3323

File No. UIUDCDS-F-83-910

A PROGRAMMER'S GUIDE FOR CLUSTER
A PROGRAM FOR CONJUNCTIVE CONCEPTUAL CLUSTERING

Brian Biswas

Department of Computer Science
University of Illinois
at Urbana-Champaign

ISG 83-10

July 1983

pess Machines, Inc, under grant IBM KNOWL

by International Busi
NSF MCS 82-05166.

This work was supported in part
Science Foundation under grant

BASE and in part by the National

ABSTRACT

The following is & detailed recipe for the regeneration of [BM PC CLUSTER from CYBER CLUS-
TER. Indicated is all processing required to transfer source code, modify the code to fit the compiler,
compile the code, and run the program. Also included are the steps required to go from the CYBER to
the VAX, and then to the [BM PC. Shown is the text of all commands in the form in which it would be
entered by a programmer repeating the above process. An experiment comparing the running times on
the IBM PC, VAYX, and CYBER computers is included, as is a list of all changes that have been made to
the original source code on the CYBER to adopt CLUSTER to the VAX and the IBM PC.

Table of Contents

Section Page
1 INTRODUGCTION. ...ootmmssimmsarmmmsimssinessssssmstasssmmestisassssssasmastpsas s R 3
Il TRANSFER TO VAX wcovomrccisismsmees e R A 4
il COMPILATION ON VAX ..ccocc DU R —— 5
e R 1] L oM e— 9
Vv RUNNING CLUSTER ON THE IBM PC oommmmmsnsismsssismsss s 13
VI COMPARISON OF RUNNING TIMES ..ccvcnrssmismmsassssrssseso A8
VIl VERSION DIFFERENCES ...occoormssrimmrsmmmsmsssssssssssmns . 17
" VI SAMPLE INPUT FILES. ..o i e 00 2
IX CLUSTER/2...ccoo. st AN AR A 28
X REFERENCES....... R — TR Ly 30

1 INTRODUCTION

This report is a detailed reference guide for using and maintaining CLUSTER on the VAX and [BM
PC. Information is provided on transferring, compiling, and running CLUSTER on both machines, The
reader ioterested ooly in rupning CLUSTER programs on the IBM PC should first read Section V of this
report; the reader interested only in running CLUSTER programs on the VAX should first read Section
I11; for running CLUSTER {2 on the VAX or IBM PC see section IX.

Ap experiment testing the ruoning times of CLUSTER oo the VAX, IBM PC, and CYBER comput-

ers is described in Section V1. The actual input files for this experiment are listed in Section VIII.

An excellent paper on the CLUSTER/2 program (the successor to CLUSTER) is found in A
DESCRIPTION AND USER'S GUIDE FOR CLUSTER/2,".by Robert Stepp [4]. The reader who wishes

to use the CLUSTER program to its full polential is urged to read that document.

e

11l TRANSFER TO VAX

It is assumed the program currently exists on the CYBER. To transfer to the VAX the following

steps are mecessary:
First log on the VAX A. Then type the command:

acs cyber-log <filename>

This will log you onto the CYBER and prepare things for transfer. Finally, type the command:

type <filename>

where <filepame>> is the same as listed before. 'f‘be file will appear on the screen and a copy of it will

appear in a file of the same pame on the VAX A.

To transfer to the VAX B type the commands:
chmod 777 _
wucp <filename> uivcesb\!/tmp/ <filename>
To transfer to the VAX A type the commands:
chmod 777
wucp <filename> uiucdes\!/tmp/<filename>>
To transfer to your directory type:

mv [tmp/<filename> <flename>

Il1 COMPILATION ON VAX

MNow on the VAX, it is necessary to modify the code to Bt the Berkeley Pascal compiler. CLUSTER
is such a large program that it is best to use the separate compilation facility provided with the Berkeley
Pascal compiler "pe’. This facility allows programs to be divided into any number of files which are then
compiled individually, to be linked together at some later time. Thus, small changes made later in

developing CLUSTER will not require time-consuming re-compilation of the entire program.

Two Lypes of files are needed: .h files and .p files. They are compiled into .o files by the Berkeley

compiler to be linked together at a later time.

The Berkeley Pascal compiler performs type checking across separately compilable files. Since Pascal
type definitions define unique types, any types which are shared between separately compilable files must
be the same definition. These definitions are placed in .h files and thus define unique ty-p-es; all deﬁnili-uns
from the same h file define the same type. The facility also allows the definition of constants, and the
declaration of labels, variables, and external functions and procedures. Thus, procedures and functions
used between separately compiled files must be declared external in a .h file (and only in 3 .b file). This .h
Ble must be included (use the INCLUDE command) by sny fle which calls the function or procedure.

These files are included only at the beginning of the file, and thus define or declare global objects.

An example should make this clear:

Let the main program be:
program test(input,output);
#include "globals.h”

#include "relationaltables.h”

begin
{ main program }

end.

Where the file globale.h looks like:

consts :

{ constants }

vars

{ variables }

And the Ble relationaltables.h :
function semantics{var code: codetype) : tokentype;external;

procedure replace(token : codetype); external;

Then fupction semantics and procedure replace would be in a separably compiled file that looked

like :

#include "globals.h”

#include *relationaltables.h”

function semantics;
begin
{semantics code}

end;

procedure replace;
begin
{replace code}

end;

Any number of separately compilable scurce and definition files is allowed. (There are six source

and six definition files in the present GLUSTER version.) However, the separate source files must all have

the extension .p, the separate definition files the extension .b.

The various .p files can now be compiled via the Berkeley Pascal compiler with the command:

pe € *.p
This will compile all Bles in the directory with a .p extension. The compiler itsell will call up the .h

files as needed— they should not be included in the pc command.

Alternately, one can use a makefile so that only those .p files that peed be recompiled are actually

recompiled. The structure of the makefile for CLUSTER is as follows:

a.out; oper.o prim.o rith.o ceelib.o subr.o sys.o

pc *.0
oper.o: globals.h -suhr.h oper.h sys.h prim.h
ceclib.o: globals.b subr.h sys.h oper.h prim.h rltb.h
rlth.o: globals.h sys.h oper.h prim.h ritb.h
prim.o: g[obais,ll prim.h subr.h sys.h oper.h
subr.o; globals.h subr.h sys.h oper.h primh

sys.0 : globals.h sys.h

(Using a makefile iz a more efflicient way to compile. Only those files that depend on .h files that have

been modified since the last compilation are recompiled.)

Then compile via the command

make

The compiler has produced a separate .o file for each .p file in the program. Compile these with the

command:

pe *.0
The compiler will produce a file called a.out. This is the compiled CLUSTER program. Run it with
the command:

aoutl <ioputfile >outputfile

where inputfile and outputfile are the names of the files from which input and output is taking place.

A scparate CLUSTER program exists as a single program. It takes approximately 10-15 minutes to

compile, so it is not recommended for developmental work. Tt resides on the VAX B under the file name

cluster source. Compile via the command:

pe cluster.source

The compiler will produce an a.out file as before. (It will be slightly smaller, also.) Run it with the

command:

a.out <inputfile >outputfile

IV TRANSFER TO IBM PC

For CLUSTER to run on the [BM it must be a single program. (The IBM UNITS feature, analogous
to the Berkeley separate compilation [facility, will not work with CLUSTER because of its complex
'interwoven' structure, see appendix, IEM change eight.) As the editor on the IBM PC only accepts pro-
gram blocks of size sixty or less, divide the program into chunks of approximately that size (i.e. about
36,000 characters). Immediately after the global initialization section use an INCLUDE statement for each
file to be included in the program. Note: during compilation the actual Ble is written into the program
starting at the place the INCLUDE statement is encountered, so the include statements must be in the

proper order.

Transfer is accomplished as follows:

Insert the TRANSFER disk into unit 4, the disk to receive the program ioto unit 5. Boot the [BM

PC. (Turn it on.) When the system is ready, type X <cr>. Engage in the following user-system dialo-

gue:
User: X <er>

System: execule what Ble?
u: tran2

The system will respond with buzzes and clicks. When these subside continue as follows:

u: <etrl>
s Tran: B(reak C{hsp G(et L{ogon I{nfo P(ut Q(uit S{wsp ?
u: Cc

8 change to what speed?

10

u: 9600 <cr>

8: changing speed to 9600

uU: <user's name> <cr>

u: <user's VAX password> <cr>

This will log the user onto the VAX. When the VAX prompt appears continue with:

U stty 1200 <ecr>

U <etrl>\

5: | Tran: Bfreak C{hsp G(et L{ogon I(nfo P{ut Q{uit S(wsp ?
U C <cr>

S change to what speed?

‘u 1200 <er>

U sity nl2

The user can now transfer files between the VAX and the [BM PC:
u: <ctrl>

5: Tran: B(reak C{hsp G(et L{ogon I{nfo P(ut Q(uit S{wsp !

Now type "G’ if you want to transfer from the VAX to the IBM, or P is you want to transi: from

the IBM to the VAX. Say the user typed ‘G’ (the following prompts are reversed if 'P” is typed):
S: file name from VAX?

u: < filepame>>

11

5 file name to [BM!
U #5: <hlename> text
S initing buffer...

The system prints dots while the file is being transferred. Periodically the message: <buffer Bush-
ing... done> will appear. This may be followed by more dots and more buffer flushing messages, depend-

ing on how long the Ble is,

When the transfer is complete, the system will respond with:

S: transfer complete

The user is still logged onto the YAX. To transfer more files type:

u: <ctrl>)
This will get you the prompt. Proceed as before, uploading or downloading files. When you- are done,

log off the VAX, then type:

U control-d

u: <ctrl>

5: Tran: B(reak C(hsp G(et L{ogon I(info P(ut Q(uit S{wsp ?
U: Q

MNotes: The transfer program bebaves erratically. Expect difficulty in seiting up communications
between the VAX and IBM. Also. the programs to be transferred must be on the VAX A; no communica-
tion link currently exists between the VAX B and the [BM. For reference purposes, a 15,000 character fle

takes about five minutes to transfer.

13
Rx and tx are two files which MUST reside on the user's VAX A directory (the same directory on

which the files to be transferred reside). They perform the actual transfer.

13

V¥V RUNNING CLUSTER ON THE IBM PC

To compile the program use the USCD 4-word compiler and system:4 operating system. Boot the

IBM PC (system:4 and compiler on one disk in unit4, the source program in unit5).

Compile the program as follows:

U C

8 compile what file?
u; #5CLUSTER

5 to where?

U #5.CLUSTER

S: compiling...

Compilation takes about five minutes. When done, the compiled file will be in a file called

CLUSTER.CODE. Run this via the commands :

U X

s: execute what file?
u: #5.CLUSTER

- executing...

Input is from a file called test.text. It must reside on umit5. Output = vormally to the terminal. It

can be redirected via the command :

14

execule what Ble?

#5:CLUSTER o= <outputfile>

Output will appear on both the terminal and in the designated output file.

15

VI COMPARISON OF RUNNING TIMES

Three experiments were run on the CYBER, VAX, and IBM PC. The first, FACES, contained four
variables and eight events. The second, DIAMONDS, contained two variables, and sixteen events. The
third, FAMILY?2, contained 5 variables and 8 events. Running times (in seconds) for each experiment

were as follows :

Experiment
Machine FACES DIAMONDS FAMILY2
CYBER i © 900 70.0 70.2
VAX 30.0 15.0 15.0
IBM PC 660.0 420.0 600.0

The above times were recorded with a watch. They indicate the time taken to execute and print the
results on the CRT. More accurate times were recorded for the CYBER and VAX versions using the

computer's internal clock. They indicate only the time taken to execute :

Experiment
Machine FACES DIAMONDS FAMILY2
CYBER 2.22 1.79 2.18

VAX 7.97 4.70 5.75

18

As the sbove results clearly show, the CYBER version is the fastest, followed by the VAX; the [BM
PC version is a distant third.

Ap important point to pote, bowever, is that although the CYBER version is roughly three times as
fast as the VAX version, the response time, as noted by the user, is the other way around, i.e. the VAX
version is roughly three times as fast as the CYBER version as far as the user receiving his output is con-
cerned. This fact is do to the greater system load on the CYBER. The IBM PC, being a personal com-

puter, is unafected by this problem.

17

VIl VERSION DIFFERENCES

The following differences exist between the CYBER and VAX versions of CLUSTER:

1) Berkeley Pascal does not allow you to write pointers

o a text file. Thus, statements of the form:

wrileln{ <ptr> :6oct) were changed to

writeln| ord{ <ptr>]}

2) Berkeley Pascal does not allow the "then’ part of
an 'if then else’ statement to be null. This was
fixed by negating the condition of the 'i" part

and dropping the ‘else’.

ex. Il A then else go to 999
was rewritten as

If not A then go to 999

3) Type conflict of operands occurred in procedure
prtmap and in function maplow. Both call procedure
prtset with an argument of type evimapunit, where
an argument of type selector is expected. Both types
are themselves defined to be 'set of refval’, but
standard Pascal requires the names to be identical
(since only they and not the underlying definitions
arle looked at). Function switch was written to take a
parameter of type evtmapunit and return the parameter's
value, but of type selector. A variant record was used

to accomplish this.

4) Procedure copyplx was rewritten. It used knowledge
about the number of CYBER words actually used by the
variants of the record "complex’, using its own del-
inition of a complex; pow it simply topies
the felds of the record ‘complex’ into » new complex

of the same type.

5) Function geteplx was rewritten. It used knowledge of
memory usage to gage the amount of free space available
(to get the best size for the pext complex). This was
dispensed with. Now getcplx generates a new complex

of standard size.

6) Set notation is different. In Berkeley Pascal the
relatiopals '<' and "> indicate proper set inclusion.
But on the CYBER, 'a<b' means 'not (a >= b)’, and
'a>b' means "not (a <=b)’. Consider the example where
a = [0,2] and b = [1]. 'a<b’ on CYBER would ev aluate
to true, but in Berkeley Pascal would evaluate to false.
The notation was changed to fit the standard Pascal

definition: only '<=", '>=", and "<>" are used.

7) The value of the variable "\ypecodes’ was changed, since
VAX uses ASCII whereas the CYBER uses its own
coding scheme. (Typecodes is used to denote the
character classes—numerie, character, filler, quote,
or missing data—of the input characters.) The setting of

this variable was simply rearranged.

8) The name of procedure main was changed to mymain, since

19

the assembler considered main a reserved word.

9) The program itself exists in two versions on the VAX.
In one version it has been broken into six separately
compilable .o files; this is the separate compilation
facility provided on the VAX. (As an aside, this resulted
in a savings of 6,000 characters over the CYBER version.)
The second version consists of a single segment. Both
versions are useful: the separately compilable version is
best for program development (only the .o files that are
changed peed be recompiled); the single segment version is
best for use by others—when the two versions are compiled
the single segment version is 40,000 characters less than
the separately compilable version. Input to both versions

is expected to come from the terminal, but can be redirected.

In addition to the above, the following differences exist between the VAX and the [BM FC {using UCSD

Pascal) versions of CLUSTER:

1) Ouly the first eight characters of a variable are
recognized on the IBM. This necessitated the following

changes in variable names:

VAX IBM
coverlype coviype
selectors selectrs
structure struct

variables variabls

20
initmethod initmhd

2) Functions linelimit and clock do pot exist in UCSD

Pascal; they were removed from the program.

3) No pre-defined function to find the cardinality of a
set exists in UCSD Pascal. Function ‘card’ was added

to the program to calculate the cardinality of a set.

4) The IBM version expects input to come from a file named

Lest.text.

5) UCSD Pascal does not allow functions Lo return sets.
Therelore, function Switch was rewritten as procedure

Switch, and appropriate changes made in the calling stalements.

6) UCSD Pascal does not allow octal numbers to be written
directly. Therefore, in procedure Selup the number 770

was changed to 63, and the number 7770 to 511

7) On the VAX, array typecodes, in procedure Setup, was
initialized by assigning a 128 character string to it.
In UCSD Pascal no string longer than 64 characters
can be assigned to a variable. Initialization of
typecodes now takes place a characler at a time using

a loop.

8) The [BM PC version is a single program, forward declarations
were used so that various procedures and functions
would not need be moved from their original place.

(Thus, the program is still modular.) The possibility of

using UNITS oo the IBM was seriously considered, but the
following problem would have resulted: With several of the
original modules, e.g. A calls B which in turn calls A.
Units which mutually call each other are not

allowed in UCSD Pascal. It would have been necessary

to copy the code A needed from B into A. (Include
statements could pot bave been used since they are not
allowed with UNITS.) The resulting UNITized program,

it was calculated, would have used thirty more blocks than
a version written as one large program. Considering

the limited amount of space oo the IBM PC, the latter
allernative was adopied. As the editor on the [BM

accepts only blocks of size thirly-six or less, the program
was divided into seven 'chunks’ of approximately thirty-two

blocks each.

9) The IBM PC version needs 192K to execute. The compiled
file is Erty-ihree blocks long. To improve efficiency the program
is segmented. (']-f'hia allows the operating system to swap
code into and out of memory to save space when executing.)
As execution is still quite slow, we are

currently looking at ways to improve efficiency.

VIll SAMPLE INPUT FILES

The following input files were used in Section V1 for the running times experiment (see diagrams on

pages 26-27}):
FACES
1 'faces’'

parameters
k debug criterion
2 2 one

2 2 two

one-criterion
criterion tolerance

1 1 0.0

two-criterion

criterion tolerance

1 2 0.2
2 1 0.0
variables

name type levels
1 cir lin 3

2 ovl lin 3

3 tri lin 4

4 squ lim 3

events

cir ovl tri aqu

DIAMONDS

1 ‘diamond clustering’

parameters

k debug criterion

2 2 one
2 2 two
one-crilerion

criterion tolerance

1 1 0.0

two-criterion

criterion tolerance

1 2 0.2
2 1 0.0
variables

name type levels

1 cr lin 10

24

events

cir ovl

10 6 1
1 6 3
12 7 0
13 7 4
14 8 1
15 8 3

5 9 2

FAMILY2

1 'family2'

parameters
k debug criterion

2 2 upe

one-criterion
criterion tolerance

1 1 0.3

variables
npame type levels
1 cir lin 2
2 ovl lin 2
3 tri lin 2
4 squ lim 2

5 sum lin 4

events
cir ovl tri squ sum
1 0o 0 0 1 1

2 0 0 1 0 1

LOGICAL DIAGRAMS FOR INPUT FILES

(Xi's refer to variable numbers in corresponding variable tables.)

x1 2
SEEREERENEEER
TR
TR
IR
ST T Tl
T EEERAE

e e S

ol LHELLTT I
bl
2 1X |1 (¥XH | ¥ |

[of 2012012012 x
Jolrl 2] sln

FACES

2

SLLIITITintl
AR
SIIN 1N 119 1% |
R LR
TEEEREEE R
TN Il
o123 4s678o0 x
DIAMONDS

7

x1 X233
of 11T IRII
orf X [T TT1
R

opIX LTI
aprrrrrr

ol 1IN 11
ERRNNAE
ol I 1I111IX
SN

Iﬂﬂﬂﬁﬂﬂﬂﬂ
R

- FAMILY2

EE

IX CLUSTER/2

CLUSTER/2 is the successor to CLUSTER. It allows one to use structured variables, is able to
combine duplicate events, and uses weighted events and variables, among other things. The reader should
see [4] for a full description of CLUSTER f2.

CLUSTER /2 exists on the VAX as a single program. No separately compiled version exists. Compile

it via the command:

pe cluster/2 source

The compiler will produce a fle named a.out. Run it with the command:

a.cut <ipputfile >outputfile

CLUSTER 2 exists on the IBM PC as a single program. It is divided into five fles so it can be

easily edited. Input is from a file called cinput.text. It must reside on units.

Compilation of CLUSTEH:JI'B takes about fifteen minutes. Due to the Iﬁ;e size of the compiled file
{132 blocks) it will not fit on the source disk. Compilation is accomplished by using a third disk and inter-
changing it with the disk in unit4 (the operating system and compiler disk). To compile the program use
the UCSD 4-word compiler and system:4 operating system. Boot the IBM PC (system:4 and compiler on

one disk in unitd, the source program in upits). Compile the program as follows:

L C

5: compile what file?
u: #5:CLUSTER [2
§: to where?

u: #4:CLUSTER [2

Now put a blank disk in unit4 and press "return’’. The system will respond with:

s compiling...

Periodically the system will ask for the operating system disk to be placed back in unitd, then for
the (originally) blank disk. Do as the system asks. When done, the compiled file will be in a file called

CLUSTER 2.CODE. Put the disk containing CLUSTER /2.CODE into unit5 and the disk containing the

operating system in unitd. Run via the commands:

u: X

S: execute what file?

u: #5:CLUSTER /2

- executing...

X REFERENCES

1] Michalski, R. S. and Stepp, R., “An application of Al techniques to structuring
objects into an optimal conceptual hierarchy,” Procecdings of the 7th International
Joinl Conference on Artificial Intelligence, Vancouver, Canada, August 24-28, pp.
460-465, 1081,

[2] Michalski, R. S. and Stepp, R. E. “AUTOMATED CONSTRUCTION OF

CLASSIFICATIONS: Conceptual Clustering versus Numerical Taxonomy,” JEEE

Trans. on Pailern Analysis and Machine Intelligence, Vol. PAMI-5, No. 4, July
1983, pp. 306-410.

3] Michalski, R. S., “KNOWLEDGE ACQUISITION THROUGH CONCEPTUAL
CLUSTERING: A theoretical framework and an algorithm for partitioning data
into conjunctive concepts,” A Special lssue on Knowledge Acquisition and

Induction, International Journal of Policy Analysis and Information Systemas, Vol. 4,
No. 3, pp. 219-144, 1980,

[4] Stepp, R. E, “A Description and User’s Guide for CLUSTER/2: A Program for
Conjunctive Conceptual Clustering,” UIUCDCS-R-83-1084, Department of
Computer Science, University of Illinois at Urbana-Champaign, 1983.

ACKNOWLEDGMENTS -

The author expresses his thanks for the support and encouragement of Bob Stepp
without whom this report would never have been completed. He would also like to
thank Pravin Vaidya for proofreading. Partial support of this work was provided by
International Business Machines, Inc. and the National Science Foundation which is

gratefully acknowledged.

