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Abstract—A method for automated construction of classifications
called conceptual clustering is described and compared to methods used
in numerical taxonomy. This method arranges objects into classes rep-
resenting certain descriptive concepts, rather than into classes defined
solely by a similarity metric in some @ priori defined attribute space. A
specific form of the method is conjunctive conceptual clustering, in
which descriptive concepts are conjunctive statements involving rela-
tions on selected object attributes and optimized according to an as-
sumed global criterion of clustering quality. The method, implemented
in program CLUSTER/2, is tested together with 18 numerical taxon-
omy methods on two exemplary problems: 1) a construction of a classi-
fication of popular microcomputers and 2) the reconstruction of a
classification of selected plant disease categories. In both experiments,
the majority of numerical taxonomy methods (14 out of 18) produced
results which were difficult to interpret and seemed to be arbitrary. In
contrast to this, the conceptual clustering method produced results that
had a simple interpretation and corresponded well to solutions pre-
ferred by people. :

Index Terms—Classification theory, cluster theory, conceptual clus-
tering, data analysis, inductive inference, knowledge acquisition, learn-
ing from observation, learning without teacher, numerical taxonomy,
pattern recognition, theory formation.

I. INTRODUCTION

LUSTERING is usually viewed as a process of partitioning

a collection of objects (measurements, observations, etc.)
into groups of similar objects, according to some numerical
measure of similarity. Such an approach to clustering raises
two fundamental problems: “what kind of similarity measure
should be used to cluster objects?” and “should the numerical
similarity between objects be the only principle for construct-
ing clusters?” These questions are discussed in this paper, and
given answers that are substantially different from the ones
given by traditional techniques.

In the area of cluster analysis and the closely related field of
numerical taxonomy, the similarity between objects is typi-
cally determined by some proximity measure in a multidi-
mensional space spanned over an a priori defined set of object
attributes. The clusters are then defined as collections of
elements (points) of the space whose intracluster proximities
are high, and intercluster proximities are low. Research in
cluster analysis has been, therefore, primarily concerned with
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devising various object proximity measures and developing
efficient algorithms utilizing these measures. Surveys of these
measures can be found in Sokal and Sneath [15], Anderberg
{1], and Diday and Simon [2].

Such an approach to clustering has several significant limita-
tions. One is that clusters determined as groups of objects that
are “close” to each other in a fixed, a priori assumed attribute
space may lack any simple conceptual interpretations. A rea-
son for this is that a similarity measure typically considers all
attributes with equal importance and thus makes no distinc-
tion between those that are more relevant and those which are
less relevant or irrelevant. Consequently, if there is coinci-
dental agreement between the values of a sufficient number of
irrelevant attributes, objects that are different in some major
ways may be classified as similar. The approach has no mech-
anism for selecting and evaluating attributes in the process of
generating clusters. Neither is there any mechanism to gener-
ate new attributes which may be more adequate for clustering
than those initially provided. Another important limitation of
conventional methods is that they do not produce any con-
ceptual description of the clusters. The problem of cluster in-
terpretation is simply left to the data analyst. This is a serious
drawback because data analysts are typically interested not
only in determining clusters but also in formulating some
meaningful descriptions of them.

Also, traditional techniques do not seem to be much con-
cerned with the ways employed by humans in clustering ob-
jects. Observations of how people cluster objects indicate that
they tend to formulate one or a few carefully selected attri-
butes (out of very many possible attributes), and cluster
objects on the basis of these attributes. Each cluster contains
objects that are similar to each other in the sense that they
score similarly on the “important” attributes. Thus, descrip-
tions of such clusters can be formally expressed as logical
conjunctions of relations on these attributes. Different clusters
are expected to have descriptions with different values of the
selected attributes. In short, people tend to cluster objects
into categories characterized by nonintersecting conjunctive
concepts.

This brings us to another related limitation of traditional
methods: they do not take into consideration any “‘Gestalt”
concepts or linguistic constructs people use in describing
object collections. Such concepts may be characterizations
of a configuration of objects such as T-shaped, V-shaped, etc.

The idea of clustering objects into categories described by
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single concepts, specifically conjunctive concepts (hence con-
junctive conceptual clustering), as well as a methodology for
its computer implementation was first introduced in Michalski
[7]. It was subsequently expanded in Michalski and Stepp
[11}, {12].

The purpose of this paper is to summarize the main ideas
behind the conjunctive conceptual clustering method and to
compare it to techniques of numerical taxonomy. The paper
also describes the conjunctive conceptual clustering program
CLUSTER/2 (which is a successor to the earlier program,
CLUSTER/PAF) and then presents results of applying it and
a numerical taxonomy program NUMTAX (implementing 18
different techniques) to two clustering problems.

I1I. SPECIFICATION OF A CLUSTERING PROBLEM

This section discusses various components of a clustering
problem that must be specified by a data analyst before a
computer-based clustering method can be used. :

A. Objects to be Clustered and Their Attributes

Typically, objects to be clustered come from an experi-
mental study of some phenomenon and are described by a
specific set of attributes (variables) selected by the data ana-
lyst. The attributes may be measured on different scales, such
as nominal, ordinal, interval, ratio, and absolute. In a simple
case, one may only distinguish between qualitative attributes
(measured on the nominal of ordinal scale) from quantitative
attributes (measured on the remaining scales). The initial mea-
surements are subject to problem-dependent transformations,
which may reduce the precision of the quantitative attributes
or replace subranges of their values by qualitative properties
(e.g., a numerical size may be replaced by characterizations
such as “small size,” “medium size,” or “large size”). The at-
tributes selected by the data analyst are not always all relevant
to the clustering problem. In conventional approaches, the
selection of relevant attributes is treated as a separate prelim-
inary step. In the conjunctive conceptual clustering method,
attribute selection is performed simultaneously with the for-
mation of clusters. The method selects those attributes which,
from the viewpoint of assumed criteria, allow it to “simply”
characterize the individual clusters in terms of available
concepts.

B. The Principle for Grouping Objects into Clusters

Objects are grouped together by a clustering method accord-
ing to some principle. The traditional principle for grouping
objects into clusters utilizes some numerical measure of object
similarity, usually a reciprocal of a distance measure. In con-
ceptual clustering, objects are assembled into clusters that
represent single concepts (linguistic terms or simple logical
functions defined on such terms). In conjunctive conceptual
clustering, described here, objects are grouped into clusters
that are characterized by logical products of relations on
selected object attributes, i.e., conjunctive concepts. These
relations may also include disjunction of properties, but only
if the disjunction involves values of the same attribute. This
type of disjunction is called internal disjunction [6]. Conjunc-
tive concepts with internal disjunction seem to represent
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typical human characterizations of object classes. An example
of such a concept is: “objects that are small and red, with
either a green or a blue spot.” A definition and a discussion of
conjunctive concepts with internal disjunction is given in
Section I1-D.

C. The Type of Cluster Structure

Given a collection of objects E, the goal of clustering is to
divide the collection into certain meaningful subsets. Let Ey,
E,, -, Ex be such subsets (clusters) of E, and let o; denote
a description of subset E;. In general, a description a is satis-
fied not only by objects in E;, but also by some unobserved
objects. Based on the relationships among the clusters and
cluster descriptions, three different types of intercluster struc-
tures are commonly distinguished in the literature.

e Partition Structure: A set of clusters whose union is the
set E, and whose descriptions are all disjoint (this implies that
the clusters themselves are disjoint).

e Overlapping Structure: A set of clusters whose descrip-
tions intersect.

e Hierarchical Structure: A multilevel hierarchy in which
clusters at the first level represent a partition of the initial set
E, and clusters at a lower level are elements of partitions of the
parent clusters one level higher.

The method described here generates either a partition struc-
ture or a hierarchical structure of clusters. An overlapping
structure can be generated by a method described by Stepp
[16]. ’

D. Cluster Representation Scheme

The purpose of a cluster representation scheme is to simply
and generally characterize objects in a cluster. Conjunctive
conceptual clustering uses two cluster representation schemes:
a single representative object selected from a cluster, called the
seed of the cluster, and a conjunctive statement that describes
all objects in the cluster. This conjunctive statement, called a
logical complex, is an expression in the variable valued logic
system VL, [4], [5].

Suppose that x;, Xp,° ", X, are variables selected to rep-
resent objects. We will assume that each variable x;,i € {1, 2,
-+, n}, has an assigned domain, DOM(x;), that specifies all
possible values the variable can take for any object in the col-
lection to be clustered. The number of such values is given by
d;. The domains are assumed to be finite, and represented gen-
erally as DOM(x)) = {0, 1, 2, ", d; " 1}. We distinguish
between nominal, linear, and structured variables, whose-do-
mains are unordered, linearly ordered, and tree-ordered sets,
respectively. Examples of nominal variables are color and
blood-type. Examples of linear variables are rank, size, and
quantity-of-something. An example of a structured variable
is shape, whose values may be triangle, rectangle, pentagon,
- -+, or polygon, which represents a more general concept (the
parent node of the nodes representing triangle, rectangle, etc.
in the tree-structured domain).

The description space spanned by variables x{, X2, ", Xa
is called the event space. Each point (event) in the spaceisa
vector of specific values of variables Xy, X2, *,X,. Anevent
that is a description of some object in the collection to be clus-
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tered is called an observed event. Other events are called un-
observed events.

A relational statement® (or a selector) is a form

[xi #R)]
where R;, the reference, is a list of elements from the domain
of variable x;, linked by the internal disjunction, denoted by
“V.”" # stands for the relational operator = or #.

The selector [x;=R;] ([x;# R;])is interpreted as “value of
X; is one of the elements of R, (“value of x; is not an ele-
ment of R;”). In the case of linear variables, the notation of a
selector can be simplified by using relational operators =, >,
<, <, and a range operator “..” as illustrated below. Here
are a few examples of a selector, in which variables and their
values are represented by linguistic terms:

[length > 2]
[color = blue Vred]

(length is greater than 2)
(color is blue or red)

[size # medium] (size is not medium)

[weight = 2. .5] (weight is between 2 and 5,

inclusively).

A logical product of selectors is called a logical complex
(l-complex). A set of objects that satisfy all selectors in an
l-complex is called an s-complex (set-complex). Thus, an
I-complex is the description of an s-complex. For example,
“the I-complex: '

[height = tall][color = blue V red][length > 2] &
[size # medium]{weight =2 . . 5]

(the operation AND is denoted by the & or implied by the
concatenation of selectors) describes those objects that are
tall, blue or red, with length greater than 2, not medium size,
and of weight 2 through 5. The set of all such objects con-
stitutes the corresponding s-complex. The distinction between
I- and s-complexes is used to permit the application of logical
or set-theoretic operators, respectively, whichever is more
convenient. When this distinction is unimportant, the term
complex will be used without a prefix.

Not every collection of objects constitutes an s-complex,
ie., not every collection can be precisely described by an
l-complex. It is, however, possible to describe every collection
of objects by an I-complex, if the /-complex is also allowed to
describe some additional objects (i.e., if it is permitted to be a
generalized description of the collection). For example, events

e;: (blue, large, round)
e,: (red; medium, round)
can be described by the complex
[color = blue V red]fsize > mediﬁm][shape = round].
This complex, however, also covers the unobserved events
€3: (red, large, round)

€4: (blue, medium, round)

1This form was first introduced in the variable-valued logic system
one (VLy) [5].
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which are distinct from e, and e,. The number of the unob-
served events covered by a complex is called the absolute
sparseness of the complex.

Given a set of complexes, the absolute sparseness of the set
is defined as the sum of sparsenesses of complexes in'it. In
addition to the absolute sparseness, we also introduce another
type of sparseness, the projected sparseness of a set of com-
plexes. This type of sparseness is applicable only to a clus-
tering which is a set of pairwise disjoint complexes. Since
complexes are pairwise disjoint, there exist, for any pair of
complexes, at least two selectors with the same variable and
disjoint references. Variables involved in such selectors are
called the discriminant variables of a clustering. The projected
sparseness of a clustering is the sum of the sparsenesses deter-
mined in the event space spanned over just the discriminant
variables. For example, if given two observed events e, and
e, ab9ve, the two complexes

e [color = blue][size = large][shape = round]
» [color = red][size < medium][shape = round V square]

have projected sparsenesses of 0 and 1, respectively, in the ;pace
spanned by the two discriminant variables color, and size (as-
suming that size takes only values small, medium, and large).

E. A Criterion of Clustering Quality

The problem of how to judge the quality of a clustering is
difficult, and there seems to be no universal answer to it. One
can, however, indicate two major criteria. The first is that
descriptions formulated for clusters (classes) should be “sim-
ple,” to make it easy to assign objects to classes and to differ-
entiate between the classes. This criterion alone, however,
could lead to trivial and arbitrary classifications. The second
criterion is that class descriptions should “fit well” the actual
data. To achieve a very precise “fit,” however, a description
may have to be complex. Consequently, the demands for
simplicity and good fit are conflicting, and the solution is to
find a balance between the two.

A number of other measures can be introduced for evaluat-
ing the quality of a clustering. CLUSTER/2 uses a combined
measure which can include any of the following elementary
criteria:

o the fit between the clustering and the events

o the simplicity

¢ the commonality

o the disjointness

o the discrimination index.

The fit between a clustering and the data is computed in two
different ways, denoted as Tand P. The T measure is the neg-
ative of the total (absolute) sparseness of the clustering, i.e.,
the negative of the sum of the absolute sparsenesses of com-
plexes in the clustering. The P measure is the negative of the
projected sparseness of the clustering. The reason for using
the negative values is to increase the degree of match as the
sparseness decreases.

The simplicity of a clustering is defined as the negative of its
complexity, which is the sum of costs attributed to each selec-
tor present in the complexes. One possible selector cost func-
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tion is based on the number of elements found in its reference
list. Selectors with few reference elements are less complex
than those with many elements, and therefore should have a
smaller cost. A simple measure of complexity can be com-
puted as the number of selectors contained in the complexes,
i.e., using a constant selector cost function that gives each
selector a cost of 1.

The commonality of a clustering is the total number of prop-
erties shared by the events in each of the clusters. The com-
monality is measured by finding the total number of selectors
that appear in the complexes. This criterion is analogous to
the traditional clustering criterion of maximizing the similiar-
ity (e.g., number of shared properties) of events within a
cluster.

The disjointness of a clustering is measured by the sum of
the degrees of disjointness between every pair of complexes in
the clustering. The degree of disjointness of a pair of com-
plexes is the number of selectors in both complexes that in-
volve the same variable and have reference values that do not
intersect. For example, the pair of complexes

e [color = red][size = small V medium][shape = circle]
o [color = blue][size = medium V large]

has the degree of disjointness 2, because 2 of the 5 selectors
do not intersect (nonintersecting selectors are underlined).
This criterion promotes clusterings with classes having many
differing properties, and is analogous to the criterion of requir-
ing maximal distance between clusters, used in coventional
methods of clustering.

The discrimination index of a clustering is the number of
variables that singly discriminate among all the clusters, i.e.,
variables having different values in every cluster description.

The definitions of the above criteria are such that the in-
crease of any criterion value improves the quality of the clus-
tering. The relative influence of each criterion is specified
using the lexicographical evaluation functional (LEF). The
LEF is defined by a sequence of “criterion-tolerance” pairs
(¢1.71), (¢2,72)," -+, where ¢; is an elementary criterion se-
lected from the above list, and 7; is a “tolerance threshold”
(r€[0---100%]). In the first step, all clusterings are eval-
uated on the first criterion ¢, and those that score best or
within the range defined by the threshold 7, are retained.
Next, the retained clusterings are evaluated on criterion ¢,
with threshold 7,, similarly to the above. This process con-
tinues until either the set of retained clusterings is reduced to
a singleton (the “best” clustering) or the sequence of criterion-
tolerance pairs is exhausted. In the latter case, the retained
clusterings have equivalent quality with respect to the given
LEF, and any one may be chosen arbitrarily. The selection of
elementary criteria, their ordering, and the specification of
tolerances is made by a data analyst.

III. METHOD AND IMPLEMENTATION

This section describes the algorithm for conjunctive con-
ceptual clustering implemented in the program CLUSTER/2
(the successor to the program CLUSTER/PAF {11}, 112]).
The algorithm consists of a clustering module and a hierarchy-
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Fig. 1. An illustration of the star G(e|Eo).

building module, which are described in Sections III-D and
III-E, respectively. The operation REFUNION and two funda-
mental procedures, REDUSTAR and NID are first described in
Sections II-A-C.

A. REFUNION Operation

This operation transforms a set of events and/or complexes
into a single complex covering the events and/or complexes.
For each variable, the set of all values the variable takes, in all
given events and complexes, is determined. These sets are
used as the reference of the variable in the generated complex.
For example, given

e,: (2,3,0,1)
e;: (0,2,1,1)and
@ [x; =2..3][x, =4])[x3 = 0][xa =2]
the refunion complex REFUNION(e, , e,, @) is
o [x;=0V2V3]x; =2V3V4]ix;=0V1]lxs=1V2].

The refunion complex has minimum sparseness (both absoluté
and projected) among all complexes covering the given events
and/or complexes [7].

B. REDUSTAR Procedure

The star G(e|Eo) of event e against event set Eqg (e & Eo) is
the set of all maximally general® complexes covering the event
e and not covering any event in Eo. In other words, it is the
set of all maximally general descriptions of event e which do
not intersect with event set Eo. Fig. 1 presents a star of event
e against events denoted by “e” in the two-dimensional space
spanned over linear variables. The star consists of complexes
a;, @, and az. Complex aj is a “reduced” complex a;, as
explained below.

In the algorithm that follows, the, “theoretical” stars defined
above are subjected to two major modifications. The first is
to minimize the sparseness of complexes in the stars, and the
second is to “bound” the stars, i.e., to select from them a cer-
tain number of “best” complexes, according to a context-
dependent criterion. The first modification is performed by

2A complex a is maximally general with respect to a property P if
there does not exist a complex a* with property P such that o C a*.
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algorithm REDUSTAR described below, and the second by
algorithm BOUNDSTAR described in Section I11-D2.

Complexes in stars G(e|E,) are maximally general, and
therefore may describe objects in an overgeneralized way. The
algorithm REDUSTAR generates a star and then maximally
reduces the sparseness of each complex in it, while preserving
the coverage of observed events. - For example, complex & in
Fig. 1 is such a reduced complex obtained from complex a;.
The steps of the procedure are as follows.

1) Elementary Stars, G(ele;), e; € E,, are Determined: To
generdte an elementary star G(ele;) of an event e against an-
other event e;, all variables that have different values in e than
in e; are identified. Suppose, with no loss of generality, that
these variables are x;, x,, "+, Xg,and that e;=(ry, 7y, -,
*++,r,). The complexes of the star G(ele;) are then
[xiaér,-], j=1,2,"+-,g, because these are the maximally
general complexes which cover e and do not cover e;. The
number of complexes in an elementary star is at most 7, and,
because e; # e, at least 1.

2) The Complete Star G(e|E,) is Determined: The star
G(elE,) is generated by first setting up the logical product
AGlele;), e;€E,, where G(e|e;) is the disjunction of com-
plexes from the elementary star G(ele;) [S]. Next, the mul-
tiplication of complexes is performed, using absorption laws,
until a disjunction of irredundant complexes is obtained. This
multiplication is carried out in steps, each step being a multi-
plication of a disjunction of complexes by a disjunction of
selectors (the elements of consecutive elementary stars). The
set of the complexes in the resulting disjunction is G(e| £, ).

3) Complexes in G(e|Eo) are Reduced and Simplified: The
sparseness of each complex in the star is reduced as much as
possible without - “uncovering” any of the observed events.
This is done by performing the REFUNION of all the observed
events contained in each complex. The obtained complexes
are then generalized and simplified.

C. NID Procedure

This procedure transforms a set of Nondisjoint complexes
Into a set of Disjoint complexes (i.e., a disjoint clustering).
If input complexes to NID are already disjoint, the procedure
leaves them unchanged. The steps of the procedure are as
follows.

1) “Core” Complexes are Determined: Observed events
covered by more than one complex from the given set are
placed on the multiply-covered event list (m-list). If the m-list
is empty, then the complexes are only weakly intersecting, i.e.,
the intersection area contains only unobserved events. In this
case, the procedure terminates with an indication that the
combination of complexes is a weakly intersecting clustering.
Otherwise, each complex is replaced by the REFUNION of the
observed events contained in the complex that are not on the
m-ist (i.e., that are singly covered). The obtained refunions
are called “‘core” complexes.

2) A Best “Host” Complex is Determined for Each Event on
the m-List: Anevent is selected from the m-list and is “added”
to each of the k core complexes by generalizing each complex
to the extent necessary to cover the event. Such a generaliza-
tion is performed by applying the REFUNION operator to the

Tgs
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Given:
E—a set of data events
k—the number of clusters
LEF — the clustering quality criterion

(1}
Choose initial'seed”” events from E

v v

(2) =
Determine a star for each seed
against the other seed events

(3)

By appropriately modifying and
sefecting complexes from stars,
construct a disjoint cover of
€ that optimizes the criterion LEF

(4)
Is the termination
criterion satisfied?

(5)
Is the clustering
quality improving?

Choose k new seeds which
are “border” events

L ]
J

Fig. 2. The flowchart of the clustering module.

Choose k new seeds which
are central events

event and the complex. As a result, kK modified complexes are
obtained. By replacing one of the core complexes in the initial
set with the corresponding modified complex, in k different

. ways, a collection of clusterings is obtained. These clusterings

are evaluated according to the assumed clustering quality cri-
terion (see next section). The complex in the best clustering
that covers the given event from the m-list is considered to be
the best “host™ for this event. The best clustering is retained
and the remaining ones are eliminated. By repeating the above
operation for every event on the rm-list, a set of k disjoint com-
plexes is obtained whose union covers the same observed
events as the original set of nondisjoint complexes.

If an event cannot be “added” to any complex without caus-
ing the result to intersect other complexes, then the event is
placed on the exceptions list.

D. The Clustering Module

The basic algorithm underlying the implementation of the
clustering module was introduced in [7] and its flowchart is
presented in Fig. 2. Its purpose can be described as follows.
Given:

 a collection of events to be clustered
e the number of clusters desired (k)
o the criterion of clustering quality

Find: a disjoint clustering of the collection of events that op-
timizes the given criterion of clustering quality LEF.
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We first describe a straightforward, exhaustive-search-based
version of the algorithm, and then show how this version is
modified to increase efficiency.

1) The Exhaustive-Search Version of the Algorithm.

The full-search version of the clustering algorithm is de-
scribed here merely to provide insight into the difficulty of the
problem and thus has only a theoretical value. It proceeds as
follows. ,

1. Initial Seeds are Determined: From the given collection
of events E, k events (the initial seeds) are selected. The seeds
(After this first step, seeds are always selected according to
certain rules; see step 5.)

2. Stars are Constructed for Seeds: For each seed e;, a
reduced star RG(e;|E,) is constructed by procedure RE-
DUSTAR, where £, is the set of remaining seeds.

3. An Optimized Clustering (a Disjoint Cover of E) is
Built by Selecting and Modifying Complexes from Stars:
Every combination of complexes, created by selecting one
complex from each star, is tested to see whether it contains
intersecting complexes. If so, the complexes are modified by
procedure NID to make them disjoint.

4. A Termination Criterion is Evaluated: 1f this is the first
iteration, the obtained clustering is stored. In subsequent iter-
ations the clustering is stored only if it scores better than pre-
viously stored clusterings according to the LEF (see Section
II-E). The algorithm terminates when a specified number of
iterations does not produce a better clustering (this number is
defined by a termination criterion, described below).

5. New Seeds are Selected: New seeds are selected from
sets of observed events contained in complexes of the gener-
ated clustering, one seed per complex. Two seed selection
techniques are used. One technique selects “‘central” events,
defined as events nearest the geometrical centers of the com-
plexes. The other technique, stemming from the “adversity
principle,”3 selects “border” events, defined as events farthest
from the centers. Ties for central or border events are broken
in favor of events which have not been used recently as seeds.
The technique of selecting central events is used repetitively
in consecutive iterations as long as the clusterings improve.
When the improvement ceases, border events are selected.

After selecting seeds, a new iteration of the agorithm begins
from step 2.

Along with a clustering, the algorithm generates k& /-com-
plexes describing individual clusters, and determines how these
complexes score on the evaluation criteria in the LEF. The
algorithm stops when the trermination criterion is satisfied.
The termination criterion is a pair of parameters (b, p), where
b (the base) is a standard number of iterations the algorithm
always performs, and p (the probe) is the number of addi-
tional iterations beyond b performed after each iteration
which produced an improved cover. The general structure of
the algorithm is based on the so-called dynamic clustering
method [2], [3].

The most computationally costly part of this algorithm is

3This principle states that if a border, “near hit” event truly belongs
to the given cluster, then when selected as the seed it should produce a
clustering that contains the same events as when a central event is used
as a seed.
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& denotes 3 complex j from star i.

Fig. 3. The exhaustive search tree for k = 2.

the construction of an optimized clustering, given kK seed
events (step 3). For an illustration, let us assume that k = 2
and that k “‘seeds,” e; and e,, have been selected from the
collection E. In the first step, stars G; = G(e; |remaining
seeds) and G, = G(e, | remaining seeds) are generated. Fig. 3
presents complexes of these stars as branches of a search tree.
Branches from the root represent complexes of star G, that
are 0y, Q2" Qmy, and branches -at the second level
(repeated m, times) represent complexes of star G, that are
01,022, " ", Qam,. Each combination of complexes, con-
taining one complex from each star, corresponds to one path
in the tree. Because any such combination may contain inter-
secting complexes, procedure NID is applied to each, and the
result is a disjoint clustering.. These clusterings are ordered
according to the quality criterion LEF, and the best one is
selected. .

2) Path-Rank-Ordered (PRO) Search Procedure Used in
CLUSTER|/2.

The above strategy for determining a clustering from seeds is
very simple, but unfortunately too inefficient for solving any
interesting practical problems. This is due to the fact that the
stars may contain very many complexes. When there are 1 vari-
ables and k seeds, a star may contain up to n*! complexes
(there are at most n complexes in any of the & - 1 elementary
stars needed to compute the complete star). Thus, when n =
30 and k = 3, there could be up to n¥™! = 900 complexes, and
the search tree could have up to 900-way branching at each
node, and up to 900% = 729 million leaves. Absorption laws
(as defined in set theory) will usually eliminate many redun-
dant complexes, but the star may still be too large. Artificial
intelligence research on various heuristic search procedures
offers various possibilities for reducing the search [14], [19].
To solve this problem, we have adopted some of the known
ideas and also developed some new ones. The result is a search
procedure called Path-Rank-Ordered (PRO) search that in-
corporates the following four techniques.

1. Bounding the Stars (Procedure BOUNDSTAR): The
number of complexes in a star is bounded by a fixed integer
m, which assures that the search tree has at most m-way
branching. A bounded star contains not just m arbitrary
complexes from the initial star, but the m “best” ones.

At each step of star generation (a multiplication of a set of
complexes by the next elementary star, see STAR algorithm
above), complexes are first reduced and then arranged in de-
scending order according to the assumed clustering quality
criterion LEF. Only the first m complexes are retained for
the next multiplication step. This operation is also performed
at the end of star generation, so that the final star has at most
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m complexes. The stars so obtained are called bounded re-
duced stars and denoted G(e|Ey, m).

Some elementary criteria measure global properties of a clus-
tering rather than properties of just a single complex (e.g., the
disjointness). Consequently, when evaluating a complex de-
scending from a node in the search tree that is not the root,
the complex is evaluated in the context of complexes asso-
ciated with the path from the root to this node.

By bounding the star we gain significantly in efficiency, but
give up the assurance that the obtained clustering will be
optimal. This is not a significant loss, however, because the
clustering obtained at the end of each iteration contributes
only the seeds to the next iteration, and thus its precise ex-
pression is not very important,

2. Generating Stars Dynamically: Because it is necessary to
evaluate complexes in the context of previously selected com-
plexes, bounding a star has to be done differently at each node
of the search tree. CLUSTER/2 uses a “lazy” strategy, in
which a star is generated only when it is needed to expand a
node on the path being explored.

3. Searching in Order of Path Rank: As we mentioned
above, complexes in a bounded star are arranged in descend-
ing order according to the LEF. In the search tree, the branch
to the best complex is assigned the branch index 0, the branch
to the next best complex is assigned the branch index 1, etc.,
up to the index m - 1. The path index of a path from the root
to a leaf is the sum of the branch indexes along the path.

The paths from the root to a leaf represent potential cluster-
ings and are investigated in the ascending order of their path
index. Thus, the first path investigated is the one with path
index 0, i.e., the path containing only the best complexes from
each star. The next paths considered are those with a path
index of one. There are k such paths.

As paths of increasing path index are generated and eval-
uated, a search termination criterion is applied. This criterion
consists of two parameters, search-base and search-probe. A
search-base number of paths is always expanded and evaluated.
Then, a search-probe number of additional paths is considered.
Each path is processed by NID, and if some complexes are
transformed to make them disjoint, the clustering quality cri-
terion is evaluated again. Whenever a new clustering is better
than any previous clustering, it is saved and another search-
probe number of additional paths is explored. If the above
probing fails to find a better clustering, the search terminates.

4. Tapering the Search Tree: The bound of the stars m is
decreased with the increase of the path index. The search tree
is, therefore, more fully developed on the side containing the
“higher quality” complexes.

Fig. 4 shows an example of a search tree generated by
CLUSTER/2. The tree is a modification of the tree in Fig.
3, resulting from the application of the above efficiency-
increasing techniques. In Fig. 4, the maximum bound M max
is set to 3. The root is expanded by constructing the star
G(seed, | other seeds, 3), whose complexes are @,,, @;,, and
;3 (listed in decreasing order of their “quality,” as deter-
mined by the LEF). The branches representing these com-
plexes are assigned branch indexes 0, 1, and 2, respectively.
The node attached to branch 0 is expanded next. The star

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-5. NO. 4, JULY 1983

“.i denotes complex j from star i, integers @@ .... indicate the order
of expanding nodes. Integers 0, 1, .... indicate the branch indices. Integers

.« ... indicate clustering evaluation scores for each path,

Fig. 4. The path-rank-ordered search tree for & = 2 used in CLUSTER/2.

G(seed, |other seeds, 3) is generated, creating complexes a,,,
@22, and ap3. Branches corresponding to these complexes are
assigned branch indices 0, 1, and 2, respectively. The path 0-0
(having the lowest path index of 0, denoted by heavy lines in
Fig. 4) is considered first. The associated clustering {a;,, &z, }
is processed by NID, and the result is saved as the best cluster-
ing so far. Next, path 0-1 is considered. The associated clus-
tering {a;;, @y, } is processed by NID and evaluated. If it is
better than the previous clustering, it is saved. In order to ex-
plore the path 1-0 (the second path with path index 1), the
star G(seed, |other seeds, 2) is generated. It contains com-
plexes a3, and a3,. The clustering {a,,, ay, } associated with
this path is evaluated. Assuming that the termination criterion
has the parameters search-base = 2 and search-probe = 2, and
that the evaluation scores are as shown in Fig. 4, the tree
search terminates after investigating the fourth path 0-2 (since
this path exhausts the probing without finding a better cluster-
ing). Path 0-1, with the evaluation score of 22, is the best
clustering found.

E. The Hierarchy-Building Module

The hierarchy-building module uses the clustering module to
determine a hierarchy of clusters. It performs two loops, one
iterative and one recursive. The iterative loop repeats the
clustering module for a sequence of values of % in order to
determine the value for which the most desirable clustering is
obtained. Such an approach is computationally acceptable
because, in practical applications, most interesting hierarchies
will have a relatively small number of branches (i.e., value of
k) at each level.

The recursive loop applies the above iterative process at each
node of the hierarchy. In the first step, the process is exe-
cuted for the root, representing the initial event set £. Clus-
ters of £ and their conjunctive descriptions are determined.
Consecutive steps repeat the same operation for the nodes
representing clusters obtained during the previous step. The
hierarc}]y continues to grow from the top down until the
“continue-growth” criterion fails to be met. This criterion
requires that the fit between the clusters and their descriptions
at every level of the hierarchy must be better than at the pre-
vious level.

In order to determine the optimal value of k at each node,
we must modify the clustering quality criterion so that it can
be used to compare clusterings with different numbers of com-
plexes. Such a criterion must reflect the dependency of the fit
between the clustering and data on the value of k. As the
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1. MP (Microprocessor) 2. RAM memory size 4. Display type

Type: structured Type: linear Type: structured
Domain: 13 values Domain: 4 values Domain: 4 values
« 8030a « 16K bytes « Terminal
« 6502 « 32K «B/W_TV
« 230 .« 48K + Color_TV
» 1802 « 84K « Built-in
« 6502C
« 6502A 8. ROM memory size 5. Keys on keyboard
« 68000 Type: linear Type: linear
+ 6800 Domain: 7 values Domain: 5 values
« 6805 « 1K bytes « 52 keys
« 6809 « 4K « 53-56
« 8048 « 8K » 57-63
« 28000 . 10K » 64-73
« HP (Hewlett Packard « 11-18K .92
Co. proprietary) « 26K
« 80K

Fig. 5. Variables used to describe microcomputers.

MP

8080x 6502x

1802 68000 6800 6805 6809 28000 HP
8080A 280 8048 6502 6502A 6502C

Fig. 6. The structured domain for the variable “MP.”

number of clusters k increases, the fit (measured by the nega-
tive of sparseness) will likely increase, since smaller complexes
will have smaller sparseness.” On the other hand, increasing k
increases the complexity of the clustering and therefore is un-
desirable. A simple criterion that takes into consideration the
above tradeoff is to require the product

total sparseness - Kf

to achieve minimum value, where § is an experimentally de-
termined parameter balancing the relative effect of the sparse-
ness and the number of clusters k on the solution.

IV. COMPARISON OF APPROACHES

The described conjunctive conceptual clustering method will
be compared with various numerical taxonomy methods using
two exemplary problems, the first dealing with constructing a
classification of popular microcomputers, and the second deal-
ing with reconstructing a classification of selected soybean
diseases.

A. Exemplary Problem I: Determining a Classi, ification
of Microcomputers

The problem is to develop a meaningful classification of
popular microcomputers. Each microcomputer is described
in terms of the variables shown in Fig. 5. “MP” and “Display
type” are both structured variables with domains shown in
Figs. 6 and 7, respectively. Descriptions of the microcom-
puters under consideration are presented in Fig. 8.

Two programs were applied to solve this problem:

1) NUMTAX, which implements 18 techniques of numerical
taxonomy, and

2) CLUSTER/2, which implements conjunctive conceptual
clustering.

The obtained results are described in the corresponding sec-
tions which follow.
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Display type

any TV

Ext. terminal ~ B/W TV Color TV Built-in

Fig. 7. The structured domain for the variable “display type.”

1) Results for Problem I using NUMTAX: The principle of
clustering applied by NUMTAX is that objects with high nu-
merical similarity are placed in the same cluster while objects
with low similarity are placed in different clusters. The nu-
merical taxonomy program NUMTAX organizes the events
into a hierarchy (a dendrogram) of clusters reflecting the sim-
ilarities between consecutively larger groups of objects. In
all, 18 such similarity-based techniques were used, spanning
3 data transformations, 3 numerical similarity measures, and
2 schemes for merging individual objects into clusters. Here
are the selections that are available.

o Data Transformation Technique:

a) none

b) normalization to unit intervals

c) standardization (values expressed in terms of standard
deviations).

o Similarity Measure:

a) product-moment correlation
b) simple matching coefficients
¢) reciprocal Euclidean distance.

o Merging Criterion:

a) unweighted average linkage
b) weighted average linkage.

A particular technique is specified symbolically by three
letters denoting specific choices of the data transformation,
similarity measure, and the merging criterion. For example,
{cha) denotes the combination using standardized data c), a
similarity measure based on simple matching coefficients b),
the unweighted average linkage merging criterion a).

The method generates a hierarchy in which the top level
represents the complete collection of objects and the tips rep-
resent single objects. Dendrograms are constructed bottom-
up, and to form top level clusters the entire dendrogram must
always be generated. After this is done, the dendrogram is cut
apart at the appropriate level to produce the desired number
of clusters.

When the 18 dendrograms produced by NUMTAX are cut
into two or three clusters, only 5 different partitionings are
produced. A representative dendrogram produced by NUM-
TAX is shown in Fig. 9. In Fig. 9 the dashed lines indicate
where the dendrogram is cut apart to form two and three
clusters. Accompanying the dendrogram is a logical descrip-
tion of the clusters. These descriptions were produced by the
inductive learning program AQ11 [10], which accepts as input
a collection of groups (clusters) of objects and generates the
simplest discriminant characterization of each group. The
generated descriptions are in the form of a single l-complex or
a logical disjunction of such complexes.

Fig. 9 shows the dendrogram produced by NUMTAX using
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APPLE Il ATARI 800 COMMODORE VIC 20
Display: Display: Display:
Color_TV Color_TV Color_TV
RAM: 48K RAM: 48K RAM: 32K
ROM: 10K ROM: 10K ROM: 11-16K
MP: 6502 MP: 6502 MP: 6502A

ZENITH H8

EXIDI SORCERER

ZENITH H89

Display: Display: Display:
B/W_TV Built-in Built-in
RAM: 48K RAM: 64K RAM: 64K
ROM: 4K ROM: 1K ROM: 8K
MP: Z80 MP: 8080A MP: 280
D E F
Keys: 64..73 Keys: 84..73
HP 85 HORIZON OHIO SCI. CHALLENGER
[t |
Display: I Display: | Display:
Built-in | Terminal ! B/W_TV
RAM: 32K I RAM: 84K | RAM: 32K
ROM: 80K I ROM: 8K ! ROM: 10K
MP: HP : MP: 780 : MP: 6502
________ . 1
G H 1

OHIO SCI. 11 SERIES

TRS-80 1 TRS-80 11
Display: Display: Display:
B/W_TV B/W_TV Built-in
RAM: 48K RAM: 48K RAM: 48K
ROM: 10K ROM: 12K ROM: 14K
MP: 6502C MP: 780 MP: Zg0
L

Keys: 64..73

Fig. 8. Microcomputers.

the technique (aab) (i.e., using nontransformed data, product-
moment correlation, and weighted average linkage). Very
similar dendrograms were obtained using the techniques (abb),
{aaa), and (aba) (the form of the dendrogram was identical;
only some between-group similarity scores were slightly dif-
ferent). When the dendrogram was cut into two parts (k = 2),
the clusters were {4, B,C, D, G, H,1,J, K, L} and {E, F}.
The descriptions produced by AQ11 for these clusters, as
shown in Fig. 9, seem arbitrary. For example, the first cluster
is described

[RAM = 16K . . 48K] V [Keys < 63].

This description suggests that the cluster is composed of two
kinds of computers, one that has [RAM = 16K . . 64K] and
the other that has {Keys < 63]. The presence of disjunction
raises the question of the reason for placing these computers
in the same cluster,

When the dendrogram is cut into three clusters (k = 3) the
clusters are {B, L, 4,1, K},{C,G,J,D,H}, and {E, F}. The
descriptions of these clusters involve entirely new variables
(the type of microprocessor and the type of display) and ap-
pear again rather arbitrary and unrelated to the descriptions
obtained in the two-cluster case.

2) Results for Problem I using CLUSTER/2: The principle
of clustering applied by CLUSTER/2 is that objects are ar-
ranged into groups that are concisely circumscribed by con-
junctive statements and optimized according to an assumed
global criterion of clustering quality (LEF, Section HI).

The program CLUSTER/2 was given the same data and was
told to use three different evaluation criteria. The first LEF
specified the criterion to maximize the disjointness between
clusters with tolerance 0.3, and then to maximize the com-
monality with a tolerance of 0. The clustering obtained using
this LEF is shown in Fig. 10. The second LEF specified the
criterion to maximize the fit between the clustering and the
events with tolerance 0.3, and then to maximize the simplicity
of cluster descriptions with tolerance 0. The number of clus-
ters to form was determined automatically with parameter
B =4 for the first level of the hierarchy and B =2 for the sec-
ond level. The clustering obtained using this LEF is shown in
Fig. 11(a). The third LEF specified the same criterion as the
second LEF but with parameter 8 = 3 for both hierarchy levels.
The clustering obtained using this LEF is shown in Fig. 11(b).

The logical statements produced by CLUSTER/2 are always
conjunctive, but may be quite long. They can be shortened by
using the previously mentioned program AQ11, as was done to
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(The dendrogram was cut as indicated to form two or three clusters)
Cluster descriptions generated by the program AQ11 are:
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al: [RAM = 16K..48K] v [Keys < 63}
a2: [RAM = 64K][Keys > 63]
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d1: [MP 5 6502C v 8502A v HPJJROM = 16K..80K]
62: [MP = 8502C v 6502A v HP] v [ROM = 1K.8K][Display 7 Built-in]
d3: [MP 5 8502C v 6502A v HP[[ROM = 1K.8K|[Display = Built-in]
Fig. 9. A dendrogram produced by NUMTAX in experiment I (cluster-
ing techniques <aab) (abb) (aaa) (aba)).
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Fig. 10. A classification of microcomputers generated by CLUSTER/2 : ROM — 1K_SKIIRAN =80
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or more clusters.

To simplify descriptions, all common variables are removed.

The first clustering (Fig. 10) is a two level hierarchy. This
structure was obtained by imposing binary branching at each
level of the tree. This arbitrary choice is useful when the
hierarchical structure obtained will be compared to the den-
drogram produced by conventional numerical taxonomy
techniques. The other hierarchies produced by CLUSTER/2
that are presented were not constrained in this manner. The

* . * Atari 800

* * [Display = B/W-TV] &

* # [Keys = 53..56)|ROM = 10K] Chal

& s i L
M Ohio Sei. 11
*

*|MP = HP| [Keys = 92{[ROM = 80K]
FEFFFFEAFREEPR PRI FFRRF IR SRR bRk Rk T kb aT kbbb i HP RS

{only the discriminaat variables are presented)

Fig. 11. Classifications of microcomputers generated by CLUSTER/2
with an automatic determination of the number of clusters. Cluster-
ing quality criterion LEF is ““maximize both the fit and the simplic-
ity"’; parameter g is as shown above.
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program CLUSTER/2 can be used either to find a good con-
ceptual clustering for a predetermined hierarchical form, or it
can be used to find an optimized structure by automatically
determining the number of clusters at each level.

At the first level in the hierarchy shown in Fig, 10, CLUS.-
TER/2 split the microcomputers into two clusters according
to the type of microprocessor. The choice of variables to use
to conceptually differentiate the clusters is made by optimiz-
ing the clustering according to the LEF. In this case, one clus-
ter is composed of microcomputers utilizing some form of
8080 microprocessor, as denoted by the generalized value
8080x which includes the 8080A, Z80, and 8048 micropro-
cessors, while the other cluster contains the microcomputers
utilizing a microprocessor that does not belong to the 8080
family.

At the second level of the hierarchy, CLUSTER/2 further
partitioned the MP =8080x cluster according to the micro-
computer’s display type. The other level-one cluster was
partitioned according to four variables: microprocessor type,
amount of ROM memory, display type, and the number of
keys on the keyboard. The conceptual difference between
the HP 85 and the other systems stands out clearly.

For the clustering shown in Fig. 11(a), CLUSTER/2 de-
termined the optimized number of clusters to form at the first
level of the hierarchy. The number k =2 was determined by
finding the k-clustering with the lowest value of sparseness - k#
for $=4. This rather large value for § causes the program to
demand a very great improvement in fit for an incremental in-
crease in k. It seems reasonable, in practice, to use larger
values of § at the top of the hierarchy and smaller values
nearer the tips of the hierarchy. The second level was eval-
uated with f=2. Given that each level-one cluster contains
only 6 events, the limit on reasonable values of k at the sec-
ond level is about 3 (i.e., two events per second level cluster,
on the average). With § =2, the optimized number of clusters
for each part of the hierarchy at level 2 is k = 3.

In the second level of clusters on the MP # 8080x branch of
the hierarchy, the program determined that the ranges of num-
bers of keys 52..63, 64..73, and 92 fit well to the data.
CLUSTER/2 uses the “closing the interval” generalization to
form interval values of linearly ordered variables. A further
step would be to name the interval values produced. In this
example, the names “low range,” “middle range,” and “high-
est” could be applied to intervals to express the magnitude of
the number of keys on the keyboards of the microcomputers.

The clustering hierarchy shown in Fig. 11(b) also contains
two levels. At the first level, CLUSTER/2 split the microcom-
puters into k =3 groups finding the value of k for which the
criterion sparseness * k¥ is minimal, with § = 3. (This same
criterion selects k =2 first-level clusters when =4, and k = 6
first-level clusters when $=2.) The value § =3 was also used
to determine the optimized value of k for second-level cluster-
ings under each first-level node. These values of k for the
second-level clusterings are 2 and 3 for the two first-level
clusters which contain more than one event. (The third first-
level cluster contains only one event.)

The hierarchy shown in Fig. 11(b) reveals an underlying con-
ceptual structure for the collection of microcomputers. Aided
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ENVIRONMENTAL VARIABLES PLANT GLOBAL VARIABLES

Time of occurrence (4] Severity {3)
Plant stand {3} Seed treatment (2)
Precipitation (@ Seed germination (2
Temperature ) Plaat beight {4)
Occurrence of bai} {3)
Number of years crop repeated 2)
Damaged area (3)

PLANT LOCAL VARIABLES

Coadition of leaves {2) Condition of stem 3)
Leal spots 2 Presence of lodging (4
Leaf spots margia 2) Stem cankers (3)
Leaf spot size (3) Canker lesion color 3)
Shotboling/shreading (2 Fruiting bodies on stem 2
Leaf malformation 2 External decay of stem {3)
Leaf mildew growth (2) Mycelium on stem (2}

Cordition of seed (3) Intersal discoloration 3)
Seed mold growth ) Sclerotia internal/external {2)
Seed discoloration 2) Condition of fruit pods (4)
Seed size {2 Fruit spots (3)
Seed shriveling 2) Condition of roots (]

(integers in parentheses indicate the sizes of the domains)

Fig. 12. Multivalued variables used to describe cases of soybean disease.

by background knowledge represented in the structure of the
domain of the variable MP, CLUSTER/2 found that three
microprocessor types: 8080x, 6502x, and HP were important
for classifying these microcomputers. The categories “8080x”
and “6502x” are generalized values of microprocessor type
that cover the 8080 and 6502 families, respectively.

In level two, the MP = 8080x cluster is subdivided into two
clusters that take different values for the variables Display
(type) and (number of) Keys. Since either of these variables
alone is sufficient to discriminate the clusters, this level-two
clustering has a discrimination index of 2. In the three clusters
stemming from the MP = 6502x cluster, there are no variables
which alone can discriminate the clusters, however the pair of
variables (Display, Keys) or the pair (Display, ROM) taken to-
gether is sufficient to provide complete discrimination. The
hierarchical clustering clearly reveals the unique nature of the
HP 85 microcomputer. Its values for the variables MP, Keys,
and ROM are unique.

Of the 18 dendrograms generated by NUMTAX, only the
four produced by techniques (baa), (bba), {bab), and (bbb)
yielded a partitioning of the data into two clusters that was
conceptually appealing. The numerical taxonomy techniques
which produce such dendrograms cannot be predicted in ad-
vance. This is indicated by experiments involving several other
sets of data. For example, the numerical taxonomy tech-
niques which led to clusterings with simple conceptual de-
scriptions failed to produce such simple descriptions for the
“microorganisms” problem (Michalski, Stepp, and Diday
[13]). One important result revealed by our study is that
there is no one measure of numerical similarity that consis-
tently leads to dendrograms having a simple conceptual in-
terpretation. This is in contrast to conjunctive conceptual
clustering which generates clusters with simple conceptual
interpretations in all cases.

B. Exemplary Problem II: Reconstructing a
Classification of Soybean Diseases

The problem is to reconstruct a classification of selected
soybean diseases. Given are 47 cases of soybean diseases each
characterized by the 35 multivalued variables shown in Fig.12.
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Fig. 13. Dendrogram of cases of soybean diseases D1,D2,D3,D4 using
unweighted average linkage and Euclidean distance on nontrans-

formed data.

These cases are drawn from 4 populations—each population
representing one of the following soybean diseases:

D3—Rhizoctonia root rot
D4—Phytophthora rot.

D1—Diaporthe stem canker
D2-—Charcoal rot

Ideally, a clustering method should partition these given cases
into four groups corresponding to the diseases. To test this,
we have applied program CLUSTER/2 and the 18 numerical
taxonomy techniques, as in Example I, to cluster the given
cases.

1) Results for Problem II using NUMTAX: Fig. 13 shows
a typical dendrogram produced by the program NUMTAX
(18 such dendrograms were obtained, one from each tech-
nique). As we see, this dendrogram separates correctly cases

of diseases D1 and D2; however, cases of diseases D3 and D4
are somewhat intermixed. For k =4 (Fig. 13) the cluster
marked “D3 & D4’ contains cases of both diseases D3 and D4.
Only 4 of the 18 obtained dendrograms ({cha), {cbb), {cca),
{cch), i.e., those involving standardized data, product-moment
correlation or simple matching scores, and average or weighted
average linkage) precisely reconstructed the correct classifica-
tion of the cases. The output from NUMTAX does not pro-
vide any description of the clusters formed.

2) Results for Problem II using CLUSTER/2: The program
CLUSTER/2 was applied to this problem with “maximizing
the fit” as the evaluation criterion (LEF). CLUSTER/2 parti-
tioned the disease cases into four disease categories and de-
scribed the clusters in terms of the characteristics (symptoms)
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Vatiable Range determined by Range do(orminpd by

CLUSTUR/2 plant patholagist

Precipitation above normal normal or above normat
Temperature normal aormal or above norinal
Stem eankers above sccond node above second node
Canker lesion eolor brown or n.a. brown
Froting bodies prescat preseat
Condition of fruit pods normal normal

July to October
several years
normal

August to September

Time of occurrence
several years

No. yr=. erop tepeated
Plant stand

Fixternal decay of stem firm and dry
tut. discolor. of stem none
Selerotinant. or ext. absent
Conditinn of roots normal

scatlered areas or low areas

Damaged ares ¢
potentially severe or severs

Seventy

Leaf spots absent not present
Shatholing/shreading absent in expert
L.eaf matformation absent deseriptions
Leaf mildew growth absent

Condition of stem abnormal

Plant height abnormal

Condition of leaves abnormal

Myeelinvm on stem absent

normal

Condition of seed .
none or fungicide

Seed treatment

Fig. 14. The description for one cluster (the disease diaporthe stem
canker) obtained by CLUSTER/2 (variables having values in the left
column) and as described by a plant pathologist (variables having
valucs in the right column).

Variable Cluster1 Cluster2 Cluster3 Clusterd
(Diaporthe stem  {Charcoal rot) (Rbizoctonia  (Phytophtbora rot}
canker) root rot}

above normal below pormal  above normal npormal or above

Precipitation

Temperature normal normal or above below normal normal or below
& above 2nd absent belo'w soil below or slightly
Stem cankers node line above soil
Canker lesion color brown tan brown dark br. or black
Fruiting bodies on stem present absent absent absent
Cendition of [ruit pods  pormal pormal few or none  irrelevant
Plant stand normal normal irrelevant less than normal
ecay of stem  frm aud dry absent firm and dry  absent or
Esternal decoy of o dry
Int. diacolor. of stem none black none none
Sclerotia snt. or cxt. absent present absent absent
it normal or rotted
Cendstion of rovts normal pormal maEd
ed & 3 bole fields
reas scattered or whole fields, low areas w ,
Demaged o low areas upland areas low areas

Fig. 15. Discriminant characteristics for clusters of soybean disease
cases produced by CLUSTER/2.

of each disease, expressed in the form of a conjunctive state-
ment. The produced disease categories corresponded exactly
to actual soybean diseases, and the descriptions produced by
CLUSTER/2 agreed well with the symptoms indicated by
plant pathologists for these diseases.

Fig. 14 presents the complete I-complex for one cluster (one
disease category). The middle column contains the values for
the 25 variables CLUSTER/2 used to describe one cluster.

The right-hand column of Fig. 14 presents values of vari-
ables used by an expert plant pathologist to describe the same
disease for diagnosis. The description of the disease deter-
mined by CLUSTER/2 contains all the symptoms of the
disease specified by the plant pathologist (the values of “time
of occurrence,” “‘precipitation,” and *“canker lesion color”
determined by CLUSTER/2 are supersets of the values men-
tioned by the plant pathologist). The description produced by

- CLUSTER/2 also involves many variables which the plant
pathologist did not mention. Fig. 15 shows a table of the
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Number of  Sparseness Parameter S Cpu time used
clusters (x 105 3=2 p=3 pB=4 (on Cyber 175)
2 15.00 60.0 120 240 10 sec
3 0.50 45 135 405 23
4 v0.03 0.5 1.9 7.7 21
5 0.10 2.5 125 625 44
8 0.02 0.7 43 259 40

Fig. 16. A summary of evaluation criterion scores for soybean disease
clusterings for k = 2 to 6.

values of the discriminant variables for each cluster derived
from the descriptions produced by CLUSTER/2.

The measure of the total sparseness of the solution can be
used to judge the best number of clusters to form. Data from
the clustering of soybean disease cases for & = 2 through k=6
are summarized in Fig. 16. As & increases, the sparseness al-
ways decreases because data events are partitioned into smaller
complexes which fit the data better. On the other hand, in-
creasing k is undesirable as it raises the complexity of the
clustering. A measure that reflects this tradeoff is § = sparse-
ness - kP, where B is a parameter which balances the influence
of k versus the sparseness. Fig. 16 shows values of parameter
S for B=2 through §=4. In our experiment there was a
strong correlation between the cpu time used and the parame-
ter S. This fact may indicate that the algorithm operates more
efficiently when the number of clusters formed agrees with
some “‘natural” organization of the data.

The clusterings obtained from CLUSTER/2 depend on com-
ponents of the assumed criterion of clustering quality. One
can, therefore, possibly argue that this is equivalent to obtain-
ing different clusterings by using different methods of measur-
ing object similarity. There are, however, two important dif-
ferences in this regard between the conjunctive conceptual
clustering method and traditional methods.

The first difference is that conceptual clustering provides the
data analyst with a simple conceptual description of the gen-
erated clusters. Consequently, it is easy to experiment with
the choice of the clustering quality criterion, and to determine
the clusterings most suitable to the problem under considera-
tion. The second difference is that the clustering quality cri-
terion, unlike a measure of similarity, has a clear and simple
relationship to the clusters to be generated, as its components
represent elementary criteria such as the “fit” of the clusters
to the data, the “simplicity” of cluster descriptions, etc.

V. SUMMARY

A method of conjunctive conceptual clustering was analyzed
and compared to a number of clustering techniques used in
numerical taxonomy. The major difference between this
method and numerical taxonomy methods is that it performs
clustering not on the basis of some mathematical measure of
object similarity, but on the basis of “concept membership.”
Specifically, clusters are groups of objects which are character-
ized by simple, “well fitted” conjunctive descriptions. The
collection of cluster descriptions optimizes a predefined global
clustering quality criterion. Experiments performed so far
have shown that the method produces clusters that tend to
match solutions most satisfactory for people. Similar experi-
ments with numerical taxonomy methods resulted in clusters
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that were less satisfactory in this regard. The numerical tax-
onomy methods produced clusters that in the majority of
cases seemed to be arbitrary and rather inadequate from the
viewpoint of human interpretation. This can be explained by
noting that the numerical taxonomy program NUMTAX is not
equipped with any knowledge of human conjunctive concepts
(or any other concepts) and, therefore, cannot knowingly pro-
duce clusters corresponding to such concepts.

From the viewpoint of traditional clustering methods, con-
ceptual can be interpreted as an approach that also uses a cer-
tain measure of object similarity, but of a quite different kind.
This new kind of similarity measure takes into consideration
not only the distance between objects (as in conventional clus-
tering methods), but also their relationship to other objects
and, most importantly, their relationship to some predeter-
mined concepts (here, conjunctive descriptions).

The price for using such a “concept-dependent” similarity
measure is a significantly greater computational complexity
of the method, and consequently, the run time of the cluster-
ing program. For example, each dendrogram produced by
NUMTAX (implemented in Fortran) for example I required
about 60 ms of processor time on a Cyber 175, while cluster-
ings produced by CLUSTER/2 (implemented in Pascal) for the
same example required 4-40 s of processor time. (The above
comparison is not totally appropriate because NUMTAX pro-
duces only clusters, while CLUSTER/2 produced both clusters
and their descriptions.) The greater computational complexity
is not necessarily a significant disadvantage of the method. If
the clusterings obtained are indeed useful and practical, then
the computational cost is of little relevance, especially now
when the prices of computer technology are declining. Ex-
perience shows that researchers using presently available clus-
tering techniques are most concerned not with the amount
of computational time expended, but with the difficulty of
interpreting the results of the analysis.

Another important characteristic of the method (and a lim-
itation or advantage depending on the problem at hand) is
that it is specifically oriented toward clustering problems using
nominal or ordinal variables. It should be noted, however,
that the method can also handle other types of variables, if
they are properly quantized.

The major current limitation of the presented method of
conjunctive clustering (as well as all traditional methods) is
that it clusters objects using only the variables that were de-
fined in the input data. This limitation could be overcome by
a process of “constructive induction” that incorporates into
cluster descriptions new variables, derived as certain functions
of the initial ones [6], [8].

In conclusion, the presented method of conjunctive con-
ceptual clustering adds a new dimension to research in cluster
analysis, and seems to have the potential to be a useful new
tool for researchers analyzing data.
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