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1. Introduction

This paper is a description of, and a user's guide to the program INDUCE 2, The predecessor of
this program, INDUCE 1, was originally written by James B. Larson in 1977 and is described in his Ph.D.
thesis [Larson 1977|. It was subsequently modified by Thomas Dietterich in 1078 [Dietterich 1978,
Mihran Tuceryan in 1980, and William Hoff in 1982, and is not{'ca.lled INDUCE 2. For the sake of
completeness, this paper includes appropriately modified and extended sections from the two papers cited
above.

1.1. Purpose of the program

INDUCE 2 manipulates symbolic descriptions of real-world events in order to obtain more general or
more useful deseriptions of those events. The program produces such descriptions by performing various
generalizing tranformations on the input descriptions. Many of these transformations are built inte the
program, others are supplied by the user, The user also supplies criteria for what types of output
descriptions he wants (i.e., the user must tell the program what he considers to be a "useful” description).

Descriptions are represented as VL (Variable-valued Logic) decision rules, in the form

CONDITION ::>> DECISION

where COMNDITION deseribes some set of situations and DECISION describes some new situation or
action which is indicated il a given situation satisfies the CONDITION. If the sitvation does not satisfy
the CONDITION, the rule makes a NULL decision for that situation. The deseriptions in CONDITION
and DECISION are represented in the VL, logic system (described in section 2 and in [Michalski 1972,
1980]). This system is an extension of first order predicate calculus with a rich set of operators, and the
facility for allowing the user to define the domain size and structure for each variable and function
appropriate for the problem at hand. The approach taken here is to apply inference rules (generalization
and reformulation) to initial decision rules in order to form new generalized and optimized decision rules
which retain the decision making capabilities of the original rules.

1.2. The Induction Problem

The induction problem being investigated is as follows:
Given (1) a set of input VL decizsion rules:

Clll::}]}l; GI.E::}DI; CL"::}D]
C, =Dy Cu:::"nz:_ C, 2Dy

(1.1)
lel::}Dm; Gm,2::>Dm; . D

where Cu and Di are expressions in the \-'Lz system representing the CONDITION and DECISION parts

of decision rules respectively, and (2) problem-oriented background knowledge (including the preference
criterion for evaluating the hypotheses), then find a set of output VL decision rules {hypotheses):

C:IJ::}DI: C:I.E::}Dl: C:l_n.‘:}Dl
Cm:::::Dz; Cz,:”:’Dz: C 2,12:"}[}1

(1.2)
C’M:::b[]m; =D G'mn =D



2 INDUCE 2

where ti < 1 for lﬁiﬂ m, and that are:

1) consistent and complete with the input rules (1.1)
2) augmented by the background knowledge, and
3) optimized according to the preference criterion.

The new rules are consistent with the input rules if for any situation for which the output rules assign a
deeision (a non-NULL decision), the initial rules assign the same decision or a NULL decision. They are
complele if for any situation for which the input rules assign a decision, the new rules assign a decision.
From any given input rules it is usually possible to derive many sets of rules which are consistent and
complete, Therefore, a preference criterion (assembled by the user from a few simple functions) is used to
select one or a few alternatives which are most desirable in the context of the specilic induction problem.
The algorithm is restricted to work with sets of rules which make only one decision for a given situation.

1.3. Suitable Applications

INDUCE 2 is a general-purpose inductive learning program, designed to
aid a user in solving a wide range of practical inductive problems. In order to use it, the user (usually
an expert in the given domain) must determine the initial set of descriptors, formulate the input rules,
suggest rules for generating new descriptors, define the preference criterion and various parameters,
evaluate the output rules, and repeat the process if desired.

The problems for which INDUCE 2 is applicable should have the following characteristics:

{1) Distinct objects or events exemplily a collection of different concepts (the concepts may represent
distinct categories, objects, or decision classes assigned to objects, ete).

(2) A set of measurements, called descriptors (variables or relations) is available for characterizing each
object or situation. At least some of the descriptors should be relevant to the inductive learning
problem. It is also desirable that the user have some idea of what kind of transformations of the
initial descriptors might produce new (derived) descriptors that would be more relevant to the
problem. These suggestions are provided to the program as a part of the program’s background
knowledge.

(3) The input formulas asserting concept classes for each object are assumed to be true. Moreover, the
descriptions of examples (ie., symbaolic representations of the objects or situations) are assumed to be
precise, consistent, and complete.

{(4) For each descriptor, a domain is defined by specilying the set of values this descriptor may assume.
The program distinguishes between nominal (or categorical) descriptors (whose domain is an
unordered set), linear descriptors (whose domain is a totally ordered set), and structured descripiors
(whose domain is a hierarchical tree of values). In the case of non-discrete linear variables (ie.,
continuous variables), their domain must be quantized into a reasonably small number of discrete
values (on the order of 10-100, depending on the setting of the program constants).

{5) A criterion is defined for determining the most preferable hypothesis among all the hypotheses that
consistently and completely characterize the known facts. (The program provides the user with a
set of elementary criteria from which the user assembles a single general criterion that is most
appropriate to the given problem.)

INDUCE 2 is designed to be applied to problems that cannot be adequately represented with
traditional quantitative variables. It has the power to accept and produce structural descriptioms, in
addition to attribute values, Such structural deseriptions involve not only quantitative and qualitative
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attributes of individual objects, but also properties of object parts and relations among the parts,

1.4. Previous Work

Inductive inference is viewed here as a process of rewriting and for generalizing available descriptions
in order to derive new descriptions that are computationally more economical and conceptually simpler,
Statistical methods have probably been the most widely used form of inductive inference. These methods
require the availability of a large set of data, assume the independence of variables, and require an
understanding of the type of underlying distribution of the data [Croft 1971]. In addition, results may be
difiicult to conceptualize and interpret [Larson 1976].

An early approach tc automated inductive inference using a logic-based approach was developed by
Hunt [1966]. He described a number of different schemes for generating decision trees which can be used
to distinguish between sets of letter sequences. Although a decision tree produces a procedure which ean
be easily executed on a computer, it lacks the flexibility necessary to represent more general concepts, A
recent implementation of a decision tree-based system is Quinlan’s ID3 program [Quinlan 1979].

The Heuristic-Dendral program [Buchanan et.al. 1969] provides a medel appropriate for representing
the structure of chemical compeounds and some transformations representing possible chemical reactions
which can be applied to the compound representations under certain known physical constraints. The
program finds a set of possible structures of a compound knowing its empirical formula and mass
spectrometer data by suggesting various structures for the compound and applying transformations to the
structures under the guidence of a set of heuristics based on the mass spectrometer data. The Meta-
Dendral program [Buchanan et.al. 1972] finds a general mechanism or theory which explains the
transformations which take place, relying on the knowledge of those transformations which are plausible
and those which are forbidden.

Computer aided medical diagnosis iz another area in which logical inductive inference methods have
been suggested. Pople [Pople et.al. 1972] has suggested a graph structure representation of biomedical
facts and an approach to forming theories by finding common subgraphs using user-supplied suggestions.
Of particular note is work in the area of computer zided medical diagnosis and plant pathology [Michalski
1973,1974, Chilausky et.al 1976, Larson 1976]. That work, based on VL, (a variable valued logic system

which is an extension of propositional calculus) and the program AQ11, was used to infer descriptions of
classes of liver diseases and soybean diseases [Michalski and Chilausky 1980].

Winston [1970] demonstrates specific procedures which discover deseriptions from examples in the
toy blocks world. A description which is diseriminant (i.e. can be used to distinguish one object or set of
objects from other sets) is formed by matching the similar parts of the object under consideration with
another object {near-miss) and then isolating the structures which are different between the two objects,
This differs from the approach taken in the following chapters in that matching is only done here in order
to adequately describe some specific feature which distinguishes between two objects. (e.g. to deseribe the
second part from the top in an object, one may have to include some predicates which define the second
from the top in terms of other descriptors, If the distinguishing feature involves this part, then the
definition of the part used in the description must be common to both objects.) Winston also uses
modifiers such as 'must’, 'may’, 'must not' in descriptions. A form of these modifiers is inherent in the
VL, approach (e.g., diseriminant descriptions involve the 'must’ modifier, characteristic descriptions
involving only one set of objects yield deseriptions involving a type of 'may’ modifier).

The program ARITHMETIC [Bongard 1970 finds an algebraic rule which explains sample
relationships. The program is given sets of tables, each table containing 3-tuples of a ternary relation. A
set of 33 predicates are used in the program (although not explicitly given in the reference) where a
predicate may be: eg. if the quotient of the first two clements of the 3-tuple is positive, then the
predicate is true. For each row of a table, a set of leatures is generated by finding Boolean combinations
of the predicates applied to the row. A fleature deseribing the table is generated for each Poolean
combination by finding the product of Beolean combinations for all rows. The set of features which
appear to be most wseful in distinguishing one table from the others is selected as the description of each
table,
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Another type of problem is that of inducing sequence extrapolation rules, The program ELEUSIS
[Dietterich 1980] is an expert on the card game ELEUSIS, in which players attempt to infer a secret rule
invented by the dealer. The secret rule tells which cards can be played at the next position in the
sequence.

Lenat [1976] describes the program AM which infers concepts in number theory, starting from
elementary concepts in set theory and applying a large body of heuristic rules. This program generalizes
from initial descriptions, and can propose new concepts and test them on examples.

A summary of more general systems follows. These systems have emphasis in two types of
approaches; 1) generation of descriptions of sets of objects represented in a logic system of some kind, and
2) creation of new concepts in a sequential manner by generating and modifying hypotheses. A summary
of several types of learning systems can be found in [Banerji 1975]. Of particular interest here is the work
of Morgan [Morgan 1972] in which a formal system based on the first order predicate calculus with
falsehood preserving transformations is presented. Briefly, the idea that inductive inference can be
described as backwards reasoning is apparently not sufficent for a practical system. For example, if E,

were derived from the assertions - E, and E, v E,, then backward reasoning would somehow have to

generate the two assertions above given only E,. There are far too many expressions EI which can be

applied to a situation such as this to yield a practical system. Instead, Morgan defines a lalsehood

preserving transformation of a deductive inference rule into an inductive inference rule {in Morgan's .
notation):

El I.:F' ES

where E, is false for every interpretation in which E, is false. A set of transformations (F-rules) can be
created to convert a deductive logic system into an inductive logic system fe.g. if E1 and E2 are atomic
expressions, then

E vE, ]'F E,E,

i.e., from the disjunction E, v E,, one may infer the conjunction E E, while preserving falsehood). With
this system, theorem proving techniques using falsehood preserving rules may be applied to inductive
problems. {In later chapters, the symbol |< is used to denote such a generalizing transformation.)

A number of authors have presented systems which use a graph structure representation of
expression in a type of logic system. The 'parameterized structure representation’ of Hayes-Roth [1976] is
used in inductive tasks which learn descriptions of sets of objects and transformations from one set of
objectz to another set of objects from examples. The problems addressed are closely akin to the work in
the following sections of this paper, one of the objectives being to find the common properties of all
examples of one class which are available to the system using a graph-theoretical representation. The
number of possible altermatives in Hayes-Roth's method is limited by a fixed utility function which
evaluates intermediate results and discards hypotheses of low utility. The work differs from that
presented in the following sections in that only independent descriptions are sought using a fixed utility
criterion (these are called characteristic descriptions in this paper). The structure used for representation
does not take into account specific domain structures which are inherent in the VL system and there is no
facility for generating new descriptors within the system.

A formal approach using the predicate logic system [Vere 1975] produces the largest common set of
descriptors of a set of examples by representing examples using a graph structure and finding the largest
common subgraph of these structures. Such methods suffer from the NP-complete nature of graph
isomorphism algorithms (this problem is addressed in the following sections by finding the smallest useful
subgraphs of graphs of examples instead of the largest subgraph.). Neither Vere nor Hayes-Roth use
negative examples adequately in their implementations.

Hedrick [1974] uses a semantic net to represent examples and to build and modify hypotheses as
new examples are given to the program. The semantic net supports only binary relations but otherwise
looks similar to the graph structure of Vere and Hayes-Roth.
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Kochen [1974] presents a different type of system with a set of initial events containing state
variables, actions and relations between the actions, a learning program which applies certain
transformations to events at various time steps. At each time step, weighted hypotheses are formed
which reduce the set of states stored in memory (i.e., those states which are explained by the hypotheses).

Sammut [1981] describes a concept-learning program MARVIN, which uses a form of predicate
calculus to represent inductive assertions. This program constructs examples and asks the user whether
they are instances of the concept to be learned. It uses the answers to refine its representation of the
concept until no more generalizations can be made. : : : :

Production systems provide a rich tool for the introduction of many inference techniques (recall that
VL decision rules are similar to production rules). Briefly, a production system architecture contains a
working memory, a set of productions which modify working memory, and a recognize-act cycle with
conflict resolution to dictate the order in which productions are applied to memory and to add new
productions when necessary.

Waterman [1970, 1974, 1975] uses these to solve several problems., A program which plays poker
has been developed [Waterman 1970] which designs betting strategies in terms of production rules. More
recently [Waterman 1975], the approach has been applied to recognizing letter sequences with success,
Rychener [1076] has applied production systems to chess end games and natural language input of a toy
blocks world. These two authors use distinet production system architectures which differ in the ordering
of working memory, ordering of productions and in the way in which new productions are added to an
existing set of productions to correct errors made by the system.
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2. Representing Decisions in the VL, System

Much of the information in this section is found in [Larson et.al. 1977, Michalski 1974b, 1083]. It is

included here to give the reader a familiarity with the VL, system. (In previous papers, the system VL,
. was called VL, .)

The variable-valued logic system VL, is a language for describing situations [e.g. objects, classes of

ohjects) and expressing decision and inference rules. The language provides for a compact expression of
deseriptions, which is both easily readable and sufficiently precise to facilitate formal manipulation.

(1)
(2)

()

(1)

(2)

()

There are three major diflerences between VL, and the first order predicate ealeulus:

Instead of predicates, the language uses selectors which can be viewed as tests for membership of
values of predicates or functions in a certain set.

An expression in VL, can have a truth status: TRUE, FALSE, or UNKNOWN. The truth status
UNKNOWN provides an interpretation of a VL, description in a situation when outcomes of certain
measurements are not known,

Each descriptor (variable, predicate and function symbol) is assigned a domain (or value set)
together with a characterization of the structure of the domain. (This feature facilitates the process
of rule generalization and allows for the application of different generalization transformations
according to the structure of the domain.)

There are three types of domains currently distinguished:

Nominal (Unordered)

Elements of the domain are considered to be independent entities; no structure is assumed to
relate them. A variable or function symbol with this domain is called nominal (e.g. blood type,
names of objects, ete.}.

Interval (Linearly Ordered)

The domain is a linearly ordered set. A variable or function symbol with this domain is called
inferval {e.g. military rank, temperature, size).
Structured (Tree Ordered)

Elements of the domain are ordered into a tree structure. A parent node in the tree represents
a concept which is more general than the concepts represented by the child nodes (e.g., the parent of
the nodes "triangle’, 'rectangle’, 'pentagon’ may be a 'polygon’). A variable or function symbol with
such a domain is called structured.

2.1. VL System Structure

V-

The VL, system ig defined by a S-tuple (V,F,5,R,[) where:

is a set of variable symbols. Each variable symbol is associated with a domain D{x,). A group of
variables which have the same domain are labelled with the same variable symbol but a different
subscript (e.g. X X,..%,, ¥ Y. ¥, are specifications of variables in two variable groups which
assume values from iwo domains denoted D{x) and D{y) or alternatively, D(x,) and D(y,).

is a set of n-ary functions and predicate symbols. Each n-ary function symbol represents a mapping
from ‘a.n argument space into the domain of the function. For a function flx x,...,x ), this is a
mapping:

Dix,) x D(x,) x..x D{x)) — (1)

where D(x,), D(x,), ... D{x.), D(f) represent the domains of the variables x , x,, ... x, and the domain
of the function I, respectively. A predicate is a function whose domain is the set [TRUE,FALSE].
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Included in the demains of all function and variable symbols is the value NA (not applieable).
5- i3 a set of symbols including:

(Jll =< > # 2 € =+ emo>evyII YY,.

where the symbol & denotes conjunction, and the symbol v denotes disjunction.

R - isa set of formation rules described in section 2.3
I- iz aset of interpretation rules described in section 2.4

2.2. Selector Formation and Interpretation Rules
A well formed VL, formula (wff) is eomposed of quantifier forms, selectors, and logieal connective
symbals,

A selector is a form:
L #R| or L]

where

L - called the referee, is an atomic form. An afomic form is a variable symbol or a function or
predicate symbol followed optionally by a list of atomic forms enclosed in parentheses. In the first
form above, L must contain a function symbel (that function is called an atomic function ), and in
the second form L must contain a predicate symbal.

R - the reference is a set of values in the domain of the atomic function of L. R may be in several
forms:
Reference Example Description
a a constant in the domain of the atomic function of L
avh a list of values in the domain of 1. separated by v
a..b a pair of values in the domain of L separated by [..)
* the symbol (*) representing all values in the domain of L

{except NA)

NA the value NA (not applicable)

# - is one of the following relational symbols

- < S < > ¢

If R is a set of values, then L is related to B by # if

when # is = or #£ L has a value (does not have a value) in the set R

when#is < > < > L has a value related to every value of R by 4.

The selector is interpreted as a unit of information about a situation with value or truth-status
TRUE if the relation R # L holds or FALSE if the relation does not hold, or UNKNOWN in which case
the selector is interpreted as a question about the situation which must be answered in order to determine
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If some variables in the atomic form of the selector are quantified, these

quantifiers must be considered when determining the truth-status of a selector.
If R is =, then L is related to R for any value of L except NA (in this case, # is always =). Below

are some examples of a selector:
Selector
[color(wall ) = white]

[length(box,} =1]

|weigh L, = 2.

[ontop(x,x,)]

2.3. VL Formation Rules

Interpretation: (TRUE if)
The color of the wall represented by wall is white.

The length of the box represented by box is greater than or equal to
1.

The variable weight, may have a value between 2 and 5 inclusive,
The selector restricts the range of values of the variable weight, to
the values 2 through 5.

The part represented by x, is on top of the part represented by x,.

Formulas in the VL, logic system are used to describe situations, and also to express decision rules
and inference rules. The VL formulas are defined by the following formation rules:
(1) A selector is a VL formula (wfl).
{2) UV, V and V, are wil, then so are:

(V)
=V

V, & V,or V,V,

Vl v Vz
v, ¥,

Vi=V,
V, =V,
-1 % e N

= XX %y (V)

W ox X 0%, (V)

Ve XX (V)

a formula in parentheses
inverse

conjunction (the symbol & is used to represent
conjunction )

disjunction

exception

V, implies ¥,

V, is equivalent to V,
existentially quantified formula

distinctly existentially quantified formula {explained
below)

universally quantifled formula

distinctly universally qualtified formula (explained
below)
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Not all of these forms are considered in the following sections, A graph structure representation is
presented which includes all of these forms, but the types of formulas actually included in the algorithm
and the implementation involve only conjunction and distinct existential quantification.

2.4. Interpretation Rules

The interpretation of VL formulas is done in the context of each situation. That is, each situation
is treated as a demain over which the formulas are evaluated: the value sets of the quantified variables
and the interpretation of the functions and predicates is done individually for each situation. A VI
formula may have truth-status TRUE, FALSE, or UNKNOWDN, when applied to a given situation., The
connectives (= v &) are interpreted in the normal manner:

VL formula Interpretation

-V FALSE if V is TRUE, TRUE if V is FALSE,
UNKNOWN if V is UNKNOWN,

V,vY, TRUE if either V, or V, is TRUE, UNKNOWN if both
Vl and V2 are UNKNOWN or one is UNKNOWMN and
the other FALSE, FALSE otherwise,

'\"1 & \-"2 UNKNOWDN if both V, and V, are UNKNOWN or one

is true and the other is UNKNOWN, TRUE if both Y,
and V2 are TRUE, FALSE otherwise,

The remaining connectives may be rewritten in equivalent forms:

VL Formula Equivalent form

V, =V, kA

V, =V, (V= V)& (V,— V)
V, V'V, V& -V, v -V, &V,

A VL, system is used to describe a set of situations. In order to effectively apply a formula to a set
of situations, the VL, system should contain variables, functions, and predicates which adequately
characterize the situations. To determine the truth-status of a formula with regard to a specific situation,
an event is created (an event may be viewed as an interpretation of a situation in the VL, system). An
event is a sequence of assignments to variables, functions and predicates in the systern which characterize
a specific situation. Quantified variables may be assigned a set of values. One function assignment may
be made to a given set of values of arguments if the value of the function is known. If a function does
not have an assignment for a given set of values, then the value NA (not applicable) is assumed.

A selector L # R| (or [L']) is satisfied by an event if there is a set of assignments to variables and
functions (or predicates) in L {or L’) such that L is related to R by # (or L' has the value TRUE). A
VL, formula is satisfied by an event if it has truth status TRUE when applied to the event.
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The quantified formulas are interpreted as follows:

A=, x0x, (V) is TRUE (or FALSE) in a given situation if there exists
{or does not exist) values for x x...x in the event

assignments which makes the truth-status of the formula
V equal to TRUE
7 - il it is not known whether there exist values ...

=1 x %%, (V) is TRUE (or FALSE) in a given situation if there exists
(or does not exist) distinct (different) values for
X, KgioeiXy in the event assignments which makes the
truth-status of the formula equal to TRUE. This
obviates the need for extra predicates in an expression

like x,#x,, X, 7%, X 7#x,, ete.
? - if it is not known whether there exist values ...

i) X Xgyeen Xy (v) is TRUE (or FALSE) in a given situation if for all
assignments to the variables x . ...x, the formula V
has truth-status equal to TRUE.

e xxp0%, (V) is TRUE (or FALSE) in a given situation if for all
distinct assignments to the wvariables x x...x , the
formula V has truth-status equal to TRUE.

2.5. VL Decision Rules
If V, and V, are VL, formulas, a general form of a VL. decizion rule is

b O S {2.5.1)
The formula V, is called the condition part and V, is the decision part. A restricted form of the VL,
decision rule will be used in the following sections.

In the computer implementation, the formula V, is assumed to be a product of selectors which
contain variables (0-ary functions) as the referce. The variable which appears in the decision part of a
formula is called the decision variable.

A decision rule in the form 2.5.1 may be applied to a set of situations as follows: If the condition
part of the decision rule {‘v’l} is given truth-status THUE, then the decision part ol the decision rule (Vg]
also assumes the truth-status TRUE. For each event (assignment e:=L) which satisfies ¥V, a new set of

assignments are made to the event using the decision part of the rule to form the set of all events which
satifsly the eonjunction V| & V,. For example, given the decision rule:

—J.part,,part, [touching(part,,part,)] ::> [d=1] (2.5.2)
and the events
€ touching(p ,p, |=TRUE
e, touching(p,.p, |]=TRUE (2.5.3)
e touching(p,.p, )J=TRUE

with the following defined domains: D{part J=D{(part )= [pl.pzlr D(touching)=D{ontop)==|TRUE,FALSE],
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D{d)=]|0,1]. Rule 2.5.2 is applied to each event to give:

e touching(p,,p, )=TRUE
e touching(p_,p )=TRUE; d=1 (2.5.4)
e touching(p,.p,)]=TRUE

A decision rule:
—.part,,part, [touching(part,,part,)] :> —.part,,part, [ontop(part,,part,)] (2.5.5)

applied to each event from 2.5.3 gives the following events:

e: touching(p ,p, }=TRUE
e, touching(p,, p,]=TRUE; (ontop(p,,p,) v ontop(p,,p, )} (2.5.6)
e, touching(p,,p,)=TRUE

MNote that D!‘ltop[pl,pll and unlup[pz,pz] are not given status TRUE since the quantifier =). insists that the
two variables part, and part, have different values.

Given a set of decision rules each in the form 2.5.1, the set may be applied to a set of events. If an
event satisfies the condition part of a decision rule, new assignments are made to the event as indicated
by the decision part of the satisfied rule.

In the remainder of the paper, events are only used as a formal basis for defining certain concepts,
Since the number of events necessary to completely describe a situation is guite large, only the VL,
formulas themselves are manipulated by the algorithms,

2.8. Generalization Rules

From one set of decision rules (1.1}, a new set of decision rules (1.2) is obtained by applying certain
transformation rules (t-rules). In this paper, we will restrict our attention to rules which generalize the
condition part of a rule. A more detailed description of transformation rules can be found in [Michalski
1980 and [Michalski 1983]. Given two rules:

R,: V,:>D R,: V,u>D

V, is more general than V, if every event satisfying V,, also satisfies V. If the converse is also true, then
V, is equivalent to V,. This generalizing transformation is denoted R, < R,. Generalizing
transformations usually produce not only a more general decision rule from a set of decision rules but also
a "simpler’ one than the original. >

2.8.1. Dropping a Selector
This generalization rule is defined as:

VIL=R]:>D | V:u>D

where V denotes any VL formula. Although this rule is interesting in a formal sense, it should be applied
with care since the number of generalizations possible with successive applications of this rule is very
large. In the INDUCE algorithm, this rule is applied in reverse. First, very general decision rules are
created and then they are specialized by adding selectors to them. The INDUCE algorithm is discussed in
more delail in section 4,
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2.6.2. Extending the Reference
This generalization rule is used in the INDUCE program by the AQ procedure. _Tl:e rule I:la.a several
forms depending on the domain type of the deseriptor. If the descriptor L has a nominal domain type:

VL=alz>D K

VL =b] > D Vilowiarhl =D

If the descriptor L has an interval domain type:

VI[L=a] u>D k

VI[L=1b]=>D V[L=apb]:>D

If the descriptor L has a tree structured domain:

V[L=2a]u>D k<

VL =>blu>D VL =s#>D

where ¢ is a predecessor of both a and b in the generalization structure of the domain of L.

2.8.3. Extension Against
This generalization rule is used by the AQ procedure. If the descriptor L has a nominal domain:

V,[L=R]|:>D ke

V,[L £R}:>D
V,[L =R} z>-D L AR

assuming R, N R, = null.

If the descriptor L has an interval domain type:

V,[L=ab:>D <

VIL==e.]u>D
v, [ =e¢.d]| ::> -D 1 [ fl

assuming [a..b] N [c..d] == null and the following conditions:
(1) ifb<cthene=0,f=¢c-1

(2) ifa>dthene=d+1,1=h(0andh are the minimum and maximum elements
in the domain of L)

If the descripor L has a tree structured domain:

V,[L=a]:>D <

V[IL=¢z2>D
V,[L =b] > -D =4

assuming the following conditions:
(1) anb=nul

{2) the constant (c) is the most general parent of (a) which is not a parent of (b) (¢ may
be equal to a).
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2.8.4. The Counting Rule

This generalization rule is a constructive rule, because it ereates new descriptors that count the
number of parts with a certain property. It is used by the INDUCE procedures that introduce meta-
deseriptors.

Vix,P)=A] . [x(P)=Al:>K | V [#P_x, A=k|:> K

where

| P e are variables denoting parts of an object

X, stands for a certain attribute of the P's, e.g., color, size, texture, etc.

#P x, A denotes a new descriptor interpreted as "the number of P/'s (e.g., parts) with

attribute, equal to A”.

2.8.5. Generating Chain Properties Rule

If the arguments of different occurrences of the same relation in an event are linearly ordered by the
relation (e.g., are objects ordered linearly by a relation sbove, left-of, mezxi-to, contains, ete.), that is form
a chain, the rule generates descriptors which characterize various objects in the chain; for example,

L5T-object: the "least object”, i.e., the object at the beginning of the chain (e.g., the bottom
object in the case of relation above}

MST-object: the "most object”, i.e., the ohject at the end of the chain

MDL-cbject: the "middle™ object

[th-object; the ith object in the chain

or characterize the chain itself, for example the chain-length.
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3. Syntax of Input Rules

This section describes the syntax of the input to the program. A summary of the input commands
is given in the user's manual (Appendix 1). The program accepts as input: 1) a set of decision rules, 2) a
problem environment deseription including a set of background knowledge rules, domain definitions,
variable costs etc., and 3) a set of parameters which control certain aspects of the program operation.
Decision rules, background kncwledge rules, and domain structures are entered as VL, type formulas in

the formats described below.

3.1. Decislon Rules
Decision rules must satisly the following grammar:

< n-virule> == <number> <virule>>
| <vlrule>
< vlrule> H- < condition™> "i:>" <selector>

<condition> <selector> <<condition>>

| < selector>>
<selector> = *I" <fn-sym> 7" <alist> ")=" <rellist> "|"
| *I* <fo-sym> "7 <alist> ")|”
| *|" <variable> "=" <reflist> "]”
| *|? <f-sym> "=" <reflist> "|"
<alist> n= <variable>> ™" <alist>>
| <variable> *." <alist>
| <variable>
< reflist > = < snumber> v <rellist>
| <snumber> .. <snumber>
| < snumber>
| *
< fn-sym> = string of letters
< variable> = < fn-sym> < number>
< spumber>> (== <symbol> | <number>
< symbol > 1 string of letters
< number> i string of digits

Examples of decision rules:

Example 1:
[f(x,x,) = 2 v 3][g(x,) = 1.4] > [D = 1]
In this expression, the structure of the domain of the function g is set to interval by the program
{see note 4 below). The domain of f is nominal. All variables (e.g. x, and x,) are quantified by the
operator . [see note 3 below).

Example 2:
Iplx,x x,=2v 4] => [D = 2].

In this example, the function p is assumed to have two values (i.e., it is a predicate, see note 6

below). The selector containing p is satisfied if it has the value 1. The second selector restricts the
possible values of x, to the set of values [2,4].

MNotes about the application of the 1u"']_.2 grammar:

1. The condition part is a single product and the decision part involves only one variable. [t is
assumed that one decision wariable has been selected to be studied by the user. Also, if the
condition part of a formula contains more than one conjunct, it must be split up to create a set
of decision rules with condition parts which are single products, via this equivalence rule:
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V¥ ¥V, u> D = V=D, ¥,:>D

2 Each atomic form is a function symbol with a list of single variable arguments, It is assumed
that the user has converted forms such as [g(f{x)}] into a form [g{yj]]ip{,vj,xiﬂ by introducing a
new predicate p{_vj,x'}l'nr each function symbol [ which is in an argument list and a variable ¥, for
each occurrence of the function f[xi] in an argument list. The predicate p is assumed to have the
value TRUE if y, = f(x,) and FALSE otherwise. For example:

[shape(part(x,}) = triangle]
is assumed to be transformed into e.g. an expression
[shape(p,) = triangle][contains(x,,p )]

3. All variables (arguments) are assumed to be existentially quantified. Variables with the same
function symhol part are assumed to have the same domain. Furthermore, variables with values
from the same domain are assumed to take on distinct values from the domain. Variables may
be restricted to a subrange of values by using the third option in the selector definition. Using
this method, a constant may be specified as an argument to a function.

4. If a reference of the second form is specified at least once in the input (production I6) (e.g.
[f(x,)=2..2] or [f{x,})=2..5]), a domain of type interval is assumed; otherwise, the domain of a
variable or function is assumed to be of nominal type or tree-structured if such a structure is
specified.

5. A selector such as [p=+] means that the selector is satisfied for any value of p other than the
value NA. If a selector is omitted from the decision rule entirely, the program assumes that the
function has the value NA (not applicable). Such a domain value has no generalization.
Although NA is net specified in an input rule, it can be a valid value of of a variable.

6. If the second form of the selector is used {production I3) (e.g. [p(x,x.)]), the program assumes
that the function symbol has the value 1. This may be used to specify a TRUE value for a
predicate (predicates are treated as functions with domain [0,1]). In general, to simplify the
expressions, only positive values of predicates are specified. The program then uses only positive
instances of the predicate in the generalizations. If negative values of a predicate are desired in
the generalizations, these relations should be included in the initial decision rule specification.
(e.2- [ontop[pl,pz}i specifies that p, is on top of p,; [ontop(p,,p)=0] specifies that p, is not on top

of p,.)

7. If the fourth form of the selector is used (e.g. [p(x,.x,)|, then the order of the arguments is
assumed to be irrelevant.

3.2. Background Knowledge Rules

Background knowledge rules are used to define background knowledge and are entered in along with
the events. There are two types of background knowledge rules. The first type {A-rules) generate mew
descriptors as arithmetic expressions of the initially provided descriptors. The second type (L-rules) define
new descriptors as a logical combination of other descriptors.
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3.2.1. A-rules
A-rules define an arithmetic derived descriptor. The grammar for A-rules is:

< A-rule> == <ln-sym> "(" <elist> ")=" Lexpr>
< expr> == <term> <adop> <expr>
| <term>>
<term> st <factor> <mulop> <term>
| < factor>
<factor> = (" <expr> ")
<number>

<fo-sym> "(" <elist> ")"

|

| "-" < number>

|

| " < fn-sym> "(" <alist> "J"

< elist > == <variable> " " <elist>
| <variable>

<adop> = P * | P

< mulop > = " | " | "%

<expr> is an arithmetic expression written in standard algebraic form. The variables of the function on
the left hand side must appear on the right hand zide, All functions and predicates must have linear
domains. The operators which may be used are: 4+ (addition), - (subtraction), - (unary minus), *
(multiplication), / (integer division - remainder discarded), and % (integer modulus), The operators *#,
/. and % are evaluated before - and +. Example:

girth(x1) = length(x1) + width(x1).

3.2.2. L-rules

L-rules are useful for introducing new descriptors which describe groups of parts, expressing the
symmetry of a descriptor, expressing the tramsitivity of a descriptor, ete. The L-rules must satisfy this
ErAMMAar:

< L-rule> B <condition> "::>" <{consequence>>
<lconsequence> = <selector> < consequence =
| <selector >

where < condition™ and <selector™> are the same as in the decision rule grammar. Notice that the right
hand side of an L-rule can be a conjunction of one or more selectors, unlike the decision rule syntax, in
which the right hand side was restricted to a single O-ary function selector. There are further semantic
restrictions on A-rules:

[1] The condition must ferm a connected graph structure (see section 4 - briefly, this means that the
selectors that comprise the condition cannot be divided into two sets, such that the variables in one
set are completely disjoint from the variables in the other set).

{2) The consequence need not form a connected graph structure by itself, but each connected subgraph
of the consequence must be connected to the condition (ie, share some variable with the condition).

The L-rules are applied to the events as a group. For every occurrence of the condition part in the
event, the consequence of the L-rule is added to the event, il it is pot already there. All the L-rules in the
group are applied to all the events, until no further consequences can be added. L-rules are useful for
introducing new descriptors, and these new deseriptors may describe groups of parts. For example:

[man(x,)][woman(x,)|[married(x,x )] => [family(x,)][consista{x,,x, x 2]]
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The group of L-rules to be applied is selected from the data base of all L-rules at the time the induction
process is performed. An explanation of how this is done is given in section 4.2.7, as well as a detailed-
description of how L-rules are applied to events,

3.3. Domaln Structure Specification

The domain of a function or variable may consist of a structured set of values, Currently, tree-
structured value sets are handled by the program. The structure is described by T-rules according to the
grammar

<T-rule> o= | <fo-sym> = <ref> ]| &> | <fo-sym> = <rel> |.

where the two function symbols are the same and fo-sym and ref are as in the decision rule grammar. For
example:

[s = 134] =:> [s = 6]
[f=02u>s=7].
ls=4] > [s=8|.

[s =68 2> |s = 9.

Entering a tree structure automatically sets the type of the domain for the function symbol to the
structured type. Each element in the ref of the condition part of this rule must either be a leaf of the
corresponding tree or have been previously defined with another T-rule specification.

3.4. Preference Criterion

The preference criterion is defined as a Lericographical Evaluation Funclional {(LEF). The LEF is
defined by a sequence of “criterion-tolerance” pairs (e,,7), (e,7,), ..., where ¢, is an elementary criterion
selected from the list below, and 7 is a “tolerance threshold” (r € [0...100%]). In the first step, all
hypotheses are evaluated on the first criterion, ¢, and those that score best are retained. A parameter set
by the user, VLMAXSTAR, is the number of hypotheses that are retained. If any of the remaining
hypotheses are equivalent to the worst hypothesis within the range defined by the threshold 7,. they are
also retained., Mext, the retained hypotheses are evaluated on eriterion ¢, with threshold 7, similarly to
the above. This process continues until the number of retained hypotheses is reduced to VLMAXSTAR
or fewer, or the sequence of criterion-tolerance pairs is exhausted. In the latter case, the retained
hypotheses have equivalent quality with respect to the given LEF, and any one may be chosen arbitrarily.

The user specifies the order in which the optimality criteria will be applied, and the tolerance
associated with each one. The default optimality eriteria (or optimality cost functions) in the order of
application are the following:

(1) Minimize the inconsistencies of a rule with tolerance 0.30, i.e., the number of negative events
covered by the rule (this is cost function number 3 in section 4.2.3). This allows the program to
produce consistent generalizations quickly. The high tolerance removes highly inconsistent rules
while leaving selection of nearly consistent rules to the remaining cost functions.

{2) Minimize the number of producis in the complete generalization with tolerance 0.00 (this iz cost
function number 1 in section 4.2.3).

(3) Minimize the number of selectors in each product produced by the program {function 2 in section
4.2.3),
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(1) Minimize the cost of functions in each product (function 4 in section 4.2.3). If costs are specified,
this eriterion may be moved forward. If the user wishes certain functions to appear in the resulting
products, the costs for these Munctions may be specified (given negative cost). Similarly, functions
which are very difficult or cosily to measure may be given appropriate positive costs,

'(5) Maximize the intersection of resulting rules (cost function 5 in section 4.2.3). In real situations, the
separate products produced by the program may represent a large number of commaon input decision
rules along with some peculiarities of specifie situations which arise. Use of this cost function will
favor the selection of a more representative result as opposed to ome which describes only a
particular set of situations. Section 4.2.6 contains a more detailed discussion of a similar cost
function in the ‘."L1 system.



INDUCLE 2 19

4. Computer Implementation

This section gives a general description of the computer implementation of INDUCE 2, including the
logical reprezentation of ‘0’1.2 rules, and the overall algorithm. A very general deseription of the algorithm
is this:

(1) Select class.
After the user specifies which set of events is to be covered, the program applies A-rules and L-rules
to the input rules to add selectors to them. It also adds selectors containing meta-functions,
equivalence predicates, and extremities predicates,

(2) Focus attention.
Select a positive event (the focus of attention) and generate a star for this event (i.e., set of
alternative consistent generalizations which cover this event). This ia done in two phases:

() Find a consistent gemeralization of the focus-of-attention event by locating the most
promising selectors of the event and adding new selectors to each of these selectors until a set
of consistent generalizations of this event is obtained.

(i) The VL, rules obtained from (i) are transformed into VL, rules in order to use the AQ

procedure to extend the references of the functions in the consistent rules. They are then
transformed back into VL, rules, with extended references.

{3) Select best generalization.
Select the best gemeralization from this set and remove rules from the set produced in step 1 for
which this is a generalization. Repeat steps 3-4 until no more rules remain which involve the
decision variable and value of step 2.

(4) Continue by selecting another value of the current decision variable or selecting another decision
variable until all decisions have been considered,

The primary purpose of the two phase approach is computation efficiency. It is much faster to
compare VL rules (represented as bit strings) than VL, rules (represented as graphs). In a recent test,

the procedures that test to see if one "l.’L2 covers another took up over 77% of the total running time.
The procedures which perform the AQ algorithm took up less than 4% of the total running time.

A more detailed description of the algorithm is given below, following an explanation of the logical
representation of the decision rules.

4.1. Graph Representation of VL Declslon Rules

Some of the information in this section appears in [Larson et.al. 1977] and is given here as a
background for the description of the computer implementation, A VL decision rule can be represented as
a graph with labelled nodes and directed labelled edges. The labels on the nodes can be: a) a selector
containing k-ary descriptors without argument lists, b) a k-ary descriptor without arguments, c) a
quantified variable with an optional subrange of values, d) a logical operator. (From here on, a node is
referred to by its label, e.g., a selector node means a node with a selector label.) The edges are labelled
with integers from 0,1,... . Edges not labelled O refer to the position of an argument in the label at the
head of the edge. (Edges have non-zero labels only if the position in the argument list of the head node is
important. Labels of 0 may be dropped for conveuience.]

Several different types of relations may be represented by edges. The type of relation is determined
by the label on the node at each end of the edge. The types of relations are:
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(1) Function Dependence - The label of the head node of the edge has a k-ary descriptor. The value
represented by the edge is the value of the atomic form in the tail if the tail is a selector node, a
deseriptor value if the tail is a descriptor node, or one or all of a set of descriptor values if the tail is
a quantified variable. The edge label specifies which argument of the head node assumes this value
(Figure 4.1).

Elxl—t[g= LY — [ = 1] e¥——— 3:&2

Functional Dependence: =] x %, ([a(x )=1..2][f(g(x,).x,) = 1])

Figure 4.1

(2) Logical Dependence - The head node is a logical operator (e.g. v, &, =>) and the tail node is a
selector node, or a logical operator node. If the tail node is a selector, then the value represented by
the edge is the truth value of the selector at the tail (Figure 4.2}

v

fr=1] =2
\311/

Logical Dependence : = x,{[ffx,) = 1] v [a(x,) = 2]}
Figure 4.2
(3) Implicit Variable Dependence - The labels of the head and tail nodes are quantified variables. This

type of dependence represents the implicit function (which can be represented by a Skolem function)
(Figure 4.3).

/J'[P — 1]\
Vx, Ix,

Implicit Variable Dependence: Yfx, = x [p(x,.x,) = 1]

Figure 4.3

(4) Scope of Variables - The head node is a logical operator and the tail is a quantified variable. This
type of dependence may be necessary for certain binary logical operators such as (—, €<=). For
the functions v and &, this type of dependence is implicit in the functional dependence of the
arguments. (Figure 4.4)
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b= 1]-—1—-::} - la =1]

hit, =
Seape of Variables: Bxl,xzﬂp[xl] = 1] > [glx,) = 1])

Figure 4.4

The graph of a more complex decision rule is given in Figure 4.5. The value of X, is dependent in
an unspecified way on the value of x, (the edge labelled A). The disjunetion (v) deprnds on the values of
x, and x,, but this is clearly specified by the functional dependence of f and g on x, and x,. Finally,
ubse:n-e that the decision operator (::>) does not explicitly depend on the specific values fo X,, OF X
but instead depends on the truth value of the entire premise using some set of value 'asmgnment.s Im' XX,

and X,

S

Ir=1]

I

EIJI;1 ’g’xa 3‘3 Ve £ 12 g [d=1]

e v

Graph Structure Example:

o e, x (([fx,x,) = 1] ¥ [glx,x,) = 2v 3]) &
[fx,x,) = 1] 2> [d = 1]

Figure 4.5
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4.2. Algorithm

This section describes the algorithm in more detail. The program is written in Pascal, and consists
of about G000 lines of comments and code, organized into about 80 procedures. Some major tasks which
are performed by some groups of procedures are described below.

4.2.1. Formation of a Complete Generalization

A generalization is found of a set of decision rules containing a specified value [ in the decision part.
For discriminant generalization, two sets of products are generated: a set F1 which contains all products
in the CONDITION parts of rules with a decision value of I, and a set FO which contains all other
products. Each product is called a e-formula (conjunctive-formula).

One e-formula E1 of F1 is selected at random and a connected-conjunctive-formula (c2-formula) is
generated which is a generalization of El, consistent with respect to the set FO, and mear optimal with
respect to a user defined criterion. A c-formula is connected il its graph structure representation is weakly
connected by functional dependence relations, A c-formula is consislent with respect to a sel of e-
formulas FO if it does not intersect with any element of the set FO (i.e., there is no event which satisfies
both e-formulas).

Once a generalization of E1 is found, it is saved in a set CQ and all elements of F1 which are
covered by this generalization are removed from F1. One c-formula E1 covers another c-formula E0 if E1
is a generalization of E0. Another element of the new set F1 is selected and the procedure repeated.
When there are no more elements in F'1, the complete, consistent generalization of the set of c-formulas
F1 is the disjunction of all ¢2-formulas in CQ.

Characteristic generalization is performed in a similar manner, except that there is no set of events
FO. In this case, there is only one decision class, and so a rule (or rules) is found which is as specific as
possible and covers all the events.

4.2.2. Determine Cover and Intersectlon of 2 Formulas

Two similar procedures are decribed here. The test to determine whether a ¢2-formula E covers a
c-formula E' is used when E' is an element of the set F1. The test to determine whether E intersects with
E' is used when E' is an element of FO (i.e., to determine if E and E' are consistent). The procedure uses
the graph structure representations of E and E' (G and G' with nodes and edges V,E,V',E’ respectively].
The graph G is assumed to be weakly connected. E covers E' if there is a specializing izomorphism (s-
isomorphism) from G to a subgraph of G'. The reverse mapping (from a subgraph of G' to G} is called a
generalizing ieomorphism {g-isomorphism). E intersects with E' if there is an iniersecling isomaorphism (i-
isomorphism) between G and a subgraph of G'. Each isomorphism from G to a subgraph of G"is a 1-to-1
correspondence between nodes and edges of G and a subset of nodes and edges of G' where the
correspondence (or matching) of nodes and edges is defined as follows:

A node n of G malches a node n” of G' il each of the following conditions is true:
(1) They are both selector nodes or both quantified variable nodes.

{(2) If they are selector nodes, then the function symbols in both nodes are the same. If they are
variable nodes, they are of the same group of variables,

(3) With an s-isomorphism or g-isomorphism, the set of values associated with n is a generalization of
the set of values associated with n'. (The sets of values may be equal.) With an i-isomorphism, the
sets of values intersect. In the case of selector nodes, these values are the elements in the reference
of the selector. In the case of quantified variable nodes, these values are the subranges of the
variables.
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(1)
(2)

An edge of G matches an edge of G' if these two conditions hold:
They have the same label
The respective head nodes match and the tail nodes match.

To speed rejection, a quick scan through the nodes is made to see if there is a correspondence

between nodes of G and a subset of nodes of G’ (ignoring links between nodes), If there is a possible
correspondence, a procedure is invoked which loeates a subgraph of G' which is isomorphic to G and
assigns each node of G to a corresponding node of G'. The procedure is as follows:

(1)

(2)

(3)

(4)

(5)

(6)

Select a starting node (n,) of G which contains the most labelled incoming edges. (This is the

selector node with the largest number of arguments,) Selecting a node of this type insures that there
is a minimum of backtracking through the starting node.

A rooted directed a-cyclic graph G#* with nodes and edges V+ and E+ is constructed from G by
copying all nodes and edges of G to G* and assigning a direction to each edge of G* so that G+ has
no cycles and for each node x in { V¥-n*_ }, there is a path from n*_ to x. (n*, is the node of G=
which corresponds to nin G.) A traversal of the graph G# is the list of edges and nodes visited in a
preorder traversal of G* with root n*,. A preorder traversal of a subgraph with root x visits the
node x, visita each outgoing edge of x and traverses the subgraph which has as the root, the head
node of the traversed edge.

The graph G is traversed in the order of the traversal of corresponding nodes and edges of G=. At
each step of the traversal of G, a node and new edge of G' is found which match the node and edge
of G. If two podes match, they are assigned to each other and a record of the matching nodes and
edges is kept for each assignment in a backtrack list. To establish a 1-to-1 correspondence, nodes of
one graph which are previously assigned can only match corresponding assigned nodes of the other
graph.

If there is no node and edge of G which matches a node and edge of G, the procedure backtracks to
the previous nodes and edges on the backtrack list, erasing the last nodes and edges on the
backtrack list and the assignments associated with the nodes. Another node and edge of G' are
selected which match the last node and edge of G on the backtrack list and the traversal of G
continues. If no node and edge of G’ can be found at this point, then the procedure again
backtracks until a new match is found or the backtrack list is exhausted.

If the traversal of G is complete, then G covers (intersects) G'. If the backtrack list is exhausted,
then G does not cover (intersect) G'.

A feature is included which finds all subgraphs of G' which are isomorphic to G. This feature is
used in extending the references of a consistent c-formula (section 4.2.5) and in adding background
knowledge to c-formulas.

If the traversal of G is complete, then the current set of assignments is the desired mapping. To
find the next isomorphism, the procedure returns to step 4 assuming that the last nodes and edges
on the backtrack list did not match.
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4.2.3. Trimming a Set of c-formulas

Trimming is the process of selecting the MANSTAR bLest elements of a set of c-formulas with regard
to 2 user defined eriterion. The user specifies the cost functions which are to be used, the order in which
they should be applied, and the tolerance associated with each cost function. Implemented cost functions
are:

(1) The number of events of the current set F1 which are covered by a c¢2-formula. (The negative of
this quantity is used to obtain = cost.) This function minimizes the number of c-formulas in CQ.

(2) The number of selectors in a c2-formula. The function minimizes the number of selectors in the c-
formula.

(3) The number of events of FO which intersect with a e2-formula. This function leads more rapidly to
consistent e-formulas.

(4) The total cost of all functions contained in a ¢2-formula.

(5) The number of events of the original set F1 which are covered by a cl-formula. (The negative of
this quantity is used to obtain a cost.) This function finds the most representative c-formulas.

A set of e-formulas is trimmed using n cost functions [cl‘l,efg,,,_-:rn] and relative tolerance for each
cost function (toly,tol,,...tol ). The costs are applied in the order specified by the user {1:1'1 first, cf, second,
etc). For each cost function c]’.l, the MAXSTAR best c¢2-formulas along with all ¢2-formulas equivalent in
cost to the MAXSTAR best c-formulas are passed to the evaluation using the mext cost fumction ef .
Other c2-formulas in the set of c-formulas are discarded. With the last specified cost function (cf ), only
the MAXSTAR best e-formulas are retained.

For each cost function ef, i=1,2,...,n, equivalence of two c-formulas in cost is defined using an
absolute tolerance (AT ). Suppose the set of e-formulas P is composed of a list p,,p,,...p,. After values
for cost function |:I'|_I have been evaluated rfi{pj] for each c-formula p., the maximum and minimum cost

¥
function values are determined cf(p__ ) and cf(p_ ). An absolute tolerance (AT} is calculated using the
user specified tolerance tol, as follows:

AT, = tol, * (ef(p_ ) - efip_..))

The MAXSTAR c-formulas of least cost are determined and the list reordered [p1’pz-""p}.1.-\.xst‘m-""|’m]'
If i<n then c2-formulas which are not equivalent in cost to PrisTAR 270 discarded.

P =P -[p; : ef(p) - ef(Pypuxsran)> AT
If i=n, (the last cost function) then only the MAXSTAR best ¢2-formulas are retained.
P=F - [pj 1 ] >MAXSTAR).

The set of c2-formulas which remains is the desired trimmed set of e2-formulas.
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4.2.4. Formation of a Set of Conslstent Generalizatlons

A star {denoted by MQ) is formed which covers El. (The star is a set of consistent e2-formulas
which cover E1.) The procedure begins by forming a partial star {P) which contains a set of e-formulas
each consisting of one selector of E1. (The partial sfar may contain ¢2-formulas which are not consistent
with respect to F0.) This partial star is trimmed according to the user supplied optimality eriterion. The
conjunction in each c-formula which remains after trimming is multiplied by each selector of E1 which is
directly connected to it (ie, shares one or more variables with it) to form a mew partial star. Consistent
c2-formulas are placed in MG). The partial star is again trimmed and new selectors added to each product
until the desired set MQ of e2-formulas is obtained. Several paramenters control the sizes of sets in this
procedure:

MAXSTAR - the number of c-formulas in a partial star after trimming
NCOMNSIST -the minimum number of consistent c2-formulas which must be in MQ

ALTER - the maximum number of new alternatives which may be formed by adding selectors to an
element of a partial star,

In the following discussion, equivalence type selectors (i.e., selectors of the form ["(’i,~=‘<z}=ﬂam€ﬂ are
treated differently from selectors involving a funetion symbol and a set of values in the reference,

(1) A partial star P is formed which contains all selectors of E1 with unary functions.

(2) P is trimmed to contain only the best MAXSTAR c¢2-formulas. Consistent c-formulas are placed
into MQ. If fewer than NCONSIST elements are in MQ, then step 3 is executed. Otherwise, the
AQ procedure is applied to the elements of MQ (as described in section 4.2.5).

(3) A new partial star P' is formed from the old one (P). For each element P, in P, a list of all variables
found in p, (i.e., arguments of selectors of p,) is formed. All arguments of equivalence type selectors
which occur in the corresponding selector of E1 are also included in the list.

(1) For each element p, in P, a list of all selectors of E1 which are not already in p, and which have at
least one argument in the variable list (found in step 3) is created. If there are more than ALTER
elements in this list, the hest ALTER selectors are retained (using as a eriterion the cost of
functions in the selectors).

(5) For each of these selectors, a new c2-formula is formed which contains the original selectors in p,
and the new selector. If the new e-formula contains an equivalence selector with only one argument,
then the new c-formula is discarded; otherwise, it is placed in P’, Steps 2 through 5 are repeated,
setting PP = P’ in step 2 until NCONSIST elements are in MQ or until no new elements are in the
new partial star P'.

The algorithm for characteristic generalization is similar to the above. The partial star is formed
the same way - starting with all the unary selectors of E1, and the rules are grown by adding selectors to
them as described above. The difference is that a rule is placed into MQ not when it is consistent (this
has no meaning in this case), but when it fails to cover a certain percentage of the events. This
percentage is specified by the parameter MINCOVER, NCONSIST such MQ rules must be found before
the growing algorithm terminates. If MINCOVER =100, for example, fairly trivial rules will usually be
found. If MINCOVER=>50, more interesting rules will be found, but these rules may not cover all of the
events,
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4.2.5. Extending the References of a Conslstent cZ-formula

Each consistent ¢2-formula of MQ (obtained in section 4.2.4 step 2) contains an alternative, near
optimal conjunction of selectors of E1 which distinguishes E1 from any c-formula of F0. Using some
methods developed for the program AQT7, the reference of each of these selectors may be generalized to
obtain a consistent c2-formula which will possibly cover
more c-formulas of F1.

Given a graph G of a consistent e¢2-formula mq in MQ, a c-siructure is created (G#*) by replacing all
references of nodes of G with # (the complete set of values for the function in the selector]. The nodes of
G# are enumerated n*, (i=1,2,...,m) and a VL, system is created with each VL, variable x; related to a
node n* of G*. The domain {denoted D,) of variable x; is the same as the domain of the function or
variable in the node n*;

The VL, event space may be defined:
E=DxD,x..xD_.

Two sets of VL, complexes L and L' are formed from the events of the current set F1 and the set FO
respectively. Individual complexes in these sets are denoted I and I'. Each complex covers a set of

points in the space E. For each element of F1 and FO all isomerphisms from the c-structure G# to the
graph representation G of a c-formula in F1 or FO are determined. For each isomorphism obtained from
F1 and FO, a VL, complex is created (L or I'). Denoting the value sets of the nodes in a subgraph of G

which is isomorphic to G* as RI,RT...,RM, the corresponding VL, complex may be written:
[x,=R,l[x,=R,] ... [x,=R_]-
This complex covers the VL events:

RIxRZx...xR

m

in the event space E.

First, the complex |, which results from extracting the values from the nodes of the graph of mq is
generated. Then all other isomorphisms from G#* to c-formulas of F1 are determined and a complex
added to L for each isomorphism which results in a new complex that is not already in L. The set L' is
created in a similar manner by generating all distinet complexes resulting from isomorphisms from G+ to
e-formulas of FO.

Since the c-formula mq is consistent with regard to FO, the complex 1, is disjoint from all complexes
in L'. (That is, there is no point in the VL, event space E which is in both 1 and a complex of L'.)
However, other complexes L in L may not be disjoint from L'. A near optimal extension of 1, against L’
in E may be calculated using a version of the AQT program. The best complex in this extension {lq} is
calculated aceording to a user defined criterion. The | complex is converted to a c-formula by replacing
the value set of each node n¥, of G+ by the reference of the selector with variable x, in 1 . This c-formula
is consistent with respect to the set FO. (This is evident since, if there were a VL event which satisfied
both the c-formula from lq and a c-formula of FO, then one could find a VL, complex - using an
isomorphism between G# and the c-formula of FO — which intersected with 1, and L. But since I, and L’
are disjoint, this can not happen.)

The cost function for the AQ procedure computes the cost of a complex. Cost functions may be
selected from the following:

(1} The number of elements in L which are covered by a complex but not covered by any previous ]q.
This is the AC) eounterpart to the cost function 1 in section 4.2.3) (Use the negative of this value to
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get a cost.)
(2) The number of selectors in a complex {ﬂ:e AQ counterpart to function 2 in section 4.2.3).
{3) The number of clements of L covered by a complex which are associated with different events of F1.

(1) The total cost of variables which appear in a complex (i.e., the cost of functions or variables in
associated nodes of G*). This is the counterpart of the function 4 in section 4.2.3,

(5)  The total number of events in L covered by a complex.

(6) The number of events in L' covered by a complex (the AQ counterpart to function 3 in 4.2.3).

Trimming is done in the manner described above for c-formulas (sec 4.2.3). A MAXSTAR parameter is
specified for this procedure and the I_is selected from the extension using a MAXSTAR value of 1. The

next section gives a more complete description of the AQ) procedure.

4.2.8. The AQ Procedure

This section contains a very brief description of the AQ procedure implemented in the program
INDUCE 2. The reader is referred to [Larson et.al. 1975] for further details.

Let 1"5{'1'1'::’""}:.1} and L,={II|'I’2*""‘I-m'} be the sets of complexes described in the previous section.

{These two sets are denoted F'1 and FO respectively in other references; the above notation was selected to
avoid confusion with sets of c-formulas.) The program selects one element {en] from L and forms a star

about this element (a star about e is a set of complexes each of which contains e, but does not intersect
with any element of L' and is nearly maximal under inclusion). One element {lq] is selected from the star

using the optimality criterion and placed in a set of output complexes; all other elements of L. which are
covered by this |q are removed from L and the process is repeated with a new e, until the set L is

exhausted.

A star is generated by forming a sequence of elementary stars and partial stars, one for each element
of L'. An elementary star (ES{e ') or ES..] is a set of complexes which covers e, does not intersect with

]’I, and is maximal under inclusion and under domain structure constraints. A partial star [Pi{eo:l ar Pi} is
a set of complexes which contain e; but do not intersect with any I-‘i. j=<<=i (note that F_. is in fact a
star). To gencrate an elementary star ES.I, the extension against rule is applied to each selector of e, in
the context of I’I.. The result is a set of selectors, each one corresponding to one selector of 2, To form a
partial star P, , from a partial star P, each element of P, is multiplied by each element of ES | (i.e.,
the set of complexes in P, and ES may be viewed as a logical sum of products of selectors; the
multiplication is then the normal result of expanding a product of sums in the '\."'l.,l system).

The partial star P is initialized to be the entire event space E. As each partial star P, is generated,

absorption laws are applied to discard any complex of P, which is contained in another complex of P

The partial star is then trimmed to AQMAXSTAR number of elements using a procedure identical to that
in section 4.2.3. The final partial star (P_.) is trimmed with an AQMAXSTAR value of 1 to produce 1.

If a parameter LQST is set (has the value TRUE), then ]1 is stripped down to an expression with the
following properties:

(1) the stripped II: containg the same variables as the original expression,

(2) the stripped | covers the same elements of L as the original,

{3) the reference of each selector of lq contains the fewest elements of all complexes satisfying 1 and 2
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above under domain structure constraints (i.e., interval variables must have a range of values in the
reference).
If the set L' is null, then (1) above is replaced with:
(1)  the stripped I_contains all variables x ,x,,...X .
The latter condition oecurs when generating descriptive descriptions covering only one set of complexes
(sce section 4.2.4). Stripping is done by finding the disjunction of all complexes in L covered by Iu and
then adjusting the reference of each selector in the sum to conform to the domain structure (i.e., Tor

interval domains, this involves filling the gaps to while form an interval, while for tree structured
domains, this involves finding the lowest level generalization of all elements in the reference).

A simple example may clarify the procedure. Given 3 variables with domains:

Variable Structure Values
x, nominal [0:2]
X, interval j0:3]
X, tree-struc |0:6]

0,1,2::>5
24:>6

and input complexes and parameters:

Li 1 [x,=0] [x,=1] [x;=2| AQMAXSTAR = 2
1 [x,=1] [x;=1] [x,=0] LQST = TRUE
Iy Tey=1] [x;=2] [x,=0]

Iy x=1] [x,=2| [x,=3|

Ve =0 [x,=3| [x,=1]
U =9 [x,=2 x,=4

cost functions: -1 (maximize number of complexes eovered)
2 (minimize number of selectors)
tolerance = 0 for both functions,

Let e =1, the clementary star ES| and the partial star P contain:

ES;: [x,=0v2], [x,=0.1], [x;=5|

1

since multiplication by the entire space E (P, ) leaves each element unchanged. The trimmed P is

P [x,=0.1], [x;=5|

1
since each of these selectors cover at least 2 elements of L while the selector [x,=0,2] covers only 1

element. The elementary star ES, is

BS; [x,=0.2], [x,=2]

since the references of the variable x, intersect in l1 and 1'2. The resulting partial star P, is

.- [e,=0.1], [x,=0.1][x,=2], [x,=0.2][x,=5], [x,=2|

which may be reduced by absorption to
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P, [x,=0.1], [xznﬂ..2|!1==5], [x,;=2].

Since the third element of this partial star covers only one element of L, the trimmed partial star leaves

P.:

g Bxg=0.1], [x,=0..2][x,=3|

Now considering I';, ES_ is

ES;:  [x=0v1], [x=0.1], [x,=5|

and P'a after absorption becomes
P, (x,=0.1], [x,=0.2][x,=5]
The lq selected from the star P, is

L [x,=0..2][x,=5]

since this complex covers all three complexes in L. Stripping reduces the complex to

L [x,=1..2][x,=5]

If the set L’ is ignored, a descriptive generalization of L ean be formed

1 [x,=0,1][x,=1..2]|x,=35].

4.2.7. Background Knowledge Rules
Background knowledge rules are entered along with the events, and are kept in a list. There are
two types of background knowledge rules: A-rules, which add arithmetically derived descriptors, and L-
rules, which add logically derived deseriptors. This section discusses the application and wse of L-rules.
Each L-rule is represented as a single graph structure, but the program treats the condition of the
L-rule as a connected subgraph by itself. This is necessary because the program matches only the
condition of the L-rule against an event.

Application of an L-rule fo an event

The program determines if the condition of the L-rule covers the event by trying to fnd a
specializing isomorphism from the connected subgraph that represents the condition, to the graph that
represents the event. If it does, it adds the nodes in the consequence to the event, il they are not already
in the the event. The test to see if a node i already in the event is done as follows: The node is already
in the event if it has the correct function symbol and value set, and its neighbors are in the event. This
recursive test bottoms out because the nodes in the condition of the L-rule are already in the event, by
definition.

For example, figure 4.6 shows the application of an L-rule to an event. The L-rule is
Plx,)] => [Qlx,x,)[R(x,)]
[M{y 1Py NIQLy oy ).

and the event is
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Figure 4.6

Nodes 1 and 2 consititute the condition of the L-rule, and an isomorphism has been found between the
condition znd nodes a and b of the event. (This means that nodes 1 and 2 are in the event, and a list of
assignments records this, as in the procedure described in section 4.2.2.) Now node 3 potentially matches
pode ¢ and node 4 potentially matches node d, but node 5 does not match node e (different function
symbol). (If node 5 had been a function symbol M, they all would have matched.) Thus, none of the
nodes {3,4,5} match, and they are all added to the event. Figure 4.7 shows the event after the new nodes
have been added. The above procedure is done for every isomorphism that is found between the
condition of the L-rule and the event.

Figure 4.7

Viewing L-rules as logical implication

The above procedure and its effects can be more clearly understood by viewing L-rules and events as
sentences in first order predicate caleulus. For example, the above event can be represented in FOPC:

Fy,.¥, Ply,) M(y,) Qly,¥,) =+ D

(where D is a predicate stating the decision class membership) and the L-rule as

Wx, (P(x)) = Jx, Q(x,x,) R(x,) )
Using the rules of logic, the event can be transformed into
Ty, Ply) Mly)) Qlr,y,) & Tx, Qly,x,) R(x,) = D
This cannot be further simplified. However, if R had been an M, then the event

Hf l!-rz F[!g] M{Y]_] Q[)‘er;j & .:—I'xg Qb{g!xg} L{I:“g} - D
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could have been simplified to
Fy.y, Ply,) Mly,) Qly,y,) = D

which is the same as not adding the consequence of the L-rule to the event.

Application of a group of L-rules

A group of L-rules is applied to the events by applying each L-rule to each event in turn, and
repeating the process until no further modifications can be made to the events. By using such a loop, the
application of one L-rule can make pessible the application of another. For example, the application of
the L-rule:

[blo-ck[xl}][blocl:[xz}][ont.op{xl,xgﬂ ik [star:k{xs}][tanp_pmt[xﬂ,xl}ﬂbuunm_pan[xa,x,_,]]
can make possible the application of
[stack(x )|[top_part(x x )][ontop(x,x,)] => [ontop(x,x,)]

because the predicates "stack™ and "top_part” are introduced by the first L-rule and are used by the
condition of the second L-rule.

Selecling the L-rules to apply

A facility has been included in the program which selects a group of L-rules from the entire list of
L-rules. The L-rules selected are the "best™ ones, ie. the ones that will most likely lead to lower cost rules
produced by the generalization algorithm. The reason for doing this is that the L-rules increase the size
of the events, which increases the memory and time requirements. It is desirable to keep this growth to a
minumuam.,

The group of L-rules is chosen when the user specifies which event set is to be covered, because the
choice of L-rules depends on the event set. However, the L-rules have been previously divided into
connecled gefs. A connected set of L-rules is one in which the application of any one of its members

affects the applicability of only the L-rules in this same set, In other words, for all B, in 8, the application
of B, affects the application of B, , B, ... and the B, are all in S. The procedure described here chooses a
group of connected sets, not a group of individual L-rules, since it does not make sense to split up the L-
rules in a connected set.

The group of connected sets of L-rules is chosen by trimming the entire list of all connected sets,
according to user defined cost criteria. This procedure is almost identical to that used for trimming a set
of c-formulas, described in section 4.2.3. The cost functions used are as follows (listed in default order);

(1) The number of events of the current set F'1 which are covered by the connected set (the negative of
this number is used to obtain a cest), A connected set of L-rules covers an event if any of its
members da.

{2) The number of events of FO which are covered by the connected set.

The number of selectors in the condition parts of the L-rules in the set (the negative of this number
is used to obtain a cost). L-rules with large conditions are desirable because they potentially lead to
great reductions in the size of the final generalization, i.e. when the selectors in the condition of the
L-rule are dropped in favor of the selectors in the consequence.

(4) The number of selectors in the consequence parts of the L-rules in the set. L-rules with large
consequences are undesirable because they greatly increase the size of the events,

The connected seta of L-rules are trimmed according to the parameters specified by the user; the
order of cost functions, their tolerances, and the value of MAXL, which is the maximum number of
connected sets to be applied.
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4.2.8. Adding New Functlons and Predicates to e-formulas

The program currently has the capability of automatically adding three types of new attributes to
existing e-formulas: 1) global descriptors [ mels funclions ) which count the frequency of occurrence of
selectors with unary functions; 2) equivalence type predicates of the form [f(x x,)=same| i.e., the value
of f is the same for x, and x,; 3) extremity type predicates ([lst-f(x,)] or [mst-f(x )|) which indicate that
the argument x, is at one end of a sequence of binary predicates. These functions are added at the user’s
discretion.

Meta Selectora

There are two types of meta functions currently calculated and added to a c-formula as a meta
selector: One type (#PT(f=a) where f is an atomic function and a is a value in D(f)), counts the number
of times a particular selector ([f(..)=3]) appears in a c-formula. The second type (FORALL(f=a)) is a
predicate which is true if a function assumes only one value in a c-formula and false otherwise.

For each atomic function-reference pair which appears in any c-formula, 2 meta selector is added to
the e-formula which has a meta function in the referee. For example, a c-formula

[tx(x,)=1][tx(x )= 1][sh{x,)=1][sh{x,)}=0]
generates the four meta selectors:

[#PT(tx=1)=2] - the number of parts with tx=1is 2
|#PT{sh=0}=1] - the number of parts with sh=0is 1
|[#FPT{sh=1)=1| - the number of parts with sh=11is 1
[FORALL(tx=1]] - all parts have tx=1.

Since the number of such selectors may be quite large, the list of meta functions is trimmed to a
small set, The size of the set is determined by a parameter METATRIM supplied by the user using as
criteria the degree to which a value of the new function will separate the sets F1 and F0. For each meta
function-value combination (meta selector) which is generated, the number of c-formulas of F1 and FO
which satisfy the selector is calculated. Associated with the meta function (mf) are two numbers: F1COV
and FOCOV. F1COV is the maximum number of ¢-formulas of F1 covered by a meta selector arising from
the meta Munection mf. FOCOV is the number of c-formulas of FO which are covered by the meta selector
which gave the highest F1COV value, .

The list of possible meta functions is trimmed to METATRIM remaining meta functions by sorting
in descending order, the list of meta functions according to the primary field F1COV and the secondary
field FOCOV and selecting the first METATRIM functions from this list. The meta selectors which result
from applying each of the selected meta functions to each c-formula are antomatically appended to the c-
formulas and carried with each c-formula during the generalization process. Setting METATRIM to D
bypasses the entire meta selector generation process.

Equivalence Predicates

These predicates may have arbitrarily many arguments whose order is irrelevant. They are
calculated by scanning all selectors in each c-formula for sets of 2 or more selectors with unary functions
which have the same atomic Minction and reference. Such a set of selectors is said to be equivalent and a
new predicate is created which contains an argument from each of the atomic forms of all equivalent
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selectors. For example, a e-formula of the form:
[s(x,)=1]ls(x,)=1]Is(x,)=1][s(x,)=2][s(x,}=2]

" leads to the creation of predicates:

[s(x - x,x,)=same][s(xx,)=same]

Extremeties Predicates

These are unary predicates which represent the ends of a sequence of selectors with the same binary
predicate:

[plxpx,Nlplx,x,) - - . [pfx, %)
where, in the sequence, if i>2 then the first argument of the j-th selector (1<j<i) is the same as the

second argument of the j+ 1-st selector. Also, the variables %, (and xi] do not appear as the second (or

first) argument of another selector with atomic function p. The new predicates formed for the arguments
x, and x; of such a sequence are written:

[MST-p(x, )] and [LST-p(x;)).
For example, the situation in figure 4.8 is described by the c-formula:
[ontop(x,,x,)|[ontop{x x| [ontop(x,.x,)|
Adding extremeties predicates would give rise to the new predicates:

[MST-ontop(x, )] [LST-ontop(x, )| [LST-ontop(x )|

Figure 4.8
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5. Exaomples of Decision Rule Generation using INDUCE 2

This section presents examples of runs using INDUCE 2. For each example, a sample of the input
decision tules is listed along with tables describing function domains and program parameters. The
resulting generalizations are given as decision rules in disjunctive nermal form. The set of objects
. associated with a description below is given as the value of the decision part of the rule (e.g., for aset O,
the associated decision part is [d=1]). With some examples, several alternatives were produced by the
program. Each alternative which was produced is given as a separate decision rule. The various symbols
contained in these tables are defined below: ;

Program Parameters:
FParameter

AQMAXSTAR

LQST

AQCRIT
AQTOLERANCE
NCONSIST
ALTER
VLCRIT
VLTOL ERﬁ.LN CE

MAXL

LCRIT

LTOLERANCE

Description

the MAXSTAR parameter for the AQ procedure. This parameter specifies
the mumber of alternative complexes retained in each partial star in the AQ
procedure (see section 4.2.6).

the LQST parameter in the AQ procedure. Il this parameter is set, then
each l|1 which is generated in the AQ procedure is stripped so that the
reference in the selector for each variable in the 1 complex contains the
minimum number of elements under the constraints of the domain structure
while covering the same number of events of L. (see section 4.2.6).

the list of cost functions used in the AQ procedure in the order of application
(the minus sign indicates that the quantity which is calculated by the
function is negated to obtain the cost of the complex) (see section 4.2.5).

the tolerance associated with each cost function. IF this figure is less than 1,
then it is a relative cost, otherwise it is an absolute tolerance [see section

4,2.3).

the number of consistent generalizations which are ereated in the procedure
which forms consistent generalizations [i.e., the minimum number of elements
in the star MQ) (see section 4.2.4).

the number of alternatives which are retained in a partial star (see section
4.2.4),

the list of cost functions used to trim a partial star of c-formulas in the order
of application {a minus sign indicates that the quantity which is caluculated
by the function is negated to obtain the cost of the c-formula) (see section
4.2.3).

the tolerance associated with each cost function. A value which is less than 1
is assumed to be a relative tolerance; otherwise, it is an absolute tolerance
(see section 4.2.3).

the maximum number of L-rule sets that will be applied to the input events.
the list of cost functions used to trim the mumber of L-rule sets down to
MAXL. Values are entered in the same way as in VLCRIT. A description of

available cost functions is in section 4.2.7.

the tolerance associated with each cost function. Valoes are entered in the
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same way a3 in VL TOLERANCE.

the number of meta selectors of the type "forall” and #ps(number of parts)
which are added to each formula.

the predicates of the type [mst-f(x )| and [Ist-f(x,)] were added to input
decision rules.

the predicates of the type [f(x .x }=same| were added to the input decision
rules.

Description
the name of the function
the number of arguments of the function
the domain structure: l-nominal, 2-interval, 3-tree structured.
the cost of the function
the minimum value in the domain of the function
the maximum value in the domain of the function

the allowable generalizations in tree structure domains

Description
the meta selector number associated with this function
either "#ps" (number of parts) or "forall”
the associated function and walue (i.e., the associated selector ignoring
arguments; e.g., "forall texture == 07 is a predicate which has the value 1 if
all parts have a texture of 0 and 0 otherwise)

the number of c-formulas in F'1 covered by one value of the meta function.

the number of c-formulas in FO which are covered by the meta selector
associated with the value F1COYV above (see section 4.2.8).

The ohjects in figure 5.1 {from [Michalski 1977]) are examples of three classes of situations: 0,0,

and O,, each class containing 3 examples. The figures are expressed as VL, formulas using 6 descriptors



36

below. The descriptors and their domains are as follows:

Descriptor Structure
ontop nominal
inside nominal
next nominal
size interval
texture nominal
shape tree-strue

INDUCE 2

Domain

(O-false, 1-true

O-false, 1-true

(-false, 1-true

small, medium, large

clear, shaded

triangle, circle, ellipse,rectangle,diamond,
u-shape square, polygon,curved

circle, ellipse ;1> curved

triangle, rectangle,square, diamond ::>> polygon

The input decision rule for the first object in O, has the following form:

[ontop(p,.p,)] [ontop(p,.p,)] [size(p,)=medium| [size(p,)=medium] [size(p,)=large]
[texture(p J=clear] |tx[p2}=shaded! {ix[pa]=tlca.'l‘] [shape(p, )=diamond| [shape{pz]=cirt1cl

[shape(p,)=ushape] [inside(p,,p,)|::>[d=1].

with domain structure:

[shape==circleellipse] > [shape=curved].

|shape=triangle diamond square,rectangle] >

The resulting domain table is:

NAME NARG TYPE COST MIN
forall 0 1 0 0
#ps 0 2 0 1]
shape 1 3 0 0
ontop 2 1 0 1
P 0 1 1] 15
P, 0 1 0 15
P, i} 1 0 15
Py (1] 1 (1] 15
P, v} 1 0 15
size 1 2 0 0
texture 1 1 0 0
inside 2 1 0 1
d 0 1 0 1
next 2 1 0 1
clear 0 1 0 15
shaded 0 1 0 15
amall 4] 1 0 15
medium 1] 1 0 15
large 4] 1 ] 15
diamond 1] 1 (1] 15
circle 0 1 a 15
ushape 4] 1 0 15

[shape=polygon].

MAX STRUCTURE

16:>7, 0345:>8;

CoOC0000 0O WHKKNDODDODOOOHROM
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square ] 1 h] 15 V]
rectangle ] 1 0 15 0
triangle 0 1 0 15 0
ellipse 0 1 0 15 0
curved 0 1 0 15 0
polygon 0 1 0 15 0

5.1.1. Generalized declslon rules using no new functlons

The program waa run with the above decision rules several times with different parameters for each
run. The first run through the program used modest values for the parameters AQMAXSTAR, ALTER,
VLMAXSTAR and NCONSIST and default values and ordering of criteria with no new functions added.
The parameter values and resulting generalizations are given below:

Parametera:
AQPARMS VLPARMS B PARMS
AOMAXSTAR = 4 VLMAXSTAR = 8 MAXL = 5
LQST NCONSIST = 38
ALTER = 8
AQCRIT AQTOLERANCE VLCRIT VLTOLERANCE LCRIT LTOLERANCE
-1 0 3 0.30 -1 0
2 0 -1 1] 4 0
2 0 -3 0
4 ]
NUMBER OF COST CRIT: AQNF = 2 VLINF = 3 LNF = 4

NEW FNCTNS: METATRIM = 0

For the set O, the program discovered several alternative generalizations which describe one or two
objects in O, but could not find any which cover all objects of O,. The generalization is therefore a set
of rules, which taken together completely cover the objects in O,. The first rule in the set {which covers
the first and third objects in 01} is the following decision rule:

[ontop(p,,p,)||size(p,)=large|[texture(p,)=clear] ::> [d=1].
(If there is a part on top of a large clear part, then make decision d=1.)

The other rule which covers the second object in 0, is:

[inside(p,.p, )] [size(p,)=medium]|[texture(p, )= | ::> [d=1]
(There is a part inside a medium-sized part)

Notice the reference of the texture selector above, #. This refercnce stands for any value from the domain
of the function "texture” except NA. The meaning of this selector in this context is that part p, has

some texture, but that it's value is not important to distinguish the classes.
The description of the set O, produced several alternative generalizations which describe one or two
parts of O, but only one generalization which covered all 3 parts in GE;
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[ontap[pl,pz]]isize(p2}=mcdium][ahape{91]=curved]::}[d=2]
(there is a curved part on top of a part with medium size)

There was no single product which covered all objects in O,. The program found one generalization
- which covered two examples of O,, namely:

[cntcp{pl.p,_,}![t.ext.urc{pz‘_l=shaded]|ahape[pg:ltellipsei::}[d=3]
(there is a part on top of a shaded ellipse]

In covering the second object in O, the program found a number of combinations of shape, texture and
size of parts of the example of O,. The rule which was selected is:

[shape(p,)=rectangle|[size(p,)=large| :> [d=3]
(there is a large rectangle)

Thus the above two rules constitute a complete cover of the class d=3.

5.1.2. Generalization with EXTMTY type predlcates

In the second application of the program to the example in fgure 5.1, the EXTMTY type predicates
were added to each input decision rule. The only difference in parameters is that these new predicates are
added to the input decision rules. The results are the following:

For the set 0]. there were two alternative generalizations each of which cover all three parts in 01:

[shape(p,)=polygon][texture(p,)=clear|[mst-ontop(p,)]::> [d=1]
{the top part is a clear polygon)

[size(p,)=medium]|texture(p, )=clear|[mst-ontop(p | nx>[d=1]
(the top part is clear and has medium size)

Only one product was found to cover the set O,

[shape(p,)=curved][mst-ontop(p,)|:: > [d=2]
(the top part has a curved shape)

There is still no single product which covers all objects in O,. The generalization under these
conditions consists of two rules:

[shape(p )=polygon]|[texture(p }=shaded|[size(p, )= * | ::> [d=3]
(there iz a shaded polygon)

[size(p,})=small][mst-ontop(p, )] > [d=3]
(the top part is small)

5.1.3. Generalizations with meta selzctors

The next pass of the program included the three meta selectors which were determined by the
program to be the best for describing each set of objects (using as a criteria the values of F1COV and
FE)C(}V). The results for Dl along with the interpretation of the selected meta selectors are:
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[size(p, )= * [|shape(p, )= * |[# ps texture clear= 2]::>[d=1]
(there are 2 clear parts)

The selected meta-selectors are:

M5 TYFE FUNCTION F1COov Focov
1 #ps texture = clear 3 0
2 #ps size = small 3 3
3 #pa texture = shaded 2 1

The three meta selectors count the number of parts with each texture and the number of small sized
parts.
The set O, was covered by this product:

[ontop(p,.p,)][shape(p J=curved||#ps shape square= 0][#ps shape diamond= 0]::>[d=2
{there is a curved shape part on top of some other part and there are no squares or diamonds)

The selected meta-selectors are:

MS TYPE FUNCTION Ficov Focowv
1 #ps shape == square 3 4
2 #ps shape = diamond 3 5
3 #ps texture == clear 2 0

The most interesting simplification is with the set Da. Many alternatives were discovered, and the

one selected was:

[tcxt.ur-:-[pl]= * ]Ishape[p1]= * |[#ps texture clear= 0]:> [d=3]
(ne parts have clear texture)

The selected meta-selectors are:

MS TYPE FUNCTION Flcov Focov
1 FEps texture = clear 3 0
2 forall texture = shaded 3 0
3 fps shape = diamond 3 5

In summary, alternative descriptions for each set of objects are:

[size(p,)= * |[shape(p )= * |[# ps texture clear= 2|:>[d=1] or
[shape(p,}==polygon][texture(p, }=¢clear]|[mst-ontop(p,)]::>[d=1] or

[size(p, )=medium][texture(p, )=clear][mst-ontop(p )|:: > [d=1]

(there are 2 clear parts, or the top part is a clear polygon or a clear part of medium size)
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[ontop(p,,p,)|[size(p,)=medium|[shape(p, )= * ]::>[d=2] or
[shape(p,)=curved|[mst-ontop(p,)|::>[d=2] or

[outop[pl,pn}}[shape[p:}mcuwcdu#ps shape square= 0][#ps shape diamond= 0|::>[d=2|

(there is a curved part on top of a medium sized part or the top part has a curved shape or there
is a curved shaped part on top of some other part and there are no squares or diamonds)

[texture(p,}= * |[shape(p,}= * ][#ps texture clear= 0]::>[d=3]
{no parts have clear texture)

5.1.4. Descriptive generalizations

If the program is given the deseription of only one set of objects at a time, then a descriptive
generalization of sorts may be found by the algorithm discussed in section 4.2.4. The significant difference
of this algorithm is that the rules are grown (ie, made more specific) until they fail to cover a certain
percentage of the set of objects. This percentage is specified in the parameter MINCOVER. By setting
MINCOVER = 100, it is guaranteed that a single product will be found which will cover all objects. If
MINCOVER < 100, the rules will usually be more specific, but a single product may not be found. In
this example, a background knowledge rule (L-rule) was added for the predicate ‘ontop’ to implement the
transitive elosure for this predicate:

[ontop(p,,p,)l[ontop(p,.p,)] ::> [entop(p,.p,)].

In the trials below, MINCOVER == 50, execpt for the first set in which MINCOVER = 100 was also
tried. The resulting descriptions cover all the objects in the given set and contain as many selectors as
possible. Of course, since the descriptions of the other two sets of objects is not included, the deseriptions
are not discriminant but they are complete. The parameters used were:

AQPARMS VLPARMS B PARMS
AQMAXSTAR = 4 VLMAXSTAR = 4 MAXL = 5
LQST NCONSIST = 4
ALTER = 4
AQCRIT AQTOLERANCE VLCRIT VLTOLERANCE LCRIT LTOLERANCE
-1 0 3 0.20 -1 0
2 0 -1 0 2 0
2 0 -3 0
4 0
NUMBER OF COST CRIT: AQNF = 2 VLNF = 3 LNF = 4
NEW FNCTNS: METATRIM = 3 EXTMTY

CHARACTERISTIC GENERALIZATION, MINCOVER IS 50%
For the set Olr a disjunction of products was found:

[entop(p,,p,)][ontop(p,,.p,)|[size(p, }=medium][size(p,)=medium][size(p,)=large|
& [texture[pj}=c|em][t&1ture{p=]=3]1m:led}[texture[pa]=c]earﬂmst,-ont&p{pl}l[tsb—nuwp[p:‘”
& [omtop(p,,p.)]|# ps texture elear= 2|[# ps size medium= 2|[#ps texture shaded= 1]

[15t—next{p1}][# ps texture clear= 2|[# ps size medium= 2||# ps texture shaded= 2|::>[d=1]
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The selected meta-selectors are:

MS TYPE FUNCTION Ficov Focov
1 #ps texture = clear 3 0
2 #ips size = small 3 a
3 fEps texture = shaded 2 1

(EITHER: The bottom part is clear and has large size, the top part is clear and has medium size, and
the part in the middle is shaded and has medium size. There is one shaded part, 2 parts of medium size,
and 2 clear parts. OR: There is a part next to some other part, there are two clear parts, 2 medium
sized parts, and 2 shaded parts.)

The generalization was done again with MINCOVER=100. This time a single product is obtained:

[Ist~antop(p, )|[# ps texture clear=2]# ps size medium=2|[# ps texture shaded==1 v 2] :> [d=1]

(There is a bottom-most part, 2 elear parts, 2 medium sized parts, and either one or two shaded paris.)
The following produet was found for the set 02:

[lst-ontop(p,|[# ps shape square=0|[# ps shape diamond=0][# ps texture clear=1 v 3] > [d=2]
(There is a bottom-most part, no squares or diamonds, and either one or three clear parts.)

The selected meta-selectors are:

MS TYPE FUNCTION Ficov FoCov
1 FFps shape = sguare 3 4
2 #ps shape = diamond 3 5
3 #ps texture = elear 2 0

The following product was found for the set O

[Ist-ontop(p, )] [texture(p }=shaded|[# ps texture clear= 0][all ps texture shaded|

[# ps shape diamond= O]::>[d=3]
(The bottom part is shaded, there are no clear parts, all parts are shaded, and there are no
diamonds. }

The selected meta-selectors are:

M5 TYPE FUNCTION Fi1Ccov Focov
1 Fps texture = clear 3 0
2 forall texture == shaded 3 ]
3 F#ps shape = diamond 3 5
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5.2, Chemical Example

In this example, the program was to learn rules to identify elasses of organic molecules, There are
three examples of molecules for each class, which are shown in figure 5.2, A molecule is represented by its
structural formula - the types of atoms and the bonds between the atoms. The deseriptors used were:

t{al) - a function indieating the type of atom al, has possible values *¢” {carbon), "o”
{oxygen), and "h" (hydrogen).
sb(al.aZ) - a predicate which is true if atom al has a single bond to atom a2. The period
- between the arguments indicates that the order of the arguments is irrelevant.
db(al.aZ) - a predicate which is true if atom al has a double bord to atom a2,

In the molecules shown in figure 5.2, a single line represents a single bond, and a double line
indicates a double bond. For example, the first molecule in the class "aleohols™ is pictured below:

H

I
H-C-0-H
F

H
and is represented by the following input decision rule:

[t(a1)=c] [t{a2)=h] [t(a3)=h] [¢(a1)="h] [sb(al.a2)] [sb(al.a3)] -

& [sb(al.at)] [sb{al.as5)] [t(ab)=o] [t(a0)=h] [sb(a5.a6)] > [d=alcohell.

The classes chosen were: alkenes, ethers, carboxylic acids, phenyl ethers, alcohols, and phenols. The
characteristics of these classes are given below. The information for this experiment came from
Iniroduction {o Organic Chemistry by Streitwieser and Heathcock, Macmillan Publishing Co., Inc., N.Y.,
1976,

Alkenes Molecules in this class consist of a carbon-carbon double bond, with alkyl groups attached to
the carbons, ie. R-C=C-R,, where the IR’s are alkyl groups. An alkyl group is a hydrogen
atom or a string of carbons and hydrogens, all single bonded, ie.

H H H
| I
H = - C .... C =
| I

|
it
I
H H

E

—

Alkyl Group

Aleohols Alcohols are compounds in which an alkyl group replaces one of the hydrogens of water.
They are organic compounds of the form R-OH, where Rt is an alkyl group. For example,
the first alcohol example in figure 5.2 is methy] alechol, CIIGuC}T-], which has the alkyl group
-CH, (methyl).

Ethers Ethers are analogs of water in which both hydrogens are replaced by alkyl groups, ie., have
the form R-0-R, where the R's are alkyl groups.

Carboxylic Acids
Carboxylic acids are distinguished by the functional group COH. which is called a carboxy
group. A hydrogen or an organic group may be attached to the carboxy group, ie. HCDz”
or RGDEH.
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Phenyl Ethers . 2 ; .
A phenyl ether is an ether which contains an aromatic {or bhenzene) ring; ie. Ar-O-R or Ar-

O-Ar. The aromatic ring "Ar" is a eyclic group of 6 carbons, and is symbolized:

[ ———1#

i .S

'C§§§ /C or
C—0C /
Phenols Phenols are a class of compounds that have a hydroxy (-OH) group attached to an aromatic

ring.

In addition to the input events shown in figure 5.2, the program was provided with a set of
background knowledge rules (L-rules), which intreduce new descriptors that name groups of atoms. The
new descriptors were:

gfal) - a function which describes the type of group of group al. Possible values are
*"methyl”, "chh”, "oh”™, "ar”, and "ogrp”. These values are explained below.

con(al,a2) - a predicate which is true if group al contains atom a2,

attchd(al.a2) - a predicate which is true if group al is attached to group a2. The groups are
attached if an atom in one group is bound to an atom in the other group.

The L-rules which define these deseriptors are given below as they actually were given to the
program. FPercent signs enclose comments,

%5 define the inference rule: if two atoms in different groups are
bonded together, then the two groups are bonded together 9

b
[con(al,a2)][sb(a2.a3)[con(a4,a3]] > [attchd(al.ad)].
% define a methyl group: a carbon bound to 3 hydrogens %

b
[t{al)==c][t{a2)=h][t{a3)=h][t{ad)=h][zb{al.a2)][sb(al.a3]][sh{al.a4]]
11> |g(a5)=methyl|[con(a5,al)|[con(a5,a2)][con{a5,a3)|[con(a5,a4]].

%% define a CH, group: a carbon bound to 2 hydrogens %%

b

[t{al)=c][t{aZ)=h]|t{23)=h]|[t{ad)=c]|t{a5)=e v o]
|sb{al.aZ}j[sb(al.a3)||sb{al.ad)][sb{al.ab
::> [g{aB)=chh|[con(a.al)][con(af,a2)|[con(a6,a3)].

f—

In the last rule, it was pecessary to specify what atoms were on each side of the CH, group, although
those atoms are not included in the CH, group. This is the reason for the selectors [t(a4)==c|] and

[t{a5)=c v o]. If this were not done, then the L-rule would fire in too many places. In particular, it
would fire when matched against a CHE, or methyl group, since the methyl group does contain a carbon

bound to two hydrogens. It is desirable to have an atom belong to at most one group.
% define an OH group: an oxygen attached to a hydrogen %
b
[t(a1)s=o][t(a2)=h][sb{a1.a2)] ::3> [g(a3)=oh][con(a3,a1)][con(a3,a2)].

0% define an aromatic ring group: a ring of & carbon atoms 9
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b

[t{a1)=c][t{a2)=c][t(ad)=c]|[t{at)=c][t(a5)=c|[t(ab)=c]
[db{al.a2)|[sb(a2.a3)][db(a3.a4)|[sb(ad.a5)|{db(a5.a6)][sb{a6.a1)|

12> [g(a7)==ar]|[con(a7,al)][con(a7,a2)|[con(a7,a3)][con(aT,ad)] [con(a7,a5)|[con(a7,a6)].

% this rule says that an O bonded to two diff groups is a group itself %
b : :
[t(al}=c][con(a2,a1]|[sb(a1.a3)][t(a3)=o0]|sb(a3.a4)][t{ad)=c]|[con(a5,a4}]
=2 [g(ab)=ogrp|[con(ab,a3)]. : :

The last rule considers the ease of an oxygen atom bound to two carbon atoms, each of which are in
different groups. It defines the oxygen atom to be a group unto itself. This was done because it is

desirable to be able to consider the molecule solely at the level of groups, rather than at a level of a
mixture of atoms and groups.

Each of the classes; alcohol, ether, alkene, carboxylic acid, phenyl ether, and phencl, was covered
against all the other classes. Since there is only one set of L-rules (they are all relevant to each other),
they were all used (no trimming was done). The parameters used are given below:

AQPARMS VLPARMS B PARMS
AQMAXSTAR = 2 VLMAXSTAR = B8 MAXB = 5
LQsT NCONSIST = 4

ALTER = 8

AQCRIT AQTOLERANCE VLCRIT VLTOLERANCE BCRIT BTOLERANCE

-1 0.00 3 30% -1 0.00
2 0.00 -1 0.00 2 0.00
2 0.00 -3 0.00

4 0.00

NUMBER OF COST CRITERIA: AQNF— 2 VLNF= 3 BNF = 4
NEW FUNCTIONS: METATRIM = 0

Meta functions were not uwsed in these examples because it is the structure of the molecules that is the
most interesting aspect, and the meta functions would tend to dominate the generalizations and not allow
the structure to come out in the rules.

The L-rules described above are applied to the events and the new descriptors may be added,
Listed below is the input rule for the first alcohol molecule, after the L-rules have been applied. The L-
rules have added the selectors describing a methyl group and an OH group:

[t{al)= c][t{a2}= h|[t(aB}= h][t(a4)= h]
[sk(al,a2])[sb(al,a3)|[sb{al,ad)]|sb{al,as5)]
[t{ab)= o][t{at)= h|[sb{a5,af)|[con(aT,as)|
|g{a7)= oh|[con(aT7,a6)][con(a8,al)]|z(aB)== methyl]
|con{ag,a2)j[con{a8,a3)||con(a8,ad)|[attchd (a7 ,a8)]
1> |d=aleohol).

The program found a number of generalizations describing the first class of molecules, alechols. The
one it chose was:

[sb{al)][t(al)= * ]|sb(al)][sb(al,a2)]|con{a3,a2)][z(a3)=0ch] ::>> [d=alcohol].
{An atomn in an OH group is singly bound to an atom which has two other single bonds.)

This rule is shown in graphieal form in fgure 5.3. The diagrams represent the necessary substructures of
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the molecules required by the rules. An asterisk in place of an atom means that any atom is allowed at
that place. Membership in a group is ind icated by placing the group name in parentheses above the atom
which is contained in that group. An asterisk in parentheses means that any group is allowed at that
place. Finally, a single line between two atoms indicates a single bond between them; a single line
between two groups indicates that one group is attached to the other.

The rule found by the program is more general than the definition of "alcohol™ given earlier, which
was "an alkyl group bound to an OH group”. The reason is that the chemist’s definition given earlier was
a characteristic description (i.c., one that distinguishes alcohols from all other possible classes), whereas
the rule found by the program was a discriminant description (i.e., one that distinguishes alcohols from
only the other classes provided).

Also note that this rule does not cover any of the molecules in the class "phencl” even though they
also have OH groups. The reason is that the rule specifies that the OH group is bound to an atom that
has two single bonds. The molecules in the phenol elass contain double bonds.

The program could not find a single product to cover all three examples of the class "ether”, so
there are two c-fTormulas for this class:

[z(a1)= methyl][g(a2)= methyl][g(a3)}=1][attchd(al.a3)][attchd({a2.a3]] ::> [d=ether].
{A methyl group is attached to a group, which is attached to another methyl group.}

|g{al)= chh]jg(a2)= methyl v chh][g(a3)=+|[attchd(al.a3)|[attchd(a2.a3)] ::> [d=ether].
(A CH, group is attached to a group, which is attached to another CH, group, or a methyl group.)
These rules are also shown in figure 5.3 (as are the rules for all the classes). They are also more general
than the definition of "ether” given earlier. The un-named group in each of the two rules above is the

"ogrp” (a single oxygen atom). The fact that this group is not named makes these rules more general
than the definition.

Two formulas were also found for the class "alkene™:

[t{a2)= h][t{a3)== h]{sb{al.a2)|[sb{al.al)]|db({al.ad)|[t(ad)=%] ::>> [d=alkene].
{There is an atom which has single bonds to 2 hydrogens, and a double bond to some other atom.)

N # ad)=* 4)== # |[sb(al.a2]|[sb(al.a3
Igs Ilh[nl .I:a[:I{]]lslb[nl.;[Et}Eﬁd|:!'E=15-9]-¢£3] Ii?a?Lm:] [{st[nﬁ-g?ll S sl

These rules are more general than, but not as elear as, the chemist’s definition. The first rule
distinguishes alkenes because they are the only class which has a carbon double bond, and where the

carbon is singly bonded to two hydrgens. In the second rule, the structure of a l:f.‘.H= group can clearly be
seen. The alkenes are the only elass with a methyl group in this position.

The rule for carboxylic acid is very simple:

[t{al)= = ]|t{a2)= o]|db(al.a2)] :> [d==carbacid].
(There is an atom which is double-bonded to an oxygen.)

Although very simple and general, this rule discriminates the class of carboxylic acids because this class
was the only one [of the classes provided to the program) that had any double-bonded oxygens.

The rule for phenyl ether:

|s(al)= ar][zg(a2}= * ]|attchd(al.a2)|[attchd(a2.a3)] ::>> [d=phether].
(An aromatie ring is attached to a group, and that group is attached to another group.)
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This rule captures the structure of the class "phenyl ether” but is more general than the definition of the
class. It is more general because the groups "ogrp™, and "CH,™ or "C.Ha" are not named.

Finally, the rule for phenols:

[2(a1)= ar][g(a2)= methyl v oh][attchd(al.a2)| ::> [d=phenol].
(An aromatic ring is attached to a methyl or OH group.)

This rule is more general than the definition becausze the definition requires the aromatic ring to be
attached to an OH group, whereas the program’s rule requires it to be attached to an OH or methyl
group.

The last two rules illustrate how the L-rules have shortened the output decision rules. If there were
no L-rule delining the aromatic ring, the decision rule would have probably included a large number of
selectors describing its structure. This would increase the length of the rule considerably and make it
miuch more difficult to understand.
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8. Limitations and Disadvantages

The current program has a number of limitations and disadvantages. These are of three types: (1)

implementational and techmical problems, which could be corrected by suitable reprogramming, (2)
conceptual problems which could be solved by extensions to the program, and (3) fundamental problems
whose solution would require a different approach. This section discusses the first two types of problems.
Problems of the third type are discussed in the mext section, "Summary”, along with the important
features and advantages of the program.

8.1.

(1)
(2)

()

(4)

(5)
(6)

(7)

Implementational and Technical Problems
Implementational and technical problems include:

The program is relatively large {(about 6000 lines of Pascal code) and difficult to modify because it is
not well organized for a program of this size.

It requires a relatively high user-sophistication and knowledge of the program. Specifically, to take
full advantage of the capabilities of the program, the user must know the meaning of a large number
of parameters and how changes in those parameters affect the results. It should be mentioned,
however, that for problems of small complexity (where the mumber of events, descriptors, and
background knowledge rules is small) the default settings of the parameters are adequate.

The program is slow when there are many events and many selectors in each event. The most
time-consuming part of the program is the procedure which determines if one VL, expression covers

another (equivalent to determining if one graph is a subgraph of another). There is no way to speed
up this process (it is NP-complete), but there is a simple way to cut down on the number of times
this procedure is performed, This can be done by tracking the events that are covered by each
bypothesis. In the "rule-growing” process, rules are specialized by the addition of selectors. The
current program tests each new hypothesis against all the positive and all the negative events.
However, it is only necessary to check if the new hypothesis covers the events that were covered by
the old hypothesis. This is because adding a selector can never cause a hypothesis to cover more
events, only fewer.

At present, only formulas which have a weakly connected graph structure are allowed. It should be
possible to relax this restriction. This would increase the search space and require a medification of
the algorithm.

Currently, the only relation (denoted by #) allowed in a selector [L # R] is equality. The ability to
use other relational operators such as "not equal”, "less than™ or "greater than™ is desired.

A more general facility for doing constructive induction could be be implemented by an extension of
L-rules. One could allow L-rules to introduce new L-rules to the rule base. Also, L-rules could
contain free variables which would be bound to some values when the L-rule was matched to an
event. This would allow descriptors which describe relationships between events to be intreduced.
For example, if each event contains two deseriptors, one specifying the time and the other specifying
height, then L-rules could introduce a descriptor specifying how much the height changed from the
previous time. This formalism and examples of its use in constructive induction is given by Vaidya

[1083).

A better generalization algorithm could be implemented, possibly using a best-first tree search. The
process of adding selectors to build rules can be viewed as a tree search for a goal node. Each node
is a rule - a conjunction of selectors. A goal node is a consistent rule. The idea is to find a goal
node with the lowest cost. Cost is usually measured by: (i) the number of events covered that
shouldn't be, (ii) the number of events covered that should be (the negative of this), and (iii) the
length of the rule. Starting with only single selector nodes, always expand the node with the lowest
cost, until a goal node is reached. Expand a rule by adding to it a selector which is weakly
connected = shares some variable with the rule.

This method would eliminate the need for the parameters ALTER and VLMAXSTAR, and would
produce lower cost rules. It would not guarantee the finding of the lowest cost rule, because the
estimate of the cost of a rule is not always less than the actual distance to the goal (as required by
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(8)

6.2,

(1)

()

(3)

the A* algorithm). This method may require more rule evaluations, although this was not the case
for an example involving identifying organic molecules worked out by hand.

The present algorithm for characteristie generalization requires the user to specify the value of
parameter MINCOVER (the percentage of the events that the rule must cover. The program
specializes the rule (by adding selectors) until it no longer covers at least MINCOVER percent of
the events. This approach often fails to find the best characteristic deseription, because it is
dependent on the order in which selectors are added. Adding a selector which is not shared by all
events may cause the rule to fall below the MINCOVER threshold, whereas if a different selector
had been added, the rule might still cover all the events and be more specific. A better algorithm
for characteristic generalization is proposed by Dietterich and Michalski [1981]. This approach uses
a two phase method for computational reasoms. The program first searches for descriptors in the
space defined by the structure-speciflying descriptors [non—unzry descriplnrs}, Then, and aflter a
number of plansible candidates have been found, it completes the search in the space defined by the
attribute descriptors (unary descriptors). This approach may be better because it generalizes an
event in all possible ways, instead of specializing it in only a few ways.

Conceptual Problems
The problems of the second type, which require research on a more conceptual level, include:

The current program eannot perform ineremental learning. Such learning takes the form of (i)
modifying old hypotheses in the light of new events and (ii) ereating hypotheses for new classes by
covering the events in the new elass against the updated hypotheses for the old classes. To do this
would require a change in the way the program determines il tweo formulas intersect. At present,
two formulas intersect only il they share common descriptors. However, during generalization some
deseriptors are dropped, so that two ec-formulas may intersect even though they do not share
common descriptors. For example, the program may have produced the following two decision
rules, which do not share common deseriptors:

[P(x1)] > [d=1] [Qix1)] ::> [d=2]

However, an event such as [P(x1)]{Q(x1)] ::> [d=3] which belongs to a new class, satisfies both
formulas. As another example, the program may have generalized the event [P(x1)][Q(x1)] >
[d=1] to produce the decision rule [P{x1)] ::> [d=1] for class 1. However, the program may now be
given an event from a new class, d==2:

[QEx1)l[R(x1)] ::> [d=2]

If this event is generalized against the decision rule for ¢lass 1, the resulting decision rule for class 2
may be [Q(x1)] > |d=2}. This rule is consisteni with the decision rule for class 1, but is
inconsistent with the event in ¢lass 1.

The program does not generate intermediate decision rules. Such rules would define subconcepts
{relationships among subsets of parts of an object) and would be useful in simplifying the output
hypotheses. For example, one would like the program to generate the description of am arch in
order to describe a sequence of arches.

The program is not able to interactively query the user for advice and guidance. For example, it
would be helpful if it could generate its own examples to show the user, as done by Sammut [1981].
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7. Summary

This paper has presented a comprehensive deseription of the inductive learning program INDUCE 2
— jts purpose, the theory behind it, details of implementation, and examples of its use, INDUCE 2 differs
from previeus work in its formal basis, flexible optimality criteria and domain definitions, ability to add
new descriptors to existing descriptions, and apparent extensibility. The moat important features of the
program are:

(1) It is capable of learning structural deseriptions of objects.
{2) It can produce either discriminant and characteristic deseriptions.

(3) It is general in the sense that it is not restricted to any particular domain.

{4) It uses the variable-valued logic VL, calculus (an extension of the predicate logic calculus) as a
description language for examples and generated hypotheses. The language uses a few additional
syntactic forms and typed descriptors, distinguishing between nominal, linear, and structured
descriptor types. Instead of predicates, it uses selectors, which are generally more expressive. The
formalism provides a simple linguistic interpretation of deseriptions without losing the precision of
the conventional predicate ealculus,

{6) 1t allows the user to provide background knowledge for the given problem. The background
knowledge includes (i) the preference criterion for output hypotheses, (ii) rules for generating new
descriptors as arithmetic expressions of the initially provided descriptors (A-rules), and (iii) rules
(called L-rules) for defining any background concepts, constraints and facts relevant to the problem
(the rules are expressed as implicative statements linking any two "l-!"l..1 conjunctive expressions).

(6) It is written in Pascal, a popular language, and is thus easily transportable.

The current program has many limitations, Problems of a technical nature and problems of a
deeper conceptual nature are discussed in the previous section. Discussed below are more fundamental
problems, whese solutions are not well understood, and which may require a different approach than the
work presented in this paper. These are possible directions for future research:

(1) The program can only accept and produce declarative, rather than procedural, descriptions, due to
the nature of the representation language,

{2) The program assumes that the presented descriptions are totally correct. It cannot handle incorrect
descriptions, descriptions with some degree of uncertainty, or descriptions of different examples that
intersect.

{(3) The hypotheses produced by the program are restricted to one form, a conjunctive VL, expression
with distinet existential quantifiers. The program should be able to produce expressions containing
connectives such as exception or implication, as well as the other quantifiers (normal existential and
universal).

(4) A major limitation is that the semantics of the predicates and funections are not known to the
program. The program only knows the domain and type of each descriptor. An "annotation™ is
needed which gives background knowledge for each descriptor. Some ideas for the annotation of
predicates are given in [Michalski 1983]. The annotation should contain information to assist the
program in generalizing and creating intermediate decision rules. For example, the program should
be able to locate similar descriptors, more general descriptors, or more specific deseriptors within
some descripter hierarchy.

(6) Descriptions and rules for manipulating these descriptions should be represented within the same
formalism. This would make it possible for the program to medify its own algorithm according to
the problem at hand, and create its own heuristic rules. Also, the internal state of the program
should be represented in the same formalism, so that the program could keep track of its own
hehavior.
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1. Introduction

This appendix provides [urther details of the implementation of the program INDUCEZ2. This
program accepts an environment description, a set of VL decision rules, and a set of parameters. The
program produces a set of generalizations of the input decision rules. The basic algorithms and input

_syntax are given in section 4 of this paper so will not be repeated in full here. In the following pages, the
actual commands necessary to use the program are givem. Section 2 of this appendix contains a
description of the data structures used in the program. The reader is referred to the program listing for
more detailed structure. In section 3 of this appendix, the various IfO files are deseribed. Section 4 of
this appendix gives a briel cutline of the purpose of each procedure and its relation to other procedures in
the program.

1.1. High level commands

The following single letter comands ean be entered into the program to perform various functions:

M (modify rule base) - This command is used to enter rules into the program or delete rules from
memory. Following the M command, the user may enter {A) to add a new rule, (D) to
delete an existing rule, or anything else to return to the main level without doing
anything. After an A is entered, the system expects a VL, rule in correct syntax
terminated with a period (.). Since there is no online error correction, this is usually done
by placing all rules in a local file (CFILE) with the commands (M and A) interspersed.
After the rule has been entered, the program returns to the high level command mode. If
a (D} is entered, the program proceeds through the list of all rules asking at each stage
whether to delete the rule. The user may enter Y, N, or Q to delete the rule and move to
the next rule, to keep the rule and move to the next, or return to the command level,
Example:

M
A
[SHAPE(X1)=1][P(X1,X2)=2] => [D=2].

H (get help) - Enter this command to obtain a brief explanation of the high level commands and a
detailed explanation of one such command by entering '"H X' where x is one of the letters
corresponding to a high level command.

L {enter logically derived descriptor) - Enter L (carriage return) followed by a logically derived
descriptor (L-rule). This rule is put into a set of other L-rules which are related to it
(i.e., the applicability of this rule may affect the applicability of the other rules). When
the covering procedure is peformed, some of these sets of L-rules are applied to the data
rules entered by the M command above. A L-rule is applied by adding the consequence
of the L-rule to the data rule, if it is not already there. The left hand side of the L-rule
must form a connected graph structure. Each connected subgraph of the right hand side
must be connected to the left hand side. As with all rules, the L-rule must end with a
period. Example

L
[ONTOP(P1,P2)|[ONTOP(P2,P3)] ::> [ONTOP(P1,P3)).

E (enter domain generalization structures) - Enter tree structure for such domains. These must
be entered in order from lowest level generalization to highest level generalization. For
VL, applications, this should be done after a V command has been entered since the V
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command initializes the symbol table for the special VL, mode. Example:

SHAPE=2 v 4] > [SHAPE=10].
SHAPE=0v 1 v 3v §| 1> [SHAPE=11].
SHAPE=6v 7Tv 8 v 9] > [SHAPE=12].
SHAPE=10v 11] ::> [SHAPE=13|.

L,S (Enter EXTMTY (L) and EQUIV (8) type predicates). Just enter the one letter command to
add either type of generated predicate. (There is currently no way of removing such a
predicate from a structure except by re-running the program).

A (Enter an arithmetic derived deseriptor) - Enter the derivation rule for an arithmetic derived
descriptor. Example:

A
GIRTH(X1)=LENGTH(X1)+ WIDTH(X1).

Restrictions: the dummy variables of the function on the left hand side must appear on
the right hand side of the equation. The arithmetic expression is written in standard
algebraic form. The operators which may be used are: + (addition), - {subtraction), -
(unary minus), * (multiplication), / (integer division—remainder discarded), and %
(integer modulus). *, /, and % are evaluated before - and + . Integer constants may also
appear in the expression. The right hand side must contain at least one function or
predicate. All functions and predicates are assumed to have interval domains. If more
than one value appears in the reference of a function when the expression is to be
evaluated, the smallest value is used. The right hand =ide must form a connected graph
structure as well. A connecting predicate can be multiplied to the original expression to
accomplish this since predicates have values of 1 when true. Bug: This command will
not work correctly if there are two or more occurrences of exactly the same [unction
(with the same dummy variables) on the right band side.

N (Add arithmetic derived descriptors to the rule base) - The separation of the A and N
commands is included to permit users to enter the rules and the arithmetic descriptors in
any order and then to apply the arithmetic descriptors when they are desired {(after all of
the rules have been read in). The N command causes all previously entered arithmetic
derived descriptors (since the most recent N command) to be processed and added to all
rules in the rule base where they are appropriate.

X (Enter a logical derived descriptor and substitute it into the rule base) - Logical derived
descriptors are handled by two separate commands. The L command permits the user to
enter a logical derived descriptor which is to be added to each rule for which the premise
is true. The X command permits the user to enter a logical derived descriptor which is to
be substituted (exchanged) for its premise in each rule in which the premise is true. (The
premise is the left hand side of the rule.) Example:

X
[BIG(PART1)|[BOX(PARTI1)] > [BIGBOX(PART1)].

This example command will substitute [BIGBOX(PARTN)| for every conjunction of
BIG(PARTN) and BOX(PARTN) where PARTN is any given PART dummy variable.
Each dummy on the right hand side must appear on the left hand side. The right hand
sidde must be a single selector. The left hand side must form a connected graph structure.
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C (Cover a set of formulas) - Enter the number of the associated decision after the C command.

V (VL

1

Be sure to set any trace information using the appropriate parameters before entering the
C command.

mode) - This mede bypasses the VLE type structure creation and accepts VL1 events from

the file VL1IEVE. After entering V, the program asks for the number of variables which
are to be used. Enter this number (it should be 1 less than the number of entries in each
line of the VLIEVE file because of the class number in the file). Then, the user is asked
to enter another command (E, C, Q, or P). Enter E and then a domain generalization
structure for that type of domain, P to change parameters (AQMAXSTAR, LQST,
AQCRIT, AQTOLERANCE, or enter VCOST or VIYPE, the latter may be necessary
for interval type variables), C to cover a set of events, or @ to return to the high level
commands. All of the E and P parameters may be included in CFILE. When C is
entered, the program requests the number of the class of events to be covered and then
the number(s) of the class(es) against which the cover should be made. To cover against
all other classes, enter -1 instead of a list of all other classes. (This is useful for
intersecting type covers.) All specifications may be placed in CFILE.

P (Parameters) - This places the user in a parameter examination and modification mode, To get

an explanation of each parameter on-line, enter
HELFP < parameter name> or HELP

HELF entered alone produces the list of parameters. See the EXPLAIN file for a list of
all the parameters and explanations. No checking is done to see if parameter values are
in the right range. A missing value is interpreted as the value 0. Most parameters
require the parameter name followed by the value. Parameters which may be true or
false are set to true by entering the parameter name (e.g., LQST) and are set to false by
entering the parameter followed by F (e.g, LQST F). Trace and stop parameters are
turned on ome at a time by entering TRACE or STP and then the associated number.
They are turned off by entering the negative of the number (e.g., TRACE 3 turns on
trace 3, STP -6 turns off the program stop at trace level 6).

Functions such as VCOST and VTYPE must have the associated deseriptor name
in parentheses following the parameter name (e.g., VIYPE({SHAPE)=2 sets the domain
of SHAPE to type interval.) All VL, type variables have deseriptor names X1, X2, ... Xn
(so VOOST(X1)=-2 sets the cost of the variable X1 to -2). After all parameters have
been set, entering QUIT returns to the previous command. In order to examine the
parameters, enter PARA and enter PRINT D to examine the domains of all functions in
the symbol table. PARA will give the type and cost of all functions for which the two
characteristics VTYPE and VCOST are not the default values (type nominal and cost of
0).

Q (Quit) - This terminates program execution,

D (Dump) - This command, used during debugging, dumps the rule base graph structure and the

symbol table on file OUTPUT.

In addition, the program ignores all input following a percent character ("%") until another percent
character is read. This is useful for including comments in the rule and command input.

1.2.

Parameters

This section describes the parameters which can be modified after entering the command P above
and the commands required to inspect the parameters in the running version of the program. In general,
to set or change a parameter, enter the name of the parameter (only the first 4 characters are necessary)
followed by a space or equal sign and the new value of the parameter., The parameters and their meaning
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are as follows, default values are in parentheses:

TRACE - This parameter may have a set of values in the interval [1,_1D]_ Each value relates to a
trace feature of the program. The values currently meaningful are:

1 - Print all of the c-formulas in each untrimmed and each trimmed partial star to
examine the process of consistent formula generation and trimming.

2 - Print all the consistent formulas both before the AQ generalization and after this
generalization.

3 - Print the best MQ formula; i.e., select the best formula from the output of trace
2.

4 - Print the input events to the AQ procedure and the variable association between
the VL, c-structure and the VL, variables.

5 - Print the output from the VL] AQ) procedure.

6 - Print the selected meta Munctions in a table,

7 = Print the LQST2 process during characteristic generalization.

£ - Mot uszed.

9 - Print all generalizations of an event (i.e., the complete set of alternative
generalizations which the program has calculated for one event from trace
10). This is the same as the list which comes from trace 2 without the input
formulas to AQ.

10- Print the event {c-formula) which is to be covered from F1.

To turn on (off) any trace feature, enter
TRACE i (or TRACE -i)
where i is the number of the trace feature to be turned on (off).

STP - This parameter may also have a set of values in the range [1..10]. Each value corresponds
to ome trace feature defined above. If STP contains a value of a trace feature and the
particular trace feature is set, then the program pauses at the point where the trace
information is printed and will provide an explanation of the situation or allow the user
to modify parameters. STP may be turned on and off in the same way as TRACE, i.e.,

STP i (or STP -i)

AQCUTF1 (20) - This is a limit on the number of c-formulas examined using the AQ cost
function 3.

AQMAXSTAR(2) - This is the AQ maxstar parameter (the number of complexes retained in a
partial star in the AQ procedure).

AQCRIT(-1,2) - The criteria list of cost functions to be applied in the AQ procedure. There are
six cost functions available:

1 - Measure the number of events covered by a complex which are not covered by
any previously generated Lq complex.
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‘2 - Measure the number of selectors whose reference is not equal to *.

3 - Measure the number of c-formulas which are actually covered by a complex. This
is more time consuming than 1 but may give better results,

4 - Sum the costs of all variables in a complex in selectors whose reference is not
equal to *,

5 - Measure the number of events in the set F1 which are covered by the comp]ex,.
G - Find the number of events in the set 2 (FO).

To specify a cost criterion, enter AQCRIT(I}=J where j is the number of the criterion (if
negative, then the cosi is computed as the negative of the value determined by the
eriterion), and i is the order of application of the eriterion.

AQTOLERANCE(Q) - This is the tolerance associated with each criterion specified in AQCRIT
above. AQTOLERANCE(I) is the tolerance associated with criterion AQCRIT(I). The
tolerance can be an absolute tolerance (if it is greater than 1) or a relative tolerance (if it
is less than 1). The tolerance is always specified in hundreths, e.g_,

AQTOLERANCE(2)=200
results in a an absolute tolerance of 2 for the criterion applied second.

AQNF(2) - The number of criteria which are to be applied to the complexes.
LQST(TRUE) - If LQST is set, then the resulting complexes from the AQ procedure are stripped
to only the necessary values in the reference. To turn off this feature, enter
LQSTF

VLMAXSTAR(2) - The maximum number of formulas retained in a partial star.

VLCRITI:S.-I,Z] - The eriteria list which is to be used for trimming VL, formulas. There are five
criteria available:

1 - Count the number of c-formulas of the set F'1 which are covered by this formula.
2 - Count the number of selectors in the formula,
3 - Count the number formulas of the set FO which intersect with this formula.

4 - Sum the total cost of all references in all selectors of the formula with reference
not equal to *,

% = Sum the cost of all dummy variables used in the functicn and predicate selectors
of the formulas. This uses the cost of a specific dummy variable (e.g., X1) as
originally entered (not as dynamically reassigned by the program). It uses
the DPNO field.

This parameter is specified in the same way as AQCRIT above.

VLTOLERANCE(.3,0,0) - The tolerance associated with each VLCRIT specified above, See
AQTOLERANCE above for details about how to enter values for this parameter.

VLNF(3) - The number of VL, criteria to apply when trimming a list cf formulas,
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MAXL (5) - The maximum number of sets of L-rules that will be applied to the input events,

LCRIT (-1,2,-3,4) - The ecriteria list which is to be used for trimming the number of L-rule sets
down to MAXIL. There are 4 criteria available:

1 - The number of c-formulas of F1 which are covered by some L-rule in this set.

2 - The number of c-formulas of F'0 which are covered by some L-rule in this set.

3 - The number of selectors in the condition parts of all the L-rules in this set.

4 - The number of selectors in the consequence parts of all the L-rules in this set.
This parameter is specified in the same way as AQCRIT above.

LTOLERANCE (0,0,0,0) - The tolerance associated with each LCRIT specified above. See
AQTOLERANCE above for details about how to enter values for this parameter.

LNF (4) - The number of L-rule criteria to apply when trimming the number of sets of L-rules.

NCONSIST(2) - The number of consistent alternative generalizations which the program is to
produce,

ALTER(2) - The number of alternative new formulas which are produced from one formula when
creating a new partial star from an old one,

VCOST(0) - The cost of each function in the system. All VL, variables when running in V]"l

mode are labelled X1,X2,...,XN. To enter a cost, type VCOST(<fo-name>)=i where
<[n-name> is the name of a function which has been in a decision rule which is
currently in the program, and i is the cost of the function. Some examples:

VCOST(SHAPE) = 2 or VCOST(X4)=1
VTYPE(1) - This is the structure of each domain:

1 - nominal
2 - interval
3 - tree structured.

The type 3 is set antomatically when the E command is entered. To make a function
domain into an interval type, enter VTYPE({SHAPE) = 2.

METATRIM(3) - This specifies the number of different meta functions which are to be selected by
the program to be used in deseriptions. This value should be less than GSIZE. If it is 0,
_then no meta-functions are generated.

DESCTYPE (DISCRIMINANT]) - This specifies the type of description which the program is to
generate. DESCTYPE DISCRIMINANT causes the program to generate the most general
description which discriminates events of set F1 from events of set FO. DESCTYPE
CHARACTERISTIC causes the program to generate the most specific description which
is shared by all events in set F1. FO must be empty for this to work properly. Thus,
only one set of events should be supplied to the program for a characteristie deseription.
IFor characteristic deseriptions, the parameter MINCOVER must be set.

MINCOVER (100) - This specifica the minimum percentage of rules in F1 that a description must
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cover in order to be considered as a characteristic description. During the rule growing
process, each rule is grown (by adding additional selectors) until it fails to cover
MINCOVERY% of the rules in F1. At that time, it is placed on the MQ star.
NCONSIST such MQ rules must be found before the growing algorithm terminates.
Thus, if MINCOVER=100, several, fairly trivial rules will be found. If
MINCOVER =50, some interesting rules will be found (but this will use more cpu time)
but these rules may not cover all of F1.

PRINT X - This allows the user to examine certain tables in the program. X may be one of F,
R, D, M, L. and the system will respond by listing:

F - The set of input decision rules

R - The set of input restrictions

D - The domain table

M - The currently selected meta-functions.

L - All L-rules currently known by the program.
PARAMETERS - This lists the current parameter values in a table.
QUICK = This turns off all trace values
BRIEF - This sets the trace options 3,9,10 and stop option 10.
DETAIL - This sets all traces.

EXPLAIN - This scts all traces and all stop options.

HELP - This allows the user to obtain an explanation on-line of the function of any of the
parameters and a list of all parameters accepted under the P high level command.

QUIT - This returns the user to what ever he was doing before entering the parameter
maodification section.
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2. Data Structures

2.1. Constants

Some constants in the program control the sizes of many structures which may be sensitive to the
current problem characteristics. These constants may be increased (to allow larger data structures) or
decreased (to permit more copies of a data structure in memory at one time). The constants and their use
appear below (suggested values are in parentheses). : :

SYMSZE(36) - is the size of the symbol table. It can be estimated by finding the sum of the
number of functions, predicates, and distinct variables plus the number of groups of
variables plus 2 (for meta functions #PT and FORALL) plus 2 times the number of
binary predicates (for MST-, LST- type predicates). In VL, mode, SYMSZE is the
number of VL, variables plus 1.

NDES(15) - is the size of the DSTRUC table. One row is required in this table for each internal
node in each generalization structure (i.e. one row for each rule which is input with the E
command. )

GSIZE(30) - specifies the size of all graph structures in the program and the number of VL, type
variables which are allowed in the program. This number being too small is probably the
cause of an 'array index out of bounds' message and may be remedied by increasing the
parameter. Its value can be estimated by finding the sum of the number of selectors in
the longest rule which must be stored plus the number of variables in the rule plus 1 {not
including meta selectors). An estimate which is too large will use up mMemory very
quickly and cause a message 'runtime stack overflow’ therefore, the parameter should be
approximated rather closely.

MNVAL(15) - is the maximum value in a set of values. A set of values {VALTP) is used in
several places (GRAPH, CPX, DSTRUC) in the program. Each set is allowed to contain
values from 0 to MNVAL. The maximum value of this parameter may be determined by
the architecture of the machine (CDC is 58, DEC is about 30, but the VAX 11/780 is
unlimited).

LNK(18) - is the number of links to any node of a graph structure. This may be estimated by
finding the maximum number of times that a particular varizble occurs in a rule and
using either this figure or the larger number of arguments of any one function, which ever
is largest. MLNK must be one larger than either of these numbers since links are stored
as an array of numbers which terminates with a 0 value,

MRULE(50) - is the maximum number of rules in either F1 or FO.

MAXASTACK(20) - is the maximum number of entries in an arithmetic expression stack, There
is one entry on the stack for each function and value in the expression and one entry on
the stack for each cperator. There is no eompiler or system limit to this parameter.

2.2. Parse table (PT)

The parse table consists of a data structure which represents the productions in the VL, grammar
{(RHS and CONT) along with information about which semantic routines are invoked with the recognition
of one non-terminal in the grammar (SRULE). The array RHS contains a row for each alternative in
cach production where each element in a row is a positive or negative integer or zero. If the number is
positive, it represents a token in the input (it is either the machine representation of a character or 1 - a
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function symbal, 2 - a variable, or 3 - a number). If the entry of RHS is negative, it represents a non-
terminal whose definition is found beginning in the row corresponding to the absolute value of the entry
(e.g., -3 represents the non-terminal beginning in row 3 of the table). A zero value signifies the end of the
alternative. The boolean array CONT indicates whether a row of RHS is a continuation of a previous
row in a production (value true) or the first alternative of a production (value false). Finally, the array
SRULE contains a number indicating the semantic rule (element in a case statement in the procedure
FPROCESS) which is to be applied if the production in the corresponding row of the table is matched.
Example: (see file TABLES for the eomplete input grammar)

<VLRULE> 1= <NUMBER> <RULE>
| <RULE>
<RULE> = <CONDITION> > <SELECTOR >
<CONDITION> = <SELECTOR > <CONDITION>
<SELECTOR >
<SELECTOR> = | < VARIABLE> = <REF> |

| <FN-SYM> ( <ALIST> )= <REF> |

Parse Table in the program: (The actual table in the program contains numbers instead of characters)

ROW SRULE  CONT RHS NAME

1 1 F 3-3 A VL2 DECISION RULE

2 i T -3 0 A VL2 DECISION RULE

3 3 F -4:>-60 A VL2 DECISION RULE

1 4 F -6 -4 0 A CONJUNCTION OF SELECTORS
4 1 T -6 0 A CONJUNCTION OF SELECTORS
6 14 F -9 =-10]|0 A VARIADLE SELECTOR

7 7 T -21(-14)=-10]0 A FUNCTION SELECTOR

2.3. Symbol Table (SYMTAB)

The symbol table is a table with an entry for each funclion, variable, and symbolic value in the VL!
decision rules. One entry (NELT) specifies the number of rows which are actually used. The first two
rows always eontain the information for the meta functions #PT and FORALL. The columns contain:

NAME - the character string representing the name of the entry

PNQ - the function number associated with the entry (normally this just points to the row which
contains the entry).

DPMNO - for variables, this peints to {contains the index of) the row which contains the domain
definition of the particular entry (e.g., the row with X4 would point to the row containing
the entry for X). For functions, this is the head of a linked list linking, in order, the
symbaolic names for the reference values of this function.

MNARG - the number of arguments of a function.

VTYFPE - domain structure (l-nominal, 2-interval, 3-tree structured).

VCOST - variable cost used in cost fTunctions 4 and 5 and selection of alternative selectors
(ALTER parameter) in the procedure NEWGP.

EVAL - maximum value in complete domain {including all nodes in the generalization strueture).

NVAL - number of leaves of tree structure domain, [(EVAL = NVAL for non tree structure
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domains).
MVAL - minimum value in the domain.

Example: NELT=7

NAME DPNO PNO NARG VTYPE VCOST EVAL NVAL MVAL
FORALL 0 1 0 1 0 1 1 1
#PT 0 2 0 2 0 6 6 0
SHAPE 0 3 1 3 -1 ] G 1
X 4 4 0 1 0 15 15 0
X1 1 5 0 1 0 15 15 0
X2 4 & (1] 1 0 15 15 0
p 0 7 2 1 0 1 1 1

2.4. Domain Structures (DSTRUC)

The generalization structures of each tree structured domain are stored in this record. Again, NELE
specifies the number of rows in the table which are used. FREM is a set of all descendents of the node in
CONS for the domain of the function which is defined in the row PNO of the symbel table. Example:

[SHAPE=1v 2 v 3] :> [SHAPE=7].
[SHAFE=0 v 5 v 6] ::> [SHAPE=3§|.

PREM CONS FNO
1,2,3 7 3
0,56 8 3

2.6. Meta selector Table (MSTR)

This table records the meaning of meta selectors which are used in the formulas. The values of the
selector themselves are stored in a structure referenced by MSEL in the GRAPH record. The table
contains two integers (METATRIM and NMST) the latter indicates the number of current entries in the
table. Elements of the table are accessed indirectly through the array PTR to facilitate sorting of the
array with a minimum amount of effort. {e.g., the third element logically in the array PNO is the
element PNO[FTR(3]]). Elements are sorted in descending order using PTR as an index according to the
values of F1ICOV (primary field) and -FOCOV (the secondary field). The columms are interpreted:

SYMPTR - is the index in the symbol table of the name of the meta function (e.z., a pointer to
either FORALL or #PT).

VARPTR - is the index into the symbol table of the dummy wvariable associated with the unary
function from which the metaselector is derived (e.g. for [shape(X1)=...] VARPTR points
to X).

PNO - is the index in the symbol table of the referee associated with the particular meta function
{e.g., a pointer to SHAPE in the symbol table for a function which counts the number of
occurrences of a selector of the form [shape(x1)= ... ]).

VAL - is the set containing the reference of the function associated with PNO (e.g., the reference
in a sclector [SHAPE(X1)=2,3]).
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PTR - is the location in PNO, SYMPTR ete. of the information for each selected meta selector in
the order of preference (e.g., information for MS2 would be found in PNO[PTR(2]],
SYMPTR[PTR[2]] ete).

F1COV - the maximum number of formulas in F1 covered by one value of this meta function.

FOCOV - is the number of formulas of FO covered by the meta function with the value found in
F1COV.

Example: ([NMST=23)

PNO VAL SYMPTR VARPTR PTR Ficov Focov
3 1 1 4 2 3 1]
3 0 2 4 1 4 o
3 1 2 4 3 3 2

with the three meta functions:
MS1 = [# XS SHAPE 0=._]
MS2 = [ALL XS SHAPE 1]
MS3 = [# XS SHAPE 1-'——]

2.6. Formula for Graph Structure (GRAPH)

This is the structure used to store each formula. It is composed of 4 parts, the single parameters
(COEF, LEFTS, RNO, COST, ESET, NXTN), a pointer to a set of meta selectors (MSEL), and
information about each node and the links between nodes. Each node has a number (the subscript value
of each array below) which is used in the LINK array to refer to any node in the graph so that for
example, VAL|3] is the value set associated with the node number 3,

COEF - not used

LEFTS - the size of the graph in nodes. In the case of L-rules, this is the size of the left side of
the rule only.

RNO - the unigue rule number associated with the graph.

FP - a flag which is used in abzorption and the COVER routi.ne.

COST - the cost of the formula (COST|I] is the value associated with cost eriterion number I).
ESET - the decision value associated with this rule

MNXTN - the pointer to the next graph structure in a list or set of such structures,

NNEG - not used.

MSEL - a pointer to the meta selectors associated with the graph, The metaselectors are stored
in an AQ complex corresponding to the MST.

VBL (array) - if true, then the node is a variable, otherwise, it is a selector node.
ORDIRR (array) - if true, then the order of arguments is irrelevant (i.e., all conmecting edges are

unlabeled). In general, dummy variables and equivalence-type predicates have
ORDIRR=TRUE and all other functions and predicates do not.
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VAL (array) - the set of values associated with the node (this may be a subrange corresponding to
|X1=3.6] for example).

COUNT (array) - this is used in NEWGP and AQSET when generating alternative
generalizations. In general, a non-zero value indicates that a node is in the graph.

ASSGN (array) - records assignments between nodes of two different graphs in SUBG1 when a 1-1
correspondence between nodes of two graphs is determined.

FNO (array) - a pointer to the domain definition for the function in the symbol table. Points to
the dummy variable family name (e.g., PART instead of PARTI1).

DUMNUM (array) - is used in VLINT and PGRAPH to distinguish between two variables with
the same domains (e.g., x1 and x2),

DPNO (array) - A pointer to the domain definition of the dummy variable jtself. It points to,
e.g., PART1 rather than PART (unlike PNO). It is used by VCOST function 5 to derive
the correct cost.

LNK (array) - contain the links between nodes. Edges are not given an explicit direction, instead,
certain routines infer the direction of an edge by the types of node at each end of the
edge. All nodes which are connected are doubly linked; if incomming edges are labeled,
these labels are indicated by the location in the link array (LINIK) for the node.

Example

For the expression: [P(X1,X2)|[SHAPE(X1)=2|, the link structure is

ROW FUNCTION  LINKS
1 X2 30

2 X1 340

3 P 210

4 SHAPE 20

A partial example using the symbol table above js;

[SHAPE(X1)=1][P(X1,X2)||[M52=2]

NODE PNG VAL VBL ORDIRR LNK
1 4 0..15 TRUE TRUE 230
2 3 1 FALSE FALSE 10
3 7 1 FALSE FALSE 140
4 4 0.15 TRUE TRUE 30

MSEL": [MS1=#|[MS2=2|[MS3=+]

2.7. VL, Complex Storage (CPX)

This structure is a simple list of references (CVAL) in bit positional notation along with certain flags
(FF and FQ), a link to the next such structure in a set {(NXTC) and the cost of the complex (COST).
The interpretation of each variable is found in the symbol table through the index SLOC in AQPARM
(e.g., the set contained in CVAL[3] is the reference of the variable in row SLOC|3| of the symbol table).
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2.8, AQ Parametera (AQPARM)
The structure contains several parameters relevant to the AQ procedure.

NVAR - the number of variables for the run.
CSTF - the list of cost functions in the order of applieation.

TOLER - the tolerance asociated with each cost Tunction (TOLER[3] is the tolerance of the cost
function which is applied third — i.e., CSTF[3]).

NF - the number of cost functions to apply
FREEC - a pointer to a list of free complex storage structures (CPX's)

SLOC - the location in the symbol table of the domain definition for each VL, type selector in
CVAL. ’

CUTF1 - a parameter which limits the number of formulas examined with AQCRIT of 3.

LQST - if true, then VL, complexes are stripped.

MAXSTARAQ - the maximurmn size of a partial star in AQ

2.9. VL Parameters (PARM)
This structure contains parameters relevant to the VL, portions of the program.

CSTF - the cost function indices in order of application

TOLER - the tolerance associated with each cost function

NF - the number of cost functions used

MAXSTAR - the maximum number of elements in a partial star.

ALTER - the number of new elements which are generated from ope formula in a partial star F’l
when forming s new partial star P, -

EXTMTY - a flag indicating whether EXTMTY type predicates have been added.
EQUIV - a flag indicating whether EQUIV type predicates have been added.

NCONSIST - the minimum number of consistent generalizations produced.

2.10. L-rule parameters (LPARM)
This structure contains parameters relevant to the use of L-rules.

CSTF - the cost function indices in order of application

TOLER - the tolerance associated with each cost function
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NF - the number of cost functions used

MAXL - the maximum number of sets of L-rules

2.11. Arithmetic Expression Varlables

Arithmetic expressions are parsed by VLINT using the second hall of the parse table. VLINT is
passed the starting row in the parse table where it is to start parsing. For arithmetie expressions, this row
i3 a constant defined as ARITHDD. Arithmetic expressions are parsed onto an ARITHSTACK in reverse
polish notation. The program uses a grammar which actually causes the order of execution to be from
right to left. The ARITHSTACK entry contains the following fields:

ACTION - is a code telling what to do with this entry. It takes on the values ADD (perform
addition), SUBTRACT (perform subtraction), MULTIPLY (perform multiplication),
DIVIDE (perferm division), MODULO (perform modular division), MINUS (perform a
unary minus), FUNCT (this entry is a function to look up the value of), and NUMBER
(this entry is an integer). If ACTION is an operator, then the other fields of the record
are meaningless,

ARGUMENT - if ACTION is NUMBER then this field contains the integer value of the integer.
If ACTION is FUNCT then this field contains the PNO (index into symbaol table) of the
corresponding function or predicate. During the computation process in CALCARITH,
the ARGUMENT fields are updated to point to the graph index of the corresponding
function or predicate in TOFIND,

DUMMY - is an array of pointers to the symbol table for each dummy variable of the function or
predicate in ARGUMENT. It is only meaningful if ACTION is FUNCT. The function is
assumed to have ordered dummy variables (ORDIRR is FALSE). The list is terminated
by a zero index.

2.12. Additlonal Variables
INFILE - an integer specifying whether input is from the terminal or from CFILE.
NMQ - the number of elements in MQ
FREEG - pointer to the list of available graph structures
LSLIST - pointer to the list of sets of L-rules
STAR - pointer to the list of formulas in a star
MQ - pointer to the list of consistent formulas
GSET - pointer to the list of input formulas
COVSET - pointer to the list of output formulas

STP,TRACE - sets of values for trace features
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3. I[D Files

3.1. TABLES

This file contains the parse table information. Terminals in the grammar which are characters
immediately follow any number (ie. non-terminal). The end of each row of the parse table has a 0
followed by a (up to) 60 character name which describes this production {used in printing error messages).
The column CONT has the value 1 if the line is an alternative RHS for the preceeding rule, 0 otherwise,
The component parts of RHS denote either a terminal symbol (actual punctuation or the numbers 1-
function symbal, 2-variable symbol, or 3-number) or the negative of the non-terminal number. Below is
the parse table as it currently stands:

Non-terminal Cont Action RHS DESCRIPTION
MNumber Flag Code

1 0 1 3-30 a v12 decision rule
2 1 2 =30 a v12 decision rule
3 0 3 4> -60 a vI2 decision rule
4 0 4 fi-40 a conjunction of selectors
5 1 4 60 a conjunction of selectors
6 0 14 -19= -10] 0 a variable selector
7 1 T -21( -14)= -10| 0 a function selector
B 1 18 [-21( -14)] 0 a predicate selector
9 1 7 [-21=-10] O a niladic function selector
10 L] 8 43 v -100 a list of numbers
11 1 9 =43, -43 0 an interval of numbers
12 1 19 =0 an asterisk (symbolizing the entire domain)
13 1 10 =43 0 a single number
14 [1] 11 =19, -14 0 a dependent variable list
15 1 20 -19.-14 0 a dependent variable list {order irr)
16 1 12 =190 a subsecripted variable
17* 0 13 =19+ -10; -17 0 a list
18+ 1 14 =10= 100 a list
19 0 15 20 a subseripted variable
20 0 16 30 a number
21 0 17 10 a function symbaol
22 0 32 =32=.230 an arithmetic derived descriptor
23 1] 25 -25 =37 -23 0 an arithmetic expression
24 1 31 =250 an arithmetic expression
25 0 25 =27 -20-250 a term
26 1 3 =270 a term
27 o 31 (-23)0 a factor
28 1 31 =330 a factor
29 1 28 --330 a factor
30 1 31 =320 a factor
31 1 28 --320 a factor
32 0 31 -34( -35) 0 a function call
33 0 23 30 a number
3 o 21 10 a function symbal
as i} 31 -42, -35 0 a list of dummy variables
36 1 31 =42 0 a list of dummy variables
a7 0 27 + 0 an addition operator
38 1 20 -0 an addition operator
39 1] 24 =0 a multiplication operator
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-19, -54 0

-19.-54 0
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INDUCE 2

a multiplication operator

a multiplication operator

a dummy variable

a number

a symbaolic value

a krule (added by wah 10/82)
a conjunction of selectors

a conjunction of selectors

the consequence of the l-rule
the consequence of the l-rule
a variable selector

a function selector

a predicate selector

a niladic function selector

a dependent variable list

a dependent variable list (order irr)
a subscripted variable

This file contains text for explanation. Each explanation has a number and is delimited by a!in
column 1 followed by the number of the explanation preceeding the text and a ! in column 2 - B0
following the text. If a line ends with #, the program stops printing to allow the user to read the

material.

3.3. CFILE

This file contains a set of input commands and data which is to be executed before the system asks
for user input. Normally, input rules and certain parameters are included in this file. Comments can be

placed in the file by enclosing them in pereent signs ("%").

3.4. VLIEVE

This file contains a list of VL type events. The file is in the format for AQ7 except that each event
specification is preceeded with the class number of the associated decision. A -1 indicates a value which is

irrelevant,

3.5. Other Files

IFILE and QUTPUT are the terminal input and output Bles. All other files are currently unused.
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4. Program Structure

The program INDUCE 2 (Appendix 2) contains about 6000 Pascal statements and 20 procedures,
These procedures may be grouped into these classes: 1) control and user interface, 2) VL to internal
formula representation, 3) graph manipulation, 4) add new functions, 5) AQ complex manipulation, 6) L-
rule procedures and 7) supporting procedures. Each group of procedures operates nearly independently of
the others thus giving the possibility of implementation on a smaller machine.

The main program accepts high level commands and ealls the appropriate procedures to perform the
requested action. Any input in the form of a decision rule passes through the VLINT procedure for
translation to internal format. On some ocensions, information is then copied from one internal form to
another (E command) but most of the work is done in VLINT. All other user interaction takes place in
ENTERF (enter parameters). The VL, mode uses the VL, procedure and AQ, bypassing all procedures

dealing with graph manipulation. To cover a set of formulas, the COVER procedure is called which in
turn, calls NEWGF to grow generalizations and AQSET to apply AQ to the consistent generalizations in
MQ.

4.1. Control and User Interface
MAIN - process high level commands

ENTERFP - Decode commands using the first 4 characters of the command name. If it's a
number, find a rule with that number in the rule base. Find the first two numbers in the
command (GETNUM) and place in the variables I and L. Then, execute the command.

FPGRAFH - Frint the graph structure as VL, formula. Assign indices to all variables. Write out

function and arguments if any. Then, write out reference (if not =). If tree structured
domain and the value is an internal node, then only print out the internal node.

PCPX - Print in VL, type format indexing into SYMTAB using AQ.SLOC array to find the
maximum and minimum values. Don't print any selector with a (*) reference.

PMETAD - Print list of selected meta-functions.
PDOM - Print domain table (i.e., dump symbol table).

EXPLN - Find requested text from the file EXPLAIN and print it stopping at (*) for carriage
return from user.

4.2. VL Translation to Internal

TOKEN - Read an input line and add the terminator (7). Scan over the letters and digits and set
CTYPE (O-delimiter, 1-function symbol, 2-variable, 3number). If CTYPE was 0 then
determine internal representation of the delimiter. If CTYPE is 1 or 2, then find the row
in the symbol table (FINDROW). If it is not there, then add a new row to the symbol
table FIXSYM (the name of the symbol is located between FCURS and LCURS in BUF).
In the case of a variable, add an extra row for the domain of the variable in addition to a
new row for the variable itsell (ie., a row for X in addition to a new row for X1). If
CTYPE is 3, then compute the value of the number. Return the location in the symbaol
table or the computed number in the parameter SROW and delimiter type in CTYPE.

VLINT - Translate VL, formula into graph structure. Maintain a value stack (VSTI), a function

Appendlx 1 - Users Gulde



18 INDUCE 2

stack (FSTK), semantic stack (SSTK) and a parse stack (PSTK).
PSTK - Contains a stack of all non terminals not yet completed.

S5TK - Contains the tokens from the input buffer which have not been matched with an element
of a completed preduction.

VSTK - the stack of numbers not already placed into the graph.

FSTK - the stack of arguments of a function (FSTK[1] is always the function symbol of the
selector being parsed),

As tokens are accepted from the input buffer, they are matched with productions
in PT. If a token does not match an element of a production which is 2 non terminal, the
location of the mon terminal is placed on PSTK and the production defining the
nonterminzl is tried (PROD and LOC determine the current element in PT under
consideration). If there is no match, then try an alternative definition of the non
terminal. If there is no alternative, back down PSTK and try another alternative of this
non-terminal, :

If a token matches the element of PT under consideration, put this token on
S5TK and try the next element in the production. If the complete production is
matched, replace the matching tokens on SSTK with the appropriate nonterminal, back
down PSTK to the previous location, process the indicated semantic rule (PROCESS)
and proceed. Once the productions in row 1 of PT are completed, the expression is said
to be syntactically correct,

FROCESS - Execute the semantic rule for the production (-PROD). Briefly, node assignments
are made using the elements in FSTK, values in the reference are assigned from elements
in VSTK. The MNVAL and EVAL fields of the symbol table are updated and the type
of a node is determined. Links between variables and functions are assigned recalling
that FSTI[1] contains the location of the function.

PARSEARITH - Exccute semantic rules for arithmetic derived deseriptors. A data structure
called an ARITHSTACK is built which contains the arithmetic expression in reverse
polish notation. The first element on the stack is the new variable to which the
expression value should be assigned.

4.3. VL, Formula Manipulation

SUBG]1 - Determine if the graph in G1 is a subgraph of the graph in G2. If ALLSUBG is 4, then
find all subgraphs of G2 which match G1 and apply ADDLRULES (for logically derived
descriptors). If ALLSUBG is 2, then find all subgraphs of G2 which match G1 and apply
ALLC (AQ procedure), If ALLSUBG is 3, then find all subgraphs of G2 which match G1
and apply CALCARITH to compute the value of the arithmetic expression and add it to
the graph. The procedure SUBG1 selects a starting node of G1 and a matching node of
G2. SUBG produces a spanning tree of Gl from the starting node calling MATCH to
determine for each pair of nodes whether they MATCH. For each pair of matching
nodes, ASSIGN records the correspondence. If INSD is true, two nodes (selectors or
varizbles) are matched only if the values of the first cover the values of the second. If
INSD is false, the values of the two nodes need only intersect.

TRIMG - Trim a list of formulas to MAXS elements, return other formulas to FREEG. Place

formulas with COST[3] into MQ (consistent formulas). Instead of sorting a linked list,
the array CA is sorted. Costs are assumed to be stored with each formula (calculated in
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COVER).
COSTG - Determine the cost funetion CT specified for the formula P.

COVER - Cover the set of formulas ES. First, select an element of F1 to cover (G) and compute
the initial partial star. For all nodes in a graph, the flag COUNT is set to 1. Trim the
partial star and apply absorption. Form a new partial star by calling NEWGP for each
remaining element of the trimmed partial star. Once NCONSIST elements are in MQ,
apply AQ (via AQSET) to each consistent formula. Trim the list to one best element and
remove elements of F1 covered by this formula (set FP to false). Select a new element of
F1 and repeat until F1 is exhausted.

MNEWGP - Add new selectors to the input graph to form a list of ALTER or less new formulas.
GO0 is the old generalization of G1; direct association exists betwen nodes of GO and nodes
of G1 (i.e., correspondence is 1-1 by row, not through ASSGN as with other
correspondences). The procedure forms only connected new graphs. A list of selectors
which may be connected to the current graph is created in CANDID and sorted with
respect to VCOST and NARG. All variables connected to existing nodes are flagged
(COUNT=2] and then all function nodes connected to variables with COUNT = 1 or 2
are marked (COUNT=3). All "count=3" selectors are placed in CANDID. Then, a new
graph (in SLST) is formed from the old ome with a new selector and any relevant
variables. EQUIV type lunctions are discarded if they have no more than 1 argument.
The list SLST is returned to the calling procedure (COVER).

4.4. AQ Complex Manipulation

AQ - perform the AQ algorithm on the sets F1 and F2 of complexes obtained from the sets F1
and FO of rules. This routine is much like AQ and is not further explained here.

LQST2 - perform the LQST function during characteristic generalization. During characteristic
generalization, it becomes necessary to have a minimum sized cover which covers all rules
{not complexes) in F1. Since there is often a many-to-one relationship between
complexes in F1 and rules in F1, this is a non-trivial task and LQST2 performs this task.
During the ALLC procedure, a CPXTABLE is attached to each complex which lists the
rule numbers of the original rules in F1 which the complex covers. LQST2 loops finding
the complex which covers the most rules, combining its reference values with the complex
currently being derived and eliminating all complexes which cover the rules it covers from
further consideration. When the set of complexes is exhausted, a quasi-minimal cover has
been found. Trace 7 causes various information to be printed out during this covering
process.

AQSET - Translate from VL, representation (graph structure) to VL, representation (sequence of

sets of values). Create two sets of complexes, F1 containing subgraphs of graphs with
VL, set F1, and F2, the set of complexes associated with c-structures (GSUB)
isomorphisms with elements of the VL, set F0. The first element of F1 corresponds to
the part of the graph GSUB which was consistent. The two scts of events are passed to
the AQ procedure which returns a of events are passed to the AQ procedure which
returns a complex covering the first element of F'1 but no element of F2. This is copied
back into GSUB to form the extended reference generalization.

ALLC - Translate from graph to complex and add to the list of complexes if not already there.

Also, set up SLOC to relate VL, wvariables to symbols and find NVAR (number of
variables). Use assignments from the e-structure GSUR and the graph G1 for nodes with
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COUNT = 1 in GSUB. All meta-selectors are loaded in the first METATRIM VL,
variables, the remainder are nodes with COUNT = 1 in GSUB. A CPXTABLE is
maintained for each complex which contains a list of the rule numbers of the rules which
that complex covers. This is used by the LQST?2 routine.

VL1 - Input VL, events from the file VL1EVE and translate to complex storage. Call AQ to find
generalization and then print result.

TRIMF - Trim a list of complexes with respect to AQUSTF etc. This is nearly the same as
TRIMG but uses CPX structures.

COSTF - compute the cost of a complex.

4.5. Add New Functions

ADDSEL - find sets of nodes which have the same label in the graph. Add a new selector with
the same label except that ORDIRR = true and PNO is the negative of the original
PNO. The negative PNO always indicates a predicate of this type.

ADDML - Add MST, LST, EXTMTY type predicates. For each binary predicate whose
arguments assume values from the same domain, add extremity predicates.

ADDMETA - add meta-selectors to each formula in F1 and FO. For each unary function and
function value, count the number of occurrences of this pair in a formula and add a
selector of that type to the formula (COMPMS). Caleulate F1COV and FOCOV and sort
the list of meta selectors (TRIMM).

PROCARITH - loop thru F1 and FO adding an arithmetic derived descriptor to each graph in
turn. This is accomplished by first ereating a temporary graph [TOFIND) which contains
the necessary functions and dummies from the right band side of the arithmetie derived
descriptor rule. This forms a connected graph structure. Then we call SUBCGI to find all
isomorphisms between TOFIND and the rules in the rule base. SUBGI1 ealls
CALCARITH which actually performs the insertions into the rules. PROCARITH
contains the internal procedure BUILDG which builds a graph corresponding to the
arithmetic expression.

4.8, L-rule Procedures

LSINSERT - inserts a new L-rule into an already existing set of L-rules. It is inserted into the
first set of L-rules to which it is related to some L-rule in that set. Two L-rules L1 and
L2 are related if the consequence of L1 shares some selector (with the same function
symbel and intersecting reference) with the condition of L2, or vice-versa.

LSCHOOSE - chooses MAXL or fewer sets of L-rules. The L-rules are chosen according to the
cost criteria for L-rules. This procedure is very similar to TRIMG, the analagous
procedure for VL2 formulas.

ADDLRULES - adds the consequence of a L-rule to an event. It is called from SUBGI, which has
already determined an isomorphism between the condition of the L-rule and the event..
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4.7. Supporting Routines
ILINE - input a new line from CFILE or the terminal
GETCHRR - read one character from the TTY or CFILE (perform ILINE if necessary)
PEOS - detect end of line on TTY or CFILE

INSIDE - determine if the set V, is a generalization of the set V, If INSD is TRUE the references
of Vﬂ must completely cover those of Vl‘ Ir INSD is FALSE, the references need only
intersect.

EXTND - find the extension of V| against V.
* INIT - initialize variables and files

NEWG - allocate new éraph.

GIN,GOUT,S0UT - not used

ADDCONS - Performs exchange of one VL expression for another (see X command).
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