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ABSTRACT

Past research on automated construction of classifications has
been concerned with structuring objects that are characterized solely
by attribute-value pairs. The methods stemming from that research
did not take into consideration the structural information about the
objects nor did they utilize general or problem-specific background
knowledge in the process of creating a classification. This paper
considers problems of generating classifications of structured objects
using knowledge about the inter-relationships of various concepts
relevant to describing individual objects as well as object
configurations.

1. INTRODUCTION

Creating a classification is typically the first step in
understanding and formulating a theory about a collection of
observations or phenomena. This process is a form of learning from
observation (learning without a teacher) and its goal is to structure
given observations into a hierarchy of meaningful categories. Past
work on this problem was done mostly under the heading of
numerical taxonomy and cluster apalysis. It was based on the
application of some mathematical measure of similarity between
objects, defined over a finite, a priori given set of object attributes.
Classes of objects were taken to be collections of objects with high
intra-class and low inter-class similarity. The methods assumed that
_objects are characterized by sequences of attribute-value pairs and
that this information is sufficient for creating a classification. The
methods did not take into consideration any background knowledge
about the relationships among object attributes or global concepts
that could be used for characterizing object configurations. Nor did
they take into consideration possible purposes of classification.

Since the basis for creating classes was purely mathematical,
the resulting classifications were often difficult to interpret
conceptually. The problem of interpreting the resuits was left to the
data apalyst. In addition, since descriptions of objects are simply
attribute-value pairs, the methods were inadequate for creating

classifications of structured objects, i.e., objects whose appropriate:

description involves not only object attributes but also relationships
among the object parts as well as attributes of the parts.

The recently developed method of conjunctive conceptual
clustering [Michalski and Stepp, 1983] overcomes some of the above
problems. Given a set of object descriptions, the method constructs
a hierarchy of classes and their descriptions which are in the form of
conjunctive concepts. The siblings of any pode in the hierarchy are
optimized according to a certain global criterion of classification
"quality.” The method, however, still relies on the attribute-value
descriptions of objects. It also has only limited ability to take into
consideration the background knowledge of various concepts. This
paper addresses the problems of extending the above method in two
directions:

(1)  how to form classifications of structured objects,
(2) bow to formulate and utilize background knowledge in
creating classifications.
In the following sections, the above problems are characterized
by simple examples and a methodology for their solution is outlined.

2. STRUCTURING STRUCTURED OBJECTS

In order to describe this problem in greater detail, lets us
consider a simple example based on rephrasing the problem known
as "East- and Westbound trains” [Larson, 1977; Michalski, 1980a}
shown in Figure 1. In the old formulation of the problem, given are
two collections of trains, those that are "Eastbound” (A to E) and
those that are "Westbound” (F to J). These trains are highly
structured, each consisting of a sequence of cars of diflerent shapes
and sizes. The individual cars carry a variable number of loads of
different shapes. In this formulation, this is a typical problem of
learning from ezamples (or concept acquisition) in which the task is
to automatically formulate a simple rule distinguishing between the
two classes of objects.

Suppose now the class labels are removed (as in Figure 1) and
the problem is to create a meaningful classification of the collection
of trains. This is a form of a learning from obscrvation {or concept
formation) problem. To illustrate a possible solution for the concept
formation problem, let us go back to the concept acquisition
formulation of the problem and consider discriminant descriptions of
Eastbound and Westbound trains found by the program INDUCE/2
[Hoff, Michalski, Stepp, 1983]. These descriptions were:

Eastbound trains:
"A train is Eastbound if it contains a short, closed car.”
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Figure 1. How would you classify these trains?



Westbound trains:

"A train is Westbound if there are just two cars in a train or if
a train has a car with a jagged top.”

To illustrate the description language used, beloﬁ is the actual
output from the INDUCE/2 program that corresponds to the above
descriptions:

Eastbound: V/{train) [contains(train,car1)][length(carl)=short] &
[shape(cari)=closed]

Westbound: Y/(train) [num-cars(train)=2] v
[contains(train,cml)][5hape(catl)=jagged top}

Various aspects of learning structural descriptions from
examples are given in [Winston, 1977] and [Dietterich and
Michalski, 1983]. The problem of concern here is to develop 2
general method that when applied to the collection of trains without
class labels (Figure 1) could potentially restore the above
classification or invent one of equal conceptual appeal. In addition
it should generate descriptions of the same kind as above for the
created classes, with a possible proviso that each class is described
by a simple conjunction only (in this case we would have three
classes of trains: those with a short closed car, those with a jagged-
top car, and those with exactly two cars).

Such classification construction problems occur when one
wants to organize and classify observations that require  structural
descriptions. Problems of this type include classifying physical or
chemical structures, analyzing genetic  sequences, building
taxonomies of plants or animals, and characterizing visual scenes.
In Sec. 4 we propose two methods for solving this type of problem,
one data-driven and one model-driven. Before discussing these
methods we turn to the problem of how to use background
knowledge in creating a classification.

3. BACKGROUND KNOWLEDGE

It can be observed that when people create a classification of
some observations or partition a system into subsystems, they
employ knowledge about various concepts and relationships relevant
to describing the observations or the system. Let us consider a

" simple example. Suppose that we are observing a typical restaurant
table on which there are such objects as food on a plate, a salad,
utensils, salt and pepper, napkins, a vase with flowers, a lamp, etc.
Suppose a person is asked to build some meaningful classification of
the objects on the table. One way to create a classification is to
perform the following chains of inferences:

¢ salt and pepper are seasonings
seasonings are used to add zest to food
seasoned food is something to be eaten
things which are to be eaten are edible
salt and pepper are edible

e salad is a vegetable
vegetables are food
food is something to be eaten
things which are to be eaten are edible
salad is edible

A similar chain of inferences applied to "meat on a plate” or "cake
on a dessert plate” will also lead to the concept "edible.” On the
other hand, a lamp is not food and is therefore not edible. A vase
containing flowers is not food and is therefore not edible.
Consequently, one ingful classification of objects on the table is
simply "edible” va. "inedible.” The problem that we pose is this:
suppose we are given descriptions of objects on the table in terms of
their attributes (including their structural attributes) and we want
to have a program that on the basis of these descriptions would
create the above classification into edible vs. inedible objects.
Obviously, such a program would have to be equipped (among other
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things) with the above inference rules and with the ability to use
them.

4. PROPOSED SOLUTION

This section describes two methods for solving problems of the
kind posed above, one data-driven and one model-driven. The data
driven method is based on our previous work and reduces the
problem of building a classification into a sequence of concept
acquisition  problems (specifically, problems of determining
discriminant descriptions of objects with given class labels). Thus
the method will be called RD for "Repeated Discrimination.”

The model-driven method is based on selecting classifying
attribules (attributes that are used to define classes) either from the
initially given pool of attributes or from attributes generated by
applying inference rules provided by background knowledge. This
method will be called CA for "Classifying Attributes.”

The common components of the methods are that they both
use general and domain-specific knowledge in the process of
constructing a classification and that they both utilize a similar
criterion for measuring the “"quality™ of generated candidate
solutions. Therefore, before we launch into a description of the
methods, we will first briefly discuss our language for describing
generated classes and expressing background knowledge inference
rules, and then we will discuss a criterion for measuring the quality
of proposed classifications.

4.1. The representation language

In order to build 2 classification of structured objects, we must
have an adequate language for describing such objects as well as
their classes. This requirement suggests that we use a predicate
calculus or some modification of it. Here we have chosen a language
called annotated predicate calculus (APC). APC is an extension of
predicate calculus that uses several novel forms and attaches to each
predicate, variable, and function an annotation [Michalski, 1983).
The annotation is a store of information about the given predicate
or atomic function. Together with ‘all forms found in predicate
calculus, the language also uses a special kind of predicate called a
selector. A simple selector is in the form:

|atomic-function REL value-of-atomic-function]

where REL (relation) stands for one of the symbols = #<>L
2. An example of such a selector is

. [weight{box) > 2kg]

which means "the weight of the box is greater than 2 kg.” A more
complex selector may involve infernal disjunction (disjunction of
values of the same atomic function) or internal conjunction (the
conjunction of atomic-functions having tbe same value). These two
operators are illustrated by the two corresponding examples:

"the color of the box is either
red or purple.”

[color(box) = red v purple}

"the color of box1 and box 2 is
red.”

[color(box1 & box2) = red]

Selectors can be combined by standard logical operators to
form more complex expressions. For example, a statement "there is
a green circle on top of a blue or red square™ can be expressed as

_:_*pl,pz) [outop(pl,p’l)][color(p1)-—-greeu”sbape(pl)=circlc] &
|color(p2)=blue v redj[shape(p2)==square]

(Logical multiplication is denoted by the symbol & or by
concatenating selectors).

The background knowledge is expressed as a set of APC
implicative rules:



CONDITION =»> CONSEQUENCE

where CONDITION .and CONSEQUENCE are conjunctions of
selectors. If CONDITION is satisfied, then CONSEQUENCE is
asserted. To illustrate the implicative statement, consider the
assertion "vegetables are food” from the example in Sec. 3. It can
be expressed:

[is-vegetable{object1)] = [is-food(object1)]
An alternative way to express it is
[ty'pe(objedl) = vegetable] => [type(objectl) = food)

In this expression "vegetable” and "food” are treated as elements of
the structured domain of the attribute "type.” This implication
expresses a generalization inference rule called climbing the
generalization tree (the domain of the attribute "type” is assumed to
have a tree structure). Further details on the APC language are
given in [Michalski, 1983].

4.2. Measuring the quality of a classification

Creating a classification is a difflicult problem because there are
usually many potential solutions with mo "correct” or "incorrect”
answers. The choice of a classification can be made according to
some perceived goal of classification or some measure of the quality
of the classification. One way to measure classification quality that
has been successful in both INDUCE/2 and CLUSTER/2 is to
define various elementary, easy to measure’ criteria specifying
desirable properties of a classification and to connect them together
into one general criterion called the Lezicographical Evaluation
Functional (LEF) [Michalski, 1983]. The LEF consists of an ordered
sequence of elementary criteria along with tolerances which control
to what extent different solutions are considered equivalent. The
elementary criteria measure certain aspects of the generated
descriptions such as the fit between the classification and the
objects, the simplicity of the descriptions {the reciprocal of the
number of selectors), the discrimination index (tbe number of
attributes that singly discriminate between all classes), and the
dimensionality reduction (the number of attributes that are
necessary to classify the objects).

4.3. How to use background knowledge

Building a meaningful classification relies on finding good
classifying attributes (attributes that define classes). The data
driven and model-driven methods described in the next section both
use background knowledge rules in the search for such attributes.
The background knowledge rules enable the system to perform a
chain of inferences that add new attributes to object descriptions
during the course of classification construction. These new
attributes are tested to determine if they are good classifying
attributes.

The background knowledge rules can represent both general
koowledge managed by the classification program and available to
all problems, and problem-specific knowledge provided each time by
the data analyst. In either case, the knowledge is supplied in the
form of an inference rule (called a background rule, or b-rule).
Special types of b-rules include expressions of arithmetic
‘relationships (a-rules), such as

girth(object) = length(object) + width(object)

and implicative rules that specify logical relationships (I-rules) such
as:

[above(p1,p2)]{above(p2,p3)] =2> [above(p1,p3)}

Each kind is associated with a condition indicating the situations to
which the rule is applicable.
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Background knowledge is handled somewhat differently in the
data-driven and model-driven approaches. This distinction will be
characterized below,

4.4 How to form classifications of structured objects

4.4.1. A data-driven approach: concept formation via concept
acquisition
This section explains how a problem of concept formation
(here, building a classification) can be solved via a sequence of
controlled steps of concept acquisition (learning from examples). To
begin with, let us briefly describe the program INDUCE/2 which
solves concept acquisition tasks involving structured objects.

Given a set of objects described by annotated predicate
calculus and arranged into two or more classes, INDUCE/2
generates a description of each class (in the form of annotated
predicate calculus expressions) that covers all the objects in the
described class and no objects in any other class. This is
accomplished in the following manner.

The objects are divided into two sets: objects belonging to the
class being described (called set F1), objects belonging to any other
class (called set FO). One object at a time is selecteq from set F1
(the "focus of attention”) and a "star” is built that covers the
selected object against all objects in set FO. A star is a set of all
alternative descriptions that are maximally general, cover the "focus
of attention” object (the seed) and possibly other objects from F1,
and cover no objects from FO [Michalski, 1983]. To control
computational explosion, a parameter MAXSTAR restricts the
number of alternative descriptions that are retained during the star
generation process. The “best” description in the star (according to
a LEF criterion) is selected, and it becomes part of the solution.
The objects covered by the selected description are removed from
set F1 and the process is repeated by selecting another seed object
{(from among those rot yet covered) and building a star for it.
When all objectsin the set F1 have been covered, the solution is
complete,

The INDUCE/2 algorithm can be adapted for solving
classification construction problems. Given a set of unclassified
objects, k objects are selected and treated as individual
representatives of k imaginary classes. The INDUCE/?2 algorithm
then generates descriptions of each representative that are
maximally general and do not cover any other representative object.

These descriptions are then used to determine the most
Tepresentative object in each class (defined as the set of objects
satisfying the class description). The representative objects are then
used as new seeds for the next iteration. This process stops when
either consecutive iterations converge to some stable solution, or
when a specific number of iterations will not improve a classification
(from the viewpoint of the criterion LEF).

The control layer that provides the representatives to the
concept acquisition process must be able to pick  good
representatives or else the resulting classifications will be arbitrary
without revealing underlying patterns in the data. One technique
that has been used in a variety of clustering situations is to pick
representatives at random in the first step. In the next steps central
representatives or ezfreme representatives are selected alternately
[Michalski and Stepp, 1983).

This approach requires the selection of a defined number of
representalive objects (which corresponds to the number of classes).
Since the best number of classes to form is usually unknown, two
techniques are used:

(1) varying the number of classes, and
(2) composing the classes hierarchically.

Since the classification to be formed should be easy to
understand by humans, we assume an upper limit on the number of
classes that stem from any node of the classification hierarchy. This
limit is assumed to be in the range of 4 to 7. Since this limit is
small it is computationally feasible to repeat the whole process for



To give an example solution to the "Trains” problem from
Figure 1, we show in Figure 2 a classification created by a data-
driven approach (using an earlier method described by Stepp [1978]).
We find this kind of solution appealing because the difference
between classes is striking, yet not obvious by casual inspection,

4.4.2. A model-driven approach

In contrast to the data-driven method described in the
preceding section, we will now describe a model-driven approach.
The underlying goal of the model-driven approach is to find one or
more classifying attributes whose observed value sets can be split
into ranges that characterize each class. The important aspect of
this approach is that the classifying attribute can be derived
through a chain of inferences from the initial attributes during the
course of constructing the classification. The classifying attributes
sought are the ones that lead to classes of objects maximizing the
global criterion of classification quality, (e.g., classes representing
simple concepts and/or containing objects that share values for all
attributes considered important).

The importance of an attribute can be determined either on
the basis of the classification goal or by the fact that it implies
many other attributes. For example, if the goal of the classification
is "finding food,” the attribute "edibility” from Sec. 3 is the
important classifying attribute. The second way of determining the
importance of an attribute can be illustrated by the problem of
classifying birds. The question of whether "color™ is a more
important classifying attribute than "is-waterbird” is answered in
favor of "is-waterbird” because it implies more secondary attributes
than does the attribute "color” {e.g., is-waterbird implies "can-
swim,” "has-webbed-feet,” "eats-fish”),

There are two fundamental processes that operate alternately
to generate the classification. The frst process searches for the
classifying attribute whose value set can be partitioned to form

fide, CT000a o) Y

car 2 does not
contain triangles
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Figure 2. A sample classification of the trains found
by a data-driven approach.
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classes such that the produced classification scores best according to
the LEF. The second Process generates new attributes from logical
and arithmetic combinations of other attributes, as guided by
background knowledge inference rules.

The attribute search can be performed in two ways. When the
number of classes to form (k) is known in advance, the process

the observed values of the attribute. Attributes with the number of
observed values smaller than k are not be considered,

For attributes with observed value sets larger than k, the
choice of the mapping of value subsets to classes depends on the
resulting LEF score for the classification produced and the type of
the value set,

For attributes with nominal (unordered) valye sets, any
combinations of values cap be mapped to classes. For attributes
with linearly ordered value sets, only non-overlapping closed
intervals of values are mapped to classes. For attributes with
generalization-tree ordered value sets [Michalski, 1983}, sibling
values in the generalization tree are mapped to classes.

For example, if k is 4 and the two attributes x, and X, can
have 7 and 3 values, respectively, only X, is a candidate for
determining the classification. The selection of which of the 7
values denote which of the 4 classes depends on the type of the
value set. If we assume that the value set is linearly ordered, one
possible classification involving 4 classes could be

[x, =0.1] (class 1)
fx, = 2.3] (class 2)
[x, = 4] (class 3)
[x, = 5.6] (class 4)

This classification would be selected if it is best according to the
quality criterion LEF (which also takes into consideration values of
other attributes).

When the number of classes to form is not knowe, the above
technique is performed for a range of values of k. The best number
of classes is indicated by the classification that is best according to
the LEF.

The attribute generation process constructs mew attributes
from combinations of existing attributes. _Certain heuristics of
attribute construction are used to guide the process. For example,
two attributes that have linearly ordered value sets can be combined
using arithmetic operators. When the attributes have numerical
values (as opposed to symbolic values such as "small,” "medium,”
and "large”) a trend analysis can be used to suggest appropriate
arithmetic operators as in BACON 4 [Laogley, Bradshaw, Simon,
1983]). Predicates can be combined by logical operators to form
new attributes through l-rules. For example, the rule

[cold-blooded(a1))[offspring birth(al)=egg] =>> [type(al)=reptile]

yields a new attribute "type” with a specified value "reptile.” Using
this rule and similar ones, one might classify some animals into
reptiles, mammals, and birds (even though the type of each animal
is not stated in the original data).

5. SUMMARY

We have discussed problems of creating a classification of
structured objects and have outlined a data-driven method and a
model-driven method. The first method transforms concept
formation into a sequence of concept acquisition tasks. The second
method forms classes by partitioning the value set of one or more
classifying attributes that were determined as most appropriate
according to a classification quality critetion (LEF). The classifying
attributes are either selected from the initially given ones or derived
through an application of inference tules defined in the problem
background knowledge. Both approaches make extensive use of



attribute constructions through inference tules provided by general
and problem-specific background knowledge. The capability to
incorporate background knowledge in classifying structured objects
adds a new dimension to the tasks of concept formation and data
apalysis.
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