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FOREWORD

This collection contains papers presented at the
International Machine Learning Workshop held June 22-24,
1983 at Allerton House, the residential conference
center of the University of Illinois. This was the
second such Workshop. The first was held at Carnegie-
Mellon University in Pittsburgh, July 16-18, 1980.
Machine Learning Workshops serve as a forum for exchange
of ideas and for presenting current research in machine
learning from an artificial intelligence perspective.

We are grateful to the Office of Naval Research for
sponsoring both Workshops, and to the Department of
Computer Science of the University of Illinois for
providing organizational help in this Workshop. Special
thanks go to James N. Snyder, Richard Canaday, June
Wingler and Donna Hart for their invaluable help and
support. We are also indebted to Research Assistants
of the Intelligent Systems Group who assisted in |
innumerable ways.

Ryszard 5. Michalski
Jaime G. Carbonell
Tom M. Mitchell
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LEARNING BY AUGMENTING RULES AND ACCUMULATING CENSORS

Patrick H. Winston

Artificial Intelligence Laboratory
Massachusetis Institute of Technology

545 Technology Square
Cambridge, MA 02139

ABSTRACT

This paper is a synthesis of several sets of ideas: ideas

about learning from precedents and exercises, ideas

. sbout learning using near misses, ideas about
generalizing if-then rules, and ideas about using censors
to prevent procedure misapplication.

The extensions are as follows: (1) I1f-then rules are
augmented by wnless conditions, creating augmenied
if-then rules. An augmented if-then rule is blocked
- whenever facts in hand dircctly demonstrate the truth of
an unless condition, When an augmented if-then rule is
used w demonstrate the truth of an unless condition,
the rule is called a censor. Like ordinary augmented
if-then rules, censors can be learned. (2) Definition
rules are introduced that facilitate graceful refinement
The definition rules are also augmented if-then rules.
They work by virtue of wnless entries that capture
certain nuances of meaning different from those
expressible by necessary conditions.  Like ordinary
augmented if-then rules, definition rules can be learned.

Key terms: Learning, analogy, if-then rules,
CENSOrs,

KEY IDEAS

This paper builds primarily on a previous paper that
introduced a theory of learning from precedents and
excrcises using comstraint transfer [Winston 1981]. The
theory addresses the analogy process at work when we
exploit past experience in fields like Management,
Political Science, Fconomics, Medicine, and Law, as
well as rom everyday life.

Two extensions to the theory are described. Work
on the first extension was stimulated by some of the
apparent blunders of the extant system. Work on the
second extension was stimulated by some problems
encountered in making definitions.

After a bricf review of the overall theory, I present
an example showing that the rules generated by the

unextended learning system can be misapplied. Next, 1
discuss various solutions to the misapplication problem,
including the introduction of censors. At this point
augmenied if-then rules are discussed. Each augmented
if-then rule contains not only [fand rhen parts, but also
an unless part. Before a rule acts, censors determine if
any existing facts directly demonstrate that an unless
relation is true. [fso, the rule is blocked

This leads to the development of definition rules
based on augmented if-then rules and a discussion of
their relevance to the problem of concise definition
versus unlimited nuance.

Next, it is shown that censors can block censors
and that censors can be learned, both by precedent and
exercise and by near miss.

Finally, | describe precedents for this wark itself,
including ideas that stimulated what I have done, such
as Minsky's ideas on the role of censors in problem
solving [Minsky 1980], as well as other ideas that 1
reinvented or borrowed from as my work progressed,
such as Goldstein and Grimson’s ideas on generalizing
if-then rules [1977].

There are references throughout to an
implemented system that actually does acquire and use
censors.  This implemented system inherits some key
ingredients from previous work:

o Analogy-based reasoning using constraint transfer.
Analogy requires the ability to determine how two
situations that are similar in some respects may be
similar in other respects as well. Here the
determination is done by transferring constraints
from the precedent situation to the exercise
situation.

o  Learned if-then rules. In contrast to current
practice in Knowledge Engineering, if-then rules
emerge automatically as problems are solved.
Teachers supply precedents and exercises, leaving
the work of formulating the if-then rules to the

system.



0  Actor-object represemtation. Situations are
represented using relations between pairs of
situation parts. Supplementary descriptions can
be attached to the relations when elaboration is
needed.

o Importance-dominated matching. The similarity
hetween two situations is measured by finding the
best possible match according to what is important
in the situations. Importance is determined by
causal connections in the situations themselves.
Causal connection js viewed as a common
importance-determining constraint.

LEARNING FROM PRECEDENTS

Let us begin by reviewing the sort of task performed by
the theory as previously reporied. Consider the
following precis of Macberh, given by a teacher as a
precedent;

MA 5 a story about Macbeth,
Lady-macbeth, Duncan, and MacdufT,
Macbeth is an evil noble. Lady-macbeth is a
greedy, ambitious woman, Duncan is a king.
Macduff is a noble.

Lady-macbeth persuades Macbeth to want
1o be king because she is greedy. She is able
to influence him because he is married to her
and because he is weak. Macbeth murders
Duncan with a knife. Macbeth murders
Duncan because Macbeth wants to be king
and because Macbeth is evil. Lady-macbeth
kills herself. Macduff is angry. Macduff
kills Macbeth because Macbeth murdered
Duncan and because Macduff is loyal to
Duncan.

Next, consider the following exercise;

Let E be an exercise. E is a story about a
weak noble and a greedy lady. The lady is
married to the noble, In E show that the
noble may want to be king.

Told by a teacher that Macbeth is to be considered a
precedent, it is announced that the precedent suggests
that the noble may want to be king. Then a
principle-capturing if-then rule is created suggesting
that the weakness of a noble and the greed of his wife
can cause the noble to want to be king. The rule looks

like this:

Rule

RULE-1
if

[LADY-4 HQ GREEDY]

[NOBLE-4 HQ WEAK]

[[NOBLE-4 HQ MARRIED] TO LADY-4]
than

[NOBLE-4 WANT [NOBLE-4 AKD KING]]
case

MA

The exercise problem could have been handled by
this rule directly, without recourse to the Macheth
precedent, were it available when the problem was

posed. Thus the rule adds power, Unfortunately, it also
adds blunder, as when the following exercise is given;

Let E be an exercise. E is a story about a
weak noble and a greedy lady. The lady is
married to the noble. He does not like her.
In E show that the noble may want to be
king.

This situation is different because we know that it is
difficult for a person 1o influence someone who does
not like him. Evidently, the rule is overly general, ready
to reach conclusions when it should not.

This paper introduces extensions to the existing
theory such that the implemented system behaves
correcily on the given example and many others. The
improved system works because of the following;

o  The blocking principle: Suppose a rule, derived
from a precedent, seems to apply to a problem.
Consider the relations in that part of the
precedents’s causal structure involved in forming
the rule. If any such relation corresponds to a
relation that is either' false or manifestly
implausible in the problem situation, then the rule
based on the precedent does not apply.

o The prima facie conjeciure: A relation is
manifestly implausible if its negation can be
shown by a direct, one-step inference from
relations already in place,

Thus the improved system works, satisfying one

important criterion for success, and it works because it

exploits identifiable ideas, satisfying another.
CREATING RULES USING ANALOGY

Let us review how rules are generated. Consider the
Macbeih precedent, given earlier, together with the



King

Macbeth R ako
Muacheth Greedy
-
persuade hq
Lady-Macbeth Lady-Macheth
hq 0 a= | influence

Macheth Macheth

ko Lady-Macheth -l———m hq
Weak Married
.F“ King
!
Man _i’l}__'_ ako
-
* I Man Greedy
"'\. i ———— —— —————
S . i \I ha
: Woman
1
b
Man JI| I Man
f""' —— i ——— - I
haq -~ Woman ~e———————| hg
Weak Married

Figure 1: Problems are solved by transferring the
existing cause relations of a precedent (crossed lines,
part a) onto the problem to be solved (dotted lines, part
b). HQ = Has Quality. AKO = A Kind Of.



exercise, both expressed in semantic-network form, as
shown in figure 1. When asked to demonstrate that the
man may want to be king, given the Macberh precedent,
the system proceeds as follows:

o  The people in the precedent are matched with the
people in the exercise. More generally, precedent
parts are matched with exercise parts.

o  The causal structure of the precedent is mapped
onto the exercise.

o Itis determined that the mapped causal structure
: ties the relation to be shown to relations known to
be true.

o A rule is constructed, with generalizations of the
exercise relations used becoming [ parts and a
generalization of the relation to be shown
becoming the then part.

When a single precedent cannot supply the total causal
structure needed, the system attempts to chain several
together. In the example, if it were not known already
that the woman is greedy, as required for application of
the Macbeth precedent, greed might be established
through another precedent or already-learned rule. A
previous paper explains this in detail [Winston 1981].

ENABLING CENSORS

So far we have established that rules can be generated
and that they need to be blocked in certain
circumstances. There are three obvious ways to arrange
for blocking:

First, expand the i part of an offending rule,
restricting its use, One problem with this idea is that
rules can become bloated with endless tests for
increasingly unlikely minutiae, Such bloat makes rules
obscure and hard to criticize, debug, and improve, for
both us people and for reasoning programs.

Second, attach censors to each rule. Have the
censors check the problem to be solved for
contraindications to the rules the censors are attached
to. One problem is that the rules can become bloated
with censor names; these censor names would give no
explicit insight into when the rules do not apply.

Third, have censors watch for particular relations,
Forbid any mule or precedent to work toward
establishing a relation that a censor objects to. One
problem is that the rules continue to look silly,
containing no hint about when they do not apply. -

Censors can Block Augmented Il-then Rules
A better, less cbvious idea, is this:

o Augment each rule at the time it is generated with
entries that correspond to all relations in the
causal structure lying between relations that enter
the if part of the rule and the relation that enters
the then part of the rule. Negations of these
intermediate entries constitute the unless part of
the rule. According to the blocking principle, if
any entry in the unless part of the rule corresponds
to something that is manifestly true, then the rule
does not apply.

Clearly a relation is manifestly true if the existing facts
indicate that the relation is true. But introspectively, it
seems unreasonable to go deeply into reasoning about
unless entries. Hence the implemented system adheres
to the following specialization of the prima facie
conjecture:

o If any entry in the unmless part of a rule
corresponds to a relation that can be shown to be
true by another rule working directly from
relations already in place, then block the rule,

Suppose, for example, that a rule's wnfess part is
triggered when someone is unable to influence another.
Such a rule will be blocked if the person to be
influenced does not like the other. The augmented
form of RULE-1 is:

Rile
RULE-1
if
[LADY-4 H} GREEDY]
[NOBLE-4 HQ WEAK]
[[MOBLE-4 HQ MARRIED] TO LADY-47
then
[NOBLE-4 WANT [NOBLE-4 AKO KING]]
unless
[[LADY-4
PERSUADE
[MOBLE-4 WANT [NOBLE-4 AKD KING]]]
HQ FALSE]
[[[LADY-4 HQ ABLE]
T0

[LADY-4 INFLUENCE NOBLE-4]]
HQ FALSE]



The blocking rule is:

Rule
RULE-2
if

[[PERSON-B LIKE PERSON-7] HQ FALSE]
then

[I[PERSON-7 HQ ABLE]
T0

[PERSON-7 IMFLUENCE PERSON-8]]
H) FALSE]

A rule becomes a censor when it blocks the
application of another rule. Since censors look just like
any other rules, censors can be learned, stored, and
retrieved in the same ways.

Note that when the illustrated rule is used to block
another, it only works if it is known at the time of use
that there is dislike. There is no attempt to demonstrate

" dislike when not already known.

MNote that the viability of the prima facie
conjecture depends on having a rich vocabulary of
relations. [t would be difficult to demonstrate anything
in one step if all relations were reduced to canonical
constellations of small-vocabulary primitives.  This
opens the question of just how rich the vocabulary
should be, a question answered operationally by using
freely those relations for which there are common
natural-language words.

The viability of the prima focle conjecture also
depends on having all solid facts available before
backward-chaining problem solving begins. This means
that all solid facts are either given facts or deduced
already by forward chaining from given facts using
reliable, potentially relevant rules. Reliability is insured
by forward chaining only with rules that reach
unassailable conclusions. Relevance cannot be insured,
but can be rendered more likely. One way is to use the
context mechanism described in an earlier paper
[Winston 1981].

Censors can Block Censors

Actually, it is possible to be influenced by someone you
dislike if for some reason you trust them in spite of the
dislike. Perhaps the real able-to-influence censor
should look like this:

Rule
RULE-2
if
[[PERSON-8 LIKE PERSON-7] HQ FALSE]
than
[[[PERSON-T7 HQ ABLE]
TO

[PERSON-7 INFLUENCE PERSON-8]]
H) FALSE]
unless
[PERSON-B TRUST PERSON-T]

Such a censor could be blocked by another censor
which states that you believe someone if they have the
ability to convince you:
Rule

CENSOR-1

if
[[PERSON-6 HQ ABLE]
To

[PERSON-6 CONVINCE PERSON-51]
then

[PERSON-5 TRUST PERSON-8]
To illustrate how these can interact, consider the
following situation;

Let E be an exercise. E is a story about a
weak noble and a greedy lady. The lady is
married to the noble. He does not like her.
The lady is able to convince the noble. In E
show that the noble may want to be king.

This produces the following scenario;

o  First, the problem is posed and RULE-]l is
fetched. [ts [f parts are satisfied.

0 Next, the unfess part of RULE-1 is examined. The
line involving ability to influence causes RULE-2
to be fetched. Its jf parts are satisfied. RULE-1is
about 1o be blocked.

0 But RULE-2's unless part must be examined. The
line involving believing causes CENSOR-1 to be
fetched. Its [ paris are satisfied.  Thus
CENSOR-1 blocks RULE-2, preventing RULE-2
from blocking RULE-1.

o  Finally, RULE-1 succeeds, establishing the
relation originally asked about.

Augmenied If-then Rules are not Rules of Inference
It is tempting to write censors in the following way:
AjALAA ASBV..VB)=C,

or alternatively,

AjAAA A=B A A-B =C

where the 45 are in the jf part of the rule and the Bs are
in the unless part.



Logical notation is deceptive, however, for in the use of
augmented if-then rules, the 4s and Bs get treated
differently from each other, in contrast to the
conventions of traditional logic: unlimited effort is to be
put into showing the As are true; only one-step effort is
put into showing that the Bs are true, with the B
assumed false on failure.

Mote that rules used as censors are not permitted
to create new objects. This insures that the amount of
computation added by the application of censors to
unless entries is bounded even though censors have
their own wnless parts that must be checked by censors.
1 believe it is likely that censor computations will prove
in practice to be broad and shallow, as well as bounded,
suggesting parallel implementation,

Augmented Rules suggest an Approach te ceriain
Definition Problems

Winograd has discussed the difficulty of definition
using the word bachelor [Winograd 1976]. To be sure, a
bachelor is an unmarried adult man, but Winograd
notes that such a definition can cause trouble if used
when someone says, "Please invite some nice bachelors
to my party,” for it would be strange to invite certain
kinds of bachelors. For example, Catholic priests and
misogamists, while satisfying the dictionary definition,
are clearly not what a party giver has in mind.

Since the exception possibilities seem limitless,
Winograd feels it is inappropriate to rest a definition of
bachelor on a clearly defined, small set of primitive
propositions, arguing that it is better to think of using
some abstract measure of closeness to an extensible set
of exemplars. Woods takes issue with Winograd's view,
feeling that correct understanding must involve an
explicit selection of a particular word sense, rather than
closeness 1o a generally applicable exemplar set [Woods
1981].

The augmented-rule idea may offer a slightly
different approach to the problem. Consider the
following definition of bachefor, stated as an augmented
if-then rule:

Rula
RULE-2

if
[MAN-10 AKO MAN]
[[MAN-10 HQ MARRIED] HQ FALSE]
[MAN-10 AKO ADULT]

than
[MAN-10 AKO BACHELOR]

unless
[[[MAN-10 HQ MARRIED] HQ EXPECTED]
HQ FALSE]
[[[MAN-10 HQ ABLE] TO [MAN-10 HQ MARRIED]]
HQ FALSE]

With this definition, the conclusion can be avoided,
even though the i part of the rule is fully satisfied,
providing that the individual involved is not able to be
married or is not expected to be married. This takes
care of the priest and the misogamist problems, given
the following censors:

Rule
CENSOR-1
if
[PERSOM-1 AKO MISOGAMIST]
than
[([[PERSON-1 HQ MARRIED] HQ EXPECTED]
HQ FALSE]

ule

CENSOR-2
if

[MAN-4 AKO PRIEST]
then

[[[MAN-4 HQ ABLE] TO [MAN-4 HQ MARRIED]]

HQ FALSE]

Evidently, it is possible to have a simple, stable
definition of bachelor, while at the same time allowing
for knowledge relevant to bachelors to interact with the
definition, when appropriate, as that knowledge is
accumulated. As more is learned, the definition s used
more intelligently, and, in a sense, the definition is
never closed. '

How does capturing the meaning of bachelor with
an augmented if-then rule compare with other
approaches? One point of view is that Winograd's
exemplars correspond to rule-generating precedents,
and learned augmented if-then rules correspond to
Woods's selectable word senses. We will tun to
learning about bachelors from precedents in a moment.

Censors can Improve Precedent Reasoning

While censors were originally investigated in this work
in order to cure the apparent silliness of some learned
rules, they help in another context too. When ordinary
precedent-exercise problem solving is in progress, the
analogy part of the system works back through the
causal structure in the precedent, looking for relations
that correspond to relations in the exercise. Each time
there is no corresponding relation, before the system
moves further through the causal structure, it does a .
censor check,

o If a relation is encountered in the causal structure
of the precedent that corresponds to a relation that
is manifestly improbable in the exercise, then the
precedent cannot support a conclusion.



LEARNING AUGMENTED RULES

Since censor rules and definition rules are just rules
used in a special way, they can be learned just like any
other rules. This may be by direct telling, or it may be
by precedent and exercise, or it may be by near-miss,

Auvgmented Rules can be Learned by Precedent and
Exercise

Here is a precedent and an exercise for learning the
bachelor definition rule:

Let S be a story. S is a story about Casanova.
Casanova is a bachelor because he is a man
and because he is expected to be married.
He is expected to be married because he is
able to be married. He is able to be married
because he is an adult and because he is not
married.

Let E be an exercise. E is a story about
Henry. He is a man and an adult. He is not
married. In E show that Henry is a bachelor.

Of course, one might argue that providing the
precedent involving Casanova 15 unrealistic spoon
feeding. Indeed, it may well be, so it is important to
understand that the same bachelor rule can be learned
using several independent precedents:

Let S be a story. S is a story about a man.
He is a bachelor because he is expected to be
married. He is a bachelor because he is a
man.

Let S be a story. S is a story about a man.
He is expected to be married because he is
able to be married.

Let § be a story. S is a story about a man.
He is able to be married because he is an
adult and because he is not married.

Alternatively, the bachelor rule can be learned using
several previously-learned rules:

Rule
STORY-1
if
[MAN-1 AKO MAN]
[[MAN-1 HQ MARRIED] HQ EXPECTED]
then
[MAN-1 AKO BACHELOR ]

Pule
STORY-2

[[MAN-2 HQ ABLE] TO [MAN-2 HQ WARRIED]]

[[MAN-2 HQ MARRIED] HQ EXPECTED]

[MAN-3 AKD ADULT]
[[MAN-3 HQ MARRIED] WQ FALSE]
th
“{[um-a HQ ABLE] TO [MAN-3 HQ MARRIED]]

Also, it is possible to learn a rule that allows a married
Moslem, seeking an additional wife, to be considered a
bachelor.

Augmented Rules can be Learned by Near-miss

Of course, there should be some way of recovering if an
impoverished definition is acquired early on. The
near-miss idea seems useful in such situations.
Consider this scenario:

o A teacher tells the system that a bachelor is an
unmarried, adult man. This produces an
impoverished definition of bachelor, one without
anything in the unfess part.

o  The teacher complains when the system identifies
a Catholic priest as a bachelor,

o  The system notices that the only robust difference
between the priest and other people who are
correctly identified as bachelors is that the priest is
not able to be married.

o  The system guesses that bachelors must be able to
be married and puts an appropriate entry in the
unfess part of the bachelor definition.

Of course, this is a particularly simple situation since
there is but one object involved and the descriptions are
such that the near-miss-causing relation is the only
relation that is caused by something and not deemed
plausible in a situation where the rule does apply. Itis
not known how difficult it would be to identify the right
difference in general. Recent work by Berwick on
syntax acquisition [1982] and by Minsky in concept



learning [unpublished draf] suggest that if it is difficult
to identify the right difference, a learning system should
simply give up, waiting for more transparent examples
to come along.

THE IMPLEMENTED SYSTEM

The example precedents, exercises, rules, and censors in
this paper are shown in the exact English form used by
the implemented system. Translation from English into
the semantic net representation used by the system is
done by a parser developed and implemented by Boris
Katz [Katz 1980, Katz and Winston 1982]. The
grammar used by the parser is also used by a generator,
which produces English versions of the rules. For
example, the generator converts

Rule
RULE-2

if
[MAN-10 AKD MAN]
[[MAN-10 HQ MARRIED] HQ FALSE]
[MAN-10 AKO ADULT]

then
[MAN-10 AKOD BACHELOR]

unless
[[[MAN-10 HQ MARRIED] HQ EXPECTED]
HQ FALSE]
[[[MAN-10 HQ ABLE] TO [MAN-10 HQ MARRIED]]
H( FALSE]

into

Rule-2 concerns a man. If the man is not
married and he is an adult, then he is a
bachelor, unless he is not expected to be
married or he is not able to be married.

So far, the system knows a few dozen ocensors,
most of which it is told, all of which it can learn from
precedents or rules and exercises. Clearly the number is
enough to do surface-scratching experiments and to
illustrate the ideas, but an order of magnitude or two
more will be required to demonstrate the ideas.

OPEN QUESTIONS

It is plain that this work is only a beginning. Work is in
progress on several related fronts:

o In collaboration with Boris Katz: the problem of
retrieving precedents from a data base so that they
need not be given by a teacher,

o  In collaboration with Tomas O. Binford (Stanford
* University), Michael Lowry (Stanford University),

“and Boris Katz: the problem of creating
appearance  descriptions  from functional
descriptions, precedents, and examples.

o In response to a suggestion by J. Michael Brady:
an augmentation of the rules with an iFrelevant
part in addition 1o the unless part described in this
paper. The idea is that the jFrelevant part will
somehow keep track of the ultimate goals a rule
may be relevant to, so that the rule is used in
forward chaining only if one of the potential
ultimate goals is involved in the problem to be
solved. This would make the rules look like this in
logical notation:

ﬁl Mo A A]'I
A~(B)V ..V B)
A(Gy V..V Gp)

-C

where the As are in the jf part of the rule, the Bs
are in the wnless part, and the G5 are in the
if-relevant part; and where it is understood that
only one-step effort is to be put into the 8s and
Gs.

This would complement the existing context
mechanism explained previously [Winston 1981).

In addition, the following open questions,
enumerated in a previous paper, remain open
[Winston 1981]):

o  There is no way to handle degree of certainty of
cause. Moreover, there is no way to handle
subcategories of cause such as those sketched by
Rieger [1978].

0 There is no way to handle constraints about
quantities such as those constraints that appear in
the work of Forbus [1982].

0 ‘There is no way to summarize an episode in a
story so as to make a general precis leading to
more abstract rules. Lehnert’s summarization
work should be tried [Lehnert 1981],

0  There are no satisfying ideas about the role of
abstraction in doing matching and indexing and
retrieving.



o The representation for time is impoverished.
Similarly quantification, negation, disjunction,
and perspective are missing.

CONCLUSION: SIMPLE IDEAS HAVE PROMISE

This paper is about a set of ideas that enable
improvement in the reliability of learned rules. The
extended theory enables improved performance in
those domains subject to problem solving by analogy.
Such domains satisfy certain restrictions:

o  The situations in the domain can be represented
by the relations between the parts together with
the classes and properties of those parts,

o The importance of a part of a description is
determined by the constraints it participates in,

o  Constraints that once determine something will
tend to do so again,

Things that involve spatial, visual, and aural
reasoning do not seem 1o satisfy all the restrictions.
Things that involve Management, Political Science,
Economics, Law, Medicine, and ordinary common
sense do seem to satisfy the restrictions, however, and
are targets for the learning and reasoning ideas of the
theory:

o Actor-object representation,

o Importance-dominated matching.

o  Analogy-based reasoning using constraint transfer.
o If-then rules learned by solving problems,

o [f-then rules improved by modifications based on
near misses,

o  If-then rules augmented by unless parts.

o  Blocking censors that create fences around rules
using prima facie evidence.
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RELATED WORK

This work builds on the MACBETH system [Winston
1980, 1982], which concentrated on analogy and rule
acquisition.  Also, Minsky's views on censors had a
major influence [Minsky 1980]. To a lesser extent, the
idea of learning by near miss is involved [Winston
15970).

The augmented if-then rule is a special case of the
annotated if-then rule introduced by Goldstein and
Grimson in a paper on flight simulation [1977]. They
had the idea that if-then rules should exhibit certain
unless-like conditions {which they called caveats), as
well s rationales, plans, and control information. The
work of Brown and VanLehn on explaining subtraction
bugs is a more recent precedent for using censors o
block rules, although their censors (which they call
critics) are triggered by what a rule does, rather than by
unless conditions [Brown and VanLehn 1980].

The idea that censors should work only with the
facts in hand is a variant on the theme of reasoning
using limited resources, an idea that is discussed widely,
particularly in the expert-systems literature,

John Mallery observed in conversation that the
definition of bachelor really should say something about
being expected to be married, stimulating me to try
handling the bachelor problem within the wunless
framework. Boris Kalz pointed out that the prima facie
conjecture does not make sense unless all reliable,
potentially relevant forward chaining is done first.
Jonathan H, Connell suggested using the designator
unless, rather than ifplausible, which was used in a
previous version of this paper.
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Derivational Analogy
in Problem Solving and Knowledge Acquisition

Jaime G. Carbonell
Carnegie-Mellon University
Pittsburgh, PA 15213

Abstract

Darivational analogy. a method of solving problems based upon
the transfer of past sxperience to new problem siluations, is
discussed in the context of other general approaches to
prohlem solving. The experience transter process consists of
recreating lines of reasoning, including decision sequences and
acconpanying justifications, that proved effective in solving
parlicular problems requiring  similar  initial analysis. The
derivational analogy approach is advocated as a methed for
instructing expert systems, as an alternative approach to current
painztaking knowledgs acquisiton methods of handcratting,
tesling and luning individual, domain spacific heuristic rules.

1. Introduction: The Role of Analogy in
Preblem Solving

The lorm “problem solving” in artificial inteligence has baen
used to denole disparate torms of intelligent action to achieve
well defined goals, Perhaps the most common usage stems from
Mewell and Simon's work [22] in which problem solving consists
of selrcting a sequence of operators (from a pre-analyzed finite
set) that transforms an initial problem state into a desired goal
state. Intzlligent behavior consists of a focused search for a
suitable operator sequence by analyzing the states resultin
from the gpplication of dilferent operators to earlier states.
Many rescarchers have adopled this viewpoint [12, 28, 23]

However, a totally different approach has been advocated by
McDarmott [19] and by Wilensky [32, 33] that viaws problem
solving as plan instantiation. For each problem posed there are
ona or more plans that outline a solution, and problem solving
consists of identifying and instantiating these plans. In order to
galect, instantiate, or refine plans, additionals plans that tell how
to instantiate other plans or how to solve subproblems are
brought to bear in a recursive manner. Traditional notions of
gearch are totally absent from this formulation. Some systems,
such as the counterplanning mechanism in POLITICS [6, 3],
provide a hybrid approach, instantiating plans whenever
possible, and searching to construct potential solutions in tha
absence of applicable plans.

A third approach is to solve a new problem by analogy to a
previously Solved similar problem. This process entails

in means-ends analysis, e currant state ts compared 1o the goal state and
one or more aperofors thal reduce the differance are selecled, whereas in
hauristic search, the present slale is evaluated in isclabon and compared 1o
altesnaole slales g lram the jon of different aperators to siates
generdled earker in tha search, and the search for a solution continues from the
highiest riled state.

saarching for related past problems and transforming their
splutions inte ones potentially applicable to the new problem
[24]. | developed and advocated such a method [7, 8] primarily
as a means of bringing to bear problem solving expertise
acguired from past experience. The analogical transformation
process ilself may require search, as it is seldom immediately
claar how a solution to & similar problem can ba adapted to a
new situation.

A usehyl means of classifying different problem solving
inethods is to compare them in terms of the amount and
specificity of domain knowledge they require.

» If no structuring domain knowledge is available and
there is no useful past experience to draw upon,
wenk methods such as hevrlstic search and means-
ends analysis are the only tools that can be brought
to bear. Even in these knowledge-poor situations,
information about goal states, possible actions, their
known preconditions and thelr expected outcomes
is required.

« If specific domain knowledge in the farm of plans or
procedures exists, such plans may be instantiated
dirgctly, recursively solving any subproblems that
prise in the process.

« If general plans apply, but no specilic ones do so,
lhe general plans can be used to reduce the
problem (by partitioning the problam or providing
islands in the search space). For instance, in
computing the pressure at a particular point in a
fluid statics problem, one may use the general plan
of applying the principle of equilibrium of lorces on
the point ol interest (the vector sum of the forces =
0). But, the application of this plan only reduces the
original problem to one of linding and combining
the appropriate forces, without hinting how that may
be accomplished in a specific probiem (5],

olf no specitic plans apply, but the problem
resembles one solved previously, apply analegical
transiormation to adapt the solution of that similar
past problem the new situation. For instance, in
some studies it has proven easier for students to
solve mechanics problems by analegy to simpler
solved problems than by appealing to first principles
or by applying general procedures presented in a
physics text [9]. As an example of analogy involving
composite skills rather than pure cognition,
considar a parson who knows how to drive a car



and is asked lo drive a truck. Such a person may
have no goneral plan or procedure for driving
trucks, but is likely to perform most of the steps
correctly by transferring much of his or her
automobile driving knowledge. Would that we had
robots that were so sell-adaptable to new, if
recognizably related tasksl
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Figure 1-1: Problem solving may occur by a) instantiating
specific plans, b) analogical transformation to a
known solution of a similar problam, ¢) applying
general plans to reduce the problem, d) applying
weak methods to search heuristically for a
possible solution, or @) a combination of these
approaches.

Clearly, these problem solving approaches are not mutually
exclusive; for instance, ona approach can be usad to reduce a
problem to simpler subproblems, which can in turn be solved by
the other methods. In fact, Larkin and | [5] are developing a
general inference engine lor problem solving in the natural
sciences that combines all four approaches.

As discussed earlier, only direct plan instantiation and weak
methods have received substantial attention by Al practitioners.
For instance, Mewell and Laird's recent formulation of a
universal weak method [17] as a general problam soklving engina
is developed completely within the search paradigm. Expert
systems, for the most part, combine aspects of plan inglantiation
{often broken into small rule-size chunks of knowledge) and
heuristic search in whatever manner best exploits the explicit
and implicil constraints of the specific domain [20, 11, 20]. 1 am
more concerned with the other two approaches, as the they
could conceivably provide powerful reasoning mechanisms not
heratofore analyzed in the context of automating problem-
solving processes. The rest of this paper focuses on a new
formulation of the analogical problem solving approach.

2. Analogy and F.xpe riential Heasoning
The term analogy often conjures up recollections of artificially
contrived problems asking: "X isto Y as Z Is to 7" In various
psychometric exams. This aspect of analogy is far too narrow
and independent ol context to be useful jn general problem
solving domains. Rather, | propose the following operational
definition of analogical problem solving consistent with pnst Al
rasearch elforts [16, 34, 35, 13, 4, 8].
Definition: Analogical problem solving consists of
transferring knowledge from past problem solving
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episodes to new problems that share significant
aspecls In common with corresponding past
experience.
In order to maka this definition operational, the problem solving
method must specify:

e« whal it means for problems to "share significant
aspects in common®,

» what knowledge is translerred from past experience
to the new situation,

« precisely how the knowledge transfer process
QCCUrs,

+and how analogically related experiences are
salected from a potentially vast long term mamory of
past problem solving episodes.

The remainder of this paper discusses two major approaches
to analogical problem solving | have analyzed in terms of these
four criteria. The first approach has been successhulby
implemented in ARIES (Analogical Reasoning and Inductive
Experimentation System), and we are actively experimenting
with the other approach. This short paper focuses on a
comparative analysis of the two methods, rather than discussing
implementation technigues or examining our preliminary

_empirical results.

2.1. Analoglcal Transformation of Past Solutions

If a particilar solution has been found to work on a problem
similar to the one at hand, perhaps it can be used, with minor
maodification, for the present problem. By "solution" | mean only
a sequence of actions that If applied to the initial state of a
problem brings about its goal state. Simple though this process
may appear, an effective computer implermentation requires that
many difficult issues be faced, 1o wik:

1. Past problems descriptions and their solutions must
be remembered and indexed for later retrieval,

2.The new problem must be matched against large
numbers of potentially relevant past problems to
find closely related ones, if any. An operational
similarity metric is required as a basis for selecting
the most suilable past experiences.

3. The solution lo a selected old problem must be
transformed to satisfy the requirements of the new
problem statemant.

In order to achieve these objectives, the initial analogical
problem solver [8] required a partial malcher with a built-in
similarity criterion, a set of possible transformations to map the
solution of cne problem Into the solution to a closely related
problem, and a memory indexing mechanism basad on a MOPS-
like memory encoding of events and actions [28]. The solution
transformation process was implemented as a set of primitive
trangform operators and a means-ends problem solver that
ssarched for sequences of primitive transformations yielding a
solution to the desired problem. The resultant system, callad
ARIES-|, turned out to be far more complex than originally
envigioned. Partial pattern matching of problem descriptions
and searching in the space of solution lmnahnnullans are
difficult tasks in themsalves.

In terms of the four criteria, the solution transformation



procass may be classified as follows:

1. Two problems share significant aspects if they
malch within a certain preset threshold in the Enitial
partial matching process.

2. The knowledge transferred to the new situation is
the sequence of actions from the retrieved solution,
whather or not that sequence is later modified in the
analogical mapping process. .

3. The knowledge transfer process is accomplished by
copying the retrieved solution and perturbing it
incrementally  according lo  the  primitive
transformation sleps in 2 heuristically guided
mannear until it satisfies the regquiramants of the new
problem. (See [B] for details.)

4. The selection of relevant past problems is
constrained by the memory indexing scheme and
the partial pattern matcher,

Since a significant fraction of problems encountered in
mundane siteations and in areas requiring significant domain
expertise (but not in abstract mathematical puzezles) bear closs
resemblance o post solved problems, the ARIES-I method
proved elfective when tested in various domains, incleding
algebra problems and routs plaaning tasks. An experienticl
learning component was added 0 ARIES that constructed
simple plans (generalized sequences of actions) for recurring
classes ol problems, hence allowing the system 19 Solve new
problems of this class by the more direct plan instantiation
approach. However, na sooner was the solution transformation
mathod  implemented and analyzed than some of s
shortcomings became strikingly apparent. In response to theze
deficiencies, | started analyzing mare sophisticated methods of
drawing analogies, as discussed in the fallowing sections.

3. The Derivational Analogy Method

In formulating plans and solving problams, a considerabla
amount of intermediate information is produced in addition to
the resultant plan or specific solution. For instance, formulation
of subgoal structures, generation and subsequent rejection of
alternatives, and access to varous knowledge structures all
typically take place in the problem solving process. But, the
solution transformation method outlined above ignores all such
information, focusing only upon the resultant sequence of
actions and disregarding, among other things, the reasons for
thosa actions, Why should one take such axtra information into
account? It would certainly complicale the analogical problem
solving process, but what benefits would accrue from such an
endeavor? Parhaps the best way to answer this guestion is by
analysis of where the simple solution translormation process
falls short and how such problems may be alleviated or
circumvented by preserving more information from which
qualitatively different analogies may be drawn.

3.1, The Need for Preserving Derivation Histories
Congider, for instance, the domain of constructing computer
programs to mest a set of pre-defined specifications. In the
automatic programming literature, perhaps the maost widely used
technique developed thus far is one of progressive refinement
[2.1,15). In brief, progressive refinement is a multi-stage
process that starts from abstract specifications stated in a high
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level language (typically English or same variant of first order
logic). and produces progressively more  operational  or
algorithmic descriptions of the spccilications committing to
control decisions, data structures and eventually specific
statements in the target computer language. Howewver, humans
{well, at least this writer) seldom lollow such a long painstaking
process, unless perhaps the specifications call for a truly novel
program unlike anything in one’s past exparience, Instead, a
common practice is to recall similar past programs and
reconstruct the new programming problem alang the same
directions. For instance, ona should be able to program a
quicksort algorithm in LISP quite easily if one has recently
implemeanted quicksort in PASCAL.  Similarly, writing LISP
programs that perform tasks centered around depth-first tree
traversal (such as tesling equality of S-expressions or finding
the node with maximal value) are rather trivial for LISP
programmers but surprisingly difficult for those who lack the
appropriate experience.

The solution transformalion process proves  singularly
inappropriate as a means of explaiting past experience in such
problems. A PASCAL implementation of quicksort may look very
different than a good LISP implementation. In fact, attempling to
transfer corrosponding steps from the PASCAL pragram into
LISP is clearly not a good way to produce any LISP program, let
alone an elegant or efficient gne. Although the two problem
statements may have been simdar, and the problem solving
processes may preserve much of the inharent similarity, the
resultant solutions. (i.e., the PASCAL and LISP programs) may
bear littte if any direct similarities. ’

The useful similarities lia in the algorithms implemanted and in
the set of decisions and internal reasoning steps required to
produce the lwo programs. Therefore, the analogy must take
place starting at earlier stages of the original PASCAL
implementation, and it must be guided by a reconsideration of
the key decisiens in light of the new situation. In particular, the
derivation of the LISP guicksort program starts from the same
specifications, keeping the same divide and conguer strategy,
but may diverge in selecting data structures (e.q. lists vs arrays),
or in the method of choosing the comparison element,
depending on the tools available in each language and their
expected efficiency. However, luture decisions (g.g. whether 1o
recurse or iterate, what mnemonics to use as variabla names,
etc.) that do not depend on earlier divergent decisions can still
be transferred to the new domain rather than recomputed, Thus,
the derivational analogy method walks through tha reasoning
steps in the corstruction of the past solution and cansiders
whether they are still appropriate in the new situation or whether
they should be reconsidered in light of significant differences
between the two situations,

The diflerence between the solution transformation approach
and the derivational analogy approach just outlined can be
stated in terms of the operational knowledge that can be
brought to bear. The former corresponds 10 a person who has
has never before programed quicksort and is given the PASCAL
code to help him construct the LISP implementation, whereas
the latter is akin to & person who has programmed the PASCAL
version himself and therefore has a better undarstanding of the
Issues involved before undertaking the LISP implomentation.
Swartout and Balzer [31] and Scherlis [25] have argued
independantly in favor of working with program derivations as
the basic entities in tasks relating to automatic programming.
The advantages ol the derivational analogy approach are guite
evident in programming because the of the frequent
inappropriatensss of direct solution transformation, but even in



domains whether the latter is useful, one can create problems
that demonsirale the need for preserving or reconstructing past
reasoning processas.

3.2, The Process of Drawing Analogies by Derivalional
Transformation

Let us examine in greater detail the process of drawing
analogies from past reasoning processes. The essantial insight
ie that useful experience is encoded In the reasoning process
used to derive solutions to similar problems, rather than just in
the resultant solution. And, a method of bringing that experience
to bear in the problem solving process Is required in order to
make this form of analogy a computationally tractable approach.
Here we outline such a method:

1. When solving a problem by whatever moans slora
each step taken in the solution process, including:

# The subgoal structure of the problem

# Each decision made (whether a decision o
take action, to explore new possibilities, or to
abandon present plans), including:

e Alternatives considered and rejected

o The reasons for the decisions taken
(with dependency links to the problem
description or information derived
therefrom)

o The start of a false path taken (with the
reason why this appeared 10 be a
promising altemmative, and the reason
why it proved otherwise, again with
dependency links to the problem
description. Mole that the body of the
false path and other resulant
infarmation need not be preserved.)

o Dependencies of later decisions one
earlier ones in the derivation.

» Pointers to the knowledge that was accessed
and proved usell in the eventual
construction of the solution

« The resultant solulion itself

oln the event that the problem solver
proved incapable of solving the
problem, the closast approach to a
solution should be stored, along with
the reasons why no further progress
could be made (e.g., a conjunctive
subgoal that could not be satistied).

o In the event that the solution depends,
perhaps  indireclly, on  wolatile
assumptions not stated in the problem
description (such as the cooperation of
another agenl, or time-dependent
stales) stora the ~ appropriats
dependencies.

2 When a new problam ls encountered that does not

lend itself to direct plan instantiation or ather direct
recognition of tha solution pattern, start to analyze
the problem by applying general plans or weak
mathods, whichever is appropriate to the situation.

AW after commencing the analysis of the problem, the

reasoning process (the initial decisions made and
the Information taken into account) parallels that of
past problem siluations, retrieve the full reasoning
traces and proceed with the derivational
transformation -process. If not, consider the
possibility of solution transformation amalogy or,
failing that, proceed with the present line of non-
analogical reasoning.

» Two problems are considered similar if their
analysis results in eguivalent reasoning
procasses, at least in its initial stages. This
replaces the maore arbitrary context-free
similarity metric required for partial matching
among problem  descriptions in  drawing
analogies by direct solution transformatian,
Hence, poast reasoning traces (henceforth
derivationz) are retrieved If their initial
sagment matches that the first stages of the
analysis of the present problem.

# The relrieved reasoning processes are then
used much as individual relevant cases in
medicineg are used lo generate expectations
and drive the diagnostic analysis. Reasoning
from individual cases has been recognized as

an important component of expertise [28], but-

lithe has been said of the necessary
information that each case must contain, let
glone providing a simple method of retrisving
the appropriate cases in a manner that does
not rely on arbitrary similarity metrics, Here, |
take the stand that cases must contain the
reasoning process used to yield an answer,
together with dependencies to the particular
circumstances of the problem, pointers to
data. that proved usalul, list of alternative
reasoning paths not taken, and failed
attempts (coupled with both reasons for their
failure and reasons far having originally made
tha attempt). Case-based reasoning is nothing
more than derivational analogy applied to
domains of extensive expertisa.

# It is important to know that although one may
view derivational analogy as an Interim step in
reasoning from particular past experience as
more general plans are acquired, it B a

mechanism that remains forever useful, since .

knowledge Is always incomplete and
exceplions to the best formulated general
plans require representation and use of
individual reasoning episodes.

4. A retrieved derivation Is applied to the current

situation as follows. For each step in the derivation,
starting immediataly aftsr the matched initial
segment, check whether the reasons for performing
that step are still valid by Iracing dependencies in
the retrieved derivation 1o relevant parts of the old
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problem  description or to  volatie external
assumplions made in the'initial problem solving.

# If parts of the problem stalement or external
assumptions on which the retrieved situation
rests are also true in the present problem
situation, proceed to check the next step in
the retrieved derivation.

¢ If there is a violaled assumption or problem
statement, check whether the decision made
would still be justified by a different derivation
path from the new assumptions or stalements.
I so, store the new dependencies and
proceed to the next step in the retrieved
derivation. The idea of tracing causal
dependences and verifying past inference
paths borrow hoavily from TMS [10] and some
of the non-monctonic logic lterature [18).
However, the role played by data
dependencies in  derivational ' analogy |s
somewhat different and more constrained
than in maintaining global consistency In
deductive data bases.

e If the old decision cannot be justified by new
problem situation,

o gvaluate the alternatives not chosen at
that juncture and select the an
appropriate one in the usual problem
solving manner, storing it along with its
justifications, ar

o initiate the subgoal of establishing the
right supports in order for the old
decision to apply in the new problem?

(clearly, any problem solving method
can be brought to bear in achieving the
new subgoal), or

oabandon this derivational analogy in
favor of another more appropriate
problem solving E:periem:n from which
to draw the analogy or in favor of other
means of problem solving.

+If one or more failure paths are associated
with the current decision, check the cause of
failure and the reasons these allernatives
appeared viable in the context of the original
problem (by tracing dependency links when
required). In the case that their reasons for
failure no longer apply, but the initial reasons
for selecting these alternatives are still
present, consider reconstructing  this
dlternate solution path in favor of continuing
to apply and medify the present derivation
(especially if quality of sclution is more
impartant than problem solving effort).

2this appronch cnly works if the missing or vislaled premise relates lo that
ipart of 1ha giobal state under control ol the problem solver, such s acquiring a
mesging ool oF resgurce, rather than under the controd of an uncooperative
elernal agent of & recalgitrand anvironmenl. The discussien of sirategy-basad
cuunberplanming gves & more complole account of subpoaling lo rectify
untullifled expectations [3, 8.
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= In the event that a different decision is taken
at some point in the rederivation, do not
abandon the old derivalion, since future
decisions may be independent of some past
decisions, or may still be valid (via different
justifications) in spite of the somewhat
different circumstances. This requires that
dependency links be kept between decisions
at diffierent stages in the derivation.

«The derivational analogy should be
abandoned in the event that a preponderance
of the old decisions are invalidated in the new
problem  siluation. Exactly whal the
persevarance threshold should be is a topic
for empirical investigation, as it depends on
whather there are other traclable means of
solving this problem and on the overhead cost
of resvaluating individual past decisions no
longer be supported and may or may not have
independent justification.

5. After an entire derivation has been found to apply to
the new problem, store its divergence from the
parent derivation as another potentially useful
source of analogies, and as an instance from which
more general plans can be formulated if a large
number of problems of share a common solution
procadura [8].

3.3. Efficiency Concerns

An important aspect of the derivational analogy approach is
the ability to slore and trace dependency links. It should be
noted that some of the inherent inefficiencies in maintaining
global consislency in a large deductive data base do not apply,
as the depandency links are internal to each derivation with
axlernal pointers only to the problem description and to any
volatile assumptions necessitaled in constructing the resultant
solulion. Hence, the size of each dependency network is quite
small, compared to a dependency network spanning ali of
memary. Dependencies are also stored among decisions taken
at difterent stages in the temporal sequence of the derivation,
thus providing the derivational analogy process access to
causal relations computed at the time the initial problem was
solved.

The analogical transformation process is not inherently space
inefficient, although it may so appear at first glance. The
sequence of decisions in the solution path of a problem are
stored, together with necessary dependencies, the problem
descriplion, the resultant solution, and alternative reasening
paths not chosen, Failed paths are not stored, only the initial
decision that was taken to embark wpon that path, and the
eventual reason for failure (with its causal dependencies), are
remembered. Hence, the size of the memory for derivational
traces Is proportional to the depth of the search tree, rather than
ta the number of nodes visited. Problems that share large
partions of their derivational structure can be so represented in
memaory, saving space and allowing similarity-based indexing.
Moreaver, when a generalized plan is formulated for recurring
problems that share a common derivational structure, the
individual derlvations that are totally subsumed by the more
general structura can be permanently masked or deleted. Those
derivations that represent exceptions to the general ruls,
however, are precisely the instances that should be saved and
indexed accordingly for future problem solving [14].



3.4. Implication for Knowledge Ac quisition

At present the only effective means ol encoding new
information into an expert system is to painstakingly formulate
sach and every heuristic rule, test its function in naw and old
cases, tune and update the information until it integrates
properly with previous knowledge, and verify that tha new
performance accords with the expert’s advice. This is seldom a
one pass process, since experts find it quite difficult 1o elicit
thelr knowledge in a general and formal framework required to
abstract the appropriate rules of behavior. Morsover, expers
tire of the multiphy iterations requied to encode the knowledge
in precisely the right form so that the expert system may maka
use of it in the problem solving process.

A viable allernative to explicit encoding of domain specific
rules s to provide the reasoning system with Tull solutions to
probiems in the domain -- much like medical cases compiled in
the litaratura that include descriptions of the problem, analysis
performed, justifications for the diagnostic and treatment
processes, alternalives considered, and outcomes of the
sefected treatment. In fll-structured domains, such as medicine
and fault-diagnosis in electrical and mechanical sysiems, axpert
reason much more naturally from cases. In fact the educational
process s heavily tillod towards this case based reasoning,
leaving it up to the students to transfer the expertise of their
teachers to new specific problems bearing appropriate similarity
to the ones analyzed while learning. Thus, skill and knowledga
are translerred implicitly, placing less burden on the expert and
somewhat more burden in the student, The derivationel analogy
method propased in this paper precisely addressaes this mode of
expertise transier, where the student (expert system) chsarves
and emulates the master (domain expert), gradually acquiring
hia/her/its own expertisa.

3.5. Concluding Remarks

Derivational analogy bears closer resemblance to Schank's
reconstructive memory [27, 28] and Minsky's K-lines [21] than to
traditional notions of analogy. Although derivational analogy is
less ambitious in scope than either of these theories, it is a more
precisely defined inference process that can lead to an
operational method of reasoning from particular experlential
instances. The key notion is to reconstruct the relevant aspects
of past problem solving situations and thereby transfer
knowledge to the new scenario, where that knowledge consists
of decision sequences and thelr justifications, rather tham
individual declarative assertions. To summarize, let us describe
thie pracess of derivational analogy in terms of the for criteria for
analogical reasoning:

1. Twa problems share significant aspects il their
initial analysis yields the same reasoning steps, i.e.,
if the initial segments of their respective derivations
starl by considering the same issues and making the
same decisions.

2. The either derivation may transferred to the new
sityation, in essence recrealing the significant
aspects of the reasoning process that solved the
pasi problem.

3. Knowledge transfer is  accomplished by
reconsidering old decisions in light of the new
problem situation, preserving those that apply, and
replacing ar modifying those whosa supports are no
longer valid in the new situation.
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4. Problems and their derivations are stored in a large
apisodic memaory along the line of Schank’s MOPS
(28], and retrieval occurs by replication of initial
segments of decision sequences recalling the past
reasoning process.
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Concept Formation by
Incremental Analogical Reasoning and Debugging

Mark H. Burstein
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Abstract

This paper presents a model of analogical reasoning for
learning. The model is based on two main ideas. First, that
the analogies used in learning about an unfamiliar domain
depend heavily on the use of previously formed causal
abstractions in a familiar or base domain. Second, that these
analogies are extended incrementally to related situations as
needed. The analogical mapping component of CARL, a
computer program that learns about the semantics of
assignment statements for the BASIC programming language, is
described as an illustration this kind of causally-driven
analogical reasoning and learning. The model maps and debugs
inferences drawn from several commonly used amalogies to
assignment, in response to presented examples.

Keywords: Learning, lﬁonr.epl formation, analogical reasoning,
causal abstraction, incremental mapping, debugging, cognitive
modeling.

1, Introduction

It has been often been said among Al researchers that
learning one new thing requires knowing an enormous amount
beforehand. Ome kind of learning for which this is most
obviously true in learning by amalogy. In this paper, | show
exactly why this is true as it relates to one specific kind of
learning by analogy, the formation of new concepts in an
unfamiliar domain from analogies presented in a text or by a
teacher.

In developing the model presented here, 1 comcentrated
specifically on analogies commonly wused in textbooks
introducing students to computer programming in the BASIC
language. The model was motivated in part by obeervations of
students behavior when first introduced first to the BASIC
language using such analogies.

Some unresolved problems with earlier models of analogical
reasoning are addressed in the model. Because of the close
relationship betweesn our everyday motions of analogy and
similarity, several models of amalogical reasoning in Al have
been developed arcund forms of partial pattern matching.
Algorithms  like those of Evans and Winston [Evans
88, Winston B0] were based om the assumption that a best
partial match could be found by accumulating evidence for
each of a pumber of possible objeci-to-object mappings between
representations of two situations, and then choosing the one
that scored highest. In these systems, evidence for a match was
essentially the number of relational connections preserved
between corresponding objects for a given alignment of objects.

The work reported here was supported im part by the Advanced
Research Projects Agence of the Department of Defemse, and
monitored by the Office of Naval Research under comtract No.
NODO14-75-C-111.

The object alignment that placed the largest number of
relations and attributes in correspondence was comsidersd the
best match and the thus “correct” analogical interpretation.

This approach has several major drawbacks as a central
component of a process model for analogical learning. First, it
presupposes that well defined, bounded representational models
of the situations in both the base or familiar domain and the
target domain are available as inputs. But, in fact, the required
prior representations of the objects and relations in the target
domain may be wrong or inconsistent with the analogy, or may
not exist at all. The point of presenting an analogy to a
student is to aid him in the construction of a representation of
a targel situalion or o correct problems in a prior
representation. Since matching cannot be wsed to construct
such a representation where there was none before, it cannot
form the basis of a general theory of learning by analogy.

Ancther problem with theories based principly on the
matching of descriptions, particularly as the complexity of these
descriptions increases, is that conceptual representations for real
situations may contain many objects not taking part in a
specific analogy. Winston [Winston 80, Winston 82] suggested
that atiention to important relations, such as those comnected
by causal links, can reduce the computational complexity of the
matching process to some degree. Yet, even in strictly causal
models, sub-systems can quite often be usefully expanded to
greater and greater levels of detail [deKleer and Brown
81, Collina and Gentner B2], thereby introducing mew objects
and relationships which may or may not play roles in the
analogy. A system taking as input incomplete descriptions of
analogical situations, such as those presented in texts, but with
a large body of background causal and other knowledge for
“filling out” such descriptions, would still require methods for
narrowing the foeus of the comparison. [n particular, it must
be possible to find analogical relationships between situations
without detailed specification and pairing of all of the objects
potentially present in representations of each situation.

What is required to address these objections is to replace
bottom-up matching with an approach based on analogical
mapping, using a set of heuristics to delimit what is to be
‘imported” from a base to a target domain at a given time.
One such bevristic is to map previously formed abstractions,
such as those embodying causal and planning rales. [t can be
argued that such structures are necessary in amy case for
interpreting and planning in situations in a familiar domain,
Foeusing on such structures, and their associsted special cases
and known problems, allows for a much more top-down form of
analogical reasoning. This is exactly what is required when
prior knowledge of the target domain is severely impoverished.



2. Student Protocols Used as Guldelines

Analogies found in typical introductory texts gemerally
include statements suggesting correspondences between one or
several classes of objects in the domains to be related. To be
useful, these stated correspondences must be combined with the
prescntation of target domain actions or situations described in
terms of plausible situations in the familiar domain. This is
illustrated in the following text, used by ome author to
introduee the notion of computer variable.
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To illustrate the coocept of variable, imagine that there are
26 little bozes inside the computer. Each box can comtain
one number at any one time. [Albrecht 73]

This analogy can be paraphrased “A variable is like a box
in that numbers can be inside variables in some ways similar to
the way objects can be inside boxes.” To be applied in learning
about assignment, it helps il specific actions associated with
variables are also introduced, as in the statement “To put the
number 5 in the varable X, type "X==5'" No matter how it is
presented, however, this kind of given information must be
combined with a student's ability Lo access knowledge of the
“box" domain, including apecific concepts developed from
experience in that domain. In this simple case, a student must
at least be able to interpret statements about pulting ohjects in
boxes.

In the protocols 1 collected while tutoring introductory
BASIC, | observed a number of plousible, though often
incorrect, explanations being generated by students in response
to examples and problems presented in the “programming”
domain. This must in general be the ease, since analogies are
almost by definition imperfect correspondences beiween
situations. The errors | observed occurred even with extremely
simple assignment statements. For example, statements like
“X=Y" were misinterpreted as indicating that the “box™ Y was
to be “placed inside” the *box™ X. Such examples make it clear
that an important part of the process of developing new
concepts by analogy must be the incremental debugging of the
inferences derived from the analogy.

Sources of alternate hypotheses, incloding additional
analogies, can be quite useful in this debugging process. The
following protocols illustrate this quite clearly. After explaining
to one subject (Perry, age 10) that there were many boxes in
the computer, and that each one had a name that he could
choose, the following occarred.

Supposs thers's o box cailed X and we're going to
store the numbar & in there. How would you do that?
the variables .. wh X . X,, . no
You have to tall It...
Put the nusber B in the varisble X.
You have to give It a command that will make It do that.
Hos, here we have an example...suppose I type 'B=10".
Oh, and If you want to store this 10 you writae...

%= v X v
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M: MNow I typed that in, 30 now it's going to remember

that, ok?
P: that B equals 10.

N: It's got s box called B, and inside it is 10,

F: So you write the box and then the nusber that you

want to stors in it7
M: Yes, and you put In an equal sign to tell it to do that.

Here, three common analogies 1o variables and assignment
are mentioped: puiting numbers in vanables is like putting
objects in bexes, computers use variables to remember things
they are fold, and assignment statements are like algebraic
equalities. At first glance, this might seem more confusing than
helpful. Yet, each analogy can be shown to play a useful, often
complementary, role in developing & working understanding of
assignment. Tutorial textbooks often use af least two of these
analogies. If they are not presented explicitly as analogies, the
normal language of the computer science domain suggests their
presence. We often speak of computer memory, and the equal
sign is used in a number of languages to denote assignment.

The real test of a tutorial analogy is how it affects one's
understanding of new situations. The following shows one way
in which having several apalogies can be more helpful than
having just one. As the dialogue above continued, [ tried to
jllustrate a point about transferring values from one variable to
another. | typed 'P=10" and then 'Q=F", and asked:

H: So, what's in P now?
P: Oh. Mothing.
M: MNothing?
P: 10! and then § is alsa.
M: What do you think it is? Is it mothing or 107
P: Let's find out. First let's see...
M: Well, what de you think it is?
P: If you have two bores, and you moved, ..
You moved or it equals tof You moved
what's in P to § so there's nothing in it,
or did you only put the same number in
that's in P? I think it's 10,
M: You think it's 107
P: Becsuse you don't say that, um, move P at all, .

take P out. You only said that Q equals the

same as P. So if it equals, it has to be 10,

because if there's no 10 in it, § wouldn't be
equal to it,

Here, Perry clearly made the inference that if “Q=FP" was
analogous to moving an object from one box to another, then
the number that had been in P must now be in Q. Since
objects, when moved, are no longer at their original location, P
must now be “empty”.

When pressed, Perry's uncertainty about this comclusion
caused him to come uwp with an alternate explanation based on
an entirely different line of reasoning, using a different analogy,
Il typing “Q=F" is treated as » statement to the computer
that the two variables have equal values, based on the normal
algebraic interpretation, then from the fact that P was
originally 10 one could eonclude that Q was also 10, while P's
value stayed the same.



The use of algebra knowledge in the explamation Perry
settled upon in this exchange did not stop him from further use
of the box apalogy. He continued to use both models in
analyzing mew situations. [t was simply the case that algebra
provided what seemed like a more satisfactory answer to this

parluu!nr p:mlnl:m

Such errors and their explanations played an important
role in developing the process model implemented im CARL.
Because these incorrect lurpmhuu represent  plausible
analogical extensions of situations in the base domains, it can
be nssumed that they are produced by the same analogical
reasoning process that produces correct answers in other cases.
It was by modeling errors observed in the protocol data, as well
as correct inferences, that [ was able to formulate the model of
analogical reasoning presented here.

3. A Program that Learns about Assignment

Many aspects of the overall model are illustrated in the
behavior of the computer program. CARL learns about various
kinds of assignment statements by building and combining
inferences drawn from several different analogies. The program
formulates many of the hypotheses and a number of the errors
1 found students made as they tried to learn from the same
analogies (see [Burstein 81) for other examples). The following
is the English equivalent of one portion of a dialogue that
CARL engages in (actual inputs are in an extended version of
Conceptual Dependency [Schlnl; and Abelson W]] H

»» The computer remesbars a nusber by putting I%
in & variabla.

»> k variable is |1ke & box.

»» To put the number B in the variable named X,
typs "X=B".

*> How do you get the computer to remssber the
nusbar 9%

CARL: Typs "X = 9*

»> Suppose I then type 'XN=8".

*> Mow what's in the variable X7

CARL: 8 is in X and 9 fim In X

** Mo, the @ replaces the 8 in X.

CARL : OK

»*» Supposs I type 'Y=6' and then "X=Y'.

»» Now what's in the varlable X7

CARL: ¥ g in X

*» No, it seans put the number In ¥ Into X.

CARL: DX

»> Kow what's In the varisble ¥?

CARL: Nothing.

*> Guess agaln.

CARL: 6 is In ¥ (by snalogy to squality)

>» Correct.

CARL: OK

CARLMehu,Iilhthenidﬂltm,m
representations for most common types of assignment
statement. It concurrently forms rules about how to
them, infer the logical results of their execution, and
|mnmmunfuuph|im Int.lnp:wu- itm
number of the mistakes observed im the pm ls of p

i
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4. An Initisl Structure Mapping Theory

The analogical reasoning model in CARL was strongly
influenced by some psychological studies of analogical learning.
Gentner [Gentner 82, Gentner and Gentner B2] outlined a
cognitive model of learning from scientific or “explanatory”
analogies that dealt with some of the problems 1 have
mentioned, though mot others. The analogies she considered
included such statements as:

The hydrogen atom is like the solar system.
Electricity flows through a wire like water through a pipe.

The model Gentner proposed for learning from such
analogies, unlike the matching-driven models, did not require a
complets prior representation of the target domain. However,
it was underspecified as a process model. By her model,
relations, or predicates connecting several objects or concepts,
are mapped identically from one domain to the other under a
prespecified object-object correspondence. After identical first-
order relations have been mapped to relate corresponding
objects in a target situation, second-order predicates, such as
causal links between relations, are also mapped. Although this
model does suggest a way to map mew structures into an
unfamiliar domain, it does mot give a good account of how
corresponding objects are first identified, nor does it comstrain
which relations are mapped. It also did not allow for mappings
between non-identical relations, which T will argue is often
BECEISATY.

The need to constrain the set of relations mapped can be
seen from Gentner's representation of the solar system model,
and the mapping that she described to a model for the atom.

4

VELLDW, HOT, HASSIVE (doese 't mapl

T[lﬂlﬂlrlilﬂ

lTT‘IH’.IS | REVOLYES—ARDLND

\'"”'““7

ELECTRON

Target Domsin

Here, the sun is related to a planet by the predicate
HOTTER-THAN, as well as ATTRACTS and REVOLVES-
AROUND, two predicates which are themselves causally related
(not shown). Gentner claimed that the HOTTER-THAN
relation was nol mapped to the atomic model, in accord, I
think, with most people’s intuitions about this analogy.
However, Gentoer's specification of the mapping process could
not predict this. [t is also clearly the case that many other
attribute comparisons, such as BRIGHTER-THAN, could also
be part of a description of a solar system. Presumably, these
relations would not be mapped esither.

ATTRACTS l REVIL VES-ARTLUND
\m'HISIUE WITER II.“

PLANET

Baze Domsin

‘The explanation provided by Gentner for this was in terms
of a general condition on the mapping process, essentially that

learning the same material.

“predicates are more likely to be imported into the target if
they belong to a system of coherent, mutually constraining
relationships, the others of which are mapped.” [Gentner and
Gentner 82] As the above example shows clearly, some
heuristics of this form are needed.



ln CARL, this general condition is reformulated as a top-
down constraint oo the relations considered for mapping.
When a causally connected structure can be found in memory
to support a described base domain situation, only relations
taking part in that structure are considered for mapping.
Within such a structured set of relations, simple attribute
comparisons like HOTTER-THAN, LARGER-THAN, etc. are
not mapped if the objects in the target domain cannot be
compared on the same scale, and no corresponding attributes
are suggested by the teacher. Thus, in applying the bax
apalogy, CARL derides that the precondition that nmumbers
“fit* inside variables should be dropped from the causal
structure.

All of this is made easier in the context of a language
understanding system that activates memory structures as a
pormal part of the interpretation process. When CARL is
presented with a statement of a novel analogy, it uses the given
object associations and base domain predicates in the analogy
siatement to form a plu'l-ial description of a base domain
sitoation that it can support as plausible with eausal and
goal/plan structures retrieved from memory.

The result of mapping a causally-conpected structure
found under thess conditions is the formation of a new, parallel
causal structure characterizing the target example, Objects in
the target example are made to fill roles in that structure, using
stated object correspondences between the domains when
available, Other ohject correspondences are only formed by
virtue of the roles correspondences between the mapped
structures.  So, for example, from a causal absiraction
indicating that the result of putting a physical object in a
container is the state “the object is INSIDE the contaiper,”
CARL concludes that one result of an assignment is a parallel
relation  between variables and numbers. Thus, by
corresponding roles, am imdirect correspondence is formed
between physical obiects that go inte boxes and numbers.

This causally directed mapping process is thus able to form
a new structure where none existed before, while allowing
correspondences between relations to be formed with some
consideration of what fs known of the objects and relations in
the target domain. This approach to analogical concept
formation parallels Carbonell's work on analogical problem
solving [Carbonell 83]. Carbonell outlined a problem solving
pracess whose first step was to be reminded of a solution to a
similar problem. The process model he proposed then modified
the components of the recalled plan to satisfy the needs of the
new problem using » set of operators that preserved, as much
as possible, the temporal and logical goalfsubgoal structure of
the original solution. Both Carbonell’s model and mine were
strongly influenced by Schank's theory of human memory
organization [Schank 82], and the effects of that organization
on the processes of interpreting, planning, and learning about
new situations.
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6. Mapping to Non-identical Relations

Another problem with Gentner's model was the claim that
all relations are mapped “identically” between analogous
situations, 'While this might be true in analogies between
purely spatial descriptions of situations, including the standard
geometric analogies dealt with by Evans, it is much too strong
a claim in geoeral. When analogies are formed between
physically realizable situations and purely abstract ones, as in
mathematics and computer programming, it is impossible to
maintain the “identical predicate” mapping model.

Probably the most important thing implied by the analogy
between boxes amd variables is the fact that variables can
“eontain” things. That is, the relationship that exists between
a box and an object inside the box is, in some way, similar to
the relationship between a variable and the pumber associated
with that variable. These relations are similar primarily
because of the actions and plans each is involved in. One can
put things in boxes, and assignment provides a way to to “pul”
pumbers “n" variables as well. The principle function of the
relation representing containment in variables is ita role in
abstraet plans like STORE-OBJECT.

Students learning o program are generally aware that
computers can manipulate numbers, and that the reason one
learns Lo program is to be able to direct the computer's actions.
This knowledge may be used to infer that the action of putting
a number in a variable will be used in plans to manipulate
numbers. Whether or not this occurs immediately, however,
the fact that the analogy between boxes and variables relates
physical objects to abstract concepts [numbers) suggests that
the actual pre-conditions and side effects of assignment in the
programming domain may be quite different from the
conditions on placing objects in boxes. Though students only
gradually discover how these situations differ, it is important
that such differences not invalidate the analogy entirely. In a
computational inference system, this must be reflected in the
predicates representing the relations in each domain.

The problem from the standpoint of Gentner's model, is
that the relationship which gets mapped from the “box world"
to the “computer world® is exactly that of physical
centainment. The interpretation that results from eopying this
relation into the programming domain is that a number is
physically INSIDE-OF a variable. Under normal circumstances,
someone first learning to program will have mo idea what
computer variables are, but should know that numbers are not
physical objects, and pot expect that all of the inferences
invalving the relation INSIDE will apply when pumbers are
placed “in" variables.

This problem can be characterized as one of levels of
obatraction. Depending on how much is known about the
objects in the target domain when the analogy is presented, it
may or may not be reasonable to map the most specifie version
of a relation from one domain to another. When mapping a~
relation identically leads to the violation of a constraint on one
of the slots in that relation, them the relation meant in the
target domain must be ome sharing some of the properties of
the base domain relation, and not others.

In CARL, when an attempt to map a relation directly
results in such a constraint violationm, & wrtual relation is
formed in the target domain that is a “sibling” of the
corresponding base domain relation, or an ancestor at some
higher level in the generalization hierarchy of relational



predicates. The constraints initially plllfed on the slots in new
virtual relations are determined primarily from the classes of
the objects related in the target domain examples presented.

When CARL is given the box amalogy, it finds that
mapping objects to numbers violates a normal constraint on the
INSIDE relation. Instead, CARL forms a new predicate to
relate variables and their “contents”. This relation, hereaflter
called INSIDE-VAR, is initially given the constraints that the
scontents” slot be a number, and the “container® slot be a
variable, based om the objects in accompanying example
% o5, Inferences are associated with this new relation as
they are successfully mapped from the box domain, learned
independently in the pew domain, of inherited from other

analogies.

The final result of mapping the structure PUT-IN-BOX,
describing the causal relations involved in putting an object in
a container, looks roughly as follows. Notice particularly that
the PTRANS predicate indicating physicol transfer was also
replaced by the more geperal predicate TRANS because the
object “moved” in the target domain was not a physical object.

PUT-TN-BOX i
role-variables:

R=ACTOR (a HUNAN)

R=BOX (= BOX)

R=CONTENTS (s PHYSOEJ)

PUT-IN-YAR

PIV-ACTOR (s COMPUTER)
PIV-BOX (» WARIABLE)
PIN-COMTENTS (s WUNBER)

setioas:
(PTRANS (TRANS
wctor R-ACTOR sctor PIV-ACTOR
abject R-DEJ object PIV-08)

fros (wnkeowa)
to (INSIDE-WAR of PIV-BOX))

from (usknown)
to (INSIDE of R-BOX))

precosd i L ions:
[*nate
{INSIDE or R-BOX is R-OBJ))

[®nate
(INSTDE-YAR of PIN-BOX is PIN-08J))

(SMALLER tham R-DBJ is R-BOX) = dropped =

resulis:

(INSIDE of R=BOX is R-0BJ) (INSIDE-VAR of PIV-BOX is PIV-DBJ)

8. Overview of the Analogy Mapping Process

In geveral, then, CARL develops simple causal or
inferential structures in a target domain by retrieving structures
in memory from a familiar domain, and adapting them wsing a
top-down mapping process that focuses on the causal/temporal
links explicitly specified in those structures. The predicates
mapped are subject to transformation within their abstraction
bierarchy, as described above. Subsequent use of an analogy
may occur when new examples are presemted for which no
explanation can be found in the target domain or when
problems are presented, asking for plans or actions to achieve
specific analogically stated goals. The latter, in this case, is
generally a request for the generation of an amignment
statement satislfying some specific goals or constrainta,

In answering a question, CARL always loocks first for
memory structures in the domain it is learning about. Failing
this, it tries known analogies. Thus, subsequent access to base
domains is always for the purpose of mapping new, related
structures -- related action situations, or more detailed, context-
specific versions of previously mapped structures that account
for additional preconditions or resalts.

The mapping process tries to form structures in the target
demain, under the following general constraints:
s Corresponding predicates must be of the same class
(action, relation, plan step, plan, goal, etc.).

» Corresponding predicates in the target structure are
related together by causal or temporal links
corresponding to those in the base domain structure.

o Corresponding case slots of analogically related
predicates must consistently be filled by parallel
roles of the two structures related.

CARL keeps a record called an AMAFP detailing all of the
object, role, and predicate correspondences developed. AMAPS
are extended aa needed to include new correspondences as they
are found.

Because the AMAP uses rele correspondences as well as
object class correspondences, the relationships between objecis
of two domains can actually change quite subtly in dealing with
new problems. Several bugs 1 observed in protocols depend on
this distinction. In answering the question “How would you put
one more in XI" | occasionally received the response “X==1",
Also, when asking questions like “What is in XI" after typing
“X==7" and then “X==8", | occasionally heard the answer “13".

These responses can clearly be interpreted in terms of the
box amalogy. For the first problem, it appears that the answer
“Xe=1" was based on the fact that placing another object in a
box that already comtains some objects will cause it to contain
“one more.” However, both these solutions to both problems
require that the relationship between contents of boxes and
contents of variables be a mapping from a set of objects to the
eardinalily of that set. This is quite different from the simpler
mapping of an object to a pumber. In modeling these
responses, it was important that the analogy formation process
relate objects primarily in terms of their functional roles in
specific situations, and only secondarily determine how object
features corresponded.

7. Incremental Analogical Reasoning

Even when analogies are based on simple sctions, the
specific inferences retrieved in support of new examples may
vary considerably, depending on the context. For example,
throwing a rock at a brick wall and throwing one at a glass
window are immediately koown to have very different
consequences. Though an amalogy to a thrown rock might
imply indirectly that the specific inferences made in such
alternate contexts will have correlates in a target domain, in
practice, each such target situastion must be explored before one
can be said to have learned to model the new domain.

Extending analogies in this fashion is an error-prome
process, In the protocols | examined, such errors appeared only
when the context in the target domain made them potentially
useful inferences. When 1 first introduced statements like
“N=Y" to to Perry, it was necemary that | explain that this
meant X was given the value that Y had previously. Perry
then inferred that Y must contain “nothing”. CARL also
extends analogies to such context specific inferences only when
they form part of the in&trph:tuﬁnm of presented examples.

‘This behavior is modeled in CARL by retrieval and
mapping of related causal structures from 3 base domain.
CARL first uses the box analogy o support interpreting



“¥e==%" in terms of the action move one box into another.
When this is corrected by stating that the confents of Y is
moved, CARL tries mapping an object-transfer model,
containing the “bug” that the object moved is no longer in
Y. Information about the mapping of the prototype “put an
ohject in a box," saved in an AMAP relating the two domains,
is used both in finding the structures representing these more
specific actions and subsequently to map these structures back
to the programming domain.

The memory organization used in CARL for knowledge of
simple action-based domains invelving lamiliar objects is am
extension of an object-based indexing system developed by
Lehnert |Lebnert 78, Lebnert and Burstein 79] for natural
language processing tasks. So that CARL can also retrieve a
variety of special case situations, the memory retrieval process
in CARL was augmented using diserimination networks hased
on the specification hierarchy model of episodic memory
developed by Lebowitz and Kolodoer [Lebowite 80, Kolodner
80]. In addition, precondition and result indices were added so
that actions and simple plans could also be retrieved in
response to requests for the achievement of specifie goals. Any
or all of these forms of indexing may be used in finding a
suitable structure to map. For familiar domains, the system
assumes a large set of fairly specific causal inference structures
exists in memory at the beginning of the learning process. No
attempt is currently made to comstruct composite causal
structures on the fly, though clearly that might be necessary
with more complex analogies.

CARL contains the following structures describing the
effects of some simple actions involving containers.

Situations using BOX as » CONTAIKER:

(PUT-IN-BOX 0BJ=IN-BOX  TAKE-FROM-BOX)
¥
TRANSFER-0BJ-BETWEEN-BOXES
PUT-BOX-IN-BOX ¥
PUT-MORE- IN-BOX SWAP-0BJ-IN-BOXES
Part of the specialization network
for things “INSIDE®™ boxes

In the computer ran shown earlier, an initial mapping from
the box domain was formed from the cansal structure PUT-IN-
BOX.  Thereafter, specializations of that structure were
available as new examples were presented. In addition, once
the new containment relation was formed for variables,
expectations were established for the other “primitive”
situations involving containers. Thus, from the fact that
variables can “contain® numbers, CARL expected that they
might also be “put in" or “removed.”

Many of the structures formed by the mapping process
contained erroneous inferences. These structures were
“debugged” locally, if possible, or simply thrown out. From
those that were debugged, corrections were allowed to
propagate downward in the situation hierarchy formed in the
target domain from the initially formed prototype to variants
of that structure mapped subsequently. For example, the fact
that "X=>5" removes the old values of X, rather than “adding”
to it, also applies to cases like "W==Y". The inheritance
mechanism in CARL that handles this is active only when new
structures ‘are formed, so it was important in teaching CARL
that it be shown these bugs early on. This model seems to
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suggest at least one reason why initial analogical prototypes are
best kept as simple as possible, and problems in them eorrected
quickly.

Alse as indicated in the first human protocol shown above,
CARL develops parsing and generation rules for each class of
assignment statement successfully represented. These rules are
dgvelnped CIIII"ILE the Mnal stage of the analysis of each
example,

8. Using Multiple Analogies

CARL often finds better explanations for assignment
statements using  the analogical relationship  between
assignment and equality than it does with the box model. In
general, the box model does not help mueh in interpreting
arithmetic expressions. However, with some exceptions, when
assignment stalements have the effect of associating values
with variables that previously had none, the comrect
interpretation ean be found by interpreting the statement as an
equality. This is eertainly true when all variables to the right
of the equal sign have known values,

CARL first notices that algebra might be wscful in learning
about assignment when it sees the “=" sign in statements like
“¥X=5". As it builds a new meaning for “=", it discovers the
earlier definition. Parsing “X=0" as an equality, CARL
produces the an alternate explanation for the effect of that
statement on the computer. Interpreting the statement in
context, by analogy to what a person would do when hearing
that statement, CARL concludes that the effect of hearing the
statement is the storing of a new fact, “the wvalue of the
variable X is 57.

Since this inference can only have been made when the
statement was typed into the computer, ita causalftemporal
effect on the machine can be related to the “physical” model of
the same assignment statement developed using the box
amalogy. That is, the statement initiates a mental action (or
sequence) leading to an association between a wariable and a
value. The model formed using the box analogy also resulted
in a relationship between the “box™ X and the number 5, so, by
comparing the cansal effects of each interpretation of the same
action, CARL forms a mnpp'lu; from the predicate VAR-
VALUE in the algebra domain to the predicate INSIDE-VAR
that it had previously constructed in the programming domain.

Onee this asseciation is formed, CARL can interpret the
effects of many other assignment statements by parsing them
as equalities, using algebra rules to determine effects on
variables, and then mapping the statement interpretation and
it's causal effects. The structures mapped are used both to
replace specific inferences developed from other analogies when
they are found to be in error, and to develop new structures.

It should be emphasized here that a eanusalf/temporal
element must be introduced in going from algebra to
assignment. To relate the algebraic analogy to the box model
correctly, it is therefore important that there be an agenmt
interpreting the algebra statements and deriving new facts or
relations from that process, [t is only by the noticing that the
relationship formed between a variable and its value as a result
of this interpretation process is like the relationship between
variables and numbers developed previously that CARL decides
the the analogy may be useful. This analysis is supported by
and makes use of the third analogy CARL knows of, the



analogy between the computer and a human information
processor. It is because people can interpret algebra statements
that CARL, and Perry, deemed it reasonable that the computer
could as well.

The interactions between the three analogies used by
CARL are summarized in the following diagram. It should be
noted that the each apalogy is represented and related at
several levels of description, but that the functions served by
cach are quite different. The box model provides the initial
eausal model of the assignment domain. The algebra domain
provides knowledge of mumbers, the operations that can be
performed with them, and the symbols for representing them.
The human processor model is active primarily at the planning
level, providing reasons for doing many of the operations that
computers can perform.

Interactions between Three Analogies

plan level:
STORE(obj) ——> STORE(num) <-- REMEMBER(cancept)
A A
part-plan part-plan
act level: l H:
PUT-IN-BOX(ob]) --> PUT-IN-VAR(num} i
resu it :IN-VAR €== VALUE-OF{var,nun)

described-by described-by
recogni tion + . &
lawal:
"cyar>=<nym>? € = » ®{ygrrs<num>*

9. Conclusions

In developing CARL, 1 have been concerned with a number
of related issues in the learning of basic concepts in a new
domain by a combination of incremental analogical reasoning,
and the use of multiple analogical models. | have tried here to
motivate the need for top-down use of abstractions in this
process. This was found to be necessary in forming rules about
assignment in CARL, both to limit the analogical reasoming
required to create initial models of concepts in the new domain,
and to allow for incremental debugging of the many errors that
can result from the use of analogies. The process described
here is heavily teacher-directed, but allows for fairly rapid
development of a working understanding of basic concepts in a
new domain.

Acknowledgements: | would like to thank Dr. Chris Riesheck and
Larry Birnbaum for many helpful comments on drafts of this paper,
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ABSTRACT

Analogy is one tool that automatic programming sys-
tems can use to learn from experience, just as programmers
do.  We illustrate how analogies between program
speciications can be used to debug incorrect programs,
madify existing programs to perform different tasks, derive
abstract schemata from given sets of cognate programs, and
instantiate schemata to solve new problemas.

An analogy between the specification of » given program
and that of a new problem is used as the basis for modifying
the given program to meet the new specification. Debugging
is a special case of modification: if & program compules wrong
results, it must be modified 1o achieve the intended results.
For program sbstraction, an anslogy is sought between the
specifications of the given programs; it may then be used to
transform an existing program into an abstract schema that
embodies  the shared techmique. By comparing the
specification of the derived schema with a given comcrete
specification. and formulating an analogy between them, an
instamtiation of the schema may be found that yields the

desired concrete program.

Fey terma; learning, analogy, automatic programming, pro-
gram modification, debugging, abstraction, instantiation, pro-
gram transformations, program schemata.

Analogy pervades all aur thinking, our everyday
apeech and our trimal concluaions as well aa
arlistic ways of expression and the highest
scientific achicvements.

—George Polya

1. INTRODUCTION

Programming begins with a specification of what the
envisioned program ought to do. It is the programmer's job is
to develop an executable program satisfying that specification.
Yet, only a small fraction of a programmer's time is typically
devoted to the creation of original programs ez nikilo.
Rzther, most of his effort is normally directed at debugging
incorrect programs, adapting known techniques to specific
problems at band, modifying existing programs to meet
amended specifications, extending old programs for expanded
capahilities, and abstracting ideas of general applicability into
Ysubroutines,”

#This resesrch supported in part by the Maticnal Science Foundation
under Grant MOCS-T0-04807.

The goal of research in “automatic programming” is to
formalize methods and strategies used by programmers so
that they may be incorporated in automatic, and interactive,
programming environments. [n owr view, program develop-
ment systems should incorporate formal tools for transform-
ing and manipulating programs. In this paper, we illustrate
how analogies might be used by such a system for that pur-
pose.

The importance of analogical reasoning has been stressed
by many, from Descartes to Polya. The use of analogy in
automated problem solving was proposed in [Kling71]. Other
works employing apalogy as an implement in problem solving
include [Brown78)|, [McDermott79), and [Winston80]. The use
of analogies to ‘uide the modification of programs was pro-
posed in [MannaWaldinger75] and pursued in [Dershowitz-
Manna?7] and [UlrichMoll77].

Programmers improve with expericnee by assimilating
programming technigues that are encountered, and judiciously
applying the ideas learned to new problems, One way in
which knowledge can be applied is by modifying a knowan pre-
gram Lo achieve some new goal, For example, a program that
uses the “binary-search” technique to compute square-roots
might be transformed into one that divides two numbers, We
show how to modily programs by first fnding an analogy
between the specification of the existing program and that of
the program we wish to construct. This apalogy is then used
as a basis for transforming the existing program te meet the
new specification. Pregram debugging is a special case of
medification: if a program computes wrong results, it must be
modified to achieve the intended results,

All our programs are assumed to be annotated with an
output apecification (stating the desired relationship between
the input and output variables upon termination of the pro-
gram), an inpul specification (defining the set of legal inputs
on which the program is intended to operate), and invariant
asseriions (relations that are known to always hold at specific
poiniz in the program for the current values of wariables)
demonstrating its correctness. The invariant assertions play
an important role in deriving analogies.

“The idea that programs should be constructed by a
series of transformations has been widely promoted.
Modification differs from such transformations in that correct-
ness with respect to the nriginal upcl:iﬁcntinu is mot preserved.
What we want is for the resultant program to be correct with
respect  to  the (ranaformed specification. Correctness-
preserving  transformations apd  specification-changing
modifications are thus compltml!‘ut&r]r. A scepario  of
computer-aided programming and debugging appeared in
[Floyd71]. The HACKER system [Sussman75] comstructed
programs by trying out alternatives and attempting to debug
them when necessary; other knowledge-based or plan-based



debugging systems have been constructed, as well.
[KatzManna75 | and [Sagiv76)] describe debugging techniques
hased —like our method-—on invariant assertions.

Program modification is not the only manner in which a
programmer utilices previously acquired koowledge. After
roming up with several modifications of his first “wheel,” he
is likely to formulate for himself (and perhaps for others) an
abstract notion of the underlying principle and reuse it in
new, but related, applications. Program “schemata” are a
convenient form for remembering such kpowledge. A schema
may embody basic programming techniques and strategies
{e.g. the “generate-and-test” paradigm or the “binary-search™
technique) and contains abstract, uninstantiated symbols, in
terms of which its specification is stated.

The abstraction of a set of concrete programs to obtain
n program schema and the instantiation of absiract schemata
to solve concrete problems may be viewed from the perspec-
vive of modifieation methods, This perspective provides a
methodology for applying old knowledge to mew problems.
Beginning with a set of programs sharing some basic strategy
and their correctness proofs, a program schema that
represents Lheir analogous elements is derived. Preconditions
for the schema's applicability are derived from the correctness
proofs. The resultant schema's abstract specilication may be
compared with a given concrete specification to suggest an
instantiation that yields a concrete program when applied to
the schema. If the instantiation satisfies the preconditions,

the correctness of the new prozram is guaranteed.
To date there has been a limited ameunt of research on

program abstraction. The STRIPS system [FikesHartNils-
sonT2] generalized the loop-free robot plans that it generated;
HACKER “subroutinized” and generalized the “blocks-world™
plans it synthesized, executing the plan to determine which
program constants could be absiracted.  [Dershowitz-
Manna75] suggested using the proof of correctness of a pro-
gram to guide the abstraction process; that idea was pursued
further in |Dmhu'lit.:8||. [Gm’hnrl.?&} and others have
advocated and illustrated the use of schemata as a powerful
programming tool. A collection of such schemata, along with
a catalog of correctness-preserving program transformations,
could serve as part of an interactive program-development
system.

In the following sections we trace the life-cycle of an
example program. The example illustrates some of the kinds
of transformations programs undergo and how analogy can be
used as & guide. We begin with an imperfect program to
compute the quotient of two real numbers. After the pro-
gram is debugged, it is medified to approximate the cube-root
of a real number. Underlying both the division and cube-root
programs is the binary-search techmique; by abstracting these
two programs, a binary-search schema is obtained. This
schema is then instaniiated to obtain a third program, one to
compute the square-root of an integer.

2. DEBUGGING

Consider the problem of computing the quotiemt ¢ of
two nonnegative real numbers ¢ and 4 within a specified
(positive) tolerance ¢, These requirements are convemiently
expressed in the form of the following skeleton program:
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P,: begin comment real-division specification
nasart 0< e <d, e >0
achleve |« [d-g|<e varylng ¢
end

The achieve statement,
achleve |c/d—g|<e varying g,

contains the oulpul apecification which gives the relation
between the variables g, e, d, and ¢ that we wish to be
attained at the end of program execution: the (absclute value
of the) difference between the exact quotient cfd and the
result g should be less than ¢. The clause varying ¢ indi-
cates that of the variables in the specification, only g may be
set by the program; the other variables, ¢, d, and e, contain
input values that remain fixed. The input speeification
defines the set of inputs on which the program is intended to
operate. Assuming that we wish our program to handle the
case when the quotient is in the range 0 to 1, that is when the
pumerator ¢ is smaller than the denominator d, the appropri-
ate input specification is contained in the assert statement,

assert 0<c<d, e>0,

attached to the beginning of the program. For the problem
at hapd, we assume that no general real-division operator [ is
available, though division by powers of two (“shifis"} is per-
missible.

Mow let us imagine that a programmer went shead and
constructed the following program:

Ty: begln comment suggesicd real- dicseion program
By nesert 0<e<d, >0
purpose |c[d-g|<e
purpose g<c[d<q+ 58, r<e
[g.2) == {0.1)
loop Ly wuggest g<c/d<q+4#
untll s <e
purpose ¢ <cfd<g+s, O<e<s,
Wdfg+s)<e then g == g+ s i
#:=pf2
repest
suggest g=¢/d<g+ s, 1<e
Ey: suggest |¢fd-g|<e
end

The purpose statement,

purpose |¢f/d-g|<e,
is a comment describing the intent of the code following it.
The statement

suggest |c [d-g|<e

cootains the programmer's contention that the preceding code
actually achieves the desired relation, ie. the relation
|¢/d-g|<e holds for the value of ¢ when control reaches the
end of the program. The comment

purpose g Scf/d g s, s<e
indicates that the programmer's intention is to achieve the
desired relation |¢/d-g|<e by achieving the subgoals
g=c/d<g+ s and s <e. Achieving these relations is sufficient
for |efd-g|<e¢ to hold. For this purpose the programmer



constructed an iterative loop intended to keep the first rela-
tion imvariantly true while making progress towarda the
second. The suggested invariant is contained in the state-
ment

suggest g<cfd<q+ s
at label Ly The goal of the loop body is
purpose g <cfd<g+ s, O<a<u,

where #, denotes the value of the variable + when control
was last at the label L, This means that the value of # is to
be less than it just was at the head of the Joop. The two
loop-body statements are accordingly repeated (zero or more
times) until the test s <e becomes true, at which point the
loop will be exited.

We know what the above program was intended for, and
we know that it does not always fulfill those intentions. How-
ever, before we can debug it, we need to know more about
what it aciually does. This can be accomplished by examin-
- ing the code and annotating the program with the discovered
invariant relations (see [DershowitzMannaBl]l It is wnot
difficult to derive the loop invariant d-g<c¢<d{g+2's). This
remains true when the loop exit is taken; along with the exit
test #<e, it implies that upon termination the output invari-
ant |e/d-g|<2e¢ holds. Note that the desired relation
lefd-gl<e is not implied.

Now that we know something about what the program
does, we can try to debug it. Our task is to find a correction
that changes the actual output invariant

assert e fd-g|<2e
to the desired output invariant

suggest |c/d-g|<e.
We go about this by first looking for a way to transform the
actual invariant into the desired one; we then try to apply the
same transformation to the program, hopefully correcting the
error thereby. Accordingly, we would like to find an analogy

between the actual output invariant and the desired
specification; we write

[efd-gl<2c = |¢fd-g|<e
The obvious difference between the two expressions is that

where the first has 2-¢, the second has just ¢. So, we can
reduce the analogy to simply

e = e

We can, therefore, transform the insufficient | /d-g|<2-¢ into
the desired |cfd-g|<¢ by replacing ¢ with «[2, i.e. by apply-
ing the transformation e=3>e /2.

So far we know that the transformation =8¢ 2, applied
to the output invariant |c/d-g|<2 e, yields the desired cutput
specification |cfd-g|<e. That same transformation is pow
applied to the whole annotated program. The symbeol ¢
appears once in the program text: the exit clause s <¢ accord-
ingly becomes s<e /2. The symbol also appears four times in
the invariants; for example, the input assertion e>0
transforms into ef2>0 which is equivalent to e>0. The
transformed program is
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P: begln comment real- divirion pregram
By amert 0<c<d, e >0
purpose |cfd—g[<e
purpome §<cfd<ge s, Dee
(g.0) "= (0.1)
loop L assert d- ¢ <c<d{qg+2¢)
untll p<e f2
purpose g <¢/d<g+ s, 0<e<ey,
Ifd-(g+e)<c them g =g+s A1
= af2
repeat
assert g <cfd<g+ 29, TaLe
E;: assert |c/d-gq|<¢
end

(We have also changed the program's purpose statements to
reflect reality.) It ean be shown that a transformation such as
e=p ¢ /2 preserves the relation between the program text and
invariants, i.e. the transformed assertions are invariants of the
transformed program.

3. MODIFICATION
Consider the following specification:

@1 begln comment cubc—roof specification
mamert 020, e >0
achleve |a""3—r]{e varylng r
end

We would like to use the corrected real-division program as a
basis for the comstruction of the specified program for
computing cube-roots. (We assume, of course, that the cube-
rool operator is noi primitive.) To this end, we first compare
the specifications of the two programs. The output
apecification of tie division program is

assert |efd-gl<e,
while the output specification of the desired program is
achleve |a'7-r|<¢ varying r.
The obvious analogy between the two is

7 b r
efd e P

i.e. where the former specification has g, the other has r, and
where the former has ¢/d, the other has ¢¥?. One way to
obtain a cube-root program from the division program is via
the transformations

T = r
ll_fr - ulfd
e = g,

where by u/v=pu' we mean that every occurrence of the
(general) division operator [ is replaced by the cube-root
operator applied to what was the numerator. Transforma-
tions that involve specific functions such as division, are not,
however, guaranteed to yield a correct program, since the pro-
gram may be based on some property that holds for division,
but not for extracting roots. Such transformations are heuris-
tic in nature; they only suggest a possible analogy between
the two programs. lndeed, when applied to the division pro-
gram P, we get a program that computes afd, not &'/,
What must be done in such cases is to review the derivation



of the program, expressed by the programmer in purpose
statements, and see where the analogy breaks down.

The purpose of the division program was lefd-gl<e
which trapsformed into |a¥*-r|<¢ as desired. The program-
mer achieved |e/d—g]<e by breaking it into the subgoals
given in the statement

purpose g<c/d<q+ 2w, 2oeZe,

part of which became the exit test for the loop and part
became a loop invariant. These subgoals transform inte

purpose r <a'?<r+ 29, Ta<e,

which indeed imply the transformed goal |s'-r|<e. The
purpose of the loop body of the division program was

purpose g<cfd<g+ 2o, O<a<e .

In other words, the loop body reachieves the invariant while
making progress towards the exit test by decreasing r. The
loop-body subgoal of the transformed program, then, is

purposs r a4 2, 0o <.

At this point the division program introduces a conditional
with the

purpose g Sefd<g+ e
and halves .

It is bere that the analogy breaks down. The division
program achieves the above purpose in two cases, by testing if
d-{g+ 2)<c or not. For example, if d-{g+2)=c does not hold,
then c/d < g+ s, as desired. On the other hand, the faet that
d-{r+ r}<e does not hold in the cube-root program tells noth-
ing about a'@<r+as. We look, therefore, for a transformation
that makes d{r+ ¢)>a imply a'?<r+», or the equivalent to
a<ir+ sf. Matching what we have with what we want tells
us that the implication would hold if we could transform
d{r+ e)=(r+ ¢/ Thus, where the division program has the
function u'v, the cube-root program requires «*. We complete
the apalogy by adding the transformation

v = v? f
which is applied to the conditional test,

There remains one problem: a transformed program can
only be expected 1o satisly the output specification for those
inputs that satisfy the transformed input specification. In our
case, we can solve this if we can find an alternative manner
by which to initialize the invariant r<s'<r+2-¢ prior to
entering the loop. To achieve the subgoal r<a'/?, we can let
¢=0. Then to achieve a"?<r42:p=29, we can let
g==(a+ 1)/2. (This requires additional knowledge about cube-
roots.) The complete cube-root program is:

@y begin comment real cube-rool program
Hy: nssert o 20, e >0
(r.s) = (0fa+1)/2)
loop Ly sssert r<a'?<r+ 2w
untll # <e /2
If (r+e)f'<cthenr = r+sfl
=g f2

repeat
Ey sasert |a'/-r|<e
end
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4. ABSTRACTION

At this point, we bave two programs, P, for finding quo-
tients and @, fer finding cube.roots. Both programs utilize
the binary-search techmique. It would be mice if one could
extract an abstract version of the two programs that captures
the essence of the technique, but is not specific to either prob-
lem. The resultant abstract program schema could be used as
a model of binary search for the solution of future problems.

For this purpose, consider the compleie analogy that we
found between the specifications of P, and @y

§ <= r
ufy b u'l
e =S=p 0

ey a=m v,

Since both ufe and u'? are functions, we try to gemeralize
them to an abstract function +(u,v). Similarly the generaliza-
tion of w'v and ¢ is another function &u,v). Both g and r
are output variables and are generalized to an abstract output
variable z; the input variables ¢ and s are generalized to an
abstract input variable z. This gives the following set of
transformations for generalizing the division program:

q == z

wfv = Afu.r)
€ = z

wvr = Huuw).

Applying these transformations to the specification
achleve |¢/d-q|<t varylng ¢
of the division program yields
achleve |7{z,d)-z|<e varying .

This will be the abstract output specification of the schema.
Substituting the abstract functions 7 and § into their respec-
tive positions in the division program P,, dees not, however,
result in a schema that will work for all instantiations of
and & This is because the original program relied upon facta
specific to multiplication and division. We must therefore
determine under what, conditions the abstract schema does
achieve ita specifications.

To begin with, the transformed initialization assignment
does mot achieve the desired loop invariant. We therefore
replace the loop initialization with the subgoal

nchleve Hd 2)<z<Hd 4+ 2-¢) varylng z.»,

leaving—for the time being at least —the specifics of how to
initialize the loop invariant unspecified. For the loop-body
path to be correct, the truth of the invariant must imply that
the invariant will hold next time around; this can easily be
shown to be the case for any function 5. For the loop-exit
path to be correct, we must have that the loop invariants,
plus exit test, imply that the cutput invariant holds. For this
to be ihe case, it suffices to establish the condition

Aw,u)<e = u<y(r,w).
In this manner, we have derived a general program

schema for a binary search for the value of 7(z,d) within a
tolerance e:



5, begin comment binary-search schema
B assert e >0, Hwu)<v = v <9{vw)
achleve &d.z)Sz<Hd. 2+ 21) varylng 1,0
loop L, sssert §d z)<s<8d 2+ 2s)
until # e f2
¥ Hdz+e)<zthenz =+l
» s g f2
repent
E; ussert |4{z,d)-zf<e
end

Of course, for this schema to be executable, the function &
appearing in it must be primitive; otherwise, it should be
replaced. Similarly, the unachieved subgoal

achieve Hd z)<z<Hd,z+2¢) varylng s.#
must be reduced to primitives.

5. INSTANTIATION

The binary-search schema just derived from the division
program may be applied to the computation of the square
root of an integer. The goal is to construct a program that
finds the integer square-root z of a nonnegative integer a:

Ry begin comment inleger square—rool specification
assert aEN
achieve z=| va | varylng r

end

where the function | u_| yields the largest integer not greater
than u.

We capnot directly match this goal with the output
specification of the schema

assert |z, d}-z|<e varylng =
However, if we expand the gosl z=| V4 _|, using the definition
of |u_|, we get the equivalent goal
achieve : <va <z+1, 7EZ varylng ¢

(where Z is the set of all integers), i.e. z should be the largeat
integer not greater than va. Since we know that the schema
achieves the two output invariants

napert s <z d)<s+ e,

we can compare these invariants with the above goal. This
suggests the transformations

Tuw) = A
H = [
e == 1

to achieve s<Va <:+1. I[n addition, we will have to extend
the program to ensure that the final value of z is a nonnega-
tive integer.
The precondition for the schema's correctness is
assert ¢ >0, Hwu)Sv = uSoe,w);
instantiating it yields
assert 120, fw,u)Sv = ugVr.

This condition may be satisfied by taking Hw.u) to be u?,
This completes the analogy, and suggests the additional

transformation
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Hwau) == %

Applying the instantiastion mapping to the schema, we obtain
the partially written program:

Ry begln comment incomplele inleger square—roel program
By: assert a€N
achleve :*<a<(z+ 24 varying 2,0
loop Ly sssert ©*<a<(z+ 2a)f
untll # <12
If (24 sF<a then 7 ;== z+ s fl
8 g f2
repeat
amsert |1 -z|<1
achleve :£Z. protectlng : <1 <z+ 1 varying =
end

This program still contains two unachieved subgoals. The
first can be achieved by assigning (z,8) := (0.{a+ 1)/2). For
the second, we may perturb the current value of = just
enough to make it an integer. (The protecting clause means
that the relation 2<va <s+1, achieved by the instaptiated
schema, should not be clobbered when achieving the addi-
tional goal z€Z.) This can be done by assigning

u r;TSn then r:= [ 7] else 7 ;= | z | Al

An alternative approach 1o completing the above program is
to insist that €N hold throughout execution of Ry This is
the avenue pursued, for example, in the “structured program-
ming” derivations in [DijkstraT8] and [BlikleT8].

8. DISCUSSION

There are a few problems inherent in the use of analogies
for program modification and abstraction. These include
“hidden" analogies, “misleading” analogies, “incomplete”
analogies, and “overzealous” analogies. Hidden analogies
arise when given specifications (of the existing program and
desired problem in the case of modifieation, and of the two or
more cxisting programs in the case of abstraction) that are to
be compared with one another have little syntactically in
common. Since the pattern-matching ideas that we have
employed are syntax-based, when the specifications are not
syntactically similar, the underlying analogy would be hidden.
In such a situation it is necessary to rephrase the
specifications in some equivalent manner that brings their
similarity out, before an analogy can be found. This is clearly
a difficult problem in its own right; in general some form of
“means-end" analysis seems appropriate.

At the opposite extreme, a syntactic analogy may be
misleading. The same symbol may appear in the
specifications of two programs, yet may play nonanalogous
roles in the two programs. Two programs might even have
the exact same specifications, but employ totally different
methods of sclution. Situalions such as these would be
detected in the course of analyrzing the correctness conditions
for the abstracted programs.

Knowing how a program was construeted ean help aveid
oversealously applying transformations to unrelated parts of a
program. We have seen how the program derivation alse
helps complete an analogy between two programs, only part
of which was found by a comparison of specifications.
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ABSTRACT

This paper discussesz methods of reascning for
constructing new conceptz and theoriea in
sclence., The methods include reascning by
analogy, reasoning from falled analogy,
reascning piecemeal from more than one analogy,
and reasoning using a ahared abatraction. Cases
from the history of sclence illuatrate the
metheda, 4including a lengthy discusaion of
selection theories. Suggestions for
implementation in AI systems are made.
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1. INTRODUCTION

As a hiatorian and philosopher of science, I
am intereated in the process of the construction
of mew scientific theories. This paper explores
methoda of reasoning to pew concepta and new
. theories in soilence; the methods of reasoning
include reasoning by analogy and other patterns
of reasoning similar to anslogical reasoning,
Suggestions are made as to how these methods
could be implemented in artificially intelligent
computer systems.

It is possible to reason tc new concepts
using only the data to be explained. For
example, BACON (Bradshaw, Langley and Simon,
1980) postulates a new intrinsic property of an
object by using data about how that object
interacta with a number of different, other
objects. Uniformity of behavior is postulated
aa due to an intrinsic property. Thus, data
about relations is decomposed and used as an
indication of the existence of & new property.
Usually, howaver, souroes other than the data
themselvea are needed to supply new concepta.
Amalogies are onhe Source of such new concepts
that can be built into new theories,

Philosophers of science have rarely
discussed disocovery in science. A prevailing
view haa been that the discovery of new theoriesa
iz a mpatter of the individual psychology of the
scientista, that there fs5 no T"logic of
discovery." EKarl Popper (1960) ias a prominent
proponent of this view and Carl Hempel (1966,
p.14) argued that there can be no mechanical
rules for producing the novel concepta found in
theories. Although N, R, Hanson (1961)
attempted to provide a legic of discovery, which
he called "retroductive reasoning," he merely
hinted at the way plausible hypotheses actually
could be oconstructed. I will pursue two of
Hanson's hints in this paper: reasoning by
analogy and reasoning about types of theories,

The existence of an infallible logie of

‘discovery 12 unlikely. Instead, a goal of

"friends of discovery" {(Nicklea, 1980) should be
to find patterns of reasoning that can produce
plausible hypotheses. The plauaible hypotheses
can then be tasted to mee if they qualify as
genuine "discoveries.n"

If we are going to understand how analogies
function in patterns of reasoning in theory
construction, a series of queations need to be
answerad,

These questions are:

1. What is an analogy?

2. Are thare types of analogiles?

3. How do we find amalogies?

5. How do we distinguish good from bad
analogies?

5. How do we use analogies to construct new
scientific concepts and theoriea?

6. How can we test s proposed pattern of
reasoning by analogy to see if it is
adequate for constructing plausible
hypotheses?

I will not be able to completely answer all
of these questions in this paper, but I want to
begin the task. Werk in both philosophy of
acience and Al 1s relevant. Mary Hesee is the
philosopher who has dealt most extensively with
some of these queations. Most of the AT work
that has dealt with discovery in sciencs, such
as BACON, DENDRAL, and METADENDRAL (Buchanan and
Feigenbaum, 19T78), has not used reasoning by
amnalogy. Conversely, most of the AI work on
reasoning by analogy, such as Evans (1968),
Kling (1971), OGenesereth ({1980}, Carbonelle
(1982), has not been directed to understanding



scientific discovery. The section of Winston's
{1980) work om the analogies between water flow
and eleotrieity brought together scientific
remsoning and reasoning by analegy, though
Winston's attention was on teaching and learning
rather then on discovery.

T will draw on this literature, as well as
jdeas of my own, to devise four methods of
theory oonatruction. Fach method will be
illustrated with examples from the history of
science. Prospects for implementation of the
patterns will be discussed. If methoda of
reasoning 4in theory construction can be
implemented in AI systems, then it would be
possible to test the patterns to see if they,
indeed, can function to yield plausible
hypotheses. Philosophy of sclence and AI bave
the potential of being Jjoined to produce an
experimental philosophy of science.

2. METHODS OF THEORY CONSTRUCTION

In her book Models and Analogies in Solence
(1966), Mary Hesse disousses reasoning by
analogy in theory constructicn. Hease's key
points are best 1llustrated by one of her
examples. She compares scund waves and light
waves. The properties which are similar she
deaignates as the positive analogy; the
dissimiler properties constitute the negative
analegy; the neutral analogy involves the
properties of the analogue which may or may not
be pressant in the subject field. In her
example, the properties of light are the subjeot
of inveatigation. Light has properties that are
similar to properties of sound waves and the
neutral analogy of a medium for the waves to
travel in provided a plausible, but subsequently
disproved, hypothesis asbout the existence of the
ethear. The horizontal relations betwean the
gnalogue and the subject are usually those of
similarity, although occasiopally apecific
properties may be identical. The wvertical
relations among properties of the analogue
should be, according to Hesse, causal relationa,
in the weak @sense of a “tendenoy to
co-ocourrance.” (Hesse, 1966, p.TT). Hasse
indicated that the analogue may be important,
not only in the origipal stagea of theory
oonstruction, but also later: if the theory
faces anomalies, the neutral analogy may be
exploitable for further theory construction.

Hesse's representation scheme of lining up
properties of the amnalogue and subject 1s much
like frame-structured representation schesmas
used in AT systems. (Minsky, 1975; Thagard,
forthooming) One could construct a frame for
sound waves with slots for the properties of
sound waves, such as travels in a medium, and
values for the slota, with the slot "medium™
having the value "air.® Apnother frame could be
oconstructed for light. Hesse's insistence that
the properties of the analogue must be causally
connected is directed at a key problem with
analogical reasoning: why, if sowe features of
an analogue and a subject are similar, would we
expect others to be? In other words, how can we
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confidently use the neutral analogy to postulate
plausible features in tha  subject? By
restricting the features to those that have a
"tendency to oo-occurrence,” Hesse attempts to
solve this problem. Certainly if tight causal
conmections exist between features, then the
likelihood that the neutral analogy can be
transferred 12 1increased. Unfortunately,
Hease's form of representation has the
disadvantage that it does not meke clear what
the causal interconnections are between which
properties. If one puts Hesse's method into a
frame representation, then one could add slots
to the fremes to indicate which propertlies are
causally connected and what the relatioms are.
Winston's psemantic net form of representation
has the advantage of clearly showing the causal
connections by representing entities as nodes
and relations as arcs between the nodes.

Once such a causal network has been imposed
on the representation of the analogue, then the
implementation of reasoning by analogy is very
straight-forward: match and transfer. But this
process locks very canped and does not seem to
resemble discovery. All the creative work went
into choosing the amalogue and representing the
causal interconnections. The key questions
bacoma: how do we find good analogues and how do
we foous on certain features of an analogue as
relevant to the subject at hand?

An even deeper problem about the use of
analogies in discovery exiata. If discovery
involves finding & similer analogue, how is
anything new ever discovered? Ona seems to be
employing the same structures again and again.
¥We npeed some way of getting new atructures, not
merely reusing the old ones.

Hesse does not tell ua what we are to do
when postulated causal conoections fail to be
empirically confirmed, such as her own example
of the postulation of the ether as a medium for
light wavea, The physicist Robert Oppenheimer,
in an insightful paper of 1956, that Hesse does
not cite in her 1966 book, discussed the role of
analoglies in disoovering e theoriesa.
Analyzing the stages in the oconstruction of the
wave theory of light, Oppenheimer proposed that
scientists came to the study of light phenomena
with past experience of the nature of waves.
But when the postulated medium for light waves
was not found, it forced sclentists to revise
their previcus view of neceasary conmections, to
sever the notion of & wave from that of a
medium. Thus, a portion of the causel network
failed to transfer. This failure forced
scientists to a creative new ooncept. But,
humans came to this new concept of a mediumless
wave with reluctance. Tt will be difficult to
devise criteriz for a system to use to enable
it to choose between a failed anelogy that
ahould be discarded and a failed anslogy that
can ba used to sever causal connections
praviously thought to be pecessary.

From Hesass and Oppenheimer we can extract
two methods of theory construction by apalogy:



look for & relevantly similar snalogue and
axpleit the neutral analogy; if this proceas
fails, consider severing oconnections between

properties that were previocusly thought to be-

necessary oconnactions. But these methods are
limited. A relevantly similar analogue may not
exist. Also, the severing of what we thought
were causally correlated properties 1s not a
kind of reasening that occurs frequently inm
sclence. Thuas, these methods will have limitad
s00pe.

3. PIECEMEAL THEORY CONSTRUCTION

Little discussed in the analogy literature
iz the possibility of using more than one
analogue, in a piecemeal or modular way, to
construct & new theory out of old, but
previoualy unrelated, pieces. Filecemeal theary
construction using more than one =nalogy gives
meaning to the cliché that creativity may result
from putting old ideas together in new waya.

Charles Darwin's theory of natural
selection illustrates theory oconstruction by
piecemeal relationa., -There are two conditions
raquired for natursl selection to occour. First,
organisms must have hereditary variations.
Secondly, more orgenisms must be produced than
can survive. Coupling these two conditions
gives npatural selection: those organisma with
variations advantageous in the struggle for
existence will tend to survive and reproduce.

Darwin had two different sources for the
two different conditions that make up hia
theory. Malthua's ideas about overpopulation in
humans served as the source of Darwin's idea of
a struggle for existence. The relation between
Malthus's ddeas and Darwin's {ia actually
stronger than analogical: Darwin generalized to
all organisms what Malthus proposed for humans.
Thus, the relation 1s generalization and
epecialization rather than analogical.

The other source for Darwin's theory was
the analogy to artificial breeding which had two
funetions. First, it provided evidence of the
existence of bheritable wvariations. Darwin
,argued that both domesticated organisms and
organisms in the wild had numercus individual
differences, many of which were passed on to
offgpring. Secondly, artificial breeding showed
that selection of ascme of the hereditary
variants and elimination of others ocould result
in the formation of new verietlies that
perpetuated themselvea. By analogy, natural
selection could be expected to do likewlse. But
the agent of selection imn mature had to be
different from the human agents in artificial
selection. The Halthusian idea, generalized,
supplied the missing pilece: the struggle for
existence in mnature aserved to select some
variants and eliminate othera. Darwin's theory
thus had plecemeal relations to two other areas:
‘Malthua’s ideas and artificial selection.

Another case of the plecemeal construction

of a new concept is the discovery of viruses.
This case differs from those previously
discussed since the discovery is of a new entity
at & new level of organization, not the
construction of & new theory. Categories
available in medical microbiclogy by the end of
the nineteanth century ware that of
microorgenism or chemical toxin. Microorganisms
were visible in the light microscope, didn't
pasa through filters, were infectious, and grew
on culture media. Chemical toxins were
submicroscopic, were filterable, didn't sultiply
in the affected crganisms, and didn't grow on
media. When filterable, submicroacopic but
infecticus  agents were  discovered, they
presented a real puzzle. Those favoring a
microbe explanation suggested that theze were
just smaller than previcusly discovered microbes
and, with suitable work, a medium could be found
on which to grow them. Thoae favoring a
chemical toxin explanation suggested that the
agents weren't infectious, but were toxic in
very small gquantities, and thus it only appeared
that they multiplied in the infected organism.
Braver soula were willing to pestulate a new
entity, midway between & miorcorganism and a
chemical  asubatance, that was filterable,
asubmioroscople and infecticus. Thua, a new
concept was constructed pilecemeal, in between
two levels of organization. Subsequent work
changed the essential characterization of the
virus from a filterable infectious agent to ar
entity with atructure wvisible in the electron
microscope which is umable to sultiply outside
of other living cella. (Hughes, 1977).

The pattern of reasoning provided by thia
case is that of tranafer of properties piecemeal
between two levels of organization to create a
new concept that shares some properties from
each. After the new oconcept is established,
then new propertiea of its own may be added as
new data emerges. This pattern of reasconing has
a aimilar structure to reasoning piescemeal from
two different analogues; however, it is more

 constrained sinoce the sources of the tranaferred

properties must be related in a hierarchy of
levels of organization. AL new concept
constructed by this interlevel, pilecemeal
analysiz may be more plausible thano one
constructed by analogy, since concepts at new
levels of organization have often been found,
e.g., oells, enzymea, macromolecules

5. TYPES OF THECRIES

Thus far, we have been considering an
analogy as a relation between two similar
analogues. An alternative analysis of what an
analogy 1s provides us with a fourth method of
theory construction. Micheel Genesereth has
explieitly stated an alternative analysis of
anelogy which has been implicit in some Al wark.
According to Oenssereth, "many analcgles are
best understood a3 astatements that the
gituations being compered share a oommon
abstraction.® (GCenesereth, 1980, p.208)., Mary



Hesse, in addition to characterizing an analogy
as a direct mapping between a aubject and its
analogue based on the similar properties, also
mpentioned formal anelogies in which two things
share only the same uninterpreted mathematical
formaliam. Oenesereth's abstractions are not
merely Hease's formal analogies, aince
Qenesereth's abstractions say have more semantic
content than an uninterpreted forsalism. He
gave an example: "yhen one asserts that the
organization chart of a corporation ia like a
tres or like the taxonomy of animals in biology,
what he 4is saylng 4s thet they are all
hierarchies, With this view, the problem of
understanding an analogy becomes one of
recognizing the shared abstraction.”
{Genesereth, 1980, p.208). (Prior AI discussion
of analogy as a shared abstraction can be found
in Kling, 1977; Kurt and Brown, 1979; and
Winston, 1980)

Genesersth shares a view  explicitly
disoussed by the psychologist Dedre Gentner in
an excellent paper entitled "The Structure of
Analogical Models in Science,” (1980) in which
she argued that the relations between the
anslogue and the subject are those of identity
rather than similarity, but Aidentity at an
abstract level. When Hesse mentioned that in
some cases the relations between the directly
mapped properties were those of identity rather
than similarity, those were identity relations
at the specific, not the abstract, level.

The system that Genesereth enviaions has
various abstractions built into it, as well ac
eriteria for chooaing and applying an
abstraction in a particular problem situation.
Thus, the idea of analogy as shared abatraction
supplies another method of theory construction:
Explicitly devise abstracticns of theories or
other things that might serve as analogues in
thecry construction. In the first stages of
theory construction, search through the set of
.abstractions to see If an appropriate one
(according to some criterion) is found. If ao,
then instantiate it for the case in hend. If &
single abstractien is inadequate, then try to
uge more than one plecemeal.

Before considering scientific examples of
abstractions of theories, it is instructive to
compare the direct mapping method that results
from comparing twe analogues and the shared
abatraction method. Although humans can
spontanecusly see relations batwesan  two
analogues, for an AI system to be able to do
direct mapping, the two analogues must be
.represented in some way. The representation,
such as a frame system suggested above for
waves, already has an abstract form built into
it. Thus, the analogical reasoning that the
system is able to do seems to be a result of
building & shared abstrection into the
representation scheme. Consequently, the direct
mapping method is not as different from the
shared abstraction method as at first it seemed
to be. The step of taking a concrete analogue
and constructing a representation of it for use
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in ths analogical reascning becomes a key
component in the direct mapping method. It is
difficult to see how an AI system, rather than
the designer of the aystem, could carry out this
abstracting step.

Thecry construction involves not only the
original construction of & theory, but alsc its
subssquent development im the 1light of new
evidence and ancmalies, The direct mapping
method holds the promise of being able to aid in
anomaly resolution, since the anslogue may
contain negative or neutral components that were
not used in the origimal theory construction.
When anomalies arisae, these additional
properties may be used for further theory
construction. If one is wo:king only from the
gbatraction, which contairs only the ahared:
properties, then this additicnal scurce of
information 1s lost. The direct mapping and
shared abstraction methods could be combined to
use the best features of each. Build a system
that has both the detailed analogues and the
shared abstractions represented. If the
abatraction does not contain  sufficlent
information to resolve an anomaly, then conduct
the search at the more detailed level by
searching through the negative or nautral
properties in the detailed analogue to see if
any can be of use.

5. ABSTRACT FORM OF SELECTION THEORIES

Although use of analogies and use of formal
mathematical models are oommon methods in
science, explicit use of semantically rich
abstractions iz not. Thua, case studiea for the
use of abstractions are lacking. But it is very
interesting to ask whether abstractions could be
devised and to look at the ways they map onto
actual seientific theories. In devising an AI
system to do theory construction, a key question
becomes whether this method could have been used
to produce known scientific theoriea, even
though the discoverers did not use it.

Once Derwin had oconstructed the theory of
natural sealection, he established a new type of

' selentific theory. We may consider one way of

ebstraoting the components of salection
theories:

I. An array of variants is generated.
1. Number of variants
2. Number of types of variants.
3. Amount of difference between variants.
4. Mechanism of generation of variants.

II. Selection of a subset of veriants occurs.
1. Agent of selection
2. Criteria of selection

III, After selection, the pool of variants i=
different.

Bach of these abstract componenta can be
instantiated in diﬂ_‘erant ways, Some of the



different possible instantiaticons yield
alternative evclutionary theories that have
actually been proposed historieally.

For (I}, the generator or the cause of the
variants will determine the rumber of variants,
the number of different types of wvariants, how
much each variant differs from ancther.
Different evolutionary theeries have differed in
their claims about such propertiea of the
variants. Darwin proposed numerous small
veriations, which he called
differences,” as the most important type of
variation that matural selection acts on. Hugo
de Vries, in his Hutation Iheopy (1903, 1904},
proposed an alternative to Darwinien natural
selection by proposing that large scale
mutations occurred that could give rise to a new
species im a single generation. Thus, the
selection step played a minor role in de Vriea's
theory, serving merely to eliminate the least
advantageous species. Mendelian genetiecs did
not suppert de Vriea's claim for the existence
of such large scale mutations.

Additional alternatives to small variants
are still being propozed. Stephen Gould (19TT)
recently suggested that large scale changes in
developmental timing may be more important in
evolutionary change than asmall scale point
mutations. According to Gould, humans have many
froperties of baby apes: maybe a large acale
ohange kept our ancestors from reaching ape
paturity. Selection would still cperate on such
' developmental changes. Thus, these views of
Gould's differ from Darwin's with respect to
-{I), the generation of the variants.

There is a temporal relation between steps
I, IT and III. If step I yields certain types
of wvariants, then atep II may ba unnecessary.
For example, if the generator of variants had
the capacity to produce only adapted variants,
then the subsegquent step of selection would not
be neceasary in either domestic or natural
seleotion. If the second astep 1a not needed,
then the thecry propossed is mnot a selection
theory. Compare, for instance, so-called
Lamarckian evolution, (Lamarck's theory was
actually more complex): characters that are
acquired as a result of an adaptation to an
environment during the life of an individual are
passed on to offapring. In such a theory, the
generator of variants eliminates the need for
selection since the criterion of selection
(adaptation) has been Incorporated into the
mechanism of generation. Mendelian genetica has
provided no evidence for such & mechanisa for
the inheritance of acquired characters.

Although 1t failed, such a so-called
Lamarckian theory represents, nonetheless, an
sltermative type of theory to the selection
type: & good analogy to human activity would
be not domestic selection but  human
tool-making. Fashioning & tool te fit a need
is analogous to an organism developing &

"individual

characteristic ir response to an environmental
demand, The criteria that would have operated
in the seleotion proceas have been incorporated
inte the mechanism of generation of wariants;
the npeed for the selective step 1= eliminated.
Thus, when faced with & problem of explaining
the origin of new adapted somethings, either of
two abstractions cen be evoked: the selection
type or the tool-fashicning type.

(Hote at a metalevel: we have alse found &
way of obtaining a new abstraction: certaln
instantiations of parts of one abstraction may
produce a mew type of theory which obviates the
need for the rest of the abstraction to be
instantiated. A new abstraction with the
tool-fashioning nature of the generator of the
variants can be constructed; the new abatraction
is no longer & selection theory abstraction.)

For atep II, the selection mechanism has
aubproperties which inelude the agent of
selection (thet s=ounds a bit anthropomorphic;
perhaps a more neutral term can be found) and
the criteris on the basis of which scme variants
are selected. Contemporary controversies about
evolutionary mechanisms between neutralists (see
King and Jukes, 1969) and selectioniats have
focused on whether variants can become filxed in
a population as & result of rendom protesaes
rather than selection of adapted variants.
Though random drift results in the pool of
varianta differing in succeeding generations,
that pool does net ahare 8 set of
characteristics as a result of a selective
procesa. Thus, if there i= ne criterion for
chogsing emong the wvariants and those that
survive do so because of random processes, then
the thecry is not a melection theory. Thia case
shows us that Step II could be made maore
abstract to read: a subset of the varianta are
retained. Selection or randem choice among the
variants would be alternative instantiaticne of
this more sbstract Step II.

(Note at a metalevel: once again we can
sonstruct a new abstraction by varylng a step of
the original ebstraction. This time step II is
changed and made even more abstract,)

Step III, a different array of variants, is
the product of a csusal mechanism operating to
produce a different state of affeirs at a
subsequent time. In domestic and natural
selection, the most important temporal dimenaion
is the mnext generation of organismsa; thus
variability that is passed from parent to
offapring, i.e., inherited wvariability, is the
only variability important for selection. But
in the abstraction of selection theories, no
requirement for different generaticns is
ineluded. I have ohosen to express the
components sufficiently abatractly so that they
apply to additional theories that do not include
different generations of organisma but only a
different pool of variants at a later time. The
abstraction could be formulated at a lower level



and inolude transmisaion of salected
characteristics to a subssquent generationj but
fewer theories would be instances of the lower
level abstraction. Another level of complexity
is introduced in the biologicel casa, since the
variants can bas oconsidered either genes or
phenctypas.
sslection (Lewontin, 1970; Hull, 1980) focus on
this question of what is to count as the
variant. Hull suggested a distinction between
the "replicator™ and the "interactor®™ in
biclogical evolution; the abstraction discussed
here suggests that "variator™ should also be a
key abstract component.

If steps I-III, considered as & temporal
process, begin a second time, with the pool of
variants (or their descendants) produced by the
previous run As the starting polnt, then
selection continues in the same direction. If
the eoriterion of selection changes (as in
environmental changes), then the direction
shifts. Since the generator of variants and the
eriterion of selection can change iodependently
in some instentiations, the range of wvariants
produced iz potentially very large.

In pessing it is worth noting that John
Holland (1975) constructed an abstract form of
adaptive theories that differs from my abstract
form of selection theories, Helland constructed
his abstraction by drawing upon the contemporary
theory of evolution. Its components inolude:
the enviromnment of the system undergolng
adaptation, the adaptive plan "which determines
successive structural modifications in reaponse
to the environment," and "a measure of the
performance of different structures in the
environment.® (Bollamnd, 1975, p.20) He has much
pore focus on the environment that my
abstraotion does; the envirooment becomea the
agent and provides the oriterion of seleotion
within my abstraction. It is difficult to map
my generator of variants into his scheme; the
adaptive plan must contain the generator.
Holland's abstraction may or may not be
instantiated by a seleotive atep; thus the
adaptive theories which he is characterizing may
or may not be selection theories. In fact, his
abstraction also characterizes the type of
theories I called "tool-fashioning®: the
adaptive plan has a gemerator that can fashion

variants in response teo the enviromnmental

demand; no selective atep 18 npeceasary.
Conversely, my abstraoction may or may not bes

inastantiated to¢ result in adaptive theories,

depending on the criterion of selection. It is
interesting to note that two pecple, both
drawing on the theory of evoluticn, construct
markedly different abstractions. Could we devise
an AI system that could construct different

abstractions frem the same particular theory?

6. EXAMPLES OF SELECTION THEORIES

Controversies about the level of.
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A surprising mimber of different theoriles
are specializations of the abstract type of
selection theory given in steps I-III. A
biclogical theory that fitas this type
beautifully is Jerne's (1955) matural selectlon
theory of antibody formation, aubsequently
modified by Burnet (195T) to the theory of
clopsl selection for the production of
antibodies, The problem is to explain how the
body forms antibodies that are able ' to
desctivate large mumbers of invading foreign
substances, called antigens, while not attacking
the body's own aubstances. Jerne, in reflecting
on the reasoning he used in the formation of the
theory, said: "thres mechanisma must be
assumed: (1) a random mechanism for ensuring
the limited synthesisz of antibody molecules
possessing all posaible combining sites, in the.
absence of antigen, (2) a purging mechanism for
repressing the synthesis of such antibody
molecules that happen to it auto-antigens, and
{3) a selective mechanism for promoting the
synthesis of those antibody molecules that make
the best rit to any antigen entering the
animal." (Jerne, 1966, p.301). Jernao's theory
may be expressed in ouwr steps I-TII. Jerne
proposed (1) a mechanism for producing an array
of antibodies, (II) both negative selection teo
eliminate antibodies against bodily substances
and positive selection for production of
antibodies that fit an invading antigen, with
the (III}) result that the original array of
antibodies is altered after selection. Jerne's
theory proposed that natural antibodies
circulating through-out the body would attach to
an antigen, carry it to a phagooytic cell and
causs that cell to produce more antibodies like
the selected cne. (Jerme, 1955, p.849).

Although Burnet endorsed much of Jerns's
theory, he objected to the mechanism of
production of antibodies and proposed an
alternative at the level of the cell rather than
the moleculs. Burnat said: the "major
objection is the absence of any precedent for,
and the intrioaic unlikelihood  of the
suggestion, that a molecule of partially
denatured antibody could stimulate a cell into
which it had been taken to produce a seriss of
replicas of the molecule... . It would be more
satisfactory if the replicating elements
essential to any such theory were cellular in
charaoter Ab initic rather than extracellular
protein which ocan replicate only when taken ints
an appropriate cell... .[this idea ia developed
hers] from what might be called the "clonal®
point of view." (Burnet, 13957, p.6T). Burnet
proposed that the mechanism of wariation was
somatic mutation, namely changes within cells of
the body. The selective mechanism operated by
moleculeas on the cell surface recognizing
antigens. After a type of cell recognized an
antigen, it would be stimulated to reproduce
into a clona of its type. Of this theory Burnet
said: "Such a point of view is basically an
attempt to apply the concept of population
genetica to the oclones of messnchymal



cells within the body.™ (Burnet, 1957, p.68).
Thus, Burnet explicitly appealed to the analogy
betwesn mutation with natural selection and his
theory of somatic mutation and clonal selection.

Burnet argued against a prior theory of
antibody formation that wWas of the
tool=fashioning type. (Burnet, 1957, Pp.6T).
The template theory of antibedy formation
proposed that the body fashions an antibody on
the invading antigen which serves as the
template. The Jerne-Burnet selection theory,
not the template theory, was subsequently
confirmed and expanded. (Golub, 1981).

A number of other theories can be seen as
selection theories.
research will be required to determine whether
direct mapping to Darwin's theory of nmatural
selection, uas of the abatract type of selection
theories, ar other methoda of theory
construction played a historical role in the
construction of these theories. Here I will
merely call attention to the fact that their
atrusture fits that of the abstraction for
selection theories.

Darwin in The Power of Movement in Elants
(1881) explained, for example, the coiling of &
pea tendril around & wire as a result of naturel
complete circulsr movement of tendril being
altered (selected) after encountering an object,
so that subsaquent movement was in the direction
of the wire. The variant pool was complete
ecircular movement, the object encountered
provided the selective agent in that direction,
and the altered pool was the subsequent movement

2 onlymin that dirsction. (CGhiselin, 1969,
p.196) .

Operant oconditioning works by selectively
reinforcing some behaviora out of an original
array to slter the subsequent behavior. The rat
in & meze, for example, engages in random
movements. Those in the direction of a food bar
are reinforeed, until the rat learns to move
non-randomly. The original array of varianta ia
thus random movement. Humans are the agents of
salection, in the experimental case, and the
oritericn for selection is movement toward the
food bar. The altered array of variants is the
povement after the reinforcement. Memory plays
the role of heredity in supplying the altered
pool of varisnts on which subsequent selection
steps act.

Yarious attempts to apply selection theorles
to sociml phenomena have been made as far back
g3 soclal Derwinism in tke nineteenth ocentury
and as recently as socioblelogy in the last few
years. Whether the mechaniss for producing and
‘transmitting types of social behavior is genstic
or environmental has been hotly debated.

A final type of selection theory is
evolutionary epistemoclogy.
Human lnderstanding argued for a view of the

Additional historical’

Stephen Toulmin in’
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development of knowledge as a result of "sa dual
process of conceptual variation and intellectual
selection.® (1972, p.200). Neither Toulmin nor
others within this epistemological tradition
have had much to say about the mechanism for the
production of new concepts. I have been arguing
that use of analogical reasoning may provide a
peans of constrained gemeration of plausible new
ideas that then may be selected according to the
oriteria acientists use for justifying theories.
Whethar salection-type theories or
tool-fashioning theories will ultimately be of
use in underatanding the growth of knowledge
remains to be seen.

Recuraive self-reference 1s proving to be a
powerful technigque in artifieisl intelligence.
Having now come full-circle to my starting
peint, nemely a discussion of the way analogies
may be used as a mechanism to generate new
ideas, it is no doubt time to stop.

7. CONCLUSION

In conclusion, I would like to suggest thaet
AI and philosophy of science can work together
in coming to understand the heuristies in
disecovery or patterns of reasoning in theory
conatruction. AI i= sometimes called
oxperimental epistemclogy, and I believe it
holds the promise of meking philosophy of
acience an experimental diseipline. If a
pattern of reasoning cam be built intoe an AI
aystem that can comstruet plausible hypotheses,
then that would serve as an experimental test of
the pattern. Philosophers will have to be much
more precise and detailed in their
apecifications of patterns of reasoning if those
patterns are to be lmplemented in AI systems.

Of the methods of theory construction that I
have discussed, the ope that will probably be
sasiest to implement is theory construction by
shared abatraction. Philesophera of sclence and
people in AI could cooperate in finding Lypes of

, ®uch as the selection type and
tool-fashioning type that I heve mentioned.
Also, they could work together in developing
eriteria for when a particular type is to be
evoked and inatantiated in a particular problem
domain.

The method that holds the greatest promise
for producing scmething new or creative is the
plecemeal construction uaing more than one
analogue. New idems often result from putting
old ideas together in new ways. The
implementation of plecemeal theory construction
seems harder to me, but potentlally wvery
exciting.

On this optimistic mnote for future’
interfield interactions, let me cloae. :
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Abstract

A more general kind of sequence-prediction problem—the non-
deterministic  prediction  problem—is  defined, and a  general
methodology for its solution presented. The methodology, called
SPARC, employs multiple description models to guide the scarch for
plausible scquence-generating rules.  “Three different models are
presenicd along with algorithms for instantiating them w discover
rules. The instantiation process requires that the initial input sequence
be substantially transformed to make explicit important features of the
sequence. Four different data transformation operstors are described.
The architecture of a system called SPARC/E is presented, which
implements most of the methodology for discovering sequence-
generating rules in the card game Elewsis. Examples of the execution
of SPARC/E are prosented.

1. Introduction

Inductive learning—that is, lkearning by getieralizing specific facts or
ohscrvations—is a fundamental strategy by which we acquire
knowledpe about the workd. This form of learning is rapidly becoming
one of the central research topics in AL Muost research on computer
models of inductive learning has addressed the problem of inducing a
general duscription of a concept from a collection of independent
instances of that concept (the so-called training instances). Thus, the
rescarch has dealt with learning concepts that represent a certain class
of instances.  ‘The instances can be specific physical objects,
interactions, actions, processes, and so un. The learned concepts are
general descriptions of classes of such instances,

Learning problems of this type include
»lcaming a checkers evaluation function [Samuel, 1963,

1967] that assigns w a given class of board siluations a
certain value,

» learning descriptions of block structures [Winston, 1970],

o determining rules for interpreting mass speclrograms
[Buchanan and Mitchell, 1978,

» formulating  diagnostic nules for soybean discases
[Michalski and Chilausky, 1980], and

» discovering heuristics to guide the application of symbolic
integration operators [Mitchell, UtgofT, and Banerji, 1983].

In Samuel's checkers program, for cxample, each training instance
was a board situation represented as a vector of 16 airdbutes. The
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learmed concept was an ¢valuation function that computed the "value”™
of any board position for the side whose turn it was to move. No
relationships between different board positions were considered.
Similarly, Michalski’s AQ11 program [Michalski and Chilausky, 1980]
was given independent training instances, cach describing a discased
goybean plant in terms of 35 multi-valued atributes. Each plant could
have one of 19 possible soybean diseascs. From scweral hundred
training instances, the program inferred pencral diagnostic rules for
each of these discascs,

This type of inductive learning can be called insiance-fo-class
generalizatfon. A review of several methods for such instance-to-class
generalization can be found in [Michalski, Carbonell, and Mitchell,
1983]. A comprchensive review of learning research is given in
[Dieteerich, London, Clarkson, and Dromey, 1982).

Another type of inductive leaming involves constructing a
description of a whole object by observing only selected parts of i
For example, given a set of fragments of a scene, the problem s o
hypothesize the description of the whole sene, A very important case
of such par-to-whole generalization is where the "part” consists of a
fragment of a sequence of objocts {or a process evolving in time) and
the problem is o indece the hypothetical description of the whole
sequence (the process). Once such a description is found, it can be
used to predict the possible continuations of the given sequence or
process. ‘Thig clase of parl-to-whole inductive learning problems we
will call prediction problems.

This paper investigates the prediction problem for a sequence of
objects characterized by a finite set of attributes. An elementary
problem of this type ks letter-sequence prediction, in which cach ohject
in the sequence is characterized by only one attribute: the name of the
letter. For cxample, given a sequence of letters such as

ABXBCWCDY ...

the learning program must discover a “pattern™—that is, a rule that
governs the generation of letters in the sequence. In this case, such a
rule might state that the scquence B a perodically repeating
subsequence of throe letters in which the first two letters are successors
of the letter appearing in the previous period, while the third letter is
the predecessor of the cormesponding letter in the previous period.
Early papers by Simon and Kotovsky [1963, 1972, 1973] show that just
a few reiationships (such as successor, predecessor, and equality) are
sufficicnt o represent most such patterns.  Related work by
Solomonoff [1964] and Hedrick [1976] has investigated grammatical
approaches to describing letter sequences,

The sequence prediction problem becomes more difficult when the
sequence consists not of simple objects with only a single relevant
attribute (like the problem just described), but instead of objects with
many relevant attributes.  Further complexity is introduced if the
pattern describing the sequence also involves a variety of relationships
among these auribotes. For example, the pattern may involve the
periadicity of recurrence of certain properties or the dependence of



it ar some arbitrary distance In the past. A sequence prediction
problem exhibiting the above-mentioned complexities arises in the
card game Flousis [Abbote, 1977; Gardner, 1977). Examples from this
gamie will be wsed to illustrate the gencral methodology of discovering
patierns in sequences deseribed in this paper. The rules for Eleusis are
briefly explained in section 2,1,

Before we formulate preciscly this preblem of discovering patterns
in sequences, let us first explain why it is important for current Al
research, There are three major Al problems that must be addressed
in any solution tw this discovery task; (2) the representation problem,
(b} the problem of performing model-driven inductive leaming with
multiple models, and (c) the problem of reasoning about lemporal
processes. The specilfic representation problem of intercst here is that
of automatically detcrmining an appropriate serics of ransformations
of the initial sequence description so that the pattern can be found.
The multiple-model inductive lcaming problem arises because no
single model can provide sufficicnt guidance w the search for
plausible descriptions in this domain.  The relationship of this
problean to reasoning about Gime i not as strong a3 the other two
problems. However, since temporal processes include as a special case
. discrete-time linear sequences, some of the technigques developed for
sequcnce prediction may be relevant o the more general problem.

In the next two sections, we discuss in detall the representation
prehlem and the problem of multiple-model induction as they arise in
this domain,

1.1. Task-ariented transformalion of description space
‘Ihe problem of transforming the inital problem description arises
in many practical domains in which the given data {eg, the training
instances in indwctive leaming) are observations or measurements that
do not include the information most relevant to the task at hand. For
example, in character recognition, the inputl typically consists of a
matriz of light intensitics representing a character, but the relevant
information includes position-invariant propertics of letters such as
the presence of & line on the left or right of a character, occurrence of
linc endings, closed contours, and so on (cg JKarpinski and
Michalski, 1966]). These position-invariant properties can be made
explicit by applying fask-oriented transformations to the raw data.

An example of a learning program that performs task-oriented
transformations is INTSUM (a part of the Meta-DENDRAL system,
IBuchanan and Mitchell, 1978]), INTSUM is presented with raw
training instances in the form of chemical structures (graphs) and
associated mass spectra (represented as fragment masses and their
intensities). For cach fragment in the mass spectrum, INTSUM must
determine the bonds that could have broken to produce that fragment.
A simple mass spectromneter simulaor is used to develop these
hypothesized bond breaks. Fach of the resulting transformed training
instances has the form of a chemical structure and a set of bonds that
broke when that structure was placed in the mass spectrometer. It ks
this information that is provided to the remaining parts of the Meta-
DENIDRAL system (programs RULEGEN and RULEMOD).

In character recognition programs and in Met-DENDRAL, the
data transformations are fixed in advance. Future learning systems,
however, may not know the proper transformations a prior. These
learning systems will need to select or invent appropriate task-otiented
transformations for each lcarning situation.

This description=space transformation problem has been called by
various authors the dafe interpretation problem [Dicuterich, et al, 1982]
of the reformulation problem [Amarel, 1968]. We prefer the torm
task-orienied trangformation problem, since it emphasizes that the
proper choice of data transformations depends upon the task being
performed.  In the sequence prediction problem discussed in this
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paper, the desired sequence-generating rules are described in a
language quite different from the language used to describe the raw
sequence.  ‘The learming system  detormines appropriate  data
ransformations from four general classes -of wansformations and
applies them to the raw sequence to produce a transformed sequence
amenable 10 pattern discovery,

The task-oricnted transformation problem is part of a spectrum of
problems faced by learning programs. The simplest learning
algorithms (e.g., linear regression) determine the cocfficients for a
predetermined, fixed set of variubles. Slightly more sophisticated are
learning algorithms, such as the A% algorithm [Michalski and Kulpa,
1971] or the candidate elimination atgorithm [Mitchell, 1978], that are
able to dotermine which terms are relevant and how they should be
combined (i.e,, with operators such as A and V). Leaming algorithms
that perform interpretative transformations (c.g. Soloway [1981)
Meta-DENDRAL [Buchanan and Miichell, 1978]) augment these
basic inductive olgorithms by applying a set of predetermined
transformations w the data prior w inductive generalization. Mot yet
developed are leamning algorithms that could select description-space
transformations under guidance of special heuristics.  And very few
researchers have addressed the problem of discovering new descriptors
(predicates, functions, operators, cte.). Table 1-1 shows this spectrum
of inductive learning problems.

1. Determine coefficicnts

2. Select relevant variables and combine

3. Apply predetermined transformations

4. Select ransformations under heuristic guidance
5. Discover new descriptors

Table 1-1; Spectrum of learning problems in increasing order of
difficulty

The method presented in this paper falls under category 4, since it
searches four general classes of transformations and employs heuristics
reflecting domain-specific knowledge.

1.2. Learning with multiple models

‘The second major problem that arises in sequence prediction is the
problem of learning using multipbe description models. This problem
has not received much attention in previous Al research. Most
existing systems employ a single model that provides guidance to the
induction algorithm as it searches a space of possible descriptions.
Many systems, for cxample, use conjunctive descriptions to represent
concepts. By constraining the search to consider only conjunctive
descriptions, the learning problem is greatly simplified. Michalski
[Michalski and Kulpa, 1971] constrains descriptions to be in
disjunctive normal form with fewest disjunctive terms. This constraint
is satisfied (approximately) by having the induection algorithm find
first one conjunction, and then another, and so on untl all of the
training instances are covered. Meta-DENDRAL [Buchanan and
Mitchell, 1978] employs a fairly elaborate model of the operation of
the mass spectrometer to guide its search for cleavage rules. In
general, all of these systems use a single model, and very few authors
have made their models explicic

One rescarcher who has employed multiple models is Persson
[1966). He applied four different models o the problem of
extrapolating number- and letter-sequences.  Bricfly, these models
were 8



1. a model that computes the cocfficients and the degree of a
polynomial by applying Mewton's forward-difference
formula {the degree can be arbitrarily large);

L. an extended model that discovers expencntial rules of the
form ADRS, where A & a polynamial of degree 4 or less and
B and C are polynomials of degree 1 or less (e, Band C
are of the form ax + b):

3.a simple periodic model for periods of length 2 (ie,
intertwined sequences); and

4. a generalization of the Kotovsky and Simon model for
Thurstone leter-series that can discover simple periodic
and segmenied sequence-gencerating laws.

These models are applied in an artificial learning situation in which
the program is given a saguence of sequence-extrapolation problems.
Thus, in addition to attempting to solve each individual sequence-
extrapolation problem, Persson's program tries to predict the kind of
sequence-prediction problem that it will next receive—that is, it tries
to predict which model will best fit the next scquence-prediction
problem. Hence, when the program is attempting to solve one of the
base-level problems, it sclects models to apply based on its predictions
about the kind of sequence that it is expecting.

Persson’s work shows the value of employing multiple description
models to search for sequence-generating rules. The major limitation
of Persson’s approach, however, is that it is specific to number- and
letter-sequence prediction.  His methods cannot solve the more
general problem described in this paper in which objects have
multiple attributes and the task is to find a nondeterministic sequence-
prediction rule.

Table 1-2 shows a spectrum of five model-based learning methods.
The simplest approach is to use a single fixed model. This has been
the common approach in Al thus far. The next step is to provide a
learning program with a set of models from which it would choose the
most appropriate ones. This is the approach used by Persson, The
third level of sophistication would be to have the program generate a
predetenmined set of models, just as the learning program applies a
predetermined set of data transformations. This could be improved by
having the program decide which models to generate on the basis of
special heuristics. Finally, an even more sophisticated program would
be able to invent new models and apply them to guide the lcarning
process. .

1. Single model

1 Selection from a few models

3. Predetermined generation of models

4. Heuristically-guided gencration of modets
5. Discovery of new models

Table 1-2: Spectrum of model-based methods in  increasing
difficulty

The approach described in this paper scarches & predetermined
space of possible models in a depth-first fashion, and hence, falls
under point 3 of this table.

It is the development of wechniques for addressing these two
problems—of selecting task-oriented transformations and of applying
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multiple description models—that is the main theoretical contribution
of this research. In the remainder of this paper, we

1. define  the sequence prediction  problem
consideration,

under

2 describe  the methods wsed for  represeating  and
transforming the iitial training instances,

3. present techniques for reprosenting the models and
scquence-gencrating rules, and finally,

4, provide the dewils of the program SPARC/E, which
implements most of the described methodology.  The
program is illustrated by a few sclected examples of its
operation when applied to the inductive card game
Eleusis.

2, Problem Statement

Suppose we arc observing a process that generates some objects,
one after another, and arranges them into a sequence, Suppose that
the objects are generated from a known set and that there exists an
underlying law that specifies at beast some of the properties of every
new generated object, 'We will call such a law a sequence-generating
rule. It is assumed that the law i expressed in torms of properties that
are cither observable properties of objects present in the sequence up
o the moment when a new object i generated or properties that can
be derived from such observable properties by some known inference
rules.

We are interested in the most general kind of sequence-generating
law in which the law does not necessarily completely determine which
objects can or cannot appear next in the sequence. The law merely
stales some propertics that constrain the next ohject to be a member of
a restricted set. Thus, such a generating rule is nondeterministic. The
task of discovering such a generating law is a difficult learning task,
requiring task-specific data transformations and model-guided
induction. We will call this learning problem a mom-deterministic
prediction prablem (MDP, for short). If the law guiding the generation
of the sequence completely defines the next object at every point in
the sequence, then the NDP problem reduces o a determinisiic
prediciion problem (DP, for short). In the DP problem, it is assumcd
that there is no randomness in the generation of the next object, The
next object is strictly a function of the past objects.

Many rescarchers have previously considered DP problems such as
letter-sequence prediction, number-series extrapolation, economical
prediction, and prediction of the behavior of a computer system. Most
recently, the BACON system [Langley, 1980] has addressed a wide
range of DP problems that arise in scientific discovery situations.
BACON and most of its predecessors make strong use of the
constraint that in a DP problem, aff attributes of the next object in the
sequence are determined by the previous objects in the sequence, The
NDP problem is more difficult o solve, because only a partial
description of the original sequence i sought.  Consequently, many
more plausible hypotheses must be considered during the inductive
learning process,

Let us illustrate a simple NDP problem by an example. Suppose we
are given a snapshot of an ongoing process that has already generated
the objects (graphs) shown in Figure 2-1,

“The observable properties of each graph are: the NUMBER OF
NODES, the SHAPE of the graph (T-junction, square, bar, wheel,



triangle, star, diamond), the TEXTURE of cach node {solid black, blank,
and cross), and the oriENTATION of the graph (applicable ooly
graphs that are elongated in some direction, expressed as dogrees
clickwise from vertical), Suppose we would like now to predict what

TOIA® 7
= A = 3N
CLOlY

Figure 2-1: A simple NP problem

By examining the given string in Figure 2-1, we can ohserve that it
can be partitioned into scgments of three graphs in length. The nodes
of the graphs in each triplet have TEXTURE in the order €solid black,
Blank, cross®, The sUARES of the graphs are always <T-junction, *,
bar» (where * denotes any shapc). We can also notice that the
ORIENTATION of the T-junction changes by —45 degrecs cach time,
while the ORIENTATION of the bar increases by +45 degrees each
time, Finally, the NUMBER OF MODES in the center graph alternates
between 4 and 8 IF the above regularities indeed constitute the
pencrating law, we can hypothesize that the next graph in the
sequence will have § blank nodes. and then after that there will be a
graph that is a slanted bar with crossed nodes and ORIFNTATION of 225
deprees (slant downwards to lefth,  Thus, with regard to the first
predicted object, we know only two propertics (NUMBFER and TEXTURE
of nodes), and with regard to the second predicted object, we know it
completely. It is easy to see that the problem of letter-sequence
prediction {or extrapolation) is a special case of the NDP problem
where cach ohjest is a letter of an alphabet whose observable property
is its name. 1 also has onc derived property that is its position in the
alplabet. (The order of letters in the alphabet is externally-provided
domain knowledge.) Since cach object (in this casc a character) is
defined completely by specifying its name (or its position in the
alphabet), letter serics prediction is necessarily a DI* problem,

2.1. An exemplary HDP problem: the card game Elousis

An interesting NP problem occurs in the card game Eleusis,
invented by Robert Abbott [Abbot, 1977; Gardner, 1977). Eleusis i
an inductive gamte in which players attempt to discover a "secret rule”
invented by the dealer. The secret rule is the generating rule for a
sequence of cards. Each player, in his or her turm, adds one card to the
sequence, and the dealer indicates whether the card s a correct
extension of the sequence (i.e., satisfies the sccret scquence-gencrating
rule). Players who play incorrectly are penalized by having additional
cards added 1w their hands. The goal of each player is to get 1id of all
of the cards in his hand, which is only possible if correct cards are

played. The cards played during the game are displayed in the form of |

a layout in which the correct cards form a "main line” and incorrect
cards form "side lines” branching down from the main line at the card
that they followed, Figure 2-2 shows a typical Fleusis layout for the
sequence-generating rule “Play alternating red and black cards.” In
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this game, the 3 of hearts was played first, followed by a 9 of spades,
and a Jack of diamonds. All of these were correct.  Following the
Jack, a § of diamonds was played. [t appears on a sideline Below the
Jack, because it was not a correct extension of the sequence. (At this
point a black card is required.) The 4 of clubs was then correctly
played, and so on.

Main Tine: 3H B85 J0 4C JD 2C 10D 2C G6H
Side Tines: 6D AH AS BH

BH 105 TH

QD 10H

Figure 2-2: A sample Eleusis layout

Elewsis provides a good domain for studying the use of task-
oriented data transformations to aid learning.  Frequently, the
generating law for an Eleusis sequence is stated in terms of descriptors
that are not present in the initial sequence. In this example, for
instance, the generating law is stated in terms of the color of the cards,
but the original sequence supplics only the RANK and SUIT of cach
card, Table 2-1 provides sume examples of generating laws from
Eleusis. Mote that the terms in which these laws are expressed (e.g.,
“strings of cards of the same suit”, "alternating sequence”) are quite
different from terms such as RaNK and SUTT that described the
original sequence. To bridge this difference, appropriate description-
space transformations have to be performed.

« If the last card was a spade, play a heart, if last card was a
heart, play diamonds; if last was diamond, play clubs; and
if last was club, play spades.

# The card played must be one point higher than or one
point lower than the last card,

® If the last card was black, play a card higher than or equal
to that card; if the last card was red, play lower or equal.

# Play alternating even and odd cards.

» Play strings of cards such that each string contains cards all
in the same suit and has an odd number of cards in it

Tahle 2-1: Some examples of sequence-gencrating rules in Elcusis

Eleusis also provides a good domain for studying the use of models
for puiding the induction prooess. The space of possible Eleusis rules
using descriptors such as SUIT, RANK, COLOR, FACEDNESS, PARITY,
PRIMENESS, and RANK MODULO 3 is very large. In our description
language, there are more than 10137 possible sequence-gencrating
rules invalving four or fewer conjunctive ve:l:pl‘aaiunei1 A breadth-first

scarch of this space, such as is conducted by the candidate-elimination

Hmmhbmﬁmmmﬂumﬂlﬂmmlsmm
mumw-umnmumuwmmmmhmn
musmber of clements in ils valee st and the number of possble sdeclors that can be
formied using those elements): SUTT (4,9), mas (13, 91). coLo (2,3), FACEDNESS (2.3),
parITyY (2.3), Promimiss (2.3} mankeeons (L7}, osurrel (4.5) B-SUrma (4.9), B-RANED
(25,300, p-aamker (25,3000, shasgm (25300), saanee (25300), pootoes (LI)



algorithm, would clearly be impossible. Fortunately, the rules used by
people tend to cluster into certain classes that can be well-described by
three models: periodic rules, decomposition rules, and DN rules.
Thus, a model-directed approach can be used o discover sequence-
gencrating rules in Elcusis,

3. Overview of Solution

“This scction gives an overview of the approach taken to solving the
MNP probicm defined in section 2. The approach is a combination of
bottom-up data transformation, wop-down model specialization, and
data-driven instantiation of the specialired models to fit the
transformed data. These three processes can be briefly explained as
follows:

1. Bottom-up data transformation involves applying various
transformation  operators to  the initial sequence
description to obtain a derived sequence description. 'We
use four basic data ransfremations: adding  derived
attributes, scgmenting, splitting, and blocking. Details of
these are described in section 4.

=]

. Top-down model specialization involves  specifying
particular values for the paragmeters of general rule models
to obtain a parameterized model. We use three general
models; the disjunctive normal form model (DNF), the
decomposition model, and the periodic model. Fach of
these models has one or more parameiers. For example,
both the DNF and decomposition models have a single
parameter: the lookback, L (ie, the number of objects
back from the given objoct in the sequence that are
assumed to determing the next object). The periodic
model has two parameters: the fookback, [, and the perfod
length, P, which indicates the length of the repeating
period in the sequence, Details of the model specialization
process arc described in section 5.

[

. The model-instantiation process attempts 1o fit the
parameterized model w the derived sequence description
to produce an instantiated parameterized model, A model
that has been parameterized and instantiated serves as a
sequence-generating rule.  This process ks described in
section 6.

The above three steps are illustrated schematically in figure 3-1.

Model instantiation, as used in this paper, is an extension of the
well-known Al technique of schema instantiation.  Schema
instantiation has been applied, for example, by Schank and Abelson
[1975] to interpret natural language, by Engelmore and Terry [1979] o
interpret X-ray diffraction data in protein chemistry, and by Fricdland
[1979] to plan genctics experiments.  Model instantiation differs from
schema instantiation in the complexity of the instantiation process.

DooLok (2.3), D-FACEDNESSHL (2,30, D-FACEONFSSIE {2,3), oeramimyol (2,3), DraRITYR
23 (23 bR (2.1}, DRANEMODIS (LT), D-RAMKMOD G
(3.7 The sur and RANKMOD) descriplors are cyclically ardered, while the RARK
descriptors ame interval descriptors. All others ane nominal In a hlock of theee adjacent
cards (with lookback L=2). the first seven descriptoss appear three limes—oate
each card.  Hence, mqatml member g possible conjuncts is (9*01°1* 330147y *
{5 H00" 100" 3" 3% 2% = ?_I'IJJEH . I there are four conjumcts in a nabe, then we
obtin [2.10321*10 = 199710
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Fignre 31:  Schematic description of the rule discovery process

Wodel instantiation involves not only fGiling in predetermined slots or
substituting constants for variables, but also synthesiving a logical
formula of an assumed wype. For example, in order w instantiate each
of the three models described below. the program must synthesize a
coijunction of predicates or a disjunction of such conjunctions that
satisfics certain constraints. Model-instantiation methods share with
schemasinstantiation methods the advantage that they are efficient,
and alsv eflfective with noisy and uncerinin data. . The constraints
provided by the models (or schemas) drastically reduce the size of the
space that the programm must search.

The principal disadvantage of model- and schema-instantiation
methods s that they require substantial amounts of domain
knowledge 1o be built into the program. In order to keep this domain
knowledge explicit and easily modified, we employ a ring architecture
in the design of the learning program, as described in section 6. This
architecture facilitates the application of the system to a variety of
problems by simplifying the process of changing the domain-specific
parts of the program.,

4. Describing and Transftorming Training
Instances
Mow that we have defined the problem W be solved (the NDP
problem) and sketched the solution, we launch into the details of that
solution.  This section presents the deseription language for
representing the original sequences and the transformation operators
that can be applied o modify that representation.

4.1. Representing the initial sequence

A sequence of objects Is represented as an indexed sequence®

Q). 9y - Q>

It is assumed that the only relevant relationship between two objects is
their ordering in the sequence. Each object is deseribed by a set of
attributes (also called descripiors) fj, £, .., . which can be viewed as |
functions mapping objects into attribute values. To state that attribute
flﬂfﬂbjml :]j has value r, we wrile

[r1(a3)=rl.

1.&.nmu.ry af the netational convemions uscd in this puper cppes in section 3.



This notation is called a selector. For example, i is color and ¢ s red,
then the selector

[color{q])=red]
states that the color of the j-th object in the sequence is red,

Each attribute 35 only permitted to take on values from a finite value
set called the doneain, D(Ti]. of that awribute, This constraint is part of
the background knowledge that has to be given to the program. For
cxample, in a deck of cards, the domain of the SUIT attribute is {clubs,
diamonds, hearis, spades).  Additional knowledge about the domain
sct can be represented. In particular, the domain set may be linearly
ordered, eyelically ordered (i.e., in a circular, wrap-around ordering),
or trec ordered,  We will see below how these domain orderings are
applicd to the problem of representing cards in an Elewsis game,

A complete inidal description of a single object, q,, called an event,
is an expression giving the values for all of the auribites of q This is
usually written as a conjunction of selectors:

[fi(ai)=ri1][f2(aj)=r2]...[fn(ai)=rn].

. Itcan aiso be represented as a vector of attribute values:
[rl. Fy o rn}.

This wector notation suggests that each objoct description can be
viewed as a point in the evens space E:

E = D{f,} % D{f,) X... X D{f}
This event space containg all possible events.

A complete description of the initial sequence is a sequence of
conjunctions of sclectors (or alternatively, a sequence of atiribute
vegtorsh—one conjunction for cach object in the sequence. The space
of all possible sequences can be gencrated by selecting all possible
sequences of events chosen from E,

4.2. Translorming the Sequence

As we mentioned in section 1, it is often necessary to transform the
initial sequence into a derived sequence in order to facilitate the
discovery of sequence-generating rufes. Such a data transformation
can be viewed as a mapping T from one set of sequences 5, containing
objects ), described by attribures F, 1o another sct of derfved sequences
5, containing derived objects ', and described by derfved atiributes F.

T 48, Q. F> 5 <8 QL FY
ey @ 2

where Py = Py AFC parameters of the transformation that control its
application. t'l'c have found four basic transformations to be
especially useful for discovering sequence-generating rules: (a) adding
derfved atiribates, (b) sepmenting, (c) splitting into phases, and (d)
blocking. Each of these is described in turn,

4.2.1. Adding derived altribules

The simplest transformation does not change the set of sequences,
5, or the set of objects. O, but only the set of attributes, F. For
cxample, in Elcusis, the initial set F contains only two attributes: the
kAN and SUIT of a card. These can be augmented by deriving such
attributes as COLOR (red or black), FACEDNESS (faced or nonfaced),
PARITY (odd or even), and PRIMENESS (prime or not prime in rank).
The adding-derived-attributes transformation has no parameters.

4.2.2. Segmenting

The segmenting transformation derives a new sequence made up of
a new sel of ohjects, ', and described with a new set of attributes, .
The new sequence is produced from the original sequence by dividing
the original sequence into non-overlapping scgments. Each segment
becomes a derived object in the new scquence. The only parameter of
the segmenting transformation is the scgmentation condition that tells
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how the original sequence should be divided into segments. Three
types of scgmentation conditions can be distinguished: {a) those that
use properties of the original objects to determine where the sequence
showld be broken, (b) those that use propertics of the original objects to
determine where the sequence should med be broken, and (c) those
that use properties of derived objects to determine where the original
sequence should be broken,

For cxample, supposc the original sequence consists of physical
objects described by attributes such as WEIGHT, COLOR, and HEIGHT.
An example of cach type of segmentation condition follows:

1. Break
[waight{q1-1)>10][weight{qi)=<10].

when

According to this condition, the original sequence is to be
broken (between g, , and qy) at the point where the weight
of an object changes from above 10 to under 10,

Fa Don't break as long as
[color(qi)=color(qi-1)][waight(qi)>10].

This condition states that the original sequence will not be
broken (between g, and q.) if the color stays the same
and the weight remains above 10. It will be broken at any
point where these conditions do not both hold.

1. Break so that [Tength{g1* )=2].

This condition states that derived objects {g;") should be
subscquences of length 2 from the original sequence {ie.,
pairs of adjacent objects from the original saquence).

The choice of atwibutes, F'. for describing the newly-derived
objects, (', depends on the segmentation condition used o segment
the sequence. For example, if the [Tangth(gd® )=2] condition is
used, attributes of interest might include the sum of the VALUES of the
two original objects, the maximum VALUE the minimum VALUE, and
soon. The LENGTH of the segment would not be of intercst, since by
definition, it s a  constant However, if  the
[color({gi)=color(qi-1)] condition is used, the LENGTH of the
segment could be quite interesting and should be derived. Also, the
ro01.0R shared by all of the cards in the scgment might be of interest.
In our implementation, the user specifics which attributes should be
derived. All user-specified attributes are derived unless the program
can prove from the segmentation condition that those attributes would
not have a well-defined value for each segment in the sequence or else
would be trivially constant for all segments,

Often, a scgmentation condition leads to the creation of incomplete
segments at the beginning and end of the original sequence. These
boundary cases can create difficuliics during model instantiation, so
they are ignored during rule discovery, but checked during rule
evaluation.

4.2.3. Splitting

The splitting transfarmation splits & single scquence into a sequence
of P separate subsequences: <ph,, ph,, ..>. Sequence l:nh1 starts with
object g (the object al the i-th position in the original sequence) and
continees with objects aken from succeeding positions at distance P
apart in the original sequence. Each of the derived sequences Is called
a phase. P is the parameter of the splitting transformation that denotes
the number of phases. Figure 4-1 shows the splitting operation for P
=3



Original scquence: €q1 q2 g3 g4 g6 g6 qFf g8 q@>
Derived sequence; <phl ph2 ph3Z, wiere
phi: <ql g4 q7»
ph2: <q2 g6 q8>
ph3: <03 qé q>

lFigure 4-1: Splitting transformation with P=3

The objects within cach phase retain the linear ordering that they
had in the original sequence. The phases themsclves can be
considered to be cyclically ordered so that phy precedes ph, whiich
precedes phy, and so on, until phy, which is Gliowed by phl again,
Consider, for example, the following sequence:

1820310 4 11>

The splitting transformation with P=2 would produce the sequence
¢ph1 ph2> where

phi = <1 2 3 &
ph2 = <8 9 10 11>

Since the splitting transformation simply breaks the original sequence
of objects into subsequences, no new objects are created.
Furthermore, no new descriptors are defined. The sct of descriptors
used to characterize the ohjects in cach of the phases is the same as the
set of descriptors used to characterize the objects in the original
sequence,

The gplitting transformation can be applied o break one sequence-
prediction problem intoe several subproblems—one fur each phase.
This is how periodic rules are discovered.

4.2.4. Blocking

The blocking transformation convens the original sequence into a
new sequence made up of a new set of objects B and a new sct of
attributes F°. The new sequence is created by breaking the original
sequence into overlapping segmenis called blocks. Each object b, in
the new sequence describes a block of L.+1 consecutive objects from
the original sequence, starting at object g, (called the head) and
proceeding backwards to object q,, (where L is the lookback
parameter of the blocking transformation). Figure 4-2 shows the
blocking operation for L=2 (Block length of 3).

Several attributes are derived to describe each block. For each
attribute A applicable to- the objects in the original sequence, the
attributes AD, Al, ..., AL are defined that are applicable wo the objects in
the derived sequence, Mﬂbi'} has the same value as m{qi‘;l‘. Al(b,) has
the same value as Afg. 1]'" and so on until AL(b)). which has the same
value 25 Ag,; ). In words, the original anributes are retained in

Original sequence: <q1 g2 q3 g4 qf q8 q7 q8>

Derived sequence: ¢b3 b4 b6 b8 b7 DbB>
whembiamduivndnb}mmdiﬂmﬁasﬁmﬂm

ba: {q1 q2 gq3>

bé: <q2 q3 gq4>

bb: <gd q4 gb>

be: <qé qb g@>

b7: <q6 q& gi>

b8: <qé q7 g@>

The underlined ohject in cach block i the head object.
Figure 42 The Blocking Transformation with L=2.
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the new sequence, but they are renamed so that they apply to whole
Blocks rather than to individual objects in the original sequence. The
numerical suffix on the new names encodes the relative position of the
original object g, in bluck I:j.

For example, supposc we have the sequence <q1 g2 q3 q4 gb>
with attributes RANK and SUIT, where
[rank(qi)=2][suit{ql)=H]
rank{q2)=4][suit(q2)=5]
irlnk[qaj-ﬁl[au‘it(qﬂ't]
rank(g4)=8][suit(qg4)=D]
[rank(gB6)=10][suit(qb)=H]
Now suppnse we apply the blocking transformation (o this sequence
with L=2 to obtain the derived scquence of blocks <b3 b4 BB,
Then the descriplors RANKD, RANKI, RANK2, SUITD, SUITL, and SUM2
will be derived with the values
[rank2(b3)=2][suit2(b3)=H]
[renkil{b3)=4][suiti{b3)=5]
[ranko(b3)=6][suito(b3)=C]
[rank2{b4)}=4]{suit2(b4)=5]
[ranki{b4)=6][suitl(b4)=C]
[rank0{b4)=8][suit0(b4)=D]
[rank2(b6)=a][suit2(bB)=C]
[ranki{bB)=8][suit1({b6)=D]
[rank0{b6)=10][suitO{bb)=H]

This transformation leads io a highly redundant representation of
the information in the original sequence. For cxample, the
information about SUIT and RAN of the original object q, is repeated
as SUTTO and RANKD of block by, SUITL and RANKI of hl!uck b,, and
surr2 and RANK2 of block b, However, this derived sequence of
blocks facilitates the representation of the relationships between
objects in the original sequence. Many sequence-prediction rules
involve such relationships.

Ta represent relationships between objects, additional descriptors
calied sunt and diffcrence descriptors are defined. In the case of the
above sequence, the descriplors S-RANKOL, S-RANKOL, D-RANKOL
D-RANKOZ, D-5UMMOL and DSUITO? are created.  The value of
s-RANKONb,) is the sum of RANEND.) and RANKL(b]). The value of
p-rANKDL(B.) is the difference between lu.ram{hgj and RANKID,).
Tlhus, in ition to the selectors shown above, the following selectors
would also be derived for the new sequence:

[s-rank01(b3)=10][s-rank02({b3)=8]
[d-rank01(b3)=2][d-rank02(b3)=4]
[d-suito1(ba)=1][d-suit02(b3)=2]

[s-rank01(b4)=14][s-rank02(b4)=12]
d-rank01(b4)=2][d-rank02(b4)=4
d-lu1tG1[hl]-1][d-suitnz(hl]-zi
[#-rank0i(b6)=18][s-rank02(b6)=18]
d-rank01(b6)=2][d-rank02(b5)=4]
Ed-:uitﬂl{hb}-11[d-su1t02[hl]-2]
From this representation, it is relatively easy to discover that
[d-rank0i({b1)=2] is true for all blocks bi.

Ordinarily, sum and diffcrence attributes only make sense for
attributes such as RANK whose domain sets are lincarly ordered, We
have extended the definition of difference to eover unordered and
cyclically omdered domain ses as well. For an unordered auribute
such as COLOR, whose domain set is {red, black}, D-COLORDL takes on
the value 0 if the coLORK(b) = cOLORI(h) and 1 otherwise. For’
attributes with cyclically-on domain scts, such as surT (with
values {clubs, diamonds, hearts, spades}), T+SUITH is equal to the
number of steps in the forward direction that are required to get from
sumith) o sumr;hi,'p. If wm(bij=diamunds and surtofb)=clubs,
DSI.JI'I‘DI{bi]=3.

The sum and difference attributes make the ordering of the original
sequence  explicit in the auributes that describe each block.



Cunsequently, it is no longer necessary to represent the ordering
between blocks. Hence, the model-fitting algorithms discussed below
treat the derived sequence (of blocks) as an unordered set of events,

One difficulty with the above approach is that the numerical suffix
notation is nat very casy to read, especially when it is combined with a
sum or difference prefix. Hence, we have devcloped an alternative
representation that is more comprehensible. In this notation, selectors
that refer to blocks, such as [suit1({bi)=H], are writen as sclectors
that refer o objects in the original sequence, such as
[suit{qi-1)=H]. Similarly,  sclectors  such  as
[d=-rank01({bi)=3] are written as
[rank{gi)=rank{qi-1)+3]. This notation makes the meaning
of the selectors clear without having to explicitly mention the blocks
hi' For purposes of implementation, the first notation is better
because it enables the program o treat all scquences—including
derived sequences—uniformly, However, the sccond notation is mone
understandable and hence will be used for the rest of this paper.

' 5. Representing Sequence-generating Rules
and Models

A sequence-gencrating rule 5 a function g that assigns to each
sequence of objects, <q,, @, -, G, >, a non-empty set of adwissible next
abju'l’s'QH I’

B [fql. ill- - qi>} =3 {Qk+1}

QH i is the set of all objects that could appear as the next object in the
sequence, For example, in the rule “Play a card whose rank is one
higher than the previous card”, gl<... 4C})=Qn_1 is the set of cards
{3C, 312, 5H, 55}.

The set Q) , | may contain only one event, or it may contain a large
set of possible events. [F for all k, the sequence <q,, g, .., G2 i
mapped by g into a singleton set, then the mule is a deterministic rule;
atherwize, it s a nondeferministic rule. This paper addresses the
proshlem of discovering a nondeterministic sequence-generating rule,
& given the sequence £q;, g,. - Gy -

The sequence <q;, 4y, ... ;> can be viewed as the set of assertions

q; € 8l<2)
9, € lq)

0 € B4ay, e Qg )

These assertions arc positive instances of the desired sequence-
generating rule,

In Eleusis, negative instances are provided by the cards on the
sidelines—that is, the cards rejected by the dealer for being incorrect.
A sidcline card qa' played after card 9 provides a negative instance
of the form: :

q,” & el€q,. 9 937
The goal is to find a description for g that is consisient with these
training instances and satisfies some preference criterion.

The preference criterion in cur methodology (and in all learning
sysicms) attempts to evaluate a candidatc rule in terms of its
generality, predictive power, simplicity, and so on. These semantic
properties are difficult to compute, however, [Instead, virtually all
learning systems employ syntactic criteria that correspond in some way
to these semantic criteria. Syntactic criteriaz—such as the number of
selectors in a conjunction and the number of conjuncts in a
disjunction—will only correspond o the semantic criteria if the
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representational framework is well chosen (See McCarthy [1958]). As
we noled in the introduction, most previous Al research on learning
has employed a single representational framework or model for
describing the rules or concepts to be kearned. In Eleusis, a single
framework is insufficient, [Instead, we have developed three basic
models that were found to be useful: the DMF model, the
decompuosition mudel, and the periodic model. When these models
are employed, syntactic criteria can be used to approximate semantic
eriteria during evaluation.

A model is a logical schema that specifies the syntactic form of a
class of descriptions {in our case, sequence-generating rules). A model
consists of mode! parameters and a set of constraings that the model
places on the forms of descriptions. The process of specifying the
values for the parameters of a model is called parometerizing the
model. The process of filling in the form of the parameterized model
is called instantiiing the model. A fully-parameterized and fully-
instantiated model forms a sequence-generating rule. Models can be
instantiated using the original sequence, or, more typically, using a
sequence derived by applying some of the data transformations
discussed in the previous section.

All three models use the representation language V122 as a
building block for expressing sequence-generating rules. V122 is an
extension o the predicate calcubus that uses the sefector as ils simplest
kind of formula, The V122 selector is substantially more expressive
than the simple selector presented above in section 4.1. The simple
selector has the form:

[ti(a)=r]
whereas the V022 selector has the form:
[Pi(x1, %2, ..., xn) = rl v r2Z v ... ¥ rm]
In the V22 selector, attributes f, can take any number of arguments
{:]. LI Furthermaore, the attributes flu.u take on any one of a
sef nr;valncs {rl. Fy on r“]-. The v denotes the internal disjunciion
operator, Thus, the selector
[rank{qi)=0 v 10 v J v Q v K]
indicates that the rank of object q; can be either 9, 10, J, Q, or K. The
internal disjunction represents disjunction over the values of a single
variable, In this case, it could be expressed aliernatively as
[rank(q1)=0].
since the domain of the RANK attribute is known v be lincarly
ordered with a maximum wvalue of K (King). To aid
comprehensibility, VL322 provides the operators €, », <, >, and #, in
addition w the basic = operator.
Examples of typical selectors include:

[rank(q1)=rank(gi-1)]
(paraphrase: the RANK of q, is different from
the RANE of qi_l‘,l

[suit{qi)=suit{gi-1)+1]
[pnmphm:mnsmThmmbymﬁ-uqumqi}

[rank{gi)+rank({gi-2)>10]
{paraphrase: the sum of the M.Nl:snfql
and q, , is greater than 10)

Now that we have introduced the basic notation of VL22, each of
the three rule models is presented in trn,

5.1. The DNF model
The DNF model supports the broad class of rules that can be
expressed as a universally quantified VL22 staiement in disjunctive



normal form.  The DNF mode! has one parameter, the degree of
lookhack, L. An expmple of a DNF rule (with L=1}) is:
¥{ ([color(qi)=color{qi-1)] V
[rank{qi)=rank(qi-1)])
In general, a DNF rule is a collection of conjuncts of the form
Wi (C1VC2VCIV ... VCk)

The universal quantification over 1 indicates that this description is
true for all objects . in the sequence,

An additional consteaint specified in the DMF model is that the
number af conjuncts, k, should be close to the minimum that produces
a description consistent with the data.

§.2. The Decomposition Modael
The decomposition model constraing the description t be a set of
implications of the form:
L1 => R1
L2 => R2

Lm => Am
where the => sign indicates logical implication.

The model states that the left- and right-hand sides,
all be VL322 conjunctions. The lefi-hand sides m
cxclusive and exhaustive—that is,

L, VL, V..L_ =TRUF,and
Vik (%K => (I, A L, = FALSE)).

A decomposition rule describes the next object in the sequence in
terms of characteristics of the previous objects in the sequence. For
example, the rule

¥i{[color(gi-1)=black]=>[parity(qi)=odd] V
[color(qi=-1)=red] =>[parity(qf)=even])
is a decomposition rule that says that if the last card was black, the

next card must be odd, and if the last card was red, the next card must
be even,

The decomposition model has a lookback parameter, L, that
indicates how far back in the sequence the description “looks™ in order
o predict the next object in the sequence, The above rule has a
lookback parameter of 1, because is examines q .

and Rj. must
be mutually

5.3. The Periodic Modeal

This model consists of nules that describe objects in the sequence as
having attribute values that repeat periodically. For example, the rule
"Play alternating red and black cards” is a periodic rule. The periodic
model has two parameters: the period length, P, and the lookback,
L. The period length parameter, P, gives the number of phases in the
periodic rule. A periodic rule can be viewed as applying a splitting
transformation to split the original sequence into P separate sequences.
Each separate phase sequence has a simple description. The lookback
parameter, L, tells how far back, within a phase sequence, a periodic
rule “looks” in order to predict the attributes of the next object in that
phase. The periodic model imposes the additional constraint (or
preference) that the different phases be disjoint (iLe., any given card is
only playable within one phase).

A periodic mieumprmnwdqsmorderedp-mhofvm
conjunctions. The j-th conjunct describes the j-th phase scquence.
The rule

" <[color(qi)=red], [rank(qi)=rank(qi-1)7>
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i a periodic rule with P=2 and L.=1, which says that the sequence is
made of two (interleaved) phascs. Each card in the first phase is red;
each card in the second phase has at least as large a rank as the
preceding card in that phase. Hence, one sequence that satisfics this
rule is €<2H 3C 10H 58 AD 65 6H 6C>,

A more complex periodic rule is the rule used to generate the
sequence shown in Figure 2-1. 1t can be represented as

¢ [texture-of-nodes(qi)=solid black] &
[shape(qgi)=T-junction] &
[orientation(qi)=orientation(qi-1)-46],

Etutura-nr-nndu{qi Jy=clear] &
[numbar-of-nodas(qi)=4],
[number-of-nodes(qi)=8] >,

shaps(qi)=bar] &
arientation{qi)=orientation(qi-1)+46] >

Motice that this s a periodic rale with three phases and a lookback
of 1. The middle phase of the period is itsell a periodic rule with the
NUMBER-OF-NODIES alternating between 4 and 8.

Etﬂtun-of nodes(qi)=cross] &

§.4. Derived models

The three basic models can be combined to describe more complex
rules. Basic models can be joined by conjunction, disjunction, and
ncgation, For example, the rule "play alternating red and black cards
such that the cards are in non-decreasing order” is a conjunction of the
periodic rule

¢ [eolor(qi)=rad], [color(qi)=black] >

and the DNF rule

[rank(qi) = rank(gi-1)].

5.5. Model Equivalences and the Heuristic Value of
Models
The reader may have noticed that the decompuosition and periodic
models appear to be special cases of the DINF model. For instance,
given that the clauses in a decomposition rule are mumanrtmb.sm
and exhaustive, the decompaosition rule

L, =>R &
L=>R &

L, =>R,
can be written as the DNF rule
L, &R V[, &R,V .. VL &R_]

Similarly, if the clauses of a periodic rule are mutually-exclusive and
exhaustive, then the periodic rule

v

can be expressed as a decomposition rule of the form

¢, =G,
¢ =G



Even when the constraints of mutual exclusion and exhawstion ane
vinlated, it ¥ usually possible to develop some equivalent DNF rule
for any perindic or decomposition rule. For instance, in the periodic
rule

¢ [color{gi-0)=rad], [rank(qi-0)=aven] >
(paraphrase; play alternating red and cven cards)
the different phases are overlapping, The above transformation into a
decomposition rule
[eolor(qi-1)=rad]=>[parity(qi)=even] &
[parity{qi-1)=evan]=>[color(qi)=red]

docs not work, because, for example, the sequence
€3D 2D 4C ...>

satisfics the second rule (the first if-then clause can be applied twice),
but not the first rule (Since the 4C is not red). However, it is possible
o get around this particular problem by defining a new descriptor for
each ohject in the original sequence, called POSITION, that has the
value i For ohject q; With this descriptor, the above rule can be
encoded as
[position(qi)=edd] => [coler(qi)=red]
[position(gi)=aven] => [parity(qi)=even]

Henge, it appears that all rules can be written as DNF rules.

Giiven this fact, it is reasonable to ask why multiple models should
be used atall, The answer is that the primary value of multiple models
is that they provide heuristic guidance to the scarch for plausible rules.
Hence, though the DNF model is capable of representing all of these
rules, it is not helpful for discovering them. In short, it is
epistemologically adegquate but not  hewristically adequate (see
[MeCarthy and Hayes, 1969 McCarthy, 1977]). Each model directs
the atiention of the learning system to a small subspace of the space of
all possible DNF VL22 rules. The next soction shows how the
constraints associated with cach model are incorporated into special
model-fitting induction algorithms,

6. Architecture and Algorithms

In section 3 we described the three basic processes involved in
discovering  sequence-generating  rules: (a) transformation of the
eriginal sequence to obtain a derived scawence. (b) selection of
appropriate models for the given sequence, and (c) fitting of the
models to the derived sequence. In sections 4 and §, the four daa
transformations and the three models were presented. This section
covers the third step of fitting the specialized models to the
transformed sequence. The model-fitling process & most casily
understood in the context of the program architecture, so this section
also discusses the architecture in detail.

6.1. Ovarview of the Program

The processes in the program (see Figure 6-1) are structured into
four components—the three basic components mentioned above plus
an evaluation step. The processes of transforming the initial sequence
and of selecting and parametcriving a model are performed in parafiel.
Then, specialized model-fitting algorithms use the transformed
sequence to instantiste the model to obtain a candidate sequence-
gencrating rule, These candidate rules are then evaluated 1o
determine a final set of rules,

The reason for performing data transformation and model sclection
in pasallel is that these two processes are interdependent.  For
example, if a periodic model s sclected (with period length P), then a
splitting ransformation (with number of phases ') needs to be applied
to the sequence. These two processes can be viewed as simultancous
couperative ‘searches of two spaces: the space of possible data
transformations and the space of possible parameterized models.
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6.2. Overview of the Concentrie Ring Architecture

In order for the learning program to be casily modified to handle
entire classes of NP problems, the program & structured as a set of
concentric knowledge rings (sec Figure 6-2). A knowledge ring is a set
of routines that perform a particular function using only knowledge
appropriate to that function. The precedures within a given ring may
invoke other procedurces in that ring or in rings that are inside the
given ring. Under these constraints, the concentric ring structure
forms a hierarchically organized system.

Ideally, the rings should be organized so that the putermost ring
uscs the most problem-specific knowledge and performs the most
problem-specific operations and the inner-most ring uses the most
gencral knowledge and performs the most general tasks. Such an
architecture improves the program's gencrality because it can be
applied to increasingly different NIDP problems by removing and
replacing the outer rings. In order to apply the program to radically
different learning problems, all but the inner-most ring may need to
be replaced.

‘The ring architecture is used here as follows, The outer-most rings
perform user-interface functions and convent the initial sequence from
whatever domain-specific notation is being used into a sequence of

Initial Sequence Model Space

Transform by applying Search model
adding attribules, space to develop
sagmanting, & paramatesized
spitting, and madel
blacking oparations
Instantiate model
to fit derived data
Ewalbuate resubting
candidate rules
Final set
of rules

Figure 6-1: The Model-fitting Approach

w977

Figure 6-2: The knowledge ring architecture
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V132 cvents. The inner-most ring performs the model-fitting
functions. It expects the data to be properly transformed so that the
data have the same form as the inodels to which they are to be fitted.
The intervening fings conduct the simuliancous processes of
developing a properly parameterized model and transforming the
input sequence into an appropriate form.

‘I'he imtervening rings also evaluate the rules discovered by the
inner-most ring using the knowledge available in each ring.

6.3. The Program SPARC (ELEUSIS version)

SPARC (Sequential PAwern ReCognition) is a general program
designed 1o solve a variety of NDP problems using the rfng
architecture.  So far, we have implemented only a more specific
version of the program, called SPARC/E, tailored specifically to the
problem of rule discovery in the game Eleusis. SPARC is made up of
five rings, as shown in Figure 6-2, This section describes the functions
of each ring in the SPARC/E version of the program. To illustrate
these ring functions, we use the Eleusis layout shown in Figure 6-3,
Recall that in an Fleusis layout, the main line shows the correctly-
played scquence of cards {positive examples). The side lines, which
branch out below the main line, contain cards that do not satisfy the
rule—that is, incorrect comtinuations of the sequence (negative
examples).

Main Tine: 3H B85 4c J0 2C 100 8H 7H 2C

Side lines: Jo AH AS 10H
ED BH 108
QD

Figure 6-3; Sample Eleusis Layout

6.3.1. Ring 5: User Interface

Ring 5, the ouler-most ring. provides a user interface to the
program. [t exccutes user's commands for playing the card game
Eleusis, as well as commands for controlling the search, data
transformation, generalization, and evaluation functions of the
program. One command in Ring § is the INDUCE command that
instructs SPARC/E to look for plausible NDP rules that describe the
current sequence. When the INDUCE command is given, Ring 5 calls
Ring 4 to begin the rule discovery process.

6.3.2. Ring 4: Adding Derived Attributas

Ring 4 applics the adding-derived-attributes transformation to
convert the Eleusis layout into a sequence of V22 events. This
involves creating derived attributes that make explicit certain
commonly known characteristics of playing cards that are likely to be
used in an Eleusis rule: COLOR, PARITY, FACED versus NON-FACED
cards, and 50 on. Figure 69 shows the layout from Figure 6-3 after it
has heen processed by Ring 4. The plusses and minuses along the
right-hand side of the figure indicate whether the event is a positive
example or a negative example of the sequence-generating rule, These
derived evenis are passed to Ring 3 for further processing.

6.3.3. Ring 3: Segmenting the Layout

Ring 3 is the first Eleusis-independent ring. [t applies the
segmenting transformation to the sequence supplied by Ring 4. In the
present implementation, the end points of each segment are
determined by applying a scgmentation predicate, P(card, . wdi) to
alll pairs of adjacent events in the sequence. When the predicate P
evaluates io FALSE. the sequence is broken between card, , and card;

3l

VLZZ event positive or

negative

[rank(card1)=3][suit{cardl)=H]
[perity(cardi)=odd][color{cardl)=red]
[prime{cardl)=N][faced{cardl)=Y] +

[rank{card2)=0][suit(card2)=5]
[parity(card2)=odd][color(card2)=black]
[prime{card2)=N][faced({card2)=N] +

[rank{cardd)=J][suit{cardd)=D]

purtty(carda}-adﬂ][unlortcnrdag-rnu]
prime{cardd)=Y][faced(carda)=Y

[rank(cardd)=6][suit{cardd)=D]

parity(card3d)=odd][color(cerdd)=red]
prima(cardd)=N][faced(card3d)=Y] -

[rank(card3)=4][suit(cardd)=C]

parity{cardd)=even][color(cardd)=black]
Epr1nn[narﬂa]-H][fa:ad{caruaj-u] *

[rank{card4)=J][suit{card4)=D]
[parity(cardd)=odd][color(cardd)=red]
[prilo{clrd4}-T][fl::d[cnrdd]-T] +

8Ltc.

Figure 6-4: Derived layout after Ring 4 processing.

to form the end of a segment. Typical scgmentation predicates used
are;

lrml:{:aldlfl =rank(card, ;)]
[rank(card,)=rank(card, ,)+1]
[color{eard)=color(card, |}
[suit{card,)=suit(card, ;)]
[parity(card.)= parity(card, )|

Other techniques for performing segmentation, such as providing a
that becomes TRUE at a scgment boundary (sce scoction
4.2.2), are not implemented in SPARC/E.

Ring 1 scarches the space of posible scgmentations using two
secarch pruning heuristics.  After cach attempt to segment the
sequence, it counts the number of derived objects (segmenis), k, in the
derived sequence, If k is Jess than 3, the scgmentation is discarded
since there are too few derived objects o use for generalizaton, Ifk is
more than half of the number of objects in the original sequence, the
segmentation is also discarded because in this case many segments
contain only one original object. Segmented sequences that survive
these two pruning heuristics are passed on to Ring 2 for further
processing.

One segmentation that Ring 3 always performs is the “null”
segmentation—that is, it always passes the unsegmented sequence
directly to the inner rings. Figure 6 shows a sample layout and the
resulting derived layout after segmentation using the segmentation
condition: [suit(cardi)=suit({cardi+1)]. The derived
objects (scgmenis) are denoted by variables string, The negative
event [suit(string2)=D][color(string2)=red]
I]Ingti{itl‘ilﬂ!}'!] is obtained from the segment <5D 2D 4D>.

SPARC/E derives the descriplors COLOR, SUTT, and LENGTH to’
describe each derived object. The choice of which descriptors to
derive involves three steps.  First, LENGTH is derived whenever the
segmentation transformation is applicd. Sccond, any descriptor that is
tested in the segmentation predicate (in this case, SUIT) is also derived.
Third, any descriptor is derived whose value can be proved tn be the
same for all cards in each segment. In this case, COLOR is derived
because, if SUIT is a constant, then COLOR s also a constant. Using this



The layout:
34 6D 2D 7C AC ©C JH BH 8H QH KS
65 4D AH !
15

The derived ssquence:

dascription of
derived object

positive or
negative

[suit{stringl)=H][color(stringl)=red]
[Tength{stringl)=1]
[suit(string2)=D][color(string2)=rad]
[length{string2)=2]
[suit(string2)=D]{color(string2}=red]
[length{string2)=3] =
[suit(string3)=C][color(stringd)=black]
[length{string3)=3]
[suit(string4)=H][color(stringd)=red]
[length(string4)=4]

Figure 6-5: Sample layout and scgmented scquence,

segmentation, SPARC can use the DNIF model to discover that the
segmented sequence can be described as

[1ength{stringi}=length{stringi-1)+1]

That ks, the LENGTH of each segment of constant SUTT (in the main
line) increases by L

5.3.4. Ring 2: Paramelerizing the Models

Ring 2 scarches the space of parametcrizations of the three basic
models. Each model i considered in turn. For cach model, Ring 2
develops a set of derived evenis based on each allowed value of the
lookback parameter, 1, and the number of phases parameter, P, The
user can control which models should be inspected and what range of
values for L. and P should be investigated. By default, the program
will inspeet the decomposition mode] with 1. = 0, 1, or 2, and the
periodic model with P = lor 2and L. = Oor L.

Specifically, Ring 2 performs the following actions depending on
which model is belng parameterized:

A, For the decomposition model with lookback parameter L., Ring 2
applies the blocking transformation to break the sequence received
from Ring 3 into blocks of length Lo After blocking, all of the
attributes that described the original ohjects are converted into
altributes that describe the whole block (as described in section 4
above), Furthermore, sum and difference descriptors are derived to
represent the relationships between adjacent objects in the original
sequence, The resulting derived cvents can be viewed as very specific
if-then clauses of the following form.

Given an initial sequence of objects <q,. @, .. G2 It us look at
block b, which describes the subsequence €q, . . Q. G Let F]
denote the selectors of ubject q,; renamed so that they apply to by,
For crample, F, could be the selectors
[suiti[bi]-ﬂ][ranki(hﬂ-3]—se!|:ctm! that  originally
referred to object Gy Let d(F.F,) denote all of the difference
selectors obtained by “subtracting” event Fr. from event F], and let

s{Fr Fk] denote all of the summation selectors obtained by
“summing"” events F; and F. For example, d(Fy, F,) could include

the selectors [d-sult01(b1)=2][d-rank01(bi})=-3] cbtained

from “subtracting™ F, from Fy
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With these definitions, the derived events for the decomposition
mode] have the form:

Fl&. &F =Y F&dF,Fl&. &dF,F)&
sF, F )& .. &s(F, F))

These derived events no longer need to be ordered since the
ordering information is made explicit within the events. These events
have the form of very specific if-then clauses. This facilitates the
model-fitting process in Ring 1.

B. For the DNF model with lookback parameter L, the sequence
derived in Ring 3 is blocked in a very similar manner, except that only
the selectors describing q; are retained in the description of block by
The derived events have the following form:

Fo& diFy, F)) & .. & d(F, F,) & s(F. F) & ... o(F F, )

These events arc very specific conjuncts that are passed to the Al
algorithm in Ring 1, where they are genetalized to form a DNF
description,

C. For the periodic model with period length P oand lookback L,
Ring 2 performs a spliing transformation followed by a blocking
transformation. First, the sequence obtained from Ring 3 is split into
P separate sequences. Then cach scparate sequence s blocked into
blocks of length L.+ 1. The derived cvents have the same form as the
events derived for the DNF modgl, Mote that beeause the blocking
occurs after the splitting, the Inokback takes place only within a phase.

To provide an example of the function of Ring 2, Figure 68 shows
some events from Figure 6-3 after they have been transformed in
preparation for fitting to a decomposition model with L=1.

B.3.5. Ring 1: The basic modal-fitting algorithms
Ring 1 consists of three separate model-fitting algorithms: the A9
algorithm, the decomposition algorithm and the periodic algorithm.

The A% algorithm [Michalski and Kulpa, 1971] is used to fit the
DNF model to the data,. A9 attempis to find the DNF description
with the fewest number of conjunctive terms that covers all of the
positive examples and none of the negative examples. The algorithm
operates as follows. First, a positive example, called the seed, s
chosen, and the set of maximally-general conjunctive expressions
consistent with all of the negative examples is computed. This set is

[ranki(b2)=3][suiti{b2)=H]
[parityi(b2)=odd][colori(b2)=red]
[primei(b2)=¥][facedl{b2)=H] =3

[rank0({bz)=8][suitd(b2)=51[parityd(b2)=odd]
[colar0(b2)=black][prima0(b2)=N]
faced0(b2)=N][d-rank01(b2)=+8]
d-suit0i{b2)=+1][d-parity01({b2)=N]
[d-cﬂlnrl.'ll{hZ)-?}[d-pr!naﬂl‘l{bt}-?]
[d-faced0i(b2)=Y][s-rankil({b2)=12] +

[ranki({b3)=9][suiti(b3)=5]
[parity1{b3)=odd][colorl(b3)=black]
[primel(b3)=N][facedi(bd)=N] =

[rank0({b3)=J][suit0(b3)=D][parity0(bd)=odd]
[color0({b3)=red][prime0(b3)=Y]
[facedd(b3)=Y][d-rank01(b3}=+2]
[d-suit01{b3)=+2][d-parityD1{b3)=N]
[d-coler0oi(b3)=Y][d-prime0l(b3 )Y
[d-faced01(b3)}=Y][s-rank0l(b3})=20 -

Figure 6-6: Some everus of Figure 63 wansformed for
decompaosition L=1.




called a star, and it is equivalent to the G-set in Miwchell's [1978]
version space approach. One element from this star is chosen to be a
conjunct in the output [INF description, and all positive cxamples
covered by it are removed from further consideration.  [F any positive
examples remain, the process is repeated, selecting as a new seed some
positive cxample thal was noet covercd by any member of any
preceding star.  In this manner, a DNF description with few
conjunctive terms is found. IF the stars are computed without any
pruning, then A% can provide a tight bound on the number of
conjuncts that would appear in the optimal DMF description with
fewest conjunctive [erms,

The decompasition algorithm is an iterative algorithm that secks to
fit the data to a decomposition model. The key task of the
decomposition algorithm is to identify a few attributes, called
decowposition aitribures, from which the decomposition rule can be
developed. A decomposilion attribute is an attribute that appears on
the lefi-hand side of an if-then clause of a decomposition mle, For
example, the decompaosition rule
[coler(cardi-1)=black] => [parity(cardi}=odd] V
[color{cardi-1)=red] => [parity(cardi)=even]

decomposes on COLOR. Hence, COLOR is the single decompaosition
altribute,

The algorithm uses a generate-and-test approach of the following
form:

decompositionattributes := {}  Theempiyse

while rule is not consistent do
bagin

generate a trial decomposition
(based on positive avidence only)
for sach possible decomposition attribute

test these trial decompositions against
the data

select the best decomposition attribute and
add 1t to the set decompositionattributes

and

“The process of generating a trial decomposition takes place in two
steps. First, a VL22 conjunction is formed for each possible value of
the decomposition attribute. All positive events that have the same
value of the decomposition attribute on their lefi-hand sides are
merged together to form a single conjunction of selectors. This VL.22
conjunction forms the right-hand side of a single clause in the
decomposition rule. Within this conjunction, a selector is created for
cach attribute by forming the internal disjunction of the values in the
corresponding selectors in the events. For example, using all of the
events derived in Ring 2 for the sample layout in Figure 6-3, the
decompaosition algorithm generates the trial decomposition shown in
Figure 6-7 for the rum[ca:d.rl} attribute,

Since there are only two values (ODD and EVEN) for the
decomposition attribute in the sequence shown in Figure 6-3, two
conjunctions are formed. The first conjunction is obtained by merging
all of the positive events for which [parity{cardi-1)=0dd].
There are four such events. The first selector in that conjunction,
[rank{cardi)=9 v 4 v 2], is obtained by forming the internal
disjunction of the values of rank {card{) in coch of the four events,

The second step in forming a trial decomposition i o generalize
each clause in the tral rule. The generalization is accomplished by
applying rules of generalization to extend internal disjunctions and
drop selectors. (Sec [Michalski, 1983] for a description of various rules
of generalization.) Corresponding attributes in the different clauses of
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[parity(cardi-1)=o0dd] => [rank{cardi)=0 v 4 v 2]
[suit(cardi)=5 v CJ[parity(cardi)=even v odd]
color{cardi)=black][prima(cardi)=Y v N]
faced{cardi)=N]
[d-rank{cardi,cardi-1)=+8 v -6 v =T]
[d-suit{cardi,cardi-1)=1 v 2 v 3]
[d-parity(cardi,cardi-1)=Y v N]
[d-color(cardi,cardi-1)=Y v N]
[d-prima(cardi,cardi-1)=Y v N]
[d-faced{cardi,cardi-1)=¥ v N]
[s-renk{cardi,cardi-1)=12 v 13 v 8]

[parity(cardi-1)=oven] =>
[rank(cardi)=d v 10 v 8 v 7]
[suit(cardi)=H v D][parity{cardi)=aven v odd]
[ealor(cardi)=rad][prima({cardi)=Y v N]
[faced{cardi)=Y v N]
[d=-rank{cardi,cardi-1)=7 v 8 v -2 v -1]
[d-guit{cardi,cardi-1)=0 v 1]
[d-parity(cardi,cardi-1)=Y v H]
[d-color{cardi,cardi-1)=¥ v N]
[d=-prime(cardi,cardi-1)=Y v N]
[d-faced(card], cardi-1)=Y v N]
[s-rank{cardi,cardi-1)=15 v 12 v 18]

Figure ¢7; ‘'Trial decomposition on the :I'.n.lll'l"r'{cnrdi_]} attribute

the decomposition rule are comparcd, and selectors whose value scis
overlap are dropped. When these rules of generalization are applied
e the trial decomposition for PARITY, for example, the following
generalized trinl decomposition is obtained:

[parity({cardi-1}=odd] =>
[suit(cardi)=C v S][color(cardi)=black]

[parity({cardi-1)=aven] =»
[suit{cardi)=H v D][color(cardi)=red]

This is a very promising trial decomposition. However, it has been
developed using only positive evidence, and it has been generahized
without considering that the generalization may have caused the rule
to cover negative events. Hence, the trial decomposition must be
tested against the negative events 1o determine whether or not it is
consistent. It turns out that the gencralized trial decomposition shown
above is indeed consistent with the negative evidence.

After a trial decomposition has been developed for cach possible
decompaosition attribute, the best decomposition attribute is selected
according to a heuristic attribute-quality functional. The attribute-
quality functional tests such things as the number of negative events
covered by the trial decomposition, the number of clauses with non-
null right-hand sides, and the complexity of the trial decomposition
(defined as the number of selectors that cannot be written with a single
operator and a single value). The chosen trinl decomposition forms a
candidate sequence-prediction rule,

If the candidate rule is not consistent with the data (ie., still covers
some negative examples), then the decomposition algorithm must be
repeated to select a second attribute 10 add to the left-hand sides of the
if-then clauses. This has the effcct of splitiing each of the if-then
clauscs into several more ifthen clauses. For example, if we first
decomposed on PARITY(card, ) and then on FACED{card, ,), we would
obtain four if-then clauses of the form: o

[parity(cardi-1)=odd][faced(cardi-1)=N] => ...
Epaﬁty[cardi-i}-ndd] faced(cardi-1)=Y] => ...
parity(cardi-1)=even][faced(cardi-1)=N] => ...
[parity(cardi-1)=aven][faced(cardi-1)=Y] =>» ...

The periodic algorithm is nearly the same as the decomposition
algorithm. For each phase of the period, it takes all of the paositive



events in that phase and combines them o form a single conjunct by
forming the internal disjunction all of the value sets of corresponding
selectors. Next, rules of generalizion are applicd to extend internal
disjunctions and drop selectors.  Finally, corresponding attributes in
dilferent phases are compared, and sclectors whose values sets overlap
are dropped if this can be done without covering any negative
cxamples.

6.3.6. Evaluating the NDP rules

Once Ring | has instantiated thé parameterized models o produce
A sct of rules, the rules are passed back through the concentric rings of
the program. Fach ring evaluates the rules according to plausibility
criteria based on knowledge available in that ring.  Ring 2, for
example, checks w see that the mule docs not predict an end o the
seruence. It s assumed that 2 wvalid sequence can be continued
indefinitely, Ring 3 checks the last (partial) scgment o see if it is
consistent with the rule. 1t is possible w induce a rule, using only the
complete segments, that & not consistent with the final scgment. Ring
4 tests the rale wsing the plausibility criteria for Eleusis. These criteria
are:

L. Prefer rules with intermediate degree of complexity. [In
Eleusis, Occam's Razor does not always apply. The dealer
5 unlikely o choose a rule that s extremely simple,
because it would be too casy to discover. VWery complex
rules will not be discovered by anyone, and, since the rules
of the game discourage such an ouicome, the dealer is not
likely to choose such complex rules either,

b

. Prefer rules with an intermediate degree of non-
determinism. Rules with a low degree of non-determinism
lead to many incorrect plays, thus rendering them easy o
discover,  Rules that are very nondeterministic generally
lead to few incorrect plays and are therefore difficult
discover,

Rules that do not satisfy these heuristic criteria are discarded. The

remaining rules are reterned to Ring 5 where they are printed for the
uscr.

7.Examples of Program Execution

In this scction, we present some example Eleusis games and the
corresponding sequence-gencrating laws that were discovered by
SPARC/E. Each of these games was an actual game among people,
and the rules are presented as they were displayed by SPARC/E (with
minor typesetting changes).,

The raw sequences presenfed to SPARC/E had only two attributes:
SUIT and RANK. SPARC/E was given definitions of the following
derivable attribules:

o COLOR (red for Hearts and Diamonds: black for Clubs and
Spades)

® FACE (true if card i a faced, picture card, false otherwise)
& PRIME (truc if card has a prime rank, false otherwise)

# MOD2 (the parity value of the card, 0 if card is even, 1
otherwise)

« MO0 (the rank of the card modulo 3) -
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& LENMODE (When SPARC/E segments the main sequence
inte derived subscquences, it computes the LENGTH of
cach of the subsequences modulo 2)

Three cxamples of the program cxccution arc presented: one
showing the program at its best, opc showing smne of the
shortcomings of the program, and one demonstrating weaknosses of
the progran, A few explanations are required.  First, each rule is
assumed to be universally quantified over all events in the sequence.
This quantification is not explicitly printed. Second, when the value
set of a sclector includes a set of adjacent wvalues (eg.,
[rank{cardi)=3 v 4 v 6], this is prined as
[RANK(CARDI)=3..6] The computation times given are for an
implementation in PASCAL on the CDDC CYBER 175,

7.1.Example 1
In this cxample, we show the program discovering a segmented
rule, The program was presented with the following layout:

Main 11pe: AH 7C 6C 95 10H 7H 10D JC AD
S1de Tines: KD . bS QD
JH
continued: 4H 8D 7TC 95 10C K§ 2C 105 JS
as 1] QH
8H AD

‘The program only discovered one rule for this liyout, precisely the
rule that the dealer had in mind (1.2 seconds required):

RULE 1: LOOKBACK: 0 NPHASES: 1 PERIODIC MODEL

CRITERION=[ COLOR(CARDI }=COLOR(CARDI-1) ]:
PERIOD([LENMOD2 (STRINGI)=1])

The rule states that one must play strings of cards with the same
color. The strings must always have odd length. The CRITERION =
gives the segmentation criterion that a segment is a string of cards all
of the same color. CARDI refers wo the I-th card in the original
sequence.  STRINGI refers to the I-th string in the segmented
sequence, SPARC/E discovered this rule as a degenerate periodic
rule with a period length, P, of 1. Actually, the rule that the dealer had
in mind had one additional constraint: a queen must not be played
adjacent 1o a jack or king. Rules containing such exception clauses
cannot be discovered by SPARC/E.

7.2, Example 2

The second example requires the program to discover a fairly
simple periodic rule. SPARC/E discovers three equivalent versions of
its .

Here is the layour:
Main T1ine: JC 4D QH 35 QD 9H QC 7H QD
S51de T1ines: KC BS 45 100
75
continuad: 0 QC 3H KH 4C KD €C JD 8D

continued: JH 7C J0 TH JH 6H KD

The program discovered the following descriptions of this layout
(0.49 seconds were required):



RULE 1: LOOKBACK: 1 NPHASES: 0
DECOMPOSITION MODEL

[FACE{CARDI-1)=FALSE] =>
[RANK( CARDI ) =JACK]
[RANK ( CARDI ) >RAHK{CARDI-1)]
[FACE ( CARDI } =TRUE ]

[FACE(CARDI-1)=TRUE] =>
[RAHK(CARDI)=3, .6]
[RAMK(CARDT ) <RANK{ CARDI-1)]
[FACE{CARDI) =FALSE]

RULE 2: LOOKBACK: 1 MPHASES: 1 PERIODIC MODEL

PERTOD( [RANK{CARDI)=>3]
[RANK{ CARDI ) = RANK( CARDI-1)}]
[FACE({CARDI ) #FACE(CARDI-1)7)

RULE 3: LOOKBACK: 1 NPHASES: 2 PERIODIC MODEL

PERTOD ([ RANK({CARDI )= JACK]
[RANK{ CARDI ) = -RANK (CARDI-1)+20]
[FACE(CARDI )=TRUE],

[RANK(CARDT)=3..87
[RANK( CARDI ) =-RANK(CARDI-1)+6..14]
[FACE(CARDI)=FALSE])

Rule | is a decomposition rule with a lookback of 1. Rule 2
expresses the rule as a single conjutiction, This i possible because
FACT ¥CISUS NON-FACE is a binary condition, and there are precisely
two phases to the mule. Rule 3 expresses the rule in the “natural™ way
as a perindic rule of length 2.

Natice that, although the program has the gist of the rule, it has
discovered a number of redundant conditions. For example, in rule 1,
the program  did not use knowledge of the fact that
[rank{cardi)}=jack] implics [face{cardi)=true], and
therefore, it did not remove the former sclector. Similarly, because of
the interaction of the wo conditions,
[rank(cardi)>rank{cardi-1)] is completely redundant
SPARC/YE alrcady has enough background knowledge about the
meanings of its aiributes w support these inferences,  Additional
routines need w be written to actually perform them (as is done in the
INDUCE-2 program—see [Michalski, 1983]).

7.3. Example 3

‘The third cxample shows the upper limits of the program's abilities,
During this game, only one of the human players even got close to
guessing the rule, yet the program discovers a good approximation of
the tule using only a portion of the layout that was available to the
human players. Here is the layout:

Main Tine: 44 6D BC JS 2C BS AC 65 10H
51de 11nes: 7C 65 KC AH ac AS

JH 7TH 3H KD

4C 2C Qs

105 75

8H @D

AD B8H

20 4C

The program produced the following rules after 6.5 seconds:
RULE 1: LOOKBACK: 1 NPHASES: 0 DNF MODEL

RANK{ CARDI )<<67[SUIT{CARDI ) =SUIT(CARDI-1)+1] V
Ennnx[canul];351[su11{cnnnl1-EUIT{camn:-11+3]
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RULE 2: LOOXBACK: 1 NPHASES: 1 PERIODIC MODEL

PERTOD( [RAMK(CARDI ) =RANK{CARDI-1)-9]
[RANK(CARDI ) =-RANK(CARDI-1)+4,5,7,11,13,17]
[SUIT(CARDI }=SUTT(CARDI-1)+1,2,3])

RULE 3: LODKBACK: 1 MPHASES: 2 PERIODIC MODEL

PERIOD( [RANK(CARDI ) =ACE,2,8,10] :
[RANK(CARDI ) =-RANK(CARDI-1)+1,8,9,10],

CRANK(CARDI )=6. . JACK][SUIT(CARDI)=SPADES]
[RANK ( CARDI ) =RANK (CARDI=1)+-0..8]
RAMK{CARDI ) =-RANK({CARDI-1)+8..14]
SUTT{CARDI)=SUIT(CARDI-1)+0..2]
COLOR({CARDT )=BLACK ][ PRIME(CARDI)=PTRUE]
PRIME{CARDI)=PRIME{CARDI-1)]

[MODZ( CARDI ) =1][MOD2( CARDI ) =MOD2( CARDI-1)+0]
[MODZ{ CARDI ) =-HODZ( CARDI-1)+0][MOD3(CARDI }=2]
[MOD3( CARDT }=MOD3 ( CARDI-1)+0]

[MOD3{ CARDI )=-MOD3( CARDI-1)+1])

The rule that the dealer had in mind was:

[SUIT(CARDI )=SUIT{CARDI-1)+1]
[RANK(CARDI )=RANK(CARDI-1)] V

[SUIT(CARDI)=SUIT(CARDI-1)+3]
[RANK( CARDI ) <<RANK(CARDI-1)]

“I'here is a strong symmetry in this rule; the players may cither play
a higher card in the next “higher™ suit (recall that the suits are
cyclically ordered) or a lower card in the next "lower™ suit.  The
program discovered a slightly simpler version of the rule (rule 1) that
happened to be consistent with the training instances.  Mote that
adding 3 to the SUIT has the effect of computing the next lower suit

The other two rules discovercd by the program are very poor. They
are typical of the kinds of rules thay the program discovers when the
model does not fit the data very well. Both rules are filled with
irrelevant descriptors and values. The current program has very little
ability 1 assess how well a model fits the data. These rules should not
be printed by the program since they arc highly implausible.

8. Summary

We have presented here a methodology for discovering sequence-
generating rules for the nondeterministic prediction problem. The
main ideas behind this methodology are

1. the use of wsk-oriented transformations of the initial data
and

2. the use of different rule models 1o guide the scarch for
sequence-gencrating rules.,

Four different wask-oriented transformations {adding  attributes,
blocking, spliiting into phases, and scgmenting) and three models
{DNF, periodic, and decomposition) have been presented,

The main part of the methodology has been implemented in the:
program SPARCYE and applicd w the NP problem that arises in the
card game Eleusis, The performance of the program indicates that it
can discover quite complex and interesting rules.

This methodology is quite general and can be applied to other
nondeterministic prediction problems in which the objects in the
initial sequence are describable by a small set of finite-valued
attributes. The main strengths of the method are (a) that it can solve



learniag problems i which the iniial taining instances require
substantial tsk-oriented wansformation aud (b) that it can scarch very
large spaces of possible rules using a set of rule models Tor guidance,

Many sspects of this methodology remain o be investigated. We
have not considered NP aroblems in which (a) the training instances
are noisy, () the teaining instances have internal structure so that an
attribute voclor representation cannot be used, and (¢ the sequence-
generating rules are permitted o have exceplions, Application of this
methedolegy o real world problems will probably also require the
development of additional sequence ransformations and rule models.
Also, more hewristics need to be developed that can be used to guide
the application of transformations and models.

The implementation of the methodology in program SPARC/E has
demonstrated that the method can be used to discover many Eleusis
secret rules.  There are some shorteomings of the implementation,
however, The program presently conducts a nearly exhaustive depth-
first scarch of the possible models and transformations. Much could
be gained by having the program conduct a best-first heuristically-
guided search instead. Another weakness of SPARC/E is its poor
ability o evaluate the plavsibility of the rules it discovers. Itis also not
aike to simplify rules by removing redundant sclectors, nor is it able to
estimate the degree of nondeterminism of the rule, Both of these can
be implemented without oo much diiculty by including inference
routines that make more complete use of the background knowledge
alrealy available to the program, Finally, an important weakness of
the program is its inability © form composite madels. SPARC/T s
not presently able o handle the NDP problem shown in Figure 1,
hecause it invelves a periodic rule in which one of the phases contains
an imbedded periodic sequence (soe soction 5.3).

In addition o these specific problems, there are some more general
problems that further research in the area of sequence-generaling laws
should address. First, in some real world probleme, there are several
example sequences available for which the sequence-generating law is
believed 1o be the same.  Such problems occur, in particular, in
describing the process of disease development in medicine and
agriculture, A specific problem of this type that has been partially
investigated  involves predicting the Ume course of cutworm
infestation in a cornficld and estimating the potential damage to the
crop (sce [Davis, 1981), [Baim, 1983), and [Boulanger, 1983]). In this
problem, several sequences of observations are available=—one for
cach field—and there is a noed to develop a sequence-gencrating law
that predicts all of these sequences.

A second general problem for further research s to handle
continuous processes. Al research has so far given little attention w
this case.
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APPENDIX

MNotational conventions

The following notational conventions are employed in this paper.
In general, lowercase letters denvte ebjects in sone sequence (q, ph, b)
or index variables (i, j. k) or the lengths of sequences (m, " n),
Uppercase letters denete sets of objects, auributes, and soon (Q, F, 8)
a3 well as paremeters of models and transformations (L. P). Small
capitals denote attributes (COLDR, RANK) and their values (RED,
KING)L

o Angle brackets denote sequences of objects, eg., 2
4 6 8 and also poriodic rmles, eg.,
¢[oolongi)=red] feolor(gi)=black]>.
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q;orgqi The i-th object in an input sequence.

q;' The i-th object in a derived sequence.

q- An object that constitues an incorrect extension of
the sequence after object q;

b, or b1 The irth block in a sequence derived by the
blocking transformation.

ph, The i-th phase derived by the splitting
transfonmation.

F The starting set of attributes for a transformation.

5 The starting st of sequences for a transformation.

Q ‘I'he starting sct of objects for a transformation.

F The set of derived altributes from a transformation.

g The set of derived sequences from a ransformation.

o The set of derived objects from a transformation.

Fj The set of sclectors descrihing object g in block by,

'3 The sequence-gencraling function that maps a
sequence into a set of objects Q| that can appear
s continuations of the sequence.

Qs The set of ohjects that can appear as continuations

of the sequence <q;, 951 w G

P The number of phases parmncter of the splitting
transformation and the perivdic model.

L The lookback parameter of the blocking
transformation and all three models.

[f(a)=rl or [11(a)=rk]
A simple selector, which assers that feature [ of
ul:jlm:lqj has the value r,.

[fi{qj)=ri v r2 v r3]
A selector containing an internal digjunction. It
mu\atl‘lmhawtmcﬂlurlmrtorrr

d prefix The d prefix on an attribute name indicates that it
is a difference atiribute, Hence, D-#ANK(q,q, ) i
oqual to RANK(g) ~ unx{qﬂ}.

s prefix The 8 prefix on an attribute name indicates that it
is a summation attribute. Hence, S-RANK(Q,4,.,) is
equal to RANK(q) + RANK(g, ).

d(F,, FI) The set of difference sclectors obtained by
“subtracting™ selectors F from F.

I(F.I.Fp The set of summation selectors obtained by

u"adding™ sclectors F, am:IFj

) Logical implication.



