

Fall Tillage — the type of plowing that was done to the field at
the end of the previous growing season.

Spring Tillage - the type of plowing that was done to the field
just before the beginning of the current growing season.

Spring Tillage Date - the time of spring tillage. This variable
was not available for any of the events.

Manure - indicates whether or not manure (animal feces) was
applied to the field.

Fertilizer - specifies which chemical fertilizer (if any) was
used. Its wvalues were grouped into three types: none,
anhydrous (ammonia), and other.

Insecticide - specifies what insecticides (if any) were used.

The groups for its values are: none, seed treatment, old
gsoil and new soil.

Corn Planting Variables

Planting Date - the julian date when the corn was planted.
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Planting Rate - the measure of how many seeds were planted in a
given area.

Miscellaneous Variables

. Risk Index - this is a derived variable that the entomologists
supplied. Its calculation is based on a model for
determining how well synchronized the developments are
of the black cutworm and corn.

. Moth Flight - the date on which the maximum number of moths
where laying eggs in the fields. This can be estimated
using counts from scented moth traps placed 1in the
fields. This variable was not available for almost all

of the data.

The dynamic variables for describing corn fields are:

e ——

Weed Variables

. Weed Species - gives a list of the specific types of weeds that
were present over the course of the growing season.

. Weed Density - gives-a list of the number of plants for each of
the weedspecies given in weed species.

Developmental Variables

. Corn Height - records how tall the average corn plant was on a
particular date. This was not available for most of the
data.

. BCW Population - a count of the number of BCW larvae present.
This was not present in almost all of the data

The single shared variable was:

A Weather Variable

. Cumulative Degree Days - this is weather station data, which
provides a measure for plant and animal development
rates. (see the glossary for further details).
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The first observation that can be made is that there are not
many dynamic variables available. This limits (to some extent)
the number of derived wvariables that CONVART can construct.
However, the real 1limitation was the amount of dynamic data in
most of the data. Remember that dynamic variables can have any
number of wvalues for a single event and in general, as the number
of values goes up so does CONVART's ablity to accurately
characterize an event. Unfortunately, the average number of
values per event for weed species and weed density was less %han
three wvalues each and the maximum number was six for all iata
recorded before 1980, The 1980 data was significantly better in
this respect, but there were only 24 events available from 1980 as

opposed to well over 300 events from previous years (1976-1978).

Inorder to get reasonable results, data that has a sufficient
amount of information in it is needed. The small 1980 data set
meets this requireﬁent and the results from analyzing it will be
presented later in the section: An Example With Real World Data.
However, since there was so much data from the previous years, an
attemp was made to analyze it. After initial attempts failed, it
was realized that the data did not contain sufficient information.
Therefore, some infarqation was artifically added to the data from

one year to see how CONVART would do on a larger set of data.
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An Idealized Example

The data used in this example was created by starting with the
actual data set for 1977. This data had over 20% of its wvalues
missing, and the holes in the data were filled in with wvalues that
were consistent with the models of the entomologists. The 53
events from 1977 were chosen because the data from all of the
other years (except 1980) had an even higher percentage of missing
values. None of the values that were already in the data set pere
changed, so the data is still about B0% real data. Also, no%new

variables were added. See appendix B, to see output from CONVART

for this data.

Besides the default derived variables several .other derived

variables were generated. The list includes:

. most common group of weed species

. least common group of weed species

. number equal consecutive values of weed species

. weed density at planting date

. cumulative degree days at planting date
These derived variables and the defaults (such as average and
maximum) were calculated in 6.0 cp seconds and required 204k words
of memory. (the size of these numbers is due to the large number
.of dynamic values for, cdd (18l) for each event.) The final set of
rules were calculated by AQ/1ll in 1.6 cp seconds and required 100k

words of memory. Two decision classes were used: damage predicted
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or not predicted, where damage is when 25% or more of a corn field

was cut (damaged) by the black cutworm larvae.

The idealized rules were created fairly quickly as known

regularities had been added to the data. The final rules for the

idealized data set are:

[risk index = 10 to 19]
[maximum weed density = low]
v
[most commmon weed species group 1
# other broadleaf or weedkill]
[average weed density = low]
v
[planting date < 119]
[most common weed species group # weedkill]
[cumulative degree days x intercept = 43.5 to 44.3]
v
[fall tillage = none, plow]
[most common weed species group # other broadleaf]
[weed density on planting date = low]
[average weeddensity = low] [minimum weed density = low]

oo — 4

::> [damage = less than 25% cut predicted]

[maximum weed_densityity = medium to high]
([average weed density = medium to high]
([cumulative degree days x intercept > 44.35]
v
[planting date > April 30])
v

[most common weed species group = other broadleaf]
([cumulative degree days x intercep < 42.9]

v
[planting date > April 30])

v

[most common weed species group = weedkill]
[weed density on planting date = medium to high])

v
[risk index > 20)([fall tillage = reduced)
[most common weed species = weedkill]

v
[most common weed species = other boadleaf]
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[cumulative degree days x intercept < 42.91])

::> [damage = over 25% cut predicted]

These rules created from partially real and partially hypothetical
data, express ideas similar to those in the models of the experts
{the entomoleogists). For example, "Risk Index" is low for no
predicted damage and high when damage is predicted. Also, the
"Weed Density" measures of maximum and average are always low for
no damage and medium to high when damage is predicted, and later
"planting Dates" were associated with damage. The latter could be
due to synchronization: by planting later one gives the cutw%rms
more time to develop and they are larger and so can cause ﬁore
damage when the corn is susceptible. Both weedkill and other
broadleafs were associated with damage and could be due to the
attractivines of low dense growth forms to egg laying moths.
(weedkill are weeds that are in the process of dying from
cultivation or herbicides so their value as a long term habitat

for the developing larvae is questionable.)

An Example With Real Data

The data used in this examle was collected in Illinois by the
section of Economic Fntomalcgy of the Natual History Survey. The
24 events from 1980 were analyzed without any changes. No missing

values were filled in, although one approximation was made: the
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cumulative degree days data for the ten events (farms) near the
Rochelle weather station were missing; so the weather station data

from Mount Carrol, which is reasonably nearby, was used.

Due to the prevalence of low damage events in this data, the
dividing 1line between damage and no damage was lowered [from

down to 5%. Otherwise, the variable definitions for this and the
previous example were almost identical.
i

The "best” set of rules was obtained after five iterationsE of
generating derived variables with CONVART and creating rules ;ith
AQ/11. The rule testing could not be done due to lack of data; =0
the critiec (the author) based its analysis of the rules on two
criteria: 1} brevity, the fewest number of complexes and selectors
was desired and 2) semantics, rules that had a meaningful real

world interpretation were sought. These rules are:
[count changes of weed species < 10]
[most common group of weed species = weedkill]
[time of first minimum weed density = before June 10th]
[cumulative degree days on planting date < 864.65]
v
[most common group of weed species # weedkill]
[average weed density > 42.1 weeds / square meter]
' v
[premanent vegetation on field border > 50%)
[cumulative degree days on planting date < 864.65]

¥ ‘[damage = less than 5% cut predicted]

[time of first maximum weed denstiy = before April 5th
- or after June Tth]

[cumulative degree days on planting date > 864.5]
v
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[permanent vegetation on field border < 50%])
[count changes of weed species = 0 or 1 or 3 or
at least 10]
:1> [damage = over 5% cut predicted]
These rules required 3.0 seconds and 40.5k of 60 bit words of
memory for CONVART and 1.6 seconds and 33k words for AQ/ll on the

Cyber 175.

There are a number of interesting concepts in these rules.
The First complex covers 13 of the 16 no damage events. The first
selector of this complex states that if one examines the list{ of
weed species observered over time for one field, and a couné is
made of the number of times two successive values are differenty,
then this count will be less than 10. This could mean either that
the groups of weed species observed were mostly of one type O
that Ffewer than 10 observations of weeds were made in the no
damage fields. The next selector states that the most common
(most often observed) group of weed species was not "weedkill".
" This means that the types of weeds present in. a field are not
important if those weeds are not dying ("weedkill" weeds are those
that are in the process of dying). The third selector states that
the first minimum weed density occurred before June 10th, and the
last selector of the First complex states that the cummulative
degree days on planting date is below the 864 mark. These last
two selectors may be related to the synchronization (or lack

thereof) of BCW larva and corn development.
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The second complex describing no damage fields covered 2
events. it states that the most common group of weeds was any
group except "weedkill" and that the average weed density was
high. This is counter intuitive, since a large density of healthy

(not dying) weeds could foster BCW larva development.

The last complex describing no damage fields states that there
was a high percentage of permanent vegetation surrounding the
field and the cumulative degree days on planting .date was }ow.
The high percentage of field border containing vegetation m%ght
lure the BCW moths away from the field and the 1low cdd measure
could be interpreted as saying that not enough heat had flowed
into the field to allow the BCW larva to develop fast enough to

damage corn,

Both complexes describing damaged corn fields covered half of
the eight events in that class. The first complex states.that the
first maximum weed density occurred either early or late in the
season and that there was a high amount of cumulative degree days
by the time when the corn was planted. The other complex states
that there was a low percentage of the field border with permanent
vegetation and that the number of times the weed species changed

in the field was either low or high.
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Since only a few events were analyzed, deep insights into this
complex problem can not be expected. Still, there is one very
striking (and to the author wvery satisfying) feature to these
rules: permanent vegetation was the only static variable used in
the rules and it was only used twice. All of the other wvariables
were derived wvariables created by CONVART! This would seem to
indicate that most of the static variables are not relevant to the
problem. This also justifies the claim that the shortage of
dynamic values in the larger data sets was the reason why tyeir

analysis was a failure. i

Since this was just a preliminary analysis of the BCW problem,
it is important to identify any shortcomings so that they may be
corrected in the future. Most importantly, it appears that
detailed histories of weed populations for a large set of data
must be acquired, as all but one of the complexes in the rules
used a variable derived from this data. Also, data for variables
like moth flight dates and spring tillage dates, which were not
available, could be quite useful; so it is recommended that such
data be collected., Once this is done, more elaborate operakors
could be used to measure such values as relative constancy of weed
density from moth flight date to planting date or the net increase
in cumulative degree days for that same period. (At this time

such operators have not been implemented, but they could be easily
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added to CONVART.) Such enrichments to the data may make it
possible for CONVART and AQ/1l to find some deep insights into the

BCW problem.

C. CONVART Program Features

No matter how powerful CONVART is made, it still would not be

a useful tool if it was hard to use. Therefore, a number of
) i
features have been added to make it pleasant and easy to use ;and

]
to help explain what it has done. First for the naive user, there
are defaults for all of the parameters which can be overridden as
needed. The default suggestions are:

Mostcom< nominal >
Leastcom< nominal >
Average< linear
Slope< linear
Intercept< linear
Min< linear

Max< linear
lstmintime< linear
lstmaxtime< linear

WOW W W VN Y

Since most of the work in using CONVART or AQ/11 is in file
preparation, special attention was given to that. AQ/l1l, which is
an older program, reguires that one counts such quantities as the
number of: variableg, decision classes, levels per variable and
several others. Clearly, a better way to interface with users is

needed.  CONVART was written with the philosophy that computers
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are much better at counting than people and so they should do the
counting whenever possible. Therefore, CONVART does not ask the
user to count anything, and it does all the counting that is
needed for AQ/1ll, including encoding all the values in the data as
integral levels. Also, AQ/1l requires events that are sorted by
decision c¢lass, while CONVART does not require this. Therefore
CONVART sorts the events before writing them out. Not only does
CONVART create the data file for AQ/11, but it also creates a
trans file that AQ/1l uses to give names to the variables iand
their values. For the static variables this is simply a matte? of
copying the definitions given to CONVART, while for the deraved
variables the names must be created for the wvariables and
sometimes for their values. To make numeric levels as readable as

possible, scientific notation is only used for very large numbers

and for reals, zero fractional parts are never printed.

The input to CONVART is all free format so the user never has
to  worry about columns or line boundaries. All events,
suggestions and variable declarations start with the syntactic
marker “1°. This allows the usér to insert a title of any lenath
at the start of any input file as long as it does not have ny
"1e . 1 As far as limits are concerned, CONVART hi: no
inherent limit on the number of variables, the number of wvalues

for any variable, or the number of events except the limits
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imposed by the physical machine. Also, all input is in human
readable form wversus the integer encoded data of AQ/ll. CONVART
also allows events with an arbitrary number of values for dynamic

variables (and of course one never has to count how many there

are) .

If the data does have counts of how many dynamic values there
are for each event, CONVART can handle that as well, All that is
needed is to declare the count variable as a. non-applicable
variable (in the wvariable declaration file) and it will nn& be
passed on to AQ/1l. For that matter, any static variable cani be
declared non-applicable to prevent it from being passed on to
AQ/11. Another non-standard variable type is the key variable
type. This is used to tell CONVART which variables are to be used
to link the regular data to the shared data via a correspondence
table supplied by the user. (Key variable”s values are not passed

to AQ/1ll either.) CONVART also supports the value of unknown for

all variables including all derived variables.

When CONVART has completed its calculations it produces a data
file for AQ/ll, but since all the values in that file are encoded
as integers, its hard to tell directly what CONVART has done.

Therefore, a text version of the data file can be created by

CONVART which looks like the input data file except that the
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dynamic variable”s values are replaced by derived variable’s
values, all the numeric data is rounded off to the level assigned
to it (because that is the value that AQ/11l will be given) and the
ﬁon—applicable and key variables are surrounded by square brackets

to signify that they were not put in the data file for AQ/ll.

There are still two other output files for CONVART, one is a
debug file which can be filled with a variable amount of details
and intermediate results; so all of CONVART s results cani be
checked easily. The other 1is an error message file to wﬁich

CONVART prints messages when it finds anything is wrong, 1like it

was given a derived variable name it does not know about.

Lastly, if a user wants to define his own derived variable, he
can write an external pascal procedure that CONVART will call to
do the calculations. This means that new derived variables can be

added and debugged without changing or recompiling CONVART.
IV. CONCLUSION
Constructive induction is clearly needed to do meaningful

inductive inference on low grade time dependent data. CONVART is

program designed to deal with this problem in a natural,



62

incremental way that does not ignore valuable real world knowledge
and produces comprehensible results. Although to get truely
meaningful results, it must be given data that has a sufficient
amount of information in it. Since CONVART was designed to handle
real world problems with real world amounts of data, it was made

efficient, easy to use and able to handle large amounts of data.
Possible Extensions:

I
. To add constructive induction on static variables alone. ?his
i
would allow the output text data file to be used as input to
CONVART, thus enabling it to create derived variables of

derived wvariables.

. To add more operators. Although a complete 1list would be

infinite, more could always be added as external procedures.
. To use normalized time and improve the relative time operators.

. To develop a more elaborate control structure for suggestions

with a cost for each operator and each input variable.

L

. To add new relevancy tests.
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. To implement the Critic as a computer program to close the
incremental learning loop. Although difficult this might be

a very interesting and fruitful project.

Lo —
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VI. GLOSSARY

absorbance - a measure of the percent of light that is absorbed by
an object (like a test tube filled with a chemical

solution). A reading of 0 means the object is perfectly
transparent and a reading of infinity means the object is
opaque (assuming reflection is ignored). Usually

absorbance 1is measured a specific wavelength (color) of
light. Negative absorbances have no meaning.

AQ/ll - a computer program that performs inductive inference and
produces rules 1in a variable-valued logic: le [Michalski
and Larson 78].
!
BCW - an abbreviation for black cutworm, an insect that dam1ges
crop plants like corn. |

cdd - an abbreviation for cumulative degree days.

colorimetric reaction - a chemical reaction whose rate (speed at
which reactants become products) can be measured be a
change in color of the reacting solution. The degree to
completion (percent of reactants that became products) is
directly related to the finaly color of the solution.

cumulative degree days: is a measure of the total amount of energy
useful for plant of animal development for the current
season. It is usually measured by averaging the minimum
and maximum daily temperature, subtracting a threshold
temperature and adding the result to a running total. The
threshold temperature is used because temperatures below a
certain level do not contribute to plant or animal
development. So by using a proper threshold, cumulative
degree days become a reasonable measure of how far a <z2rop
or insect pest should have developed. Of course there are
other factors too like planting date, amount of rainfall,
etc. but the main point is that it is a useful statistic.

derived variahle = a variable whose value is calculated by
combining the values of one or more other variables,
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generally this means using raw data values to create a new
variable.

clustering - (for this paper, only one type of clustering is
considered) the process were by a arbitrary list of numbers
is split into groups (intervals) so that the numbers
relatively close to each other are in the same group. This
is similar to what teachers do when they split up numeric
test scores into letter grades except here the number of
intervals (grades) is not initially known.

dynamic variable - a variable whose value changes over time and so
can have more than one value for one event. Also, each
value of it must be associated with a time or date when the
value was measured. i

event - a specific example or description for a given proélem
giving the wvalues of all the variables. i.e. the single
values for all the static variables, an arbitraryily long
list of values and times for all the dynamic variables and
possibly additional static and dynamic values from a sharad
data set 1f thes is one. The wvalue of unknown if by
definition a part of the domain of all variables. (see
also shared data).

induction - for this paper it is sufficient to define induction as
the process of creating a few general descriptions
(production rules) from many specific descriptions
(events) .,

operator - a method for combining raw values into a new wvalue such
as averaging, finding the minimum wvalue or any other
mathematical or logical combination of values.

relevancy - that which pertains and is useful to the problem at

hand.. a derived wariable is relevant 1if it can help
distinguish beftween decision classes.

shared data - a collection of events associated with another set
of events where every shared event is actually a part of
one or more events in the other set. For example, weather
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station data is shared (and 1is apart of) the events
describing fields around each station.

static variable - a variable whose walue does not change over the
period of time during which the values of an event are
measured. Such variables can only have one value per
event.

suggestion - a means of telling CONVART which variables should be
created (a positive suggestion) or which variables should
not be created (a negative suggestion).

tillage - the practice of loosening the soil of a field before
planting crops. Plowing is the most disruptive of the soil
as it turns it over. Other types such as disc or chiisel
plow merely cut the soil leaving much more vegetatioh on
top of the soil, which helps prevent erosion, but attrpcts
egg laying BCW moths.

1

time - a special wvariable to CONVART which 1is always an
independent variable that gives the time (in any units)
when a dynamic variable was measured. Therefore derived
variables like average<time> are never created.
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APPENDICES

A. Output from the Enzyme Activity Example

The Transformed Data in Text Form

7l

Prep Tech ¥-Inter Slope Y-Inter Max MaxTim Min
!

ACTIVE STEPP 0.32 1.8 <«-0.81 5.05 <6 d%.5
ACTIVE ? -0.58 €l.1 -0.0014 3.45 <6 6.5
ACTIVE BOULANGER 0.22 2.5 -0.81 5.05 <6 0.9
ACTIVE 0“RORKE 0.22 Twk -0.35 5.05 <6 <0.5
ACTIVE DAVIS -0.086 2.5 -0.35 5.05 <6 1.1
INACTIVE BOULANGER <-0.58 <l.1 0,52 B.15 8.5 1.}
INACTIVE O-RORKE 0.32 1.1 -0.81 3.45 <6 <0.5
INACTIVE  DAVIS 0.32 1.1 -0.81  <3.45 <6  <0.5
INACTIVE  STEPP 0.32 1.1 -0.81 8.15 6 <0.5
Abbreviations:

Prep - Prepara?ian Tech =~ Techniecian

X=Inter = X Intercept Slope - of Absorbance vs. Time

¥Y-Inter - ¥ Intercept Max - Maximum Absorbance

MaxTim = Time of Maximum Min = Minimum Absorbance



The Transformed Data as Integers for

Nv=7 NCL=2 NEVE=% MNPASS5=2 ®
*

TRANS="1"B OPT="0"B CPXEV="0"B GEN="0"B ; *
*

1 “F”° 1 *

*

4 5 4 5 4 3 4 *

#*

5 4 *

*

0 0 *

*

0.50 1.00 *
*

0 4 2 0 2 0 0 *
-1 1 0 3 1 0 1 *
1 3 3 1 2 0 2 *

2 3 1 2 2 0 0 *

3 2 3 2 2 0 3 *

1 0 0 4 3 2 3 *

2 4 1l 1 1 0 0 *

3 4 1 1 0 0 Q *

0 4 1 1 3 1 0 *

72

AQ/11

AD/SLL
Parameters
NWominal Variable
Levels / Varia%le
Events / Clasa{
of Input Formula
of Events / Pass
The First Event
{each line
is one
event)

(-1 represents
unknown)



The Variable peclaration File for AQ/1ll

ACTIVE
INACTIVE

TECHNICIAN
STEPP
BOULANGER
0-RORKE
DAVIS

¥-INTERCEPT OF ABSORBANCE
< =-0.58
-0.58
-0.086
0.22
0.32

SLOPE OF ABSORBAHNCE
< 1.1

B b
o

-
®
Ll

Y-INTERCEPT OF ABSORBANCE
< =0,80
-0.80
-0,35
~-0,0014
0.52

MAXIMUM ABSORBANCE
< 3.45
3.45
5.05
8.15

MAXTIME OF ABSORBANCE
< 6
6
8.5

MINIMUM OF ABSORBANCE
< 0.5

oo
= Dun

- =

1o S

73
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B. Output from the Idlealized BCW Data

The Transformed Data in Text Form

Each Column is One Event. The events are not numbered as there is
no need for any numbering with CONVART. The Names for Variables 0
to 27 are listed below under the heading: Variable Decalaration
Pile For AQ/l1l., vVvariable 0 is the decisions class, variables 1 -
12 are static variables copied directly from input to CONVART and
variables 13 - 27 are derived variables created by CONVART.

s - are static wvariables
d$# - are derived variables

Variable :
Number Events }

S ———————————— e Sl f bl

s0. no damage nodamage nodamage no damage
sl. [HELMS] [WENMZEL] [50LT] [FAMS]
s2. [77] [771 [77] [77]
s3. BEANS OTHER OTHER BEANS
sd. YES YES YES NO
s5. [NO] [NO] [NO] [YES]
s6. [LEV] [ROL] [ROL] [BLD]
57. REDUCED PLOW PLOW REDUCED
sB. REDUCED REDUCED REDUCED REDUCED
s9, [COUNTER] [COUNTER] [NONE] [YES]
s10. 110 110 110 110

gll, 15 20 20 15

sl2. [6] [3] [2] [3]

dl3. OTHERBROAD WEEDS WEERS GRASS

dl4. OTHERBROAD WEEDKILL WEEDS WEEDKILL

d15. 1 1 2 1

dl6e. LOW LOW LOW LOW

dl7. LOW LOW LOwW LOW

dlg. -0.005244 -0.005244 -0.005244 -0,005244

dl9. -0.2671 -0.2671 -0.2671 -0.,2671

d20. LOW LOwW LOW LOW

dz2l. 79 79 79 79

dz22, LOW LOW LOW LOW

d23. B3 83 83 83

d24, 462.14 i 7 ?

d25. 9.7228 ? ? ?

d26, -432.48 ? ? 7

d27. 1866.5 ? ? ?
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S kS S N S S

s0. no damage
sl. [HERTER]

s2. [77]
s3. OTHER
sd. YES
s5. [NO]
56. [ROL]
s7. NONE

s8. REDUCED
59. [COUNTER]

s10. 110
s11. 20
sl2. [3]

dl3. OTHERBROAD
dl4. OTHERBROAD

dl5. 2

dle. LOW
dl7. HIGH
dl8. < -0.01915
dlo. 2.4486
d20, HIGH
d2l. 79
d22, LOW
d23. 111
dz24. 400.81
d25, 8.6695

d26. -389.36
d27. 1668.7

nodamage
[SCHLEU]
[77]
OTHER
YES

[NO]
[ROL]
NONE
NONE
[NONE]
135

0

[3]
GRMSS
LEGUME
1

LOW

LOW
-0.005244
-0.2671
LOW

79

LOW

83

?

= ) mg

nodamage
[CARROL]
B
CORN

NO

[NO]
[BLD]
NONE
REDUCED
[COUNTER]
120

20

[31]
GRASS
OTHERBROAD
2

LOW

Low
-0.005244
-0.2671
LOW

79

LOW

83
387.40
§.4074
-389.36
1668.7

no damage
[WIEBUR]
[77]
BEANS

NO

[YES]
[BLD]
PLOW
REDUCED
[PDIAZINON]
0

15

(2]

GRASS
GRASS

2

Low

LOwW

T —_

s0. no damage
sl, [HISSOHN]
s2. [77]

s3. BEANS

sd. YES

s5. [YES]

s6. [LEV]

s7. PLOW

s8. REDUCED
s9. [COUNTER]

s10, 100
sll, 20
s1l2. [2]
dl3. GRASS
dl4. GRASS
dls. 2

dlée. LOW

nodamage
[DALTON]
[77]
CORN
YES
[YES]
[ROL]
NONE
PLOW
[COUNTER]
110
20
[2]
GRASS
GRASS
2
LowW

nodamage
[LIGHTL]
[77]
CORN
YES

[NO]
[ROL]
NONE
PLOW
[FURADAN]
135

0

(3]
WEEDKILL
WEEDKILL
2

LOW

no damage
[POE]

[77]

CORN

NO

[YES]
[BLD]
PLOW
REDUCED
éCDUﬂTER]

0

[2]
GRASS
GRASS
2

LOW



dl7. LOW
dls. -0.005244
dl9. -0.2671
d20. LOW
d21. 79

d22. LOW
d23. 83

d24. 419.44
d25. 9.0333
d26, -422.66
d27. 1729.7%

LOW
-0.01419
1.7245
HIGH

79

LOW

117
387.40
8.4074
-402.51
1635.2

LOW
-0.005244
-0.2671
LOW

79

Low

B3
?

I

76

LOW

?

7

LOW

79

LOW

83
361.48
7.9621
-378.39
1561.7

I ———————————————————pe P R B
S ——————

s0. no damage
sl. [WIRTH]
s2. [77]

s3. BEANS

s4. NO

s5. [NO]

s6. [LEV]

87. REDUCED
s8. REDUCED
89, [DIAZINON]
10, 135

s11, 0
sl2. [4]

dl3. WEEDKILL
dl4, OTHERBROAD

dls, 1
dle. LOW
dl7. LowW

d18. -0.005244
d19. -0.2671

dz20. LOW
d21l. 79

d22. LOW
d23. 83

dz24., 419.44
d25. 9.0333
d26. -422.66
dz27. 1729.7

nodamage
[JEFFCO]
ti7]
OTHER
YES

[NO]
[LEV]
NONE
PLOW
[DIAZINON]
110

20

(2]
GRASS
GRASS

2

LOW

LOW

2

?

LOW

79

LOW

83

2?

v ISV LY

nodamage
[DASCHE]
[77]
OTHER
NO

[YES]
[BLD])
NONE
PLOW
[COUNTER]
120

20

[2]
GRASS
GRASS

1

LOW

LOW

no damage
[ THOREN]
[77]
OTHER

YES

[NO]

[ROL]
NONE

PLOW
[COUNTER]
120

20

(5]
WEEDKILL
WINTER_ANN
2

LOW

LOW
-0.005244
-0.2671
LOW

79

LOW

83

e S—rl

=) =) n) =)

R —————————————pS e

s0. no damage
sl. [PATTER]
s2, [77]

s3. OTHER

nodamage
[BUNSEL]
[77]
CORN

nodamage
[LEIGH]
[77]
CORN

no damage
[BEELER]
[77]

CORN



sd.
s5.
56.

s7.

sB.

s9.
s10.
sll.
sl2.
dl3.
dl'qf
dls.
dl6.
dl7.
dls.
dl9.
d20.
dz2l.
az22.
d23.
dz24.
d25.
dze.
d27.

e
[EE———————————P PR T e b

YES
[NO]
[ROL]
NOME
PLOW
[COUNTER])
120
20
(2]
GRASS
GRASS
1
LOW
LOW
?
'y
LOW
79

no damage
[GUSTAF]
[77]
BEANS

NO

[NO]

[ROL]

. REDUCED

REDUCED
[THIMIT]
110

20

(2]
GRASS
GRASS

1

LOW
LOW

?

?

LOoW

79

NO
[MO]
[LEV]
PLOW
REDUCED
[FURADAN]
110
20
[71
OTHERBROAD
WINTER_ANN
2
LOW
LowW
~0.012086
1.2443
HIGH
79
LOW
83
400,81
B.6695
-389.36
1668.7

nodamage
[WINKEL]
(77}
BEANS
NO

[NO)
[LEV]
REDUCED
REDUCED
[THIMIT)
110

20

(2]
GRASS
GRASS

2

LOW

LOwW

?

7

LOwW

79

NO

[wO]

[LEV]

PLOW
RENUCED
[COUNTER]
120

15

[4] :
OTHERBROAD
OTHERBROAD
2

LOW

LOW
-0.,005244
-0.2671
LOW

79

LOwW

83

< 255,09

< 5,7981
-264.98
1257.4

nodamage
[FRICKE]
[77]
CORN

NO

[YES]
[BLD]
NONE
REDUCED
[COUNTER]
135

0

(5]
WEEDKILL
OTHERBROAD
2

LOW

LOW
-0.01915
1.7245
HIGH

79

YES

[YES]

[BLD]

PLOW
REDUCED
[COUNTER]
100

15

[4]
OTHERBROAD
OTHERBROAD
2

LOW

LOW
-0.005244
-0.2671
LOW

79

LOW

83

2

w) md ) e

no damage
[JOHNSO]
[77])
CORN
YES
[YES]
[ROL]
REDUCED
REDUCED
[COUNTER]
135

0

[2]
GRASS
GRASS

2

LOwW

LOW

?

?

LOW

79

17



d22, LOW
d23. 83
d24. ?
d2s5, ?
d2e, ?
az7. 7

LOW

83
361.48
7.9621
-378.39
1561.7

LOW

94
361.48
7.9621
-378,39
1561.7

78

LOW

83
387.40
B.4074
-389.36
1668.7

——
e
S o T - S

s0. damage
sl. [MUSSEL]

s2. [77]
s3. CORH
sd4. YES

s5. [NO]
s6. [LEV]
s7. PLOW

s8. REDUCED
§9. [COUNTER]

s10. 110
s11, 20
sl2. [4]

d13, OTHERBROAD
dl4. OTHEREBROAD
dals5. 2

416, HIGH

dl7. HIGH

dl8. 0.01439
d419. -1.0779

d20. HIGH
d2l. 89

d22. LOW
d23. 83

d24. 308.42
d25. 6.8854
d26. -363.03
d27. 1402.3

s o S S N N S N e

s0. damage
sl. [BRIGGS]

~82. [77]
s3. CORN
sd. YES
s5. [YES)
s6. [ROL]
s7. NONE

s8. REDUCED

damage
[SKAER]
{77]
CORN
YES
[YES]
[ROL]
NONE
NONE
[FURADAN]
120

o

(3]
GRASS
GRASS

1

HIGH
HIGH
-0.005244
0.5488
HIGH

79

HIGH

83
462.14
9.7228
-432.48
1866.5

damage
[FINFRO]
(771
CORN
YES
[YES]
[ROL}
MONE
PLOW

damage
[TALBOT]
[771
BEANS
YES
[YES]
[BLD]
REDUCED
REDUCED
[FURADAN]
110
15
[2]
OTHERBROAD
OTHERBROAD
2
LOW
HIGH
]

?

HIGH
116

LOW

83
462.14
9.7228
-432.48
1866.5

damage
[ALBIN]
[77])
CORN
YES
[YES]
[BRLD]
REDUCED
REDUCED

damage
[DANNEL]

[77]

BEANS

YES

[YES)

[LEV]

NOMNE i
REDUCED
[YES]
120

15

(3]
OTHERBROAD
GRASS

1

LOW

LOW
0.01893
-2.5705
HIGH

128

LOW

B3
255,09
5.7981
-318.186
< 1257.4

on p——

BREANS
NG

[NO]
[LEV]
REDUCED
REDUCED



9. [COUNTER]
s10, 120
sll. 10
s12. [4]
dl3. OTHERBROAD
dl4. GRASS
d15. 1
dl6. LOW
d17. LOW
d18. 0.009507
d19. -1.0779

d20. HIGH
d21. 151
d22. LOW
d23. 83
d24. 400.81
d25. 8.6695

d26. -402.51
d27. 1668.7

[COUNTER]
110

20

[3]
WEEDKILL
OTHERBROAD
HIGH
HIGH
0.002719
-0.2671
HIGH

< 79

LOW

83

?

] wd mJ

[COUNTER]
135

0

[4]
OTHERBROAD
WINTER_ANN
1

HIGH

HIGH
0.002719
-0.2671
HIGH

79

LOW

83

387.40
8.4074
-402.51
1635.2

79

[THIMIT]
135

20

[3]
WEEDKILL
OTHERBROAD
1

LOW

LOW
-0.005244
-0.2671
LOW

79

LOW

83

387.40
8.4074
-402,51
1668.7

W

v ———
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s0. damage

sl. [MUELLE]
s2. [77]

53, OTHER

s4. YES

s5. [YES]

s6. [BLD]

s7. REDUCED
s8. REDUCED
s9. [DIAZINON]

510. 100
sl1l. 20
sl2. [2]

dl3. OTHERBROAD
dl4. OTHERBROAD
dl5. 1

dl6. LOW

dl7. Low

dls. ?

dal9. ?

d20. LOW

daz2l. 79

da22., LOW

d23. 83

d24. 483.128
d25, 10.063
d26. -453.71

damage
[MUELLE]
[77]

CORN

YES

[YES]
[BLD]

PLOW
REDUCED
[DIAZINON]
100

20

(2]
OTHERBROAD
OTHERBROAD
1

LOW

LOwW

?

?

LOW

79

LOW

83

483.28
10.063
-453.71

damage
[WETZEL]

1 77]

CORN

YES

[YES]
[BLD]

PLOW
REDUCED
[DIAZINON]
100

20

[2]
OTHERBROAD
OTHERBROAD
2

LOW

LOW

?

?

LOW

79

LOW

83

483,28
10.063
-453.71

damage
[WETZEL]
[77]

BEANS

YES

[YES]

[BLD)

PLOW
REDUCED
[DIAZINON]
100

20

[2]
OTHERBROAD
OTHERBROAD
1

LOW

LOW

7

?

LOwW

79

LOW

B3

483,28
10.063
-453.71



e T — S A . i S i i i T -

s10.
sll.
sl2,
d13.
dld’i
dls.
dla.
dl7.
dl8s.
dl9.
d20.
d2l.
d22.
d23.
dz24.
d2s.
d26.
dz?i

e e e e e D S S D e e e o e S S e S e

s7.
=8.
59,
s10.
sll.
sl2.
dl3.,

1926.7

damage
[ZINDAR]
[77]
BEANS

YES

[YES]
[BLD]
REDUCED
REDUCED
[NONE]
135

0

(6]
OTHERBROAD
OTHERBROAD
2

HIGH
HIGH
-0,005244
0,5488
HIGH

79

HIGH

83

387.40
8.4074
-402.51
1635.2

damage
[DUFREN]
[77]

. CORN

YES

[NO]

[BLD]
PLOW
REDUCED
[COUNTER]
100

20

[4]
OTHERBROAD

1926.7

damage
[BELACKE]
[77]
CORN

YES

[YES]
[ROL]
NONE
PLOW
[COUNTER]
110

20

[3]
WEEDKILL
OTHERBROAD
2

HIGH
HIGH
-0.005244
0.5488
HIGH

79

HIGH

B3

387.40
8.4074
-402,51
1635,2

damage
[GEBHAR]
[77]
OTHER
YES
[YES]
[BLD]
NONE
PLOW
[NONE]
110

20

(2]
GRASS

1926.7

damage
[GREGOR]
[77]

BEANS

YES

[YES]

[BLD]

NONE
REDUCED
[MOCAP]
120

10

(2]
OTHERBROAD
OTHERBROAD
2
HIGH
HIGH
-0,005244
0.5488
HIGH

79

HIGH

B3

387.40
8.4074
-402.51
1635.2

damage
[WIRTH]
[77])

OTHER

YES

[YES]
[LEV]

PLOW
REDUCED
[DIAZINON]
135

Q

(4]
OTHERBROAD

1926.7

damage
[GOODIN]
[77)

CORN

YES

[YES]
[LEV]
NONE
REDUCED
[FURADAN]
135

o

[2]
OTHERBROAD
OTHERBROAD
2

HIGH
HIGH
0.01604
-1.5607
HIGH

126

LOW

83

=) o) ) o)

REDUCED
REDUCED
[COUNTER]
135

0

(4]
WEEDKILL

T 1

80



dld.
dl5.
dlé.
dl7.
dls.
dlo.
d20.
d2l.
dz22.
423,
dz4.
da25s.
d26.
daz27.

e
e e e o i e i s i e e S e o D P P et ek s et 8 S5

air7.

dl9.
d20.
da2l.
d22.
d23.
daz4.
d25,
d26.
4az27.

——
—— e
R ————————— =

WINTER_ANN
2

HIGH

LOW
0.03098

< -2,5705
HIGH

99

LOW

83

506,22
10.549

< -453.71
2011.5

damage
[MONTGO]
[77]
CORHN
YES
[YES]
[LEV]

. REDUCED

PLOW
[NONE]
135

0

[3]
OTHERBROAD
GRASS

2

HIGH
HIGH
0.01604
-1.5607
HIGH
126

LOW

83
419.44
9.0333
-422.66
1729.7

damage

damage
[RINCKE]
(771
CORN
YES
[YES]
[LEV]
NOWE
PLOW
[NMONE]
135
0
[4)
WEEDS
WEEDS
1
HIGH
HIGH
0.009507
~0.7548
HIGH

GRASS

1

HIGH
HIGH
0.01439
-1.2198
HIGH

99

LOW

83
419,44
9.0333
-422.66
1729.7

damage
[HENTON)
(771}
CORN
YES
[YES]
[LEV]
NONE
PLOW
[NONE]
135
0

(3]
OTHERBROAD
WEEDKILL
1

HIGH
HIGH
0.009507
-1.0779
HIGH

116
LOW

83
387.40
8.4074
-389.36
1635.2

damage

OTHERBROAD
2

HIGH
Loy
0.002719
-0.7548
HIGH

126

LOW

83
419.44
9.0333
-422.66
1729.7

[GROEZTI]
[77]
OTHER
YES
[YES]
[ROL]
NONE
PLOW
[NONE]
120

20

[4]
WEEDKILL
WEEDKILL
2

HIGH
HIGH
-0.005244
0.5488
HIGH

79

HIGH

83

w3 g

8l

1o ————



sl. [OSTRUM]
s2. [77]

s3. OTHER

sd. YES

55, [YES]

s6. [ROL]

s7. NONE

s8. PLOW

59, [NONE]
sl0, 120

slli. 20

sl2. [2]
dl3. OTHERBROAD
dl4. OTHERBROAD
dls. 2
dl6. LOW
dl7. HIGH
dlg. 7
dl9. ?
d20. HIGH
dz2zl. 138
d22. LOW
d23. 83
dz24., ?
d25, ?
d2e. ?
d27. 7

[NAG
[77]
OTHE
YES
[NO]
[ROL
NONE
PLOW
[MOC
120
20
(2]
GRAS
GRAS
2
LOW
HIGH
?
?
HIGH
138
LOW
83

i

) m] owd o

e i o S D

REDUCED
110

sl2. [3]
OTHERBROAD
HIGH
-0.005244
HIGH

HIGH
387.40
-389.36

EL] [BUCHAN]
[77]

R BEANS
YES
[YES]

1 [ROL]
REDUCED
REDUCED

aAP] [NONE]
135
0
[4]

5 OTHERBROAD

5 GRASS
1
HIGH
HIGH
0.5488
HIGH
79
HIGH
83
438,37
9,3597
-422.66
1790.8

[HAMPTO]

. BEANS

[YES]

REDUCED

[NONE]

20

OTHERBROAD

2

HIGH

0.5488

" 79
83
8.4074

82

[IVERS]
[77]
CORN

YES

[NO]
[ROL]
REDUCED
REDUCED
[ FURADAN]
135

0

(4]
WEEDKILL
OTHERBROAD
2

HIGH
HIGH
0,009507
-1.0779
HIGH

108

LOW

a3
438.37
9.3597
-422.66
1790.8

2 ———
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The Transformed Data as Integers for A0/11
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The Variable Declaration File for AQ/11

The first two names given below are the names of the two
decision classes, following them are the names and domains of all
of the variables that were sent to AQ/11. These variables are
explained in section III. B. In the actual trans file for AQ/11
there are no variable numbers as here. They have been added here
to help document the text version of the transformed data listed
above. MNotice that some of variable numbers appear to be missing.
This is because some of the wvariables given to CONVART were
declared to be non-applicable variables and so were not passed o©n
to AQ/11. Therefore their wvalues are surrounded by square
brackets in the text version of the transformed data, and their
values and definitions were omitted from the two input files to
AQ/1l: the transformed data as integers and the variable
declaration file 1listed below. For the sake of completeness; the
names and domains of the non-applicable variables are given
following the variable definitions for AQ/1l. {

Ho Damage

Damage
3. Previous Crop 4. Permanent Vegetation
corn yes
beans no
other
7. Fall Tillage 8, Spring Tillage
none none
plow plow
reduced reduced
10. Planting Date 11. Risk Index
0 0
100 10
110 15
120 20
135 25
13. Most Common Weed Species 14. Least Common Weed Species
none none
very few weeds ‘ very few weeds
weeds weeds
onion onion
weedkill weedkill
grass grass
legume legume

winter annual winter annual
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other broadleaf other broadleaf
15. Number Same of Weed Species l16. Weed Density on Planting Date
<1 low
1 medium
2 high
17. Average Weed Density 18. Slope of Weed Density
low <-0.01915
medium -0.01915
high -0.01419
-0.01206
-0.005244
0.002719
0.009507
0.01439
0.01604 i
0.01893 H
0.03098 |
19. Y Intercept of Weed Density 20. Max Value of Weed Density
<=-2.5705 low
-2,5705 medium
-1.5607 high
-1.2198
-0.7548
-0.2671
1.2443
1.7245
2.4486
21. Time of lst Maximum of Weed Density 22, Minium Weed Density
<79 low
79 medium
89 high -
99
108
116
126
138



(cdd stands for Cumulative Degree Days)

23. Time of 1st Minimum Weed Density 24. Average cdd

<B3 <255,09
83 255.09
94 308.42
111 361.48
117 387.40
400.81
419.44
438.37
462.14
483,28
506.22
25. Slope of cdd 26. Y Intercept of cdd
<5,7981 <=-453.71
5.7981 -453.71
6.8854 -432,38
7.9621 -422,.6h6
8.4074 -402,51
8.6695 -389.36
9,0333 -378.,39
9,3597 -363.03
9.7228 -318.16
10.063 -264,98
10,549
27. Maxium cdd
<1257.4
1257.4
1402,.3
1561.7
1635.2
1668.7
1729.7
1790.8
1866.5
1926.7

2011.5

o



:Definitions for

1. Farmer
Mussel Skaer
Dannel Briggs
Wetzel Wiebur
Dufren Gebhar
Jeffco Dasche
Bunsel Leigh

2. Calender Year
77
78.t
79
g0

6. Field Surface
rolling
level
buildings

9., Insecticide

the Non-applicable variables

Talbot Helms Wenzel
Finfro Aalbin Lock
Hisson Zindar Blacke

Poe Wirth Wirth
Thoren Patter Groezi
Beeler Gustaf Winkel

Solt
Carrol
Dalton

Ruff
Ostrum
Fricke

Fams
Muelle
Gregor
Montgo

Magel
Johnso

Herter
Muelle
Lightl
Rincke
Buchan
Hampto

5. Field Border Water

no

yes

yes counter furadan thimit
diazinon mocaop none

ramrod lorsban dyfonats rlorsban
isotoxdia heptachlor
belt

thimet aldrin
rescuektrt rpenncap rsevin

12, Dynamic Count
[a count of the number of dynamic wvalues per event}

(=W ]

88

Schleu
Wetzel
Goodin
Henton

Ivers

1o ——"
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